1
|
Cinar R, Basu A, Arif M, Park JK, Zawatsky CN, Zuo BLG, Zuo MXG, O’Brien KJ, Behan M, Introne W, Iyer MR, Gahl WA, Malicdan MCV, Gochuico BR. Anandamide is an Early Blood Biomarker of Hermansky-Pudlak Syndrome Pulmonary Fibrosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307300. [PMID: 38798603 PMCID: PMC11118631 DOI: 10.1101/2024.05.16.24307300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is a group of rare genetic disorders, with several subtypes leading to fatal adult-onset pulmonary fibrosis (PF) and no effective treatment. Circulating biomarkers detecting early PF have not been identified. We investigated whether endocannabinoids could serve as blood biomarkers of PF in HPS. We measured endocannabinoids in the serum of HPS, IPF, and healthy human subjects and in a mouse model of HPSPF. Pulmonary function tests (PFT) were correlated with endocannabinoid measurements. In a pale ear mouse model of bleomycin-induced HPSPF, serum endocannabinoid levels were measured with and without treatment with zevaquenabant (MRI-1867), a peripheral CB1R and iNOS antagonist. In three separate cohorts, circulating anandamide levels were increased in HPS-1 patients with or without PF, compared to healthy volunteers. This increase was not observed in IPF patients or in HPS-3 patients, who do not have PF. Circulating anandamide (AEA) levels were negatively correlated with PFT. Furthermore, a longitudinal study over the course of 5-14 years with HPS-1 patients indicated that circulating AEA levels begin to increase with the fibrotic lung process even at the subclinical stages of HPSPF. In pale ear mice with bleomycin-induced HpsPF, serum AEA levels were significantly increased in the earliest stages of PF and remained elevated at a later fibrotic stage. Zevaquenabant treatment reduced the increased AEA levels and attenuated progression in bleomycin-induced HpsPF. Circulating AEA may be a prognostic blood biomarker for PF in HPS-1 patients. Further studies are indicated to evaluate endocannabinoids as potential surrogate biomarkers in progressive fibrotic lung diseases.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Abhishek Basu
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Muhammad Arif
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Ben Long G. Zuo
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Mei Xing G. Zuo
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Kevin J. O’Brien
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Molly Behan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wendy Introne
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - William A. Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernadette R. Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
2
|
Pattaroni C, Begka C, Cardwell B, Jaffar J, Macowan M, Harris NL, Westall GP, Marsland BJ. Multi-omics integration reveals a nonlinear signature that precedes progression of lung fibrosis. Clin Transl Immunology 2024; 13:e1485. [PMID: 38269243 PMCID: PMC10807351 DOI: 10.1002/cti2.1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a devastating progressive interstitial lung disease with poor outcomes. While decades of research have shed light on pathophysiological mechanisms associated with the disease, our understanding of the early molecular events driving IPF and its progression is limited. With this study, we aimed to model the leading edge of fibrosis using a data-driven approach. Methods Multiple omics modalities (transcriptomics, metabolomics and lipidomics) of healthy and IPF lung explants representing different stages of fibrosis were combined using an unbiased approach. Multi-Omics Factor Analysis of datasets revealed latent factors specifically linked with established fibrotic disease (Factor1) and disease progression (Factor2). Results Features characterising Factor1 comprised well-established hallmarks of fibrotic disease such as defects in surfactant, epithelial-mesenchymal transition, extracellular matrix deposition, mitochondrial dysfunction and purine metabolism. Comparatively, Factor2 identified a signature revealing a nonlinear trajectory towards disease progression. Molecular features characterising Factor2 included genes related to transcriptional regulation of cell differentiation, ciliogenesis and a subset of lipids from the endocannabinoid class. Machine learning models, trained upon the top transcriptomics features of each factor, accurately predicted disease status and progression when tested on two independent datasets. Conclusion This multi-omics integrative approach has revealed a unique signature which may represent the inflection point in disease progression, representing a promising avenue for the identification of therapeutic targets aimed at addressing the progressive nature of the disease.
Collapse
Affiliation(s)
- Céline Pattaroni
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Christina Begka
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Bailey Cardwell
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Jade Jaffar
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Matthew Macowan
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Nicola L Harris
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Glen P Westall
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
- Department of Respiratory MedicineAlfred HospitalMelbourneVICAustralia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| |
Collapse
|
3
|
Fajardo L, Sanchez P, Salles J, Rigaudière JP, Patrac V, Caspar-Bauguil S, Bergoglgio C, Moro C, Walrand S, Le Bacquer O. Inhibition of the endocannabinoid system reverses obese phenotype in aged mice and partly restores skeletal muscle function. Am J Physiol Endocrinol Metab 2023; 324:E176-E184. [PMID: 36629822 DOI: 10.1152/ajpendo.00258.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and β-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and β-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.
Collapse
Affiliation(s)
- Lucas Fajardo
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Phelipe Sanchez
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérôme Salles
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean Paul Rigaudière
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Véronique Patrac
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sylvie Caspar-Bauguil
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm/Paul Sabatier University UMR1297, Toulouse, France
- Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Camille Bergoglgio
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm/Paul Sabatier University UMR1297, Toulouse, France
| | - Cédric Moro
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm/Paul Sabatier University UMR1297, Toulouse, France
| | - Stéphane Walrand
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
- Service de Nutrition Clinique, Hôpital Gabriel Montpied, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, Clermont-Ferrand, France
| | - Olivier Le Bacquer
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
4
|
Ramer R, Hinz B. Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells 2022; 11:4102. [PMID: 36552866 PMCID: PMC9777118 DOI: 10.3390/cells11244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The endocannabinoid system has been shown to be involved in various skin functions, such as melanogenesis and the maintenance of redox balance in skin cells exposed to UV radiation, as well as barrier functions, sebaceous gland activity, wound healing and the skin's immune response. In addition to the potential use of cannabinoids in the treatment and prevention of skin cancer, cannabinoid compounds and derivatives are of interest as potential systemic and topical applications for the treatment of various inflammatory, fibrotic and pruritic skin conditions. In this context, cannabinoid compounds have been successfully tested as a therapeutic option for the treatment of androgenetic alopecia, atopic and seborrhoeic dermatitis, dermatomyositis, asteatotic and atopic eczema, uraemic pruritis, scalp psoriasis, systemic sclerosis and venous leg ulcers. This review provides an insight into the current literature on cannabinoid compounds as potential medicines for the treatment of skin diseases.
Collapse
Affiliation(s)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
5
|
del Río C, Ruiz-Pino F, Prados ME, Fiebich BL, Tena-Sempere M, Muñoz E. Cannabidiol markedly alleviates skin and liver fibrosis. Front Pharmacol 2022; 13:981817. [PMID: 36339540 PMCID: PMC9627610 DOI: 10.3389/fphar.2022.981817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Cannabidiol (CBD) has been suggested as a potential therapy for inflammatory and fibrotic diseases. Cannabidiol was demonstrated to reduce alcohol-induced liver inflammation and steatosis but its specific activity on the fibrotic process was not investigated. Herein, the antifibrotic effects of cannabidiol in the skin were analysed in vitro using NIH-3T3 fibroblasts and human dermal fibroblasts and in vivo using the bleomycin-induced model of skin fibrosis. In a second model, non-alcoholic liver fibrosis was induced in mice by CCl4 exposure. Cannabidiol was administered daily, intraperitoneally in mice challenged with bleomycin and orally in CCl4 mice, and skin and liver fibrosis and inflammation were assessed by immunochemistry. Cannabidiol inhibited collagen gene transcription and synthesis and prevented TGFβ-and IL-4 induced fibroblast migration. In the bleomycin model, cannabidiol prevented skin fibrosis and collagen accumulation around skin blood vessels, and in the CCl4 model cannabidiol significantly attenuated liver fibrosis measured by picrosirius red and Tenascin C staining and reduced T cell and macrophage infiltration. Altogether, our data further support the rationale of the medicinal use of this cannabinoid, as well as cannabis preparations containing it, in the management of fibrotic diseases including Systemic Sclerosis and Non-Alcoholic Fatty Liver Disease.
Collapse
Affiliation(s)
- Carmen del Río
- Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC, Cordoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía, Cordoba, Spain
| | | | | | | | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC, Cordoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía, Cordoba, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC, Cordoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía, Cordoba, Spain
| |
Collapse
|
6
|
Young AP, Denovan-Wright EM. Synthetic cannabinoids reduce the inflammatory activity of microglia and subsequently improve neuronal survival in vitro. Brain Behav Immun 2022; 105:29-43. [PMID: 35764268 DOI: 10.1016/j.bbi.2022.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022] Open
Abstract
Microglia are resident immune cells of the brain that survey the microenvironment, provide trophic support to neurons, and clear debris to maintain homeostasis and healthy brain function. Microglia are also drivers of neuroinflammation in several neurodegenerative diseases. Microglia produce endocannabinoids and express both cannabinoid receptor subtypes suggesting that this system is a target to suppress neuroinflammation. We tested whether cannabinoid type 1 (CB1) or type 2 (CB2) receptors could be targeted selectively or in combination to dampen the pro-inflammatory behavior of microglia, and whether this would have functional relevance to decrease secondary neuronal damage. We determined that components of the endocannabinoid system were altered when microglia are treated with lipopolysaccharide and interferon-gamma and shift to a pro-inflammatory phenotype. Furthermore, pro-inflammatory microglia released cytotoxic factors that induced cell death in cultured STHdhQ7/Q7 neurons. Treatment with synthetic cannabinoids that were selective for CB1 receptors (ACEA) or CB2 receptors (HU-308) dampened the release of nitric oxide (NO) and pro-inflammatory cytokines and decreased levels of mRNA for several pro-inflammatory markers. A nonselective agonist (CP 55,940) exhibited similar influence over NO release but to a lesser extent relative to ACEA or HU-308. All three classes of synthetic cannabinoids ultimately reduced the secondary damage to the cultured neurons. The mechanism for the observed neuroprotective effects appeared to be related to cannabinoid-mediated suppression of MAPK signaling in microglia. Taken together, the data indicate that activation of CB1 or CB2 receptors interfered with the pro-inflammatory activity of microglia in a manner that also reduced secondary damage to neurons.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
7
|
He Q, Zhang W, Zhang J, Deng Y. Cannabinoid Analogue WIN 55212-2 Protects Paraquat-Induced Lung Injury and Enhances Macrophage M2 Polarization. Inflammation 2022; 45:2256-2267. [PMID: 35674874 PMCID: PMC9174632 DOI: 10.1007/s10753-022-01688-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023]
Abstract
WIN 55212-2 is an endocannabinoids analogue that has been reported to have anti-inflammatory and anti-fibrosis effects on different models. In this study, we investigated the protective effects of WIN 55212-2 on paraquat (PQ)-induced poison on mice especially on lung injury. Mice were administrated with different dose of PQ and thereafter treated with 0.2 mg/kg or 1 mg/kg WIN 55212-2. The survival of mice was recorded during 4 weeks of observation. Twenty-eight days after PQ treatment, the cell population and inflammatory factors IL-6, IL-10, and TNF-α were measured in bronchoalveolar lavage fluid (BALF). Pulmonary fibrosis was evaluated by Masson staining. Our results showed that WIN 55212-2 treatment reduced PQ-induced mortality of mice in a dose dependent manner. It decreased the number of inflammation-associated cells, as well as the level of pro-inflammatory factors in BALF (P < 0.05). WIN 55212-2 increased M2 cells in BALF (P < 0.05), improved the lung histology, reduced fibrosis formation, and decreased TGF-β, α-SMA and PDGFRa expression. The protective effects of WIN 55212-2 on PQ-induced lung injury and fibrosis were associated with an increase inM2 cells and increased expressions of IL-10, CD163, and CD206, suggesting that polarization of M2 macrophages may be involved in WIN 55212-2 protective effects on PQ-induced lung injury.
