1
|
Jiang F, Lei C, Chen Y, Zhou N, Zhang M. The complement system and diabetic retinopathy. Surv Ophthalmol 2024; 69:575-584. [PMID: 38401574 DOI: 10.1016/j.survophthal.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Diabetic retinopathy (DR) is one of the common microvascular complications of diabetes mellitus and is the main cause of visual impairment in diabetic patients. The pathogenesis of DR is still unclear. The complement system, as an important component of the innate immune system in addition to defending against the invasion of foreign microorganisms, is involved in the occurrence and development of DR through 3 widely recognized complement activation pathways, the complement regulatory system, and many other pathways. Molecules such as C3a, C5a, and membrane attacking complex, as important molecules of the complement system, are involved in the pathologenesus of DR, either through direct damaging effects or by activating cells (microglia, macroglia, etc.) in the retinal microenvironment to contribute to the pathological damage of DR indirectly. We review the integral association of the complement system and DR to further understand the pathogenesis of DR and possibly provide a new strategy for itstreatment.
Collapse
Affiliation(s)
- Feipeng Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Chunyan Lei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China
| | - Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Macular Disease Research Laboratory, West China Hospital, Sichuan University, China.
| |
Collapse
|
2
|
Mosaad YM, Hammad A, Shouma A, Darwish M, Hammad EM, Sallam RA, ELTantawi NT, Abdel-Azeem HA, Youssef LF, El-Khier NTA, Fawzy IM, Alwasify M. IKZF1 rs4132601 and rs11978267 gene polymorphisms and paediatric systemic lupus erythematosus; relation to lupus nephritis. Int J Immunogenet 2024; 51:173-182. [PMID: 38494589 DOI: 10.1111/iji.12667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
The demographic factors, the socioeconomic status and the ethnicity of populations are important players that determine the incidence, the prevalence and the spectrum of systemic lupus erythematosus (SLE) clinical presentations in different populations. Therefore, the purpose of the present research was to investigate the possible association between the Ikaros family zinc finger 1 gene (IKZF1) rs4132601 and rs11978267 single nucleotide polymorphisms (SNPs) and SLE susceptibility and clinical presentations including lupus nephritis (LN) among Egyptian paediatric patients. After DNA extraction from Ethylenediaminetetraacetic acid (EDTA) blood samples for 104 paediatric SLE (pSLE) patients and 286 healthy controls, the investigated SNPs (IKZF1 rs4132601 and rs11978267) were genotyped using TaqMan-Real-time Polymerase chain reaction (PCR). The G allele, GG and GT genotypes of IKZF1 rs4132601 were associated with pSLE (pc<.001, OR 2.97, 3.2 and 2.25, respectively). The GG and GA haplotype were more frequent in pSLE patients than other haplotypes (pc<.001, OR 3.47 and pc = .004, OR = 2.8, respectively). The studied SNPs have no impact on the distinctive features of pSLE. The rs4132601 TG genotype was significantly associated with proliferative LN (pc = .03) The IKZF1 rs4132601 can be considered a risk factor for SLE in the cohort of Egyptian children. The TG genotype of the IKZF1 rs4132601 may predispose to proliferative LN.
Collapse
Affiliation(s)
- Youssef M Mosaad
- Clinical Immunology Unit, Clinical Pathology Department & Mansoura Research Center for Cord Stem Cell (MARC_CSC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman Hammad
- Nephrology Unit, Pediatric Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amany Shouma
- Cardiology Unit, Pediatric Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Darwish
- Clinical Immunology Unit, Clinical Pathology Department & Mansoura Research Center for Cord Stem Cell (MARC_CSC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Enas M Hammad
- Rheumatology and Rehabilitation Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab Ar Sallam
- Rheumatology and Rehabilitation Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha T ELTantawi
- Neurology Unit, Pediatric Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Heba A Abdel-Azeem
- Dermatology, Andrology & STDs, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Laila F Youssef
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha T Abou El-Khier
- Medical Microbiology & Immunology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Iman M Fawzy
- Laboratory Medicine Department, Mansoura Fever Hospital, Egypt Ministry of Health and Population, Mansoura, Egypt
| | - Mona Alwasify
- Clinical Immunology Unit, Clinical Pathology Department & Mansoura Research Center for Cord Stem Cell (MARC_CSC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Sestan M, Kifer N, Arsov T, Cook M, Ellyard J, Vinuesa CG, Jelusic M. The Role of Genetic Risk Factors in Pathogenesis of Childhood-Onset Systemic Lupus Erythematosus. Curr Issues Mol Biol 2023; 45:5981-6002. [PMID: 37504294 PMCID: PMC10378459 DOI: 10.3390/cimb45070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
The pathogenesis of childhood-onset systemic lupus erythematosus (cSLE) is complex and not fully understood. It involves three key factors: genetic risk factors, epigenetic mechanisms, and environmental triggers. Genetic factors play a significant role in the development of the disease, particularly in younger individuals. While cSLE has traditionally been considered a polygenic disease, it is now recognized that in rare cases, a single gene mutation can lead to the disease. Although these cases are uncommon, they provide valuable insights into the disease mechanism, enhance our understanding of pathogenesis and immune tolerance, and facilitate the development of targeted treatment strategies. This review aims to provide a comprehensive overview of both monogenic and polygenic SLE, emphasizing the implications of specific genes in disease pathogenesis. By conducting a thorough analysis of the genetic factors involved in SLE, we can improve our understanding of the underlying mechanisms of the disease. Furthermore, this knowledge may contribute to the identification of effective biomarkers and the selection of appropriate therapies for individuals with SLE.