Collapse
Affiliation(s)
- Quan He
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China.
| | - Wen Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Jinjuan Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Yuanyou Deng
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| |
Collapse
|
8
|
Chen D, Tang H, Jiang H, Sun L, Zhao W, Qian F. ACPA Alleviates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting TGF-β-Smad2/3 Signaling-Mediated Lung Fibroblast Activation. Front Pharmacol 2022; 13:835979. [PMID: 35355726 PMCID: PMC8959577 DOI: 10.3389/fphar.2022.835979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis is a group of life-threatening diseases with limited therapeutic options. The involvement of cannabinoid type 1 receptors (CB1R) has been indicated in fibrotic diseases, but whether or not the activation of CB1R can be a benefit for fibrosis treatment is controversial. In this study, we investigated the effects of arachidonoylcyclopropylamide (ACPA), as a selective CB1R agonist, on bleomycin (BLM)-induced pulmonary fibrosis. We showed that ACPA treatment significantly improved the survival rate of BLM-treated mice, alleviated BLM-induced pulmonary fibrosis, and inhibited the expressions of extracellular matrix (ECM) markers, such as collagen, fibronectin, and α-SMA. The enhanced expressions of ECM markers in transforming growth factor-beta (TGF-β)-challenged primary lung fibroblasts isolated from mouse lung tissues were inhibited by ACPA treatment in a dose-dependent manner, and the fibroblast migration triggered by TGF-β was dose-dependently diminished after ACPA administration. Moreover, the increased mRNA levels of CB1R were observed in both lung fibroblasts of BLM-induced fibrotic mice in vivo and TGF-β-challenged primary lung fibroblasts in vitro. CB1R-specific agonist ACPA significantly diminished the activation of TGF-β–Smad2/3 signaling, i.e., the levels of p-Smad2 and p-Smad3, and decreased the expressions of downstream effector proteins including slug and snail, which regulate ECM production, in TGF-β-challenged primary lung fibroblasts. Collectively, these findings demonstrated that CB1R-specific agonist ACPA exhibited antifibrotic efficacy in both in vitro and in vivo models of pulmonary fibrosis, revealing a novel anti-fibrosis approach to fibroblast-selective inhibition of TGF-β-Smad2/3 signaling by targeting CB1R.
Collapse
Affiliation(s)
- Dongxin Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huirong Tang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Hongchao Jiang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
9
|
Stegemann A, Raker V, Del Rey A, Steinbrink K, Böhm M. Expression of the α7 Nicotinic Acetylcholine Receptor Is Critically Required for the Antifibrotic Effect of PHA-543613 on Skin Fibrosis. Neuroendocrinology 2022; 112:446-456. [PMID: 34120115 DOI: 10.1159/000517772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Targeting the α7 nicotinic acetylcholine receptor (α7nAChR) has recently been suggested as a potential new treatment for fibrotic skin diseases. Here, we performed a genetic and pharmacologic approach to clarify the role of this receptor in the bleomycin (BLM) mouse model of skin fibrosis using α7nAChR KO mice. METHODS We analyzed the expression of extracellular matrix (ECM) components in murine skin using quantitative RT-PCR, pepsin digestion/SDS-PAGE of proteins and performed hydroxyproline assays as well as histological/immunohistochemical staining of skin sections. To identity the target cells of the α7nAChR agonist PHA-543613, we used murine dermal fibroblasts (MDF). We tested their response to the profibrotic cytokine transforming growth factor-β1 (TGF-β1) and utilized gene silencing to elucidate the role of the α7nAChR. RESULTS We confirmed our previous findings on C3H/HeJ mice and detected a suppressive effect of PHA-543613 on BLM-induced skin fibrosis in the mouse strain C57BL/6J. This antifibrotic effect of PHA-543613 was abrogated in α7nAChR-KO mice. Interestingly, α7nAChR-KO animals exhibited a basal profibrotic signature by higher RNA expression of ECM genes and hydroxyproline content than WT mice. In WT MDF, PHA-543613 suppressed ECM gene expression induced by TGF-β1. Gene silencing of α7nAChR by small interfering RNA neutralized the effects of PHA-543613 on TGF-β1-mediated ECM gene expression. CONCLUSION In summary, we have identified the α7nAChR as the essential mediator of the antifibrotic effect of PHA-543613. MDF are directly targeted by PHA-543613 to suppress collagen synthesis. Our findings emphasize therapeutic exploitation of α7nAChR receptor agonists in fibrotic skin diseases.
Collapse
Affiliation(s)
- Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany
| | - Verena Raker
- Department of Dermatology, University of Münster, Münster, Germany
- Department of Dermatology, University of Mainz, Mainz, Germany
| | - Adriana Del Rey
- Institute for Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | | | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
10
|
Kicman A, Pędzińska-Betiuk A, Kozłowska H. The potential of cannabinoids and inhibitors of endocannabinoid degradation in respiratory diseases. Eur J Pharmacol 2021; 911:174560. [PMID: 34648805 DOI: 10.1016/j.ejphar.2021.174560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.
Collapse
Affiliation(s)
- Aleksandra Kicman
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| |
Collapse
|
11
|
Leal EC, Moura LIF, Pirzgalska RM, Marques-da-Silva D, Ledent C, Köfalvi A, Carvalho E. Diabetes and Cannabinoid CB1 receptor deficiency promote similar early onset aging-like changes in the skin. Exp Gerontol 2021; 154:111528. [PMID: 34437952 DOI: 10.1016/j.exger.2021.111528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The cannabinoid receptor type-1 (CB1R) is a major regulator of metabolism, growth and inflammation. Yet, its potential role in the skin is not well understood. Our aim was to evaluate the role of CB1R in aging-like diabetic skin changes by using a CB1R knockout mouse model. METHODS We evaluated several signals of skin aging in wild-type control (WT), WT streptozotocin-induced type 1 diabetic mice (WT DM), CB1R knockout (CB1RKO) and CB1RKO DM mice. We quantified markers of inflammation, angiogenesis, antioxidant enzymes and collagen content. Moreover, we evaluate reactive oxygen species (ROS) levels and macrophage phenotype, M1 and M2. RESULTS CB1R expression is decreased in the skin of WT DM mice and collagen levels are decreased in the skin of WT DM, CB1RKO and CB1RKO DM mice. Additionally, the absence of CB1R correlated with higher expression of pro-inflammatory markers, also evident in WT DM or CB1RKO DM mice. Moreover, the M1/M2 macrophage ratio and ROS levels were significantly elevated but in the diabetic WT and the CB1RKO mice, consistent with a significant decrease in the antioxidant capacity of the skin. CONCLUSIONS Our results indicate that CB1R deficiency in the skin may lead to accelerated skin aging due to the increased production of ROS, a decrease in the antioxidant defenses and a higher pro-inflammatory environment. A significant decrease in the CB1R expression may be a significant contributing factor to the early aging-like changes in diabetes.
Collapse
Affiliation(s)
- Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Liane I F Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Roksana M Pirzgalska
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | - Attila Köfalvi
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; The Portuguese Diabetes Association (APDP), Lisbon, Portugal.
| |
Collapse
|
12
|
Zawatsky CN, Park JK, Abdalla J, Kunos G, Iyer MR, Cinar R. Peripheral Hybrid CB 1R and iNOS Antagonist MRI-1867 Displays Anti-Fibrotic Efficacy in Bleomycin-Induced Skin Fibrosis. Front Endocrinol (Lausanne) 2021; 12:744857. [PMID: 34650521 PMCID: PMC8505776 DOI: 10.3389/fendo.2021.744857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Scleroderma, or systemic sclerosis, is a multi-organ connective tissue disease resulting in fibrosis of the skin, heart, and lungs with no effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) and increased activity of inducible NO synthase (iNOS) promote tissue fibrosis including skin fibrosis, and joint targeting of these pathways may improve therapeutic efficacy. Recently, we showed that in mouse models of liver, lung and kidney fibrosis, treatment with a peripherally restricted hybrid CB1R/iNOS inhibitor (MRI-1867) yields greater anti-fibrotic efficacy than inhibiting either target alone. Here, we evaluated the therapeutic efficacy of MRI-1867 in bleomycin-induced skin fibrosis. Skin fibrosis was induced in C57BL/6J (B6) and Mdr1a/b-Bcrp triple knock-out (KO) mice by daily subcutaneous injections of bleomycin (2 IU/100 µL) for 28 days. Starting on day 15, mice were treated for 2 weeks with daily oral gavage of vehicle or MRI-1867. Skin levels of MRI-1867 and endocannabinoids were measured by mass spectrometry to assess target exposure and engagement by MRI-1867. Fibrosis was characterized histologically by dermal thickening and biochemically by hydroxyproline content. We also evaluated the potential increase of drug-efflux associated ABC transporters by bleomycin in skin fibrosis, which could affect target exposure to test compounds, as reported in bleomycin-induced lung fibrosis. Bleomycin-induced skin fibrosis was comparable in B6 and Mdr1a/b-Bcrp KO mice. However, the skin level of MRI-1867, an MDR1 substrate, was dramatically lower in B6 mice (0.023 µM) than in Mdr1a/b-Bcrp KO mice (8.8 µM) due to a bleomycin-induced increase in efflux activity of MDR1 in fibrotic skin. Furthermore, the endocannabinoids anandamide and 2-arachidonylglycerol were elevated 2-4-fold in the fibrotic vs. control skin in both mouse strains. MRI-1867 treatment attenuated bleomycin-induced established skin fibrosis and the associated increase in endocannabinoids in Mdr1a/b-Bcrp KO mice but not in B6 mice. We conclude that combined inhibition of CB1R and iNOS is an effective anti-fibrotic strategy for scleroderma. As bleomycin induces an artifact in testing antifibrotic drug candidates that are substrates of drug-efflux transporters, using Mdr1a/b-Bcrp KO mice for preclinical testing of such compounds avoids this pitfall.
Collapse
Affiliation(s)
- Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Jasmina Abdalla
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Malliga R. Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
13
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
García-Martín A, Navarrete C, Garrido-Rodríguez M, Prados ME, Caprioglio D, Appendino G, Muñoz E. EHP-101 alleviates angiotensin II-induced fibrosis and inflammation in mice. Biomed Pharmacother 2021; 142:112007. [PMID: 34385107 DOI: 10.1016/j.biopha.2021.112007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022] Open
Abstract
Some cannabinoids showed anti-inflammatory and antifibrotic activities. EHP-101 is an oral lipidic formulation of the novel non-psychotropic cannabidiol aminoquinone VCE-004.8, which showed antifibrotic activity in murine models of systemic sclerosis induced by bleomycin. We herein examined the effect of EHP-101 on cardiac and other organ fibrosis in a mouse model induced by Angiotensin II. VCE-004.8 inhibited TGFβ- and Ang II-induced myofibroblast differentiation in cardiac fibroblasts detected by α-SMA expression. VCE-004.8 also inhibited Ang II-induced ERK 1 + 2 phosphorylation, NFAT activation and mRNA expression of IL1β, IL6, Col1A2 and CCL2 in cardiac fibroblasts. Mice infused with Ang II resulted in collagen accumulation in left ventricle, aortic, dermal, renal and pulmonary tissues; oral administration of EHP-101, Ajulemic acid and Losartan improved these phenotypes. In myocardial tissue, Ang II induced infiltration of T cells and macrophages together with the accumulation of collagen and Tenascin C; those were all reduced by either EHP-101 or Losartan treatment. Cardiac tissue RNA-Seq analyses revealed a similar transcriptomic signature for both treatments for inflammatory and fibrotic pathways. However, the gene set enrichment analysis comparing data from EHP-101 vs Losartan showed specific hallmarks modified only by EHP-101. Specifically, EHP-101 inhibited the expression of genes such as CDK1, TOP2A and MKi67 that are regulated to the E2 factor family of transcription factors. This study suggests that the oral administration of EHP-101 prevents and inhibits cardiac inflammation and fibrosis. Furthermore, EHP-101 inhibits renal, pulmonary and dermal fibrosis. EHP-101 could offer new opportunities in the treatment of cardiac fibrosis and other fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Martin Garrido-Rodríguez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, USA; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
15
|
Correia-Sá I, Carvalho C, A Machado V, Carvalho S, Serrão P, Marques M, Vieira-Coelho MA. Targeting cannabinoid receptor 2 (CB2) limits collagen production-An in vitro study in a primary culture of human fibroblasts. Fundam Clin Pharmacol 2021; 36:89-99. [PMID: 34259358 DOI: 10.1111/fcp.12716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Previous studies showed that cannabinoid 2 (CB2) receptor is involved in skin inflammation, fibrogenesis and re-epithelialization in mice, indicating that this receptor may be implicated in wound healing. Thus, topical use of cannabinoids may have a role in local fibrotic and wound healing diseases such as scars or keloids. We investigate the effect of the CB2 selective receptor agonist (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran (JWH133) and the CB2 selective receptor antagonist (6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl)(4-methoxyphenyl)-methanone (AM630), on primary cultures of human fibroblasts. Primary cultures of adult human fibroblasts were obtained from abdominal human skin samples. Fibroblasts pretreated with JWH133 and/or AM630 were stimulated with TGF-β (10 ng/ml). Fibroblast activation into myofibroblasts was quantified by the expression of alpha-smooth muscle actin (α-SMA) using Immunocytochemistry and Western Blot assays. Collagen content was quantified with the Sirius red staining assay. Upon human fibroblasts stimulation with TGF-β, a significant increase on α-SMA and CB2 receptor expression was observed. In these cells, JWH133 decreased α-SMA expression and collagen content. However, this effect was not observed in resting human fibroblasts. AM630 decreased α-SMA expression and collagen content in both resting and activated fibroblasts. This effect was time- and concentration-dependent with an IC50 value of 11 μM. The CB2 receptor appears to be involved in fibroblast repair during skin wound healing in humans, as TGF-β increases CB2 receptor expression and JWH133 produces an anti-fibrotic effect in human fibroblasts. AM630 also showed an anti-fibrotic effect hypothesizing that other cannabinoid receptors, such as TRPV, may be involved in this response.
Collapse
Affiliation(s)
- Inês Correia-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, Porto, Portugal.,Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Cláudia Carvalho
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Vera A Machado
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Sofia Carvalho
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Paula Serrão
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Marisa Marques
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| |
Collapse
|
16
|
National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbid forms report. Transplant Cell Ther 2021; 27:817-835. [PMID: 34217703 DOI: 10.1016/j.jtct.2021.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) can be associated with significant morbidity, in part because of nonreversible fibrosis, which impacts physical functioning (eye, skin, lung manifestations) and mortality (lung, gastrointestinal manifestations). Progress in preventing severe morbidity and mortality associated with chronic GVHD is limited by a complex and incompletely understood disease biology and a lack of prognostic biomarkers. Likewise, treatment advances for highly morbid manifestations remain hindered by the absence of effective organ-specific approaches targeting "irreversible" fibrotic sequelae and difficulties in conducting clinical trials in a heterogeneous disease with small patient numbers. The purpose of this document is to identify current gaps, to outline a roadmap of research goals for highly morbid forms of chronic GVHD including advanced skin sclerosis, fasciitis, lung, ocular and gastrointestinal involvement, and to propose strategies for effective trial design. The working group made the following recommendations: (1) Phenotype chronic GVHD clinically and biologically in future cohorts, to describe the incidence, prognostic factors, mechanisms of organ damage, and clinical evolution of highly morbid conditions including long-term effects in children; (2) Conduct longitudinal multicenter studies with common definitions and research sample collections; (3) Develop new approaches for early identification and treatment of highly morbid forms of chronic GVHD, especially biologically targeted treatments, with a special focus on fibrotic changes; and (4) Establish primary endpoints for clinical trials addressing each highly morbid manifestation in relationship to the time point of intervention (early versus late). Alternative endpoints, such as lack of progression and improvement in physical functioning or quality of life, may be suitable for clinical trials in patients with highly morbid manifestations. Finally, new approaches for objective response assessment and exploration of novel trial designs for small populations are required.
Collapse
|
17
|
Correia-Sá IB, Carvalho CM, Serrão PV, Machado VA, Carvalho SO, Marques M, Vieira-Coelho MA. AM251, a cannabinoid receptor 1 antagonist, prevents human fibroblasts differentiation and collagen deposition induced by TGF-β - An in vitro study. Eur J Pharmacol 2020; 892:173738. [PMID: 33220269 DOI: 10.1016/j.ejphar.2020.173738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022]
Abstract
Previous studies showed that cannabinoid 1 receptor (CB1) is linked with skin fibrosis and scar tissue formation in mice. Therefore, the topical use of cannabinoids may have a role in the prevention or treatment of local fibrotic and wound healing diseases as hypertrophic scars or keloids. In this study, we asked whether CB1 activation or inactivation would change fibroblast differentiation into myofibroblast and collagen deposition in skin human fibroblast. Primary cultures of adult human fibroblasts were obtained from abdominal human skin. Cells were stimulated with transforming growth factor-beta (TGF-β, 10ng/ml) and treated with a CB1 selective agonist (arachidonyl-2-chloroethylamide, ACEA 1 μM) and an antagonist (AM251 1, 5 and 10 μM). Alpha-smooth muscle actin (α-SMA) was quantified using Immunocytochemistry and Western Blot. Collagen was quantified with Sirius Red staining assay. Significance was assessed by One-way ANOVA. P < 0.05 was considered significant. TGF-β significantly increases α-SMA expression. ACEA 1 μM significantly increases collagen deposition but does not change α-SMA expression. AM251 10 μM added in the absence and the presence of ACEA reduces α-SMA expression and collagen content in TGF-β treated cells. AM251 shows a concentration-dependent effect over collagen deposition with a pIC50 of 5.5 (4.6-6.4). TGF-β significantly increases CB1 receptor expression. CB1 inactivation with AM251 prevents fibroblasts differentiation and collagen deposition, induced by TGF-β in human fibroblasts. The outcome supports that CB1 is a molecular target for wound healing disorders and in vivo and pre-clinical studies should be implemented to clarify this premise.