Collapse
Affiliation(s)
- Mario Sestan
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Nastasia Kifer
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Todor Arsov
- Faculty of Medical Sciences, University Goce Delchev, 2000 Shtip, North Macedonia
- The Francis Crick Institute, London NW1 1AT, UK
| | - Matthew Cook
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Julia Ellyard
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | | | - Marija Jelusic
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Choi D, Kim J, Yang JW, Kim JH, Park S, Shin JI. Dysregulated MicroRNAs in the Pathogenesis of Systemic Lupus Erythematosus: A Comprehensive Review. Int J Biol Sci 2023; 19:2495-2514. [PMID: 37215992 PMCID: PMC10197884 DOI: 10.7150/ijbs.74315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/11/2022] [Indexed: 05/24/2023] Open
Abstract
Systemic lupus erythematosus is a chronic autoimmune disease of which clinical presentation is vastly heterogeneous, ranging from mild skin rashes to severe renal diseases. Treatment goal of this illness is to minimize disease activity and prevent further organ damage. In recent years, much research has been done on the epigenetic aspects of SLE pathogenesis, for among the various factors known to contribute to the pathogenic process, epigenetic factors, especially microRNAs, bear the most therapeutic potential that can be altered unlike congenital genetic factors. This article reviews and updates what has been discovered so far about the pathogenesis of lupus, while focusing on the dysregulation of microRNAs in lupus patients in comparison to healthy controls along with the potentially pathogenic roles of the microRNAs commonly reported to be either upregulated or downregulated. Furthermore, this review includes microRNAs of which results are controversial, suggesting possible explanations for such discrepancies and directions for future research. Moreover, we aimed to emphasize the point that had been overlooked so far in studies regarding microRNA expression levels; that is, which specimen was used to assess the dysregulation of microRNAs. To our surprise, a vast number of studies have not considered this factor and have analyzed the potential role of microRNAs in general. Despite extensive investigations done on microRNA levels, their significance and potential role remain a mystery, which calls for further studies on this particular subject in regard of which specimen is used for assessment.
Collapse
Affiliation(s)
- Daeun Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimin Kim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ji Hong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Beydon M, Seror R, Le Guern V, Chretien P, Mariette X, Nocturne G. Impact of patient ancestry on heterogeneity of Sjögren's disease. RMD Open 2023; 9:rmdopen-2022-002955. [PMID: 36878621 PMCID: PMC9990603 DOI: 10.1136/rmdopen-2022-002955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES We aimed to compare disease characteristics between primary Sjögren's syndrome (pSS) patients of African ancestry (AA) and Caucasian ancestry. METHODS We conducted a retrospective, case-control study in a French national and European referral centre for pSS. All patients with pSS of AA were matched with two Caucasians patients having similar follow-up duration. We explored clinical and biological parameters associated with a cumulative EULAR Sjögren's Syndrome Disease Activity Index (cumESSDAI ≥5) (consisting of individual clinESSDAI domain maximum throughout follow-up). RESULTS We identified 74 patients of AA matched with 148 Caucasian. Median age at pSS diagnosis was younger in AA patients (43 years (IQR 33-51) vs 56 years (44.8-59.2), p<0.001). AA patients presented higher median titre of gammaglobulins (18.5 g/L (IQR 15-22.8) vs 13.4 g/L (9.9-16.9), p<0.001), more frequently positive for anti-SSA (88% vs 72%, p=0.007) and anti-RNP (11% vs 2.7%, p=0.023) antibodies. During the follow-up (median: 6 years (IQR 2-11)), AA patients presented more systemic complications: arthritis, myositis, interstitial lung disease, lymphadenopathy, central nervous system involvement. Median cumESSDAI score was higher in AA patients (7.5 (IQR 3.2-16.0) vs 4.0 (IQR 2.0-9.0), p=0.002). Interestingly, in multivariate analyses, factors associated with disease activity were sub-Saharan AA (OR 2.65 (95% CI 1.06 to 6.94)), rheumatoid factor (OR 2.50 (95% CI 1.28 to 4.96)) and anti-RNP positivity (OR 11.1 (95% CI 1.88 to 212)). CONCLUSION Patients of AA display higher disease activity with a hallmark of higher B-cell activation. Studies to investigate biological drivers behind such differences are needed.
Collapse
Affiliation(s)
- Maxime Beydon
- Département de Santé Publique, Institut Pierre Louis d'Epidemiologie et de Sante Publique, Paris, France.,Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux universitaires Paris-Sud - Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Raphaele Seror
- Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux universitaires Paris-Sud - Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Center for Immunology of Viral Infections and Auto-immune Diseases (IMVA), Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | | - Pascale Chretien
- Immunology, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicetre, France
| | - Xavier Mariette
- Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux universitaires Paris-Sud - Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Center for Immunology of Viral Infections and Auto-immune Diseases (IMVA), Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Gaetane Nocturne
- Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux universitaires Paris-Sud - Hôpital Bicêtre, Le Kremlin Bicêtre, France .,Center for Immunology of Viral Infections and Auto-immune Diseases (IMVA), Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Université Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
6
|