Collapse
Affiliation(s)
- Inês B Correia-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, EPE, Porto, Portugal; Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal.
| | - Cláudia M Carvalho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Paula V Serrão
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Vera A Machado
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Sofia O Carvalho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Marisa Marques
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, EPE, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| |
Collapse
|
18
|
Lu Y, Liu Y, Zhou J, Li D, Gao W. Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol. Med Res Rev 2020; 41:1022-1060. [PMID: 33174200 DOI: 10.1002/med.21751] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Celastrol, a quinone-methide triterpenoid, was extracted from Tripterygium wilfordii Hook. F. in 1936 for the first time. Almost 70 years later, it is considered one of the molecules most likely to be developed into modern drugs, as it exhibits notable bioactivity, including anticancer and anti-inflammatory activity, and exerts antiobesity effects. In addition, the molecular mechanisms underlying its bioactivity are being widely studied, which offers new avenues for its development as a pharmaceutical reagent. Owing to its potential therapeutic effects and unique chemical structure, celastrol has attracted considerable interest in the fields of organic, biosynthesis, and medicinal chemistry. As several steps in the biosynthesis of celastrol have been revealed, the mechanisms of key enzymes catalyzing the formation and postmodifications of the celastrol scaffold have been gradually elucidated, which lays a good foundation for the future heterogeneous biosynthesis of celastrol. Chemical synthesis is also an effective approach to obtain celastrol. The total synthesis of celastrol was realized for the first time in 2015, which established a new strategy to obtain celastroid natural products. However, owing to the toxic effects and suboptimal pharmacological properties of celastrol, its clinical applications remain limited. To search for drug-like derivatives, several structurally modified compounds were synthesized and tested. This review focuses primarily on the latest research progress in the biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of celastrol. We anticipate that this paper will facilitate a more comprehensive understanding of this promising compound and provide constructive references for future research in this field.
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Cintosun A, Lara-Corrales I, Pope E. Mechanisms of Cannabinoids and Potential Applicability to Skin Diseases. Clin Drug Investig 2020; 40:293-304. [PMID: 32060787 DOI: 10.1007/s40261-020-00894-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The legalisation of cannabis in a growing number of jurisdictions has led to increasing interest in its potential therapeutic effects in a range of disorders, including cutaneous conditions. Cannabinoids have been used as natural medicines for centuries; however, their biological activity in the skin is a new area of study. Recent data suggest that cannabinoids are involved in neuro-immuno-endocrine modulation of skin functioning, yet their effect on the features of dermatologic conditions is unclear. This article sought to review the mechanisms by which cannabinoids regulate skin functioning through the lens of relevance to treatment of dermatologic diseases looking at the effects of cannabinoids on a range of cellular activities and dermatologic conditions both in vitro and in vivo. We identified studies demonstrating an inhibitory effect of cannabinoids on skin inflammation, proliferation, fibrosis, pain, and itch-biological mechanisms involved in the pathogenesis of many dermatologic conditions. Cannabinoids have the potential to expand the therapeutic repertoire of a wide spectrum of skin disorders. Given their widespread unregulated use by the general public, basic and clinical studies are required to elucidate the effectiveness and long-term effects of topical and systemic cannabinoids in cutaneous disorders.
Collapse
Affiliation(s)
| | - Irene Lara-Corrales
- The Hospital for Sick Children and University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Elena Pope
- The Hospital for Sick Children and University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
20
|
Correia-Sá IB, Carvalho CM, Serrão PV, Loureiro AI, Fernandes-Lopes C, Marques M, Vieira-Coelho MA. A new role for anandamide: defective link between the systemic and skin endocannabinoid systems in hypertrophic human wound healing. Sci Rep 2020; 10:11134. [PMID: 32636441 PMCID: PMC7341842 DOI: 10.1038/s41598-020-68058-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
The use of cannabinoids to treat fibrotic skin diseases is an emergent issue. Therefore, we aimed to evaluate systemic and skin endocannabinoid responses in the wound-healing process in humans. A prospective study was performed in 50 patients who underwent body-contouring surgery. Anandamide (N-arachidonoylethanolamine, AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were quantified using LC-MS/MS. Ten (20%) patients developed hypertrophic (HT) scars. No significant changes were observed between the normal (N) scar and HT scar groups in terms of plasma and skin endocannabinoids. Nevertheless, a positive correlation between plasma and skin AEA concentrations was found in the N group (r = 0.38, p = 0.015), which was absent in the HT group. Moreover, the AEA concentration was significantly lower in HT scar tissue than in normal scar tissue (0.77 ± 0.12 ng/g vs 1.15 ± 0.15 ng/g, p < 0.001). Interestingly, in all patients, the surgical intervention produced a time-dependent effect with a U shape for AEA, PEA and OEA plasma concentrations. In contrast, 2-AG plasma concentrations increased 5 days after surgery and were reduced and stabilized 3 months later. These results suggest crosstalk between systemic and local skin endocannabinoid systems during human wound healing. AEA appears to be the most likely candidate for this link, which is deficient in patients with HT scars.
Collapse
Affiliation(s)
- Inês B Correia-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, EPE, Al. Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal. .,Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Cláudia M Carvalho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula V Serrão
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP-Centro de Investigação Farmacológica E Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | - Ana I Loureiro
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., Trofa, Portugal
| | - Carlos Fernandes-Lopes
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., Trofa, Portugal
| | - Marisa Marques
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, EPE, Al. Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP-Centro de Investigação Farmacológica E Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Correia-Sá I, Paiva A, Carvalho CM, Vieira-Coelho MA. Cutaneous endocannabinoid system: Does it have a role on skin wound healing bearing fibrosis? Pharmacol Res 2020; 159:104862. [PMID: 32454223 DOI: 10.1016/j.phrs.2020.104862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Recently, the endocannabinoid system has been identified in skin and it has been linked with the formation of skin fibrosis and wound healing. We aimed to find and analyse reported data on compounds acting in the endocannabinoid system with significant effect in skin fibrosis. METHODS A literature search on PUBMED was conducted for studies published in English until February 2020 on cannabinoids and skin fibrosis. The initial search was performed with terms: "cannabinoid" AND "skin". This search retrieved 296 publications from which 18 directly related to skin fibrosis or wound healing process were included in this review. RESULTS CB1 receptor inactivation and CB2 receptor activation show anti-fibrotic effects on cellular and animal experimental models of cutaneous fibrosis. CB2 receptor activation also promotes re-epithelization. Other cannabinoid related receptors, like adenosine A2A receptors and PPAR-γ, are also involved. Their activation lead to a pro-fibrotic and anti-fibrotic effect, respectively. CONCLUSION Several molecular drug targets for endocannabinoid system were identified in skin. It may be a promising approach for the treatment of excessive skin fibrosis disorders.
Collapse
Affiliation(s)
- Inês Correia-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar Universitário de São João, EPE, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Anita Paiva
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia M Carvalho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
22
|
Jiang X, Chen S, Zhang Q, Yi C, He J, Ye X, Liu M, Lu W. Celastrol is a novel selective agonist of cannabinoid receptor 2 with anti-inflammatory and anti-fibrotic activity in a mouse model of systemic sclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153160. [PMID: 31901889 DOI: 10.1016/j.phymed.2019.153160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Increasing evidence indicated that the cannabinoid receptors were involved in the pathogenesis of organ fibrogenesis. PURPOSE The purpose of this study was to discover novel cannabinoid receptor 2 (CB2) agonist and assess the potential of CB2 activation in treating systemic sclerosis. METHODS A gaussia princeps luciferase-based split luciferase complementation assay (SLCA) was developed for detection of the interaction between CB2 and β-arrestin2. A library of 366 natural products was then screened as potential CB2 agonist using SLCA approach. Several GPCR functional assays, including HTRF-based cAMP assay and calcium mobilization were also utilized to evaluated CB2 activation. Bleomycin-induced experimental systemic sclerosis was used to assess the in vivo anti-fibrotic effects. Dermal thickness and collagen content were evaluated via H&E and sirius red staining. RESULTS Celastrol was identified as a new agonist of CB2 by using SLCA. Furthermore, celastrol triggers several CB2-mediated downstream signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, and receptor desensitization in a dose-dependent manner, and it has a moderate selectivity on CB1. In addition, celastrol exhibited the anti-inflammatory properties on lipopolysaccharide (LPS) treated murine Raw 264.7 macrophages and primary macrophages. Finally, we found that celastrol exerts anti-fibrotic effects in the bleomycin-induced systemic sclerosis mouse model accompanied by reduced inflammatory conditions. CONCLUSION Taken together, celastrol is identified a novel selective CB2 agonist using a new developed arrestin-based SLCA, and CB2 activation by celastrol reduces the inflammatory response, and prevents the development of dermal fibrosis in bleomycin-induced systemic sclerosis mouse model.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Arrestin/metabolism
- Bleomycin/toxicity
- Calcium/metabolism
- Disease Models, Animal
- Drug Evaluation, Preclinical/methods
- Fibrosis
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Mice
- Mice, Inbred C57BL
- Pentacyclic Triterpenes
- RAW 264.7 Cells
- Receptor, Cannabinoid, CB2/agonists
- Scleroderma, Systemic/chemically induced
- Scleroderma, Systemic/drug therapy
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/pathology
- Triterpenes/chemistry
- Triterpenes/pharmacology
Collapse
Affiliation(s)
- Xingwu Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Si Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chunyang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiacheng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiyun Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
23
|
Feliu A, Mestre L, Carrillo-Salinas FJ, Yong VW, Mecha M, Guaza C. 2-arachidonoylglycerol reduces chondroitin sulphate proteoglycan production by astrocytes and enhances oligodendrocyte differentiation under inhibitory conditions. Glia 2020; 68:1255-1273. [PMID: 31894889 DOI: 10.1002/glia.23775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 01/21/2023]
Abstract
The failure to remyelinate and regenerate is a critical impediment to recovery in multiple sclerosis (MS), resulting in severe dysfunction and disability. The chondroitin sulfate proteoglycans (CSPGs) that accumulate in MS lesions are thought to be linked to the failure to regenerate, impeding oligodendrocyte precursor cell (OPC) differentiation and neuronal growth. The potential of endocannabinoids to influence MS progression may reflect their capacity to enhance repair processes. Here, we investigated how 2-arachidonoylglycerol (2-AG) may affect the production of the CSPGs neurocan and brevican by astrocytes in culture. In addition, we studied whether 2-AG promotes oligodendrocyte differentiation under inhibitory conditions in vitro. Following treatment with 2-AG or by enhancing its endogenous tone through the use of inhibitors of its hydrolytic enzymes, CSPG production by rat and human TGF-β1 stimulated astrocytes was reduced. These effects of 2-AG might reflect its influence on TGF-β1/SMAD pathway, signaling that is involved in CSPG upregulation. The matrix generated from 2-AG-treated astrocytes is less inhibitory to oligodendrocyte differentiation and significantly, 2-AG administration directly promotes the differentiation of rat and human oligodendrocytes cultured under inhibitory conditions. Overall, the data obtained favor targeting the endocannabinoid system to neutralize CSPG accumulation and to enhance oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Ana Feliu
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - Leyre Mestre
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | | | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Miriam Mecha
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - Carmen Guaza
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
24
|
Soare A, Györfi HA, Matei AE, Dees C, Rauber S, Wohlfahrt T, Chen C, Ludolph I, Horch RE, Bäuerle T, Hörsten S, Mihai C, Distler O, Ramming A, Schett G, Distler JHW. Dipeptidylpeptidase 4 as a Marker of Activated Fibroblasts and a Potential Target for the Treatment of Fibrosis in Systemic Sclerosis. Arthritis Rheumatol 2019; 72:137-149. [DOI: 10.1002/art.41058] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alina Soare
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany, and Davila University of Medicine and Pharmacy Bucharest Romania
| | - Hermina A. Györfi
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Alexandru E. Matei
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Clara Dees
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Simon Rauber
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Thomas Wohlfahrt
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Chih‐Wei Chen
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Ingo Ludolph
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Raymund E. Horch
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Tobias Bäuerle
- Friedrich‐Alexander University Erlangen‐Nuremberg Erlangen Germany
| | - Stephan Hörsten
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Carina Mihai
- University Hospital Zurich, Zurich, Switzerland, and Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | | | - Andreas Ramming
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Georg Schett
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Jörg H. W. Distler
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| |
Collapse
|
25
|
Cannabis-Based Medicines and Medical Cannabis in Rheumatic Diseases: A Treasure Chest or Pandora’s box. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2019. [DOI: 10.1007/s40674-019-00130-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Sarzi-Puttini P, Ablin J, Trabelsi A, Fitzcharles MA, Marotto D, Häuser W. Cannabinoids in the treatment of rheumatic diseases: Pros and cons. Autoimmun Rev 2019; 18:102409. [PMID: 31648042 DOI: 10.1016/j.autrev.2019.102409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/23/2022]
Abstract
Medical cannabis is being increasingly used in the treatment of rheumatic diseases because, despite the paucity of evidence regarding its safety and efficacy, a growing number of countries are legalising its use for medical purposes in response to social pressure. Cannabinoids may be useful in the management of rheumatic disorders for two broad reasons: their anti-inflammatory and immunomodulatory activity, and their effects on pain and associated symptoms. It is interesting to note that, although a wide range of medications are available for the treatment of inflammation, including an ever-lengthening list of biological medications, the same is not true of the treatment of chronic pain, a cardinal symptom of many rheumatological disorders. The publication of systematic reviews (SR) concerning the use of cannabis-based medicines for chronic pain (with and without meta-analyses) is outpacing that of randomised controlled trials. Furthermore, narrative reviews of public institution are largely based on these SRs, which often reach different conclusions regarding the efficacy and safety of cannabis-based medicines because of the lack of high-quality evidence of efficacy and the presence of indications that they may be harmful for patients. Societal safety concerns about medical cannabis (e.g. driving risks, workplace safety and pediatric intoxication) must always be borne in mind, and will probably not be addressed by clinical studies. Medical cannabis and cannabis-based medicines have often been legalised as therapeutic products by legislative bodies without going through the usual process of regulatory approval founded on the results of traditional evidence-based studies. This review discusses the advantages and limitations of using cannabis to treat rheumatic conditions.
Collapse
Affiliation(s)
- Piercarlo Sarzi-Puttini
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, University of Milan School of Medicine, Milan, Italy.
| | - Jacob Ablin
- Department of Internal Medicine H, Tel Aviv Sourasky Medical Center & Sackler School of Medicine, Tel Aviv University, Israel
| | - Adva Trabelsi
- Department of Internal Medicine H, Tel Aviv Sourasky Medical Center & Sackler School of Medicine, Tel Aviv University, Israel
| | - Mary-Ann Fitzcharles
- Alan Edwards Pain Management Unit, McGill University Health Centre, Quebec, Canada; Division of Rheumatology, McGill University Health Centre, Quebec, Canada
| | - Daniela Marotto
- Rheumatology Unit, P.Dettori Hospital, Tempio Pausania, Italy
| | - Winfried Häuser
- Internal Medicine Department I, Klinikum Saarbrücken, Saarbrücken, Germany; Department of Psychosomatic Medicine and Psychotherapy, Technische Universität München, München, Germany
| |
Collapse
|
27
|
Sarzi-Puttini P, Batticciotto A, Atzeni F, Bazzichi L, Di Franco M, Salaffi F, Marotto D, Ceribelli A, Ablin JN, Hauser W. Medical cannabis and cannabinoids in rheumatology: where are we now? Expert Rev Clin Immunol 2019; 15:1019-1032. [DOI: 10.1080/1744666x.2019.1665997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Alberto Batticciotto
- Rheumatology Unit, Internal Medicine Department, ASST Settelaghi, Ospedale Di Circolo - Fondazione Macchi, Varese, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, University of Messina, Messina, Italy
| | | | - Manuela Di Franco
- Department of Internal Medicine and Medical Specialities, Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Fausto Salaffi
- Rheumatological Clinic, Università Politecnica delle Marche, Jesi, Ancona, Italy
| | - Daniela Marotto
- Rheumatology Unit, P-Dettori Hospital Tempio Pausania, Tempio Pausania, Italy
| | - Angela Ceribelli
- Rheumatology Unit, ASST Fatebenefratelli-Sacco, University of Milan, Milan, Italy
| | - Jacob N Ablin
- Internal Medicine H, Tel Aviv Sourasky Medical Center, Tel Aviv Israel
| | - Winfred Hauser
- Department of Internal Medicine 1, Klinikum Saarbrücken, D-66119 Saarbrücken, Germany
| |
Collapse
|
28
|
Chang N, Duan X, Zhao Z, Tian L, Ji X, Yang L, Li L. Both HuR and miR-29s regulate expression of CB1 involved in infiltration of bone marrow monocyte/macrophage in chronic liver injury. J Cell Physiol 2019; 235:2532-2544. [PMID: 31495934 DOI: 10.1002/jcp.29157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Abstract
Bone marrow-derived monocytes/macrophages (BMMs) play a vital role in liver inflammation and fibrogenesis. Cannabinoid receptor 1 (CB1) mediates the recruitment of BMMs into the injured liver. In this study, we revealed the molecular mechanisms under CB1-mediated BMM infiltration. Carbon tetrachloride (CCl4 ) was employed to induce mouse liver injury. In vivo, human antigen R (HuR) was upregulated in macrophages of injured liver. HuR messenger RNA (mRNA) expression was positively correlated with CB1 and F4/80 mRNA expression. Furthermore, we detected the binding between HuR and CB1 mRNA in CCl4 -treated livers. In vitro, HuR modulated arachidonyl-2'-chloroethylamide (ACEA, CB1 agonist)-induced BMM migration by regulating CB1 expression. HuR promoted CB1 expression via binding to CB1 mRNA. ACEA promoted the association between HuR and CB1 mRNA via inducing HuR nucleoplasmic transport. In the cytoplasm, HuR competed with the miR-29 family to improve CB1 expression and BMM migration. In conclusion, our results prove that HuR regulates CB1 expression and influences ACEA-induced BMM migration by competing with miR-29 family.
Collapse
Affiliation(s)
- Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Xianghui Duan
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Zhongxin Zhao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Lei Tian
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Xiaofang Ji
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Abstract
As medical use of cannabis is increasingly legalized worldwide, a better understanding of the medical and hazardous effects of this drug is imperative. The pain associated with rheumatic diseases is considered a prevalent indication for medicinal cannabis in various countries. Thus far, preliminary clinical trials have explored the effects of cannabis on rheumatoid arthritis, osteoarthritis and fibromyalgia; preliminary evidence has also found an association between the cannabinoid system and other rheumatic conditions, including systemic sclerosis and juvenile idiopathic arthritis. The potential medicinal effects of cannabis could be attributable to its influence on the immune system, as it exerts an immunomodulatory effect on various immune cells, including T cells, B cells and macrophages. However, the available evidence is not yet sufficient to support the recommendation of cannabinoid treatment for rheumatic diseases.
Collapse
|
30
|
Distler JHW, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ. Review: Frontiers of Antifibrotic Therapy in Systemic Sclerosis. Arthritis Rheumatol 2019; 69:257-267. [PMID: 27636741 DOI: 10.1002/art.39865] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Alina Soare
- University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yoshihide Asano
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
31
|
Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules 2019; 24:E918. [PMID: 30845666 PMCID: PMC6429381 DOI: 10.3390/molecules24050918] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) has lately been proven to be an important, multifaceted homeostatic regulator, which influences a wide-variety of physiological processes all over the body. Its members, the endocannabinoids (eCBs; e.g., anandamide), the eCB-responsive receptors (e.g., CB₁, CB₂), as well as the complex enzyme and transporter apparatus involved in the metabolism of the ligands were shown to be expressed in several tissues, including the skin. Although the best studied functions over the ECS are related to the central nervous system and to immune processes, experimental efforts over the last two decades have unambiguously confirmed that cutaneous cannabinoid ("c[ut]annabinoid") signaling is deeply involved in the maintenance of skin homeostasis, barrier formation and regeneration, and its dysregulation was implicated to contribute to several highly prevalent diseases and disorders, e.g., atopic dermatitis, psoriasis, scleroderma, acne, hair growth and pigmentation disorders, keratin diseases, various tumors, and itch. The current review aims to give an overview of the available skin-relevant endo- and phytocannabinoid literature with a special emphasis on the putative translational potential, and to highlight promising future research directions as well as existing challenges.
Collapse
Affiliation(s)
- Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- HCEMM Nonprofit Ltd., 6720 Szeged, Hungary.