Cui J, Malspeis S, Choi MY, Lu B, Sparks JA, Yoshida K, Costenbader KH. Risk prediction models for incident systemic lupus erythematosus among women in the Nurses' health study cohorts using genetics, family history, and lifestyle and environmental factors. Semin Arthritis Rheum 2023; 58:152143. [PMID: 36481507 PMCID: PMC9840676 DOI: 10.1016/j.semarthrit.2022.152143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a severe multisystem autoimmune disease that predominantly affects women. Its etiology is complex and multifactorial, with several known genetic and environmental risk factors, but accurate risk prediction models are still lacking. We developed SLE risk prediction models, incorporating known genetic, lifestyle and environmental risk factors, and family history. METHODS We performed a nested case-control study within the Nurses' Health Study cohorts (NHS). NHS began in 1976 and enrolled 121,700 registered female nurses ages 30-55 from 11 U.S. states; NHSII began in 1989 and enrolled 116,430 registered female nurses ages 25-42 from 14 U.S. states. Participants were asked about lifestyle, reproductive and environmental exposures, as well as medical information, on biennial questionnaires. Incident SLE cases were self-reported and validated by medical record review (Updated 1997 American College of Rheumatology classification criteria). Those with banked blood samples for genotyping (∼25% of each cohort), were selected and matched by age (± 4 years) and race/ethnicity to women who had donated a blood sample but did not develop SLE. Lifestyle and reproductive variables, including smoking, alcohol use, body mass index, sleep, socioeconomic status, U.S. region, menarche age, oral contraceptive use, menopausal status/postmenopausal hormone use, and family history of SLE or rheumatoid arthritis (RA) were assessed through the questionnaire prior to SLE diagnosis questionnaire cycle (or matched index date). Genome-wide genotyping results were used to calculate a SLE weighted genetic risk score (wGRS) using 86 published single nucleotide polymorphisms (SNPs) and 10 classical HLA alleles associated with SLE. We compared four sequential multivariable logistic regression models of SLE risk prediction, each calculating the area under the receiver operating characteristic curve (AUC): 1) SLE wGRS, 2) SLE/RA family history, 3) lifestyle, environmental and reproductive factors and 4) combining model 1-3 factors. Models were internally validated using a bootstrapped estimate of optimism of the AUC. We also examined similar sequential models to predict anti-dsDNA positive SLE risk. RESULTS We identified and matched 138 women who developed incident SLE to 1136 women who did not. Models 1-4 yielded AUCs 0.63 (95%CI 0.58-0.68), 0.64 (95%CI 0.59-0.68), 0.71(95% CI 0.66-0.75), and 0.76 (95% CI 0.72-0.81). Model 4 based on genetics, family history and eight lifestyle and environmental factors had best discrimination, with an optimism-corrected AUC 0.75. AUCs for similar models predicting anti-dsDNA positive SLE risk, were 0.60, 0.63, 0.81 and 0.82, with optimism corrected AUC of 0.79 for model 4. CONCLUSION A final model including SLE weighted genetic risk score, family history and eight lifestyle and environmental SLE risk factors accurately classified future SLE risk with optimism corrected AUC of 0.75. To our knowledge, this is the first SLE prediction model based on known risk factors. It might be feasibly employed in at-risk populations as genetic data are increasingly available and the risk factors easily assessed. The NHS cohorts include few non-White women and mean age at incident SLE was early 50s, calling for further research in younger and more diverse cohorts.
Collapse
Affiliation(s)
- Jing Cui
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Susan Malspeis
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - May Y Choi
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Rheumatology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bing Lu
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Sparks
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kazuki Yoshida
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karen H Costenbader
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Bruera S, Chavula T, Madan R, Agarwal SK. Targeting type I interferons in systemic lupus erythematous. Front Pharmacol 2023; 13:1046687. [PMID: 36726783 PMCID: PMC9885195 DOI: 10.3389/fphar.2022.1046687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with systemic clinical manifestations including, but not limited to, rash, inflammatory arthritis, serositis, glomerulonephritis, and cerebritis. Treatment options for SLE are expanding and the increase in our understanding of the immune pathogenesis is leading to the development of new therapeutics. Autoantibody formation and immune complex formation are important mediators in lupus pathogenesis, but an important role of the type I interferon (IFN) pathway has been identified in SLE patients and mouse models of lupus. These studies have led to the development of therapeutics targeting type I IFN and related pathways for the treatment of certain manifestations of SLE. In the current narrative review, we will discuss the role of type I IFN in SLE pathogenesis and the potential translation of these data into strategies using type I IFN as a biomarker and therapeutic target for patients with SLE.
Collapse
Affiliation(s)
- Sebastian Bruera
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Thandiwe Chavula
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Riya Madan
- Section of General Internal Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Sandeep K. Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Zhang XX, You JP, Liu XR, Zhao YF, Cui Y, Zhao ZZ, Qi YY. PRDX6AS1 gene polymorphisms and SLE susceptibility in Chinese populations. Front Immunol 2022; 13:987385. [PMID: 36311744 PMCID: PMC9601311 DOI: 10.3389/fimmu.2022.987385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a complex, multisystem autoimmune disease that is characterized by the production of autoantibodies. Although accumulated evidence suggests that the dysregulation of long non-coding RNAs (lncRNAs) is involved in the pathogenesis of SLE, the genetic contributions of lncRNA coding genes to SLE susceptibility remain largely unknown. Here, we aimed to provide more evidence for the role of lncRNA coding genes to SLE susceptibility. Methods The genetic association analysis was first adopted from the previous genome-wide association studies (GWAS) and was then validated in an independent cohort. PRDX6-AS1 is located at chr1:173204199-173446294. It spans a region of approximately 240 kb, and 297 single nucleotide polymorphisms (SNPs) were covered by the previous GWAS. Differential expression at the mRNA level was analyzed based on the ArrayExpress Archive database. Results A total of 33 SNPs were associated with SLE susceptibility, with a P<1.68×10-4. The strongest association signal was detected at rs844649 (P=2.12×10-6), according to the previous GWAS. Combining the results from the GWAS Chinese cohort and our replication cohort, we pursued a meta-analysis approach and found a pronounced genetic association between PRDX6-AS1 rs844649 and SLE susceptibility (pmeta=1.24×10-13, OR 1.50, 95% CI: 1.34–1.67). The mRNA expression of PRDX6 was elevated in peripheral blood cells, peripheral blood mononuclear cells (PBMCs), and multiple cell subpopulations, such as B cells, CD4+ T cells, CD3+ cells, and monocytes in patients with SLE. The PRDX6 protein expression level was also increased in patients with SLE compared with healthy donors. Conclusion Our study provides new evidence that variants located in lncRNA coding genes are associated with SLE susceptibility.