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
32
|
García-Martín A, Garrido-Rodríguez M, Navarrete C, Caprioglio D, Palomares B, DeMesa J, Rollland A, Appendino G, Muñoz E. Cannabinoid derivatives acting as dual PPARγ/CB2 agonists as therapeutic agents for systemic sclerosis. Biochem Pharmacol 2019; 163:321-334. [PMID: 30825431 DOI: 10.1016/j.bcp.2019.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 12/20/2022]
Abstract
The endocannabinoid system (ECS) may play a role in the pathophysiology of systemic sclerosis (SSc). Cannabinoids acting as dual PPARγ/CB2 agonists, such as VCE-004.8 and Ajulemic acid (AjA), have been shown to alleviate skin fibrosis and inflammation in SSc models. Since both compounds are being tested in humans, we compared their activities in the bleomycin (BLM) SSc model. Specifically, the pharmacotranscriptomic signature of the compounds was determined by RNA-Seq changes in the skin of BLM mice treated orally with AjA or EHP-101, a lipidic formulation of VCE-004.8. While both compounds down-regulated the expression of genes involved in the inflammatory and fibrotic components of the disease and the pharmacotranscriptomic signatures were similar for both compounds in some pathways, we found key differences between the compounds in vasculogenesis. Additionally, we found 28 specific genes with translation potential by comparing with a list of human scleroderma genes. Immunohistochemical analysis revealed that both compounds prevented fibrosis, collagen accumulation and Tenascin C (TNC) expression. The endothelial CD31+/CD34+ cells and telocytes were reduced in BLM mice and restored only by EHP-101 treatment. Finally, differences were found in plasmatic biomarker analysis; EHP-101, but not AjA, enhanced the expression of some factors related to angiogenesis and vasculogenesis. Altogether the results indicate that dual PPARγ/CB2 agonists qualify as a novel therapeutic approach for the treatment of SSc and other fibrotic diseases. EHP-101 demonstrated unique mechanisms of action related to the pathophysiology of SSc that could be beneficial in the treatment of this complex disease without current therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Belén Palomares
- Maimonides Biomedical Research Institute of Córdoba, Spain; Departament of Cellular Biology, Physiology and Immunology, University of Córdoba, Spain; Universitary Hospital Reina Sofía, Córdoba, Spain
| | - Jim DeMesa
- Emerald Health Pharmaceuticals, San Diego, CA, USA
| | | | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba, Spain; Departament of Cellular Biology, Physiology and Immunology, University of Córdoba, Spain; Universitary Hospital Reina Sofía, Córdoba, Spain.
| |
Collapse
|
33
|
García-Martín A, Garrido-Rodríguez M, Navarrete C, del Río C, Bellido ML, Appendino G, Calzado MA, Muñoz E. EHP-101, an oral formulation of the cannabidiol aminoquinone VCE-004.8, alleviates bleomycin-induced skin and lung fibrosis. Biochem Pharmacol 2018; 157:304-313. [DOI: 10.1016/j.bcp.2018.07.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/31/2018] [Indexed: 01/07/2023]
|
34
|
del Rio C, Cantarero I, Palomares B, Gómez‐Cañas M, Fernández‐Ruiz J, Pavicic C, García‐Martín A, Luz Bellido M, Ortega‐Castro R, Pérez‐Sánchez C, López‐Pedrera C, Appendino G, Calzado MA, Muñoz E. VCE-004.3, a cannabidiol aminoquinone derivative, prevents bleomycin-induced skin fibrosis and inflammation through PPARγ- and CB 2 receptor-dependent pathways. Br J Pharmacol 2018; 175:3813-3831. [PMID: 30033591 PMCID: PMC6135789 DOI: 10.1111/bph.14450] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid system and PPARγ are important targets for the development of novel compounds against fibrotic diseases such as systemic sclerosis (SSc), also called scleroderma. The aim of this study was to characterize VCE-004.3, a novel cannabidiol derivative, and study its anti-inflammatory and anti-fibrotic activities. EXPERIMENTAL APPROACH The binding of VCE-004.3 to CB1 and CB2 receptors and PPARγ and its effect on their functional activities were studied in vitro and in silico. Anti-fibrotic effects of VCE-004.3 were investigated in NIH-3T3 fibroblasts and human dermal fibroblasts. To assess its anti-inflammatory and anti-fibrotic efficacy in vivo, we used two complementary models of bleomycin-induced fibrosis. Its effect on ERK1/2 phosphorylation induced by IgG from SSc patients and PDGF was also investigated. KEY RESULTS VCE-004.3 bound to and activated PPARγ and CB2 receptors and antagonized CB1 receptors. VCE-004.3 bound to an alternative site at the PPARγ ligand binding pocket. VCE-004.3 inhibited collagen gene transcription and synthesis and prevented TGFβ-induced fibroblast migration and differentiation to myofibroblasts. It prevented skin fibrosis, myofibroblast differentiation and ERK1/2 phosphorylation in bleomycin-induced skin fibrosis. Furthermore, it reduced mast cell degranulation, macrophage activation, T-lymphocyte infiltration, and the expression of inflammatory and profibrotic factors. Topical application of VCE-004.3 also alleviated skin fibrosis. Finally, VCE-004.3 inhibited PDGF-BB- and SSc IgG-induced ERK1/2 activation in fibroblasts. CONCLUSIONS AND IMPLICATIONS VCE-004.3 is a novel semisynthetic cannabidiol derivative that behaves as a dual PPARγ/CB2 agonist and CB1 receptor modulator that could be considered for the development of novel therapies against different forms of scleroderma.
Collapse
MESH Headings
- Animals
- Bleomycin/antagonists & inhibitors
- Cannabidiol/chemical synthesis
- Cannabidiol/chemistry
- Cannabidiol/pharmacology
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Female
- Fibrosis/chemically induced
- Fibrosis/drug therapy
- Fibrosis/metabolism
- Humans
- Inflammation/chemically induced
- Inflammation/drug therapy
- Inflammation/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Docking Simulation
- Molecular Structure
- NIH 3T3 Cells
- PPAR gamma/agonists
- PPAR gamma/metabolism
- Quinones/chemical synthesis
- Quinones/chemistry
- Quinones/pharmacology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Skin/drug effects
- Skin/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Carmen del Rio
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Irene Cantarero
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Belén Palomares
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - María Gómez‐Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaUniversidad ComplutenseMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Javier Fernández‐Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaUniversidad ComplutenseMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | | | | | - Maria Luz Bellido
- Vivacell BiotechnologyCórdobaSpain
- Emerald Health PharmaceuticalsSan DiegoCAUSA
| | - Rafaela Ortega‐Castro
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Carlos Pérez‐Sánchez
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Chary López‐Pedrera
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Giovanni Appendino
- Dipartimento di Scienze del FarmacoUniversità del Piemonte OrientaleNovaraItaly
| | - Marco A Calzado
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| |
Collapse
|
35
|
The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol 2018; 157:122-133. [PMID: 30138623 DOI: 10.1016/j.bcp.2018.08.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
The skin is the largest organ of the body and has a complex and very active structure that contributes to homeostasis and provides the first line defense against injury and infection. In the past few years it has become evident that the endocannabinoid system (ECS) plays a relevant role in healthy and diseased skin. Specifically, we review how the dysregulation of ECS has been associated to dermatological disorders such as atopic dermatitis, psoriasis, scleroderma and skin cancer. Therefore, the druggability of the ECS could open new research avenues for the treatment of the pathologies mentioned. Numerous studies have reported that phytocannabinoids and their biological analogues modulate a complex network pharmacology involved in the modulation of ECS, focusing on classical cannabinoid receptors, transient receptor potential channels (TRPs), and peroxisome proliferator-activated receptors (PPARs). The combined targeting of several end-points seems critical to provide better chances of therapeutically success, in sharp contrast to the one-disease-one-target dogma that permeates current drug discovery campaigns.
Collapse
|
36
|
Miragliotta V, Ricci PL, Albanese F, Pirone A, Tognotti D, Abramo F. Cannabinoid receptor types 1 and 2 and peroxisome proliferator-activated receptor-α: distribution in the skin of clinically healthy cats and cats with hypersensitivity dermatitis. Vet Dermatol 2018; 29:316. [PMID: 29920828 DOI: 10.1111/vde.12658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cannabinoid receptors and peroxisome proliferator-activated receptor-alpha (PPAR-α) are gaining recognition as potential therapeutic targets for the treatment of skin disorders. HYPOTHESIS/OBJECTIVES The aim of this study was to investigate the distribution of cannabinoid type 1 and 2 receptors (CBR1 and CBR2) and PPAR-α in feline skin and verify whether changes occur in the course of hypersensitivity dermatitis. ANIMALS Twelve privately owned cats. Skin samples were obtained from five healthy cats with no skin lesions and seven cats clinically diagnosed with hypersensitivity dermatitis. METHODS AND MATERIALS Haematoxylin and eosin stained skin sections were investigated for histopathological changes. Indirect immunofluorescence for CBR1, CBR2 and PPAR-α was performed on paraffin-embedded sections, and antibody specificity tested by Western blot analysis. RESULTS Skin samples from cats with hypersensitivity dermatitis were all histopathologically diagnosed with eosinophilic dermatitis. CB receptors and PPAR-α were distributed throughout the skin in both healthy and allergic cats. In normal feline skin, these receptors were mainly distributed in the epithelial compartment. Receptor expression increased in hypersensitivity compared to healthy skin, with the main distribution changes being suprabasal for CBR1, dermal for CBR2 and marked expression of PPAR-α in hyperplastic epidermis and perivascular infiltrate. CONCLUSIONS AND CLINICAL IMPORTANCE Increased expression of cannabinoid receptors in the skin of cats with hypersensitivity dermatitis suggests an endogenous protective strategy and may support the use of natural cannabinoid receptor or PPAR-α agonists to treat feline hypersensitivity dermatitis.
Collapse
Affiliation(s)
- Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, I-56124, Pisa, Italy
| | - Pier Luca Ricci
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, I-56124, Pisa, Italy
| | - Francesco Albanese
- Private Veterinary Laboratory "LaVallonea", Via Giuseppe Sirtori, 9, 20017, Passirana di Rho, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, I-56124, Pisa, Italy
| | - Danika Tognotti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Francesca Abramo
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, I-56124, Pisa, Italy
| |
Collapse
|
37
|
Fitzcharles M, Eisenberg E. Medical cannabis: A forward vision for the clinician. Eur J Pain 2018; 22:485-491. [DOI: 10.1002/ejp.1185] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- M.A. Fitzcharles
- Alan Edwards Pain Management Unit; McGill University Health Centre; Montreal QC Canada
- Division of Rheumatology; McGill University Health Centre; Montreal QC Canada
| | - E. Eisenberg
- Pain Research Unit; Institute of Pain Medicine; Rambam Health Care Campus; Haifa Israel
- Technion-Institute of Technology; Haifa Israel
| |
Collapse
|
38
|
Bort A, Alvarado-Vazquez PA, Moracho-Vilrriales C, Virga KG, Gumina G, Romero-Sandoval A, Asbill S. Effects of JWH015 in cytokine secretion in primary human keratinocytes and fibroblasts and its suitability for topical/transdermal delivery. Mol Pain 2017; 13:1744806916688220. [PMID: 28326930 PMCID: PMC5302180 DOI: 10.1177/1744806916688220] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background JWH015 is a cannabinoid (CB) receptor type 2 agonist that produces immunomodulatory effects. Since skin cells play a key role in inflammatory conditions and tissue repair, we investigated the ability of JWH015 to promote an anti-inflammatory and pro-wound healing phenotype in human primary skin cells. Methods Human primary keratinocytes and fibroblasts were stimulated with lipopolysaccharide. The mRNA expression of cannabinoid receptors was determined using RT-PCR. The effects of JWH015 (0.05, 0.1, 0.5, and 1 µM) in pro- and anti-inflammatory factors were tested in lipopolysaccharide-stimulated cells. A scratch assay, using a co-culture of keratinocytes and fibroblasts, was used to test the effects of JWH015 in wound healing. In addition, the topical and transdermal penetration of JWH015 was studied in Franz diffusion cells using porcine skin and LC-MS. Results The expression of CB1 and CB2 receptors (mRNA) and the production of pro- and anti-inflammatory factors enhanced in keratinocytes and fibroblasts following lipopolysaccharide stimulation. JWH015 reduced the concentration of major pro-inflammatory factors (IL-6 and MCP-1) and increased the concentration of a major anti-inflammatory factor (TGF-β) in lipopolysaccharide-stimulated cells. JWH015 induced a faster scratch gap closure. These JWH015’seffects were mainly modulated through both CB1 and CB2 receptors. Topically administered JWH015 was mostly retained in the skin and displayed a sustained and low level of transdermal permeation. Conclusions Our findings suggest that targeting keratinocytes and fibroblasts with cannabinoid drugs could represent a therapeutic strategy to resolve peripheral inflammation and promote tissue repair.
Collapse
Affiliation(s)
- Alicia Bort
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Alcalá de Henares, Madrid, Spain.,2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | - Perla A Alvarado-Vazquez
- 2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | | | - Kristopher G Virga
- 2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | - Giuseppe Gumina
- 2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | - Alfonso Romero-Sandoval
- 2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | - Scott Asbill
- 2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| |
Collapse
|
39
|
Mounessa JS, Siegel JA, Dunnick CA, Dellavalle RP. The role of cannabinoids in dermatology. J Am Acad Dermatol 2017; 77:188-190. [DOI: 10.1016/j.jaad.2017.02.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 10/19/2022]
|
40
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
41
|
Simkins TJ, Fried D, Parikh K, Galligan JJ, Goudreau JL, Lookingland KJ, Kaplan BLF. Reduced Noradrenergic Signaling in the Spleen Capsule in the Absence of CB 1 and CB 2 Cannabinoid Receptors. J Neuroimmune Pharmacol 2016; 11:669-679. [PMID: 27287619 DOI: 10.1007/s11481-016-9689-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/02/2016] [Indexed: 11/27/2022]
Abstract
The spleen is a visceral organ that contracts during hypoxia to expel erythrocytes and immune cells into the circulation. Spleen contraction is under the control of noradrenergic sympathetic innervation. The activity of noradrenergic neurons terminating in the spleen capsule is regulated by α2-adrenergic receptors (AR). Interactions between endogenous cannabinoid signaling and noradrenergic signaling in other organ systems suggest endocannabinoids might also regulate spleen contraction. Spleens from mice congenitally lacking both CB1 and CB2 cannabinoid receptors (Cnr1 -/- /Cnr2 -/- mice) were used to explore the role of endocannabinoids in spleen contraction. Spleen contraction in response to exogenous norepinephrine (NE) was found to be significantly lower in Cnr1 -/- /Cnr2 -/- mouse spleens, likely due to decreased expression of capsular α1AR. The majority of splenic Cnr1 mRNA expression is by cells of the spleen capsule, suggestive of post-synaptic CB1 receptor signaling. Thus, these studies demonstrate a role for CB1 and/or CB2 in noradrenergic splenic contraction.
Collapse
Affiliation(s)
- Tyrell J Simkins
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - David Fried
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kevin Parikh
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - James J Galligan
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - John L Goudreau
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Keith J Lookingland
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Barbara L F Kaplan
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
- Department of Basic Sciences, Mississippi State University, PO Box 6100, Mississippi State, MS, 39762, USA.
| |
Collapse
|
42
|
Wang L, Yang L, Tian L, Mai P, Jia S, Yang L, Li L. Cannabinoid Receptor 1 Mediates Homing of Bone Marrow-Derived Mesenchymal Stem Cells Triggered by Chronic Liver Injury. J Cell Physiol 2016; 232:110-21. [PMID: 27028843 DOI: 10.1002/jcp.25395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 01/12/2023]
Abstract
Cannabinoid receptors (CBs) have been implicated in the pathogenesis of various liver diseases, including liver fibrosis. Our previous studies have demonstrated that after liver injury, mouse bone marrow-derived mesenchymal stem cells (BMSCs) can migrate to the injured liver and differentiate to myofibroblasts, contributing to hepatic fibrogenesis. However, the role of CBs in the homing of BMSCs in liver injury is yet unclear. In this study, we found that both CB1 and CB2 were expressed in BMSCs. Migration assays were performed by transwell chambers. CB1 agonist ACEA promoted the migration of BMSCs, but CB2 agonist JWH133 had no effect. Pharmacological or genetic ablation of CB1 reduced ACEA-induced migration, whereas CB2 did not. Moreover, activation of CB1 increased active GTP-bound Rac1, RhoA, and Cdc42 protein levels. The elevated GTP-bound Rac1 and RhoA protein levels were decreased by CB1 antagonist AM281 treatment, but not Cdc42. In addition, ACEA-induced migration was suppressed by NSC23766 (Rac1 inhibitor) or C3 transferase (RhoA inhibitor), whereas MLS-573151 (Cdc42 inhibitor) had no effect. Consistent with these data, Rac1 or RhoA knock-down significantly blocked CB1-mediated migration. Meanwhile, CB1-mediated migration was associated with cytoskeletal remodeling. In vivo, administration of CB1 antagonist AM281 markedly inhibited the recruitment of BMSCs to the injured liver using fluorescence-activated cell sorting. Furthermore, blockade of CB1 significantly attenuated liver fibrosis. In conclusion, our results suggest that CB1 plays a crucial role in liver fibrosis through mediating the homing of BMSCs to damaged liver, which may provide new insight into the pathogenesis and treatment of liver fibrosis. J. Cell. Physiol. 232: 110-121, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lin Wang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Lei Tian
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Ping Mai
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Shuangshuang Jia
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
43
|
The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci Rep 2016; 6:21703. [PMID: 26887982 PMCID: PMC4757881 DOI: 10.1038/srep21703] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Scleroderma is a group of rare diseases associated with early and transient inflammation and vascular injury, followed by fibrosis affecting the skin and multiple internal organs. Fibroblast activation is the hallmark of scleroderma, and disrupting the intracellular TGFβ signaling may provide a novel approach to controlling fibrosis. Because of its potential role in modulating inflammatory and fibrotic responses, both PPARγ and CB2 receptors represent attractive targets for the development of cannabinoid-based therapies. We have developed a non-thiophilic and chemically stable derivative of the CBD quinol (VCE-004.8) that behaves as a dual agonist of PPARγ and CB2 receptors, VCE-004.8 inhibited TGFβ-induced Col1A2 gene transcription and collagen synthesis. Moreover, VCE-004.8 inhibited TGFβ–mediated myofibroblast differentiation and impaired wound-healing activity. The anti-fibrotic efficacy in vivo was investigated in a murine model of dermal fibrosis induced by bleomycin. VCE-004.8 reduced dermal thickness, blood vessels collagen accumulation and prevented mast cell degranulation and macrophage infiltration in the skin. These effects were impaired by the PPARγ antagonist T0070907 and the CB2 antagonist AM630. In addition, VCE-004.8 downregulated the expression of several key genes associated with fibrosis, qualifying this semi-synthetic cannabinoid as a novel compound for the management of scleroderma and, potentially, other fibrotic diseases.
Collapse
|
44
|
Bronova I, Smith B, Aydogan B, Weichselbaum RR, Vemuri K, Erdelyi K, Makriyannis A, Pacher P, Berdyshev EV. Protection from Radiation-Induced Pulmonary Fibrosis by Peripheral Targeting of Cannabinoid Receptor-1. Am J Respir Cell Mol Biol 2015; 53:555-62. [PMID: 26426981 DOI: 10.1165/rcmb.2014-0331oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Radiation-induced pulmonary fibrosis (RIF) is a severe complication of thoracic radiotherapy that limits its dose, intensity, and duration. The contribution of the endocannabinoid signaling system in pulmonary fibrogenesis is not known. Using a well-established mouse model of RIF, we assessed the involvement of cannabinoid receptor-1 (CB1) in the onset and progression of pulmonary fibrosis. Female C57BL/6 mice and CB1 knockout mice generated on C57BL/6 background received 20 Gy (2 Gy/min) single-dose thoracic irradiation that resulted in pulmonary fibrosis and animal death within 15 to 18 weeks. Some C57BL/6 animals received the CB1 peripherally restricted antagonist AM6545 at 1 mg/kg intraperitoneally three times per week. Animal survival and parameters of pulmonary inflammation and fibrosis were evaluated. Thoracic irradiation (20 Gy) was associated with marked pulmonary inflammation and fibrosis in mice and high mortality within 15 to 18 weeks after exposure. Genetic deletion or pharmacological inhibition of CB1 receptors with a peripheral CB1 antagonist AM6545 markedly attenuated or delayed the lung inflammation and fibrosis and increased animal survival. Our results show that CB1 signaling plays a key pathological role in the development of radiation-induced pulmonary inflammation and fibrosis, and peripherally restricted CB1 antagonists may represent a novel therapeutic approach against this devastating complication of radiotherapy/irradiation.