Collapse
Affiliation(s)
- Xiao-Xue Zhang
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jun-Peng You
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xin-Ran Liu
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ya-Fei Zhao
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yan Cui
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Nephrology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhan-Zheng Zhao
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuan-Yuan Qi, ; Zhan-Zheng Zhao,
| | - Yuan-Yuan Qi
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuan-Yuan Qi, ; Zhan-Zheng Zhao,
| |
Collapse
|
9
|
Saint Just Ribeiro M, Tripathi P, Namjou B, Harley JB, Chepelev I. Haplotype-specific chromatin looping reveals genetic interactions of regulatory regions modulating gene expression in 8p23.1. Front Genet 2022; 13:1008582. [PMID: 36160011 PMCID: PMC9490475 DOI: 10.3389/fgene.2022.1008582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
A major goal of genetics research is to elucidate mechanisms explaining how genetic variation contributes to phenotypic variation. The genetic variants identified in genome-wide association studies (GWASs) generally explain only a small proportion of heritability of phenotypic traits, the so-called missing heritability problem. Recent evidence suggests that additional common variants beyond lead GWAS variants contribute to phenotypic variation; however, their mechanistic underpinnings generally remain unexplored. Herein, we undertake a study of haplotype-specific mechanisms of gene regulation at 8p23.1 in the human genome, a region associated with a number of complex diseases. The FAM167A-BLK locus in this region has been consistently found in the genome-wide association studies (GWASs) of systemic lupus erythematosus (SLE) in all major ancestries. Our haplotype-specific chromatin interaction (Hi-C) experiments, allele-specific enhancer activity measurements, genetic analyses, and epigenome editing experiments revealed that: 1) haplotype-specific long-range chromatin interactions are prevalent in 8p23.1; 2) BLK promoter and cis-regulatory elements cooperatively interact with haplotype-specificity; 3) genetic variants at distal regulatory elements are allele-specific modifiers of the promoter variants at FAM167A-BLK; 4) the BLK promoter interacts with and, as an enhancer-like promoter, regulates FAM167A expression and 5) local allele-specific enhancer activities are influenced by global haplotype structure due to chromatin looping. Although systemic lupus erythematosus causal variants at the FAM167A-BLK locus are thought to reside in the BLK promoter region, our results reveal that genetic variants at distal regulatory elements modulate promoter activity, changing BLK and FAM167A gene expression and disease risk. Our results suggest that global haplotype-specific 3-dimensional chromatin looping architecture has a strong influence on local allelic BLK and FAM167A gene expression, providing mechanistic details for how regional variants controlling the BLK promoter may influence disease risk.
Collapse
Affiliation(s)
- Mariana Saint Just Ribeiro
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pulak Tripathi
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - John B. Harley
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
- Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, United States
- *Correspondence: Iouri Chepelev, ; John B. Harley,
| | - Iouri Chepelev
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
- Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, United States
- *Correspondence: Iouri Chepelev, ; John B. Harley,
| |
Collapse
|
10
|
Falkenstein DK, Jarvis JN. Health inequities in the rheumatic diseases of childhood. Curr Opin Rheumatol 2022; 34:262-266. [PMID: 35797523 DOI: 10.1097/bor.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To describe differences in disease manifestations and outcomes in pediatric rheumatic diseases as they occur in non-European-descended populations in North America. RECENT FINDINGS Differences in disease prevalence, clinical phenotypes, disease course, and outcomes have been described across the spectrum of pediatric-onset rheumatic diseases. Although these differences are commonly explained by differences in genetic risk or access to tertiary healthcare facilities, our emerging understanding of the immunobiology of historical/ongoing trauma suggest a more complex explanation for these observed differences. SUMMARY Health inequities as observed in pediatric rheumatic diseases are likely to emerge from a complex interplay between social and biological factors. The important contribution of historical and repetitive trauma deserves further exploration.
Collapse
Affiliation(s)
| | - James N Jarvis
- Department of Pediatrics
- Genetics, Genomics, & Bioinformatics Program, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
11
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
12
|
Ortíz-Fernández L, Martín J, Alarcón-Riquelme ME. A Summary on the Genetics of Systemic Lupus Erythematosus, Rheumatoid Arthritis, Systemic Sclerosis, and Sjögren's Syndrome. Clin Rev Allergy Immunol 2022; 64:392-411. [PMID: 35749015 DOI: 10.1007/s12016-022-08951-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
Systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, and Sjögren's syndrome are four major autoimmune rheumatic diseases characterized by the presence of autoantibodies, caused by a dysregulation of the immune system that leads to a wide variety of clinical manifestations. These conditions present complex etiologies strongly influenced by multiple environmental and genetic factors. The human leukocyte antigen (HLA) region was the first locus identified to be associated and still represents the strongest susceptibility factor for each of these conditions, particularly the HLA class II genes, including DQA1, DQB1, and DRB1, but class I genes have also been associated. Over the last two decades, the genetic component of these disorders has been extensively investigated and hundreds of non-HLA risk genetic variants have been uncovered. Furthermore, it is widely accepted that autoimmune rheumatic diseases share molecular disease pathways, such as the interferon (IFN) type I pathways, which are reflected in a common genetic background. Some examples of well-known pleiotropic loci for autoimmune rheumatic diseases are the HLA region, DNASEL13, TNIP1, and IRF5, among others. The identification of the causal molecular mechanisms behind the genetic associations is still a challenge. However, recent advances have been achieved through mouse models and functional studies of the loci. Here, we provide an updated overview of the genetic architecture underlying these four autoimmune rheumatic diseases, with a special focus on the HLA region.
Collapse
Affiliation(s)
- Lourdes Ortíz-Fernández
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Marta E Alarcón-Riquelme
- GENYO. Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av de la Ilustración 114, Parque Tecnológico de La Salud, 18016, Granada, Spain. .,Institute for Environmental Medicine, Karolinska Institutet, 171 77, Solna, Sweden.
| |
Collapse
|
13
|
Yang T, Sim KY, Ko GH, Ahn JS, Kim HJ, Park SG. FAM167A is a key molecule to induce BCR-ABL-independent TKI resistance in CML via noncanonical NF-κB signaling activation. J Exp Clin Cancer Res 2022; 41:82. [PMID: 35241148 PMCID: PMC8892744 DOI: 10.1186/s13046-022-02298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND BCR-ABL-independent drug resistance is a barrier to curative treatment of chronic myeloid leukemia (CML). However, the molecular pathways underlying BCR-ABL-independent tyrosine kinase inhibitor (TKI) resistance remain unclear. METHODS In silico bioinformatic analysis was performed to identify the most active transcription factor and its inducer that contribute to BCR-ABL-independent TKI resistance. Tandem mass spectrometry analysis was performed to identify the receptor for the noncanonical NF-κB activator FAM167A. In vitro and in vivo mouse experiments revealed detailed molecular insights into the functional role of the FAM167A-desmoglein-1 (DSG1) axis in BCL-ABL-independent TKI resistance. CML cells derived from CML patients were analyzed using quantitative reverse transcription PCR and flow cytometry. RESULTS We found that NF-κB had the greatest effect on differential gene expression of BCR-ABL-independent TKI-resistant CML cells. Moreover, we found that the previously uncharacterized protein FAM167A activates the noncanonical NF-κB pathway and induces BCR-ABL-independent TKI resistance. Molecular analyses revealed that FAM167A activates the noncanonical NF-κB pathway by binding to the cell adhesion protein DSG1 to upregulate NF-κB-inducing kinase (NIK) by blocking its ubiquitination. Neutralization of FAM167A in a mouse tumor model reduced noncanonical NF-κB activity and restored sensitivity of cells to TKIs. Furthermore, FAM167A and surface DSG1 levels were highly upregulated in CD34+ CML cells from patients with BCR-ABL-independent TKI-resistant disease. CONCLUSIONS These results reveal that FAM167A acts as an essential factor for BCR-ABL-independent TKI resistance in CML by activating the noncanonical NF-κB pathway. In addition, FAM167A may serve as an important target and biomarker for BCR-ABL-independent TKI resistance.
Collapse
MESH Headings
- Animals
- Apoptosis
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- NF-kappa B/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proteins/metabolism
Collapse
Affiliation(s)
- Taewoo Yang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Kyu-Young Sim
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Gwang-Hoon Ko
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 58128 Hwasun, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 58128 Hwasun, Republic of Korea
| | - Sung-Gyoo Park
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
| |
Collapse
|
14
|
Dizon BLP, Pierce SK. The tangled web of autoreactive B cells in malaria immunity and autoimmune disease. Trends Parasitol 2022; 38:379-389. [PMID: 35120815 PMCID: PMC9012675 DOI: 10.1016/j.pt.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Two seminal observations suggest that the African genome contains genes selected by malaria that protect against systemic lupus erythematosus (SLE) in individuals chronically exposed to malaria, but which in the absence of malaria, are risk factors for SLE. First, Brian Greenwood observed that SLE was rare in Africa and that malaria prevented SLE-like disease in susceptible mice. Second, African-Americans, as compared with individuals of European descent, are at higher risk of SLE. Understanding that antibodies play central roles in malaria immunity and SLE, we discuss how autoreactive B cells contribute to malaria immunity but promote SLE pathology in the absence of malaria. Testing this model may provide insights into the regulation of autoreactivity and identify new therapeutic targets for SLE.
Collapse
Affiliation(s)
- Brian L P Dizon
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA; Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
15
|
Ferreté-Bonastre AG, Cortés-Hernández J, Ballestar E. What can we learn from DNA methylation studies in lupus? Clin Immunol 2022; 234:108920. [PMID: 34973429 DOI: 10.1016/j.clim.2021.108920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022]
Abstract
During the past twenty years, a wide range of studies have established the existence of epigenetic alterations, particularly DNA methylation changes, in lupus. Epigenetic changes might have different contributions in children-onset versus adult-onset lupus. DNA methylation alterations have been identified and characterized in relation to disease activity and damage, different lupus subtypes and responses to drugs. However, to date there has been no practical application of these findings in the clinical milieu. In this article, we provide a review of key studies showing the relationship between DNA methylation and the many clinical aspects related to lupus. We also propose several options, in relation to the range of methodological developments and experimental design, that could optimize these findings and make them amenable for use in clinical practice.
Collapse
Affiliation(s)
| | | | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, 200241, China.
| |
Collapse
|
16
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Fava A, Rao DA. Cellular and molecular heterogeneity in systemic lupus erythematosus. Semin Immunol 2021; 58:101653. [PMID: 36184357 DOI: 10.1016/j.smim.2022.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Andrea Fava
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA.
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Fu Y, Lin Q, Zhang ZR. Association of TNFSF4 polymorphisms with systemic lupus erythematosus: a meta-analysis. Adv Rheumatol 2021; 61:59. [PMID: 34538280 DOI: 10.1186/s42358-021-00215-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/02/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To more precisely estimate the association between the tumor necrosis factor ligand superfamily member 4 (TNFSF4) gene polymorphisms and systemic lupus erythematosus (SLE) susceptibility, we performed a meta-analysis on the association of the following single nucleotide polymorphisms (SNPs) of TNFSF4 with SLE: rs1234315, rs844648, rs2205960, rs704840, rs844644, rs10489265. METHODS A literature-based search was conducted using PubMed, MEDLINE, Embase, Web of Science databases, and Cochrane Library databases to identify all relevant studies. And the association of TNFSF4 gene polymorphisms and SLE susceptibility was evaluated by pooled odds ratio (OR) with 95% confidence interval (CI). RESULTS The meta-analysis produced overall OR of 1.42 (95% CI 1.36-1.49, P < 0.00001), 1.41 (95% CI 1.36-1.46, P < 0.00001) and 1.34 (95% CI 1.26-1.42, P < 0.00001) for the rs2205960, rs1234315 and rs704840 polymorphisms respectively, confirming these three SNPs confer a significant risk for the development of SLE. On the other hand, the meta-analysis produced overall OR of 0.92 (95% CI 0.70-1.21, P = 0.54) for the rs844644 polymorphism, suggesting no significant association. And no association was also found between either rs844648 1.11 (OR 1.11, 95% CI 0.86-1.43, P = 0.41) or rs10489265 (OR 1.17, 95% CI 0.94-1.47, P = 0.17) polymorphism with SLE susceptibility, respectively. CONCLUSIONS Our meta-analysis demonstrated that the TNFSF4 rs2205960, rs1234315 and rs844840 SNPs was significantly associated with an increased risk of SLE.
Collapse
Affiliation(s)
- Yu Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
19
|
Bassiouni SA, Abdeen HM, Morsi HK, Zaki ME, Abdelsalam M, Gharbia OM. Programmed death 1 (PD-1) serum level and gene expression in recent onset systemic lupus erythematosus patients. THE EGYPTIAN RHEUMATOLOGIST 2021; 43:213-218. [DOI: 10.1016/j.ejr.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
20
|
Gómez Hernández G, Morell M, Alarcón-Riquelme ME. The Role of BANK1 in B Cell Signaling and Disease. Cells 2021; 10:cells10051184. [PMID: 34066164 PMCID: PMC8151866 DOI: 10.3390/cells10051184] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/03/2023] Open
Abstract
The B cell scaffold protein with ankyrin repeats (BANK1) is expressed primarily in B cells and with multiple but discrete roles in B cell signaling, including B cell receptor signaling, CD40-related signaling, and Toll-like receptor (TLR) signaling. The gene for BANK1, located in chromosome 4, has been found to contain genetic variants that are associated with several autoimmune diseases and also other complex phenotypes, in particular, with systemic lupus erythematosus. Common genetic variants are associated with changes in BANK1 expression in B cells, while rare variants modify their capacity to bind efferent effectors during signaling. A BANK1-deficient model has shown the importance of BANK1 during TLR7 and TLR9 signaling and has confirmed its role in the disease. Still, much needs to be done to fully understand the function of BANK1, but the main conclusion is that it may be the link between different signaling functions within the B cells and they may act to synergize the various pathways within a cell. With this review, we hope to enhance the interest in this molecule.
Collapse
Affiliation(s)
- Gonzalo Gómez Hernández
- GENYO, Center for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Government, PTS, 18016 Granada, Spain; (G.G.H.); (M.M.)
| | - María Morell
- GENYO, Center for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Government, PTS, 18016 Granada, Spain; (G.G.H.); (M.M.)
| | - Marta E. Alarcón-Riquelme
- GENYO, Center for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Government, PTS, 18016 Granada, Spain; (G.G.H.); (M.M.)
- Department of Environmental Medicine, Karolinska Institutet, 17167 Solna, Sweden
- Correspondence:
| |
Collapse
|
21
|
Dominguez D, Kamphuis S, Beyene J, Wither J, Harley JB, Blanco I, Vila-Inda C, Brunner H, Klein-Gitleman M, McCurdy D, Wahezi DM, Lehman T, Jelusic M, Peschken CA, Pope JE, Gladman DD, Hanly JG, Clarke AE, Bernatsky S, Pineau C, Smith CD, Barr S, Boire G, Rich E, Silverman ED. Relationship Between Genetic Risk and Age of Diagnosis in Systemic Lupus Erythematosus. J Rheumatol 2020; 48:852-858. [PMID: 33060314 DOI: 10.3899/jrheum.200002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Specific risk alleles for childhood-onset systemic lupus erythematosus SLE (cSLE) vs adult-onset SLE (aSLE) patients have not been identified. The aims of this study were to determine if there is an association (1) between non-HLA-related genetic risk score (GRS) and age of SLE diagnosis, and (2) between HLA-related GRS and age of SLE diagnosis. METHODS Genomic DNA was obtained from 2001 multiethnic patients and genotyped using the Immunochip. Following quality control, genetic risk counting (GRCS), weighted (GRWS), standardized counting (GRSCS), and standardized weighted (GRSWS) scores were calculated based on independent single-nucleotide polymorphisms from validated SLE loci. Scores were analyzed in a regression model and adjusted by sex and ancestral population. RESULTS The analyzed cohort consisted of 1540 patients: 1351 females and 189 males (675 cSLE and 865 aSLE). There were significant negative associations between all non-HLA GRS and age of SLE diagnosis: P = 0.011 and r2 = 0.175 for GRWS; P = 0.008 and r2 = 0.178 for GRSCS; P = 0.002 and r2 = 0.176 for GRSWS (higher GRS correlated with lower age of diagnosis.) All HLA GRS showed significant positive associations with age of diagnosis: P = 0.049 and r2 = 0.176 for GRCS; P = 0.022 and r2 = 0.176 for GRWS; P = 0.022 and r2 = 0.176 for GRSCS; P = 0.011 and r2 = 0.177 for GRSWS (higher GRS correlated with higher age of diagnosis). CONCLUSION Our data suggest that there is a linear relationship between genetic risk and age of SLE diagnosis and that HLA and non-HLA GRS are associated with age of diagnosis in opposite directions.
Collapse
Affiliation(s)
- Daniela Dominguez
- D. Dominguez, MSc, Division of Rheumatology, Hospital for Sick Children, Hospital for Sick Children, Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia Kamphuis
- S. Kamphuis, MD, PhD, Division of Rheumatology Department of Pediatrics, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Joseph Beyene
- J. Beyene, PhD, Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton
| | - Joan Wither
- J. Wither, MD, PhD, Division of Genetics and Development, Krembil Research Institute, Arthritis Centre of Excellence, Division of Rheumatology, Toronto Western Hospital, University Health Network, Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - John B Harley
- J.B. Harley, MD, PhD, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, and US Department of Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Irene Blanco
- I. Blanco, MD, C. Vila-Inda, MD, Albert Einstein College of Medicine, Division of Rheumatology, Bronx, New York
| | - Catarina Vila-Inda
- I. Blanco, MD, C. Vila-Inda, MD, Albert Einstein College of Medicine, Division of Rheumatology, Bronx, New York
| | - Hermine Brunner
- H. Brunner, MD, MSc, Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marissa Klein-Gitleman
- M. Klein-Gitleman, MD, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Deborah McCurdy
- D. McCurdy, MD, Division of Pediaitric Rheumatology, University of California Los Angeles, Los Angeles, California
| | - Dawn M Wahezi
- D.M. Wahezi, MD, Children's Hospital at Montefiore, Division of Pediatric Rheumatology, Albert Einstein College of Medicine, the Bronx, New York
| | - Thomas Lehman
- T. Lehman, MD, Division of Pediatric Rheumatology, Hospital for Special Surgery, New York, New York, USA
| | - Marija Jelusic
- M. Jelusic, MD, Department of Pediatric Rheumatology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Christine A Peschken
- C.A. Peschken, MD, MSc, Departments of Medicine and Community Health Sciences, University of Manitoba, Winnipeg, Manitoba
| | - Janet E Pope
- J.E. Pope, MD, MPH, Professor of Medicine, Department of Medicine, University of Western Ontario, London, Ontario
| | - Dafna D Gladman
- D.D. Gladman, MD, Department of Medicine, University of Toronto, Toronto, Ontario
| | - John G Hanly
- J.G. Hanly, MD, Division of Rheumatology, Department of Medicine and Department of Pathology, Queen Elizabeth II Health Sciences Center and Dalhousie University, Halifax, Nova Scotia
| | - Ann E Clarke
- A.E. Clarke, MD, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Sasha Bernatsky
- S. Bernatsky, MD, PhD, Department of Medicine, McGill University, Montreal, Quebec
| | - Christian Pineau
- C. Pineau, MD, Department of Medicine, McGill University Hospital, Montreal, Quebec
| | - C Douglas Smith
- C.D. Smith, MD, Department of Medicine, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario
| | - Susan Barr
- S. Barr, MD, Division of Rheumatology, Department of Medicine, University of Calgary, Calgary, Alberta
| | - Gilles Boire
- G. Boire, MD, Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec
| | - Eric Rich
- E. Rich, MD, Division of Rheumatology, Centre Hospitalier de l'Université de Montreal, Department of Medicine, University of Montreal School of Medicine, Montreal, Quebec
| | | | | |
Collapse
|
22
|
Lee YH, Song GG. Association Between Signal Transducers and Activators of Transcription 4 rs7574865 Polymorphism and Systemic Lupus Erythematosus: A Meta-analysis. JOURNAL OF RHEUMATIC DISEASES 2020. [DOI: 10.4078/jrd.2020.27.4.277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Young Ho Lee
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea
| | - Gwan Gyu Song
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Moreno-Eutimio MA, Martínez-Alemán CE, Aranda-Uribe IS, Aquino-Jarquin G, Cabello-Gutierrez C, Fragoso JM, Barbosa-Cobos RE, Saavedra MA, Ramírez-Bello J. TNFSF4 is a risk factor to systemic lupus erythematosus in a Latin American population. Clin Rheumatol 2020; 40:929-939. [PMID: 32809147 DOI: 10.1007/s10067-020-05332-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to examine the association of three TNFSF4 single nucleotide variants (SNVs) with systemic lupus erythematosus (SLE) susceptibility in Mexican patients. METHODS Genotypes of the TNFSF4 rs1234315T/C, rs2205960G/T, and rs704840T/G SNVs were determined using a TaqMan assay. In our study, we included 395 patients with SLE and 500 controls. RESULTS Our information shows a significant difference in the allelic and genotypic frequency of the three TNFSF4 SNVs between cases and controls. Thus, our data showed an association between TNFSF4 rs1234315T/C (T vs. C, OR 1.40, p = 0.00087), rs2205960G/T (G vs. T, OR 1.32, p = 0.0037), and rs704840T/G (T vs. G, OR 1.41, p = 0.0003) and SLE susceptibility in Mexican subjects. Besides, we conducted a meta-analysis to determine the role of TNFSF4 rs2205960G/T and SLE susceptibility; our results showed that this variant is a risk factor for SLE in Latin Americans and Asians. CONCLUSION Our results show that TNFSF4 rs1234315T/C, rs2205960G/T, and rs704840T/G are risk factors to SLE in Mexicans. This is the first study to document an association between TNFSF4 rs704840T/G and SLE in a Latin American population. In addition, our meta-analysis showed that TNFSF4 rs2205960G/T is a risk factor for Asians and Latin Americans. Key Point • The TNFSF4 rs1234315T/C, rs2205960G/T, and rs704849T/G SNVs are risk factors to SLE in patients from Mexico.
Collapse
Affiliation(s)
| | | | | | - Guillermo Aquino-Jarquin
- Laboratorio de Investigación en Genómica, Genética y Bioinformática, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Carlos Cabello-Gutierrez
- Departamento de Investigación en Virología y Micología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - José Manuel Fragoso
- Departamento de Biología Molecular, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | | |
Collapse
|
24
|
Ji L, Fan X, Hou X, Fu D, Bao J, Zhuang A, Chen S, Fan Y, Li R. Jieduquyuziyin Prescription Suppresses Inflammatory Activity of MRL/lpr Mice and Their Bone Marrow-Derived Macrophages via Inhibiting Expression of IRAK1-NF-κB Signaling Pathway. Front Pharmacol 2020; 11:1049. [PMID: 32760274 PMCID: PMC7372094 DOI: 10.3389/fphar.2020.01049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Jieduquyuziyin prescription (JP) has been used to treat systemic lupus erythematosus (SLE). Although the effectiveness of JP in the treatment of SLE has been clinically proven, the underlying mechanisms have yet to be completely understood. We observed the therapeutic actions of JP in MRL/lpr mice and their bone marrow-derived macrophages (BMDMs) and the potential mechanism of their inhibition of inflammatory activity. To estimate the effect of JP on suppressing inflammatory activity, BMDMs of MRL/lpr and MRL/MP mice were treated with JP-treated serum, and MRL/lpr mice were treated by JP for 8 weeks. Among them, JP and its treated serum were subjected to quality control, and BMDMs were separated and identified. The results showed that in the JP group of BMDMs stimulated by Lipopolysaccharide (LPS) in MRL/lpr mice, the secretion of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) reduced, and the expressions of Interleukin-1 receptor-associated kinase 1 (IRAK1) and its downstream nuclear factor κB (NF-κB) pathway decreased. Meanwhile, the alleviation of renal pathological damage, the decrease of urinary protein and serum anti-dsDNA contents, the inhibition of TNF-α level, and then the suppression of the IRAK1-NF-κB inflammatory signaling in the spleen and kidney, confirmed that the therapeutic effect of JP. These results demonstrated that JP could inhibit the inflammatory activity of MRL/lpr mice and their BMDMs by suppressing the activation of IRAK1-NF-κB signaling and was supposed to be a good choice for the treatment of SLE.
Collapse
Affiliation(s)
- Lina Ji
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuemin Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoli Hou
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Zhuang
- Institute of TCM Literature and Information, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Sixiang Chen
- The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongqun Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Mahajan A, Amelio J, Gairy K, Kaur G, Levy RA, Roth D, Bass D. Systemic lupus erythematosus, lupus nephritis and end-stage renal disease: a pragmatic review mapping disease severity and progression. Lupus 2020; 29:1011-1020. [PMID: 32571142 PMCID: PMC7425376 DOI: 10.1177/0961203320932219] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective The understanding of systemic lupus erythematosus (SLE) and lupus nephritis (LN) pathogenesis remains incomplete. This review assessed LN development in SLE, within-LN progression and progression to end-stage renal disease (ESRD). Methods A keyword-based literature search was conducted, and 26 publications were included. Results Overall, 7–31% of patients had LN at SLE diagnosis; 31–48% developed LN after SLE diagnosis, most within 5 years. Class IV was the most commonly found LN class and had the worst prognosis. Histological transformation occurred in 40–76% of patients, more frequently from non-proliferative rather than proliferative lesions. Cumulative 5- and 10-year ESRD incidences in patients with SLE were 3% and 4%, respectively, and 3–11% and 6–19%, respectively, in patients with SLE and LN. Conclusions Elevated serum creatinine was identified as a predictor of worsening disease state, and progression within LN classes and from SLE/LN to ESRD. This review highlights the substantial risk for developing LN and progressing to ESRD amongst patients with SLE.
Collapse
Affiliation(s)
| | - Justyna Amelio
- GlaxoSmithKline, Real World Evidence and Epidemiology, Stevenage, UK
| | - Kerry Gairy
- GlaxoSmithKline, Value Evidence and Outcomes, Brentford, UK
| | | | | | | | | |
Collapse
|
26
|
Hidalgo Y, Núñez S, Fuenzalida MJ, Flores-Santibáñez F, Sáez PJ, Dorner J, Lennon-Dumenil AM, Martínez V, Zorn E, Rosemblatt M, Sauma D, Bono MR. Thymic B Cells Promote Germinal Center-Like Structures and the Expansion of Follicular Helper T Cells in Lupus-Prone Mice. Front Immunol 2020; 11:696. [PMID: 32411134 PMCID: PMC7199236 DOI: 10.3389/fimmu.2020.00696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of autoreactive T and B cells, autoantibody production, and immune complex deposition in various organs. Previous evidence showed abnormal accumulation of B cells in the thymus of lupus-prone mice, but the role of this population in the progression of the disease remains mostly undefined. Here we analyzed the spatial distribution, function, and properties of this thymic B cell population in the BWF1 murine model of SLE. We found that in diseased animals, thymic B cells proliferate, and cluster in structures that resemble ectopic germinal centers. Moreover, we detected antibody-secreting cells in the thymus of diseased-BWF1 mice that produce anti-dsDNA IgG autoantibodies. We also found that thymic B cells from diseased-BWF1 mice induced the differentiation of thymocytes to follicular helper T cells (TFH). These data suggest that the accumulation of B cells in the thymus of BWF1 mice results in the formation of germinal center-like structures and the expansion of a TFH population, which may, in turn, activate and differentiate B cells into autoreactive plasma cells. Therefore, the thymus emerges as an important niche that supports the maintenance of the pathogenic humoral response in the development of murine SLE.
Collapse
Affiliation(s)
- Yessia Hidalgo
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Cells for Cells-Consorcio Regenero, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | | | - Maria Jose Fuenzalida
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | | | - Pablo J Sáez
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, France
| | - Jessica Dorner
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | | | - Victor Martínez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Emmanuel Zorn
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Maria Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
27
|
Ramírez-Bello J, Fragoso JM, Alemán-Ávila I, Jiménez-Morales S, Campos-Parra AD, Barbosa-Cobos RE, Moreno J. Association of BLK and BANK1 Polymorphisms and Interactions With Rheumatoid Arthritis in a Latin-American Population. Front Genet 2020; 11:58. [PMID: 32153635 PMCID: PMC7045059 DOI: 10.3389/fgene.2020.00058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction BLK has been identified as a risk factor to rheumatoid arthritis (RA) primarily in Asian or European-derived populations. However, this finding has not been evaluated in other populations such as Latin-Americans, except for Colombians. On the other hand, BANK1 single nucleotide variants (SNVs) have been scarcely studied in RA patients. Objective The aim of this study was to determine whether the BLK rs2736340T/C, rs13277113A/G, and BANK1 rs10516487G/A (R61H) and rs3733197G/A (A383T) polymorphisms are risk factors to RA in a sample of patients from Central Mexico. Materials and Methods We studied 957 women; 487 controls and 470 patients with RA by means of a TaqMan® SNP genotyping assay with fluorescent probes for the BLK rs13277113A/G, rs2736340T/C and BANK1 10516487G/A (R61H) and rs3733197G/A (A383T) variants. Result The BLK rs2736340T/C and rs13277113A/G variants were associated with risk for RA: C vs T; OR 1.39, p = 0.001, and G vs A; OR 1.37, p = 0.004, respectively. In addition, there was also an association between BANK1 R61H and RA: A vs G; OR 1.49, p = 0.003, but no with BANK1 A383T. We also identified an interaction significant between genotypes of BLK rs2736340T/C-BANK1 rs10516487G/A and RA: OR 1.65, p = 0.0001. Conclusions Our data suggest that both BLK and BANK1 confer susceptibility to RA in Mexican patients. The individual association of BANK1 rs1054857G/A with RA had not been previously reported in a particular population (except for pooled patients from several countries), therefore, our study presents the first evidence of association between this BANK1 variant and RA.
Collapse
Affiliation(s)
| | - José M Fragoso
- Laboratorio de Biología Molecular, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alma D Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - José Moreno
- Dirección de Investigación, Hospital Juárez de México, Mexico City, Mexico
| |
Collapse
|
28
|
Selvananda S, Chong YY, Thundyil RJ. Disease activity and damage in hospitalized lupus patients: a Sabah perspective. Lupus 2020; 29:344-350. [PMID: 32046576 DOI: 10.1177/0961203320904155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a complex multi-systemic autoimmune disease with variable levels of activity that may wax and wane