Collapse
Affiliation(s)
- Irina Bronova
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and
| | | | | | | | | | - Katalin Erdelyi
- 5 Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland; and
| | - Alex Makriyannis
- 6 Center for Drug Discovery, Departments of Pharmaceutical Sciences and Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts
| | | | - Evgeny V Berdyshev
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and
| |
Collapse
|
45
|
De Langhe E, Lories R. Fibrogenesis, novel lessons from animal models. Semin Immunopathol 2015; 37:565-74. [PMID: 26141608 DOI: 10.1007/s00281-015-0510-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
Systemic sclerosis (SSc) is a devastating chronic autoimmune connective tissue disease characterized by vasculopathy, autoimmunity with inflammation, and progressive fibrogenesis. The current paradigm of the pathogenesis of SSc is that of an unknown initial trigger, leading to a complex interaction of immune cells, endothelial cells, and fibroblasts, producing cytokines, growth and angiogenic factors, and resulting in uncontrolled and persistent tissue fibrogenesis by an altered mesenchymal cell compartment. Animal models are of utmost importance to investigate the different steps in the pathogenesis. This review will elaborate on recent findings in established and more recently developed animal models, presenting data on compounds that are in or ready to be translated into clinical trials, or provide interesting new findings in the understanding of the pathophysiology of SSc. We focus on recent findings concerning the vessel-extracellular matrix interaction, the initial triggering aggressor, the concept of autoimmunity and inflammatory changes, the effector cells and their origins, and the complex interaction of the different signaling pathways in fibrogenesis.
Collapse
Affiliation(s)
- Ellen De Langhe
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | | |
Collapse
|
46
|
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol 2015; 6:272. [PMID: 26106387 PMCID: PMC4459100 DOI: 10.3389/fimmu.2015.00272] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023] Open
Abstract
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| | - Monica Brown
- Section of Pediatric Rheumatology, Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Bradley C Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Arnold E Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| |
Collapse
|
47
|
Maccarrone M, Bab I, Bíró T, Cabral GA, Dey SK, Di Marzo V, Konje JC, Kunos G, Mechoulam R, Pacher P, Sharkey KA, Zimmer A. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci 2015; 36:277-96. [PMID: 25796370 DOI: 10.1016/j.tips.2015.02.008] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
In 1964, the psychoactive ingredient of Cannabis sativa, Δ(9)-tetrahydrocannabinol (THC), was isolated. Nearly 30 years later the endogenous counterparts of THC, collectively termed endocannabinoids (eCBs), were discovered: N-arachidonoylethanolamine (anandamide) (AEA) in 1992 and 2-arachidonoylglycerol (2-AG) in 1995. Since then, considerable research has shed light on the impact of eCBs on human health and disease, identifying an ensemble of proteins that bind, synthesize, and degrade them and that together form the eCB system (ECS). eCBs control basic biological processes including cell choice between survival and death and progenitor/stem cell proliferation and differentiation. Unsurprisingly, in the past two decades eCBs have been recognized as key mediators of several aspects of human pathophysiology and thus have emerged to be among the most widespread and versatile signaling molecules ever discovered. Here some of the pioneers of this research field review the state of the art of critical eCB functions in peripheral organs. Our community effort is aimed at establishing consensus views on the relevance of the peripheral ECS for human health and disease pathogenesis, as well as highlighting emerging challenges and therapeutic hopes.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University, Rome, Italy; Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Itai Bab
- Bone Laboratory, Hebrew University Medical Faculty, Jerusalem, Israel; Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Tamás Bíró
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Council of Research, Pozzuoli, Italy
| | - Justin C Konje
- Department of Obstetrics and Gynaecology, Sidra Medical and Research Center, Doha, Qatar
| | - George Kunos
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Raphael Mechoulam
- Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| |
Collapse
|
48
|
Lecru L, Desterke C, Grassin-Delyle S, Chatziantoniou C, Vandermeersch S, Devocelle A, Vernochet A, Ivanovski N, Ledent C, Ferlicot S, Dalia M, Saïd M, Beaudreuil S, Charpentier B, Vazquez A, Giron-Michel J, Azzarone B, Durrbach A, François H. Cannabinoid receptor 1 is a major mediator of renal fibrosis. Kidney Int 2015; 88:72-84. [PMID: 25760323 DOI: 10.1038/ki.2015.63] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/13/2015] [Accepted: 01/22/2015] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease, secondary to renal fibrogenesis, is a burden on public health. There is a need to explore new therapeutic pathways to reduce renal fibrogenesis. To study this, we used unilateral ureteral obstruction (UUO) in mice as an experimental model of renal fibrosis and microarray analysis to compare gene expression in fibrotic and normal kidneys. The cannabinoid receptor 1 (CB1) was among the most upregulated genes in mice, and the main endogenous CB1 ligand (2-arachidonoylglycerol) was significantly increased in the fibrotic kidney. Interestingly, CB1 expression was highly increased in kidney biopsies of patients with IgA nephropathy, diabetes, and acute interstitial nephritis. Both genetic and pharmacological knockout of CB1 induced a profound reduction in renal fibrosis during UUO. While CB2 is also involved in renal fibrogenesis, it did not potentiate the role of CB1. CB1 expression was significantly increased in myofibroblasts, the main effector cells in renal fibrogenesis, upon TGF-β1 stimulation. The decrease in renal fibrosis during CB1 blockade could be explained by a direct action on myofibroblasts. CB1 blockade reduced collagen expression in vitro. Rimonabant, a selective CB1 endocannabinoid receptor antagonist, modulated the macrophage infiltrate responsible for renal fibrosis in UUO through a decrease in monocyte chemoattractant protein-1 synthesis. Thus, CB1 has a major role in the activation of myofibroblasts and may be a new target for treating chronic kidney disease.
Collapse
Affiliation(s)
- Lola Lecru
- INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France
| | - Christophe Desterke
- INSERM Unité 972, Transfert des gènes dans le foie: Applications Thérapeutiques, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France
| | - Stanislas Grassin-Delyle
- Université de Versailles Saint-Quentin, Mass Spectrometry Facility, MasSpecLab, Versailles, France
| | | | | | - Aurore Devocelle
- INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France
| | - Amelia Vernochet
- INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France
| | - Ninoslav Ivanovski
- INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France
| | - Catherine Ledent
- Institut de la Recherche Interdisciplinaire en Biologie Humaine Et Moléculaire, Bruxelles, Belgium
| | | | - Meriem Dalia
- INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France
| | - Myriam Saïd
- INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France
| | - Séverine Beaudreuil
- 1] INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France [2] AP-HP Hôpital Bicêtre, le Kremlin-Bicêtre, France
| | - Bernard Charpentier
- 1] INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France [2] AP-HP Hôpital Bicêtre, le Kremlin-Bicêtre, France
| | - Aimé Vazquez
- INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France
| | - Julien Giron-Michel
- INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France
| | - Bruno Azzarone
- Immunology Department, Istituto Giannina Gaslini, Genova, Italy
| | - Antoine Durrbach
- 1] INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France [2] AP-HP Hôpital Bicêtre, le Kremlin-Bicêtre, France [3] Institut Francilien de Recherche en Néphrologie et Transplantation, le Kremlin-Bicêtre, France
| | - Hélène François
- 1] INSERM Unité 1014, Régulation de la survie et des Allogreffes, Institut André Lwoff, Hôpital Paul Brousse, Villejuif, France [2] AP-HP Hôpital Bicêtre, le Kremlin-Bicêtre, France [3] Institut Francilien de Recherche en Néphrologie et Transplantation, le Kremlin-Bicêtre, France
| |
Collapse
|
49
|
Makwana R, Venkatasamy R, Spina D, Page C. The Effect of Phytocannabinoids on Airway Hyper-Responsiveness, Airway Inflammation, and Cough. J Pharmacol Exp Ther 2015; 353:169-80. [DOI: 10.1124/jpet.114.221283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
50
|
Suárez-Pinilla P, López-Gil J, Crespo-Facorro B. Immune system: a possible nexus between cannabinoids and psychosis. Brain Behav Immun 2014; 40:269-82. [PMID: 24509089 DOI: 10.1016/j.bbi.2014.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Endocannabinoid system is involved in the regulation of the brain-immune axis. Cannabis consumption is related with the development, course, and severity of psychosis. The epidemiological evidence for increased occurrence of immunological alterations in patients with psychosis has not been sufficiently addressed. The aim of this review is to establish whether there is any scientific evidence of the influence of cannabinoids on aspects of immunity that affect susceptibility to psychotic disorder induction. METHODS A comprehensive search of PubMed/MEDLINE, EMBASE and ISI Web of Knowledge was performed using combinations of key terms distributed into three blocks: "immune", "cannabinoid", and "endocannabinoid receptor". Studies were considered to be eligible for the review if they were original articles, they reported a quantitative or qualitative relation between cannabinoid ligands, their receptors, and immune system, and they were carried out in vitro or in mammals, included humans. All the information was systematically extracted and evaluated. RESULTS We identified 122 articles from 446 references. Overall, endocannabinoids enhanced immune response, whereas exogenous cannabinoids had immunosuppressant effects. A general change in the immune response from Th1 to Th2 was also demonstrated for cannabinoid action. Endogenous and synthetic cannabinoids also modulated microglia function and neurotransmitter secretion. CONCLUSION The actions of cannabinoids through the immune system are quite regular and predictable in the peripheral but remain fuzzy in the central nervous system. Despite this uncertainty, it may be hypothesized that exposure to exocannabinoids, in particular during adolescence might prompt immunological dysfunctions that potentially cause a latent vulnerability to psychosis. Further investigations are warranted to clarify the relationship between the immunological effects of cannabis and psychosis.
Collapse
Affiliation(s)
- Paula Suárez-Pinilla
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain.
| | - José López-Gil
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| |
Collapse
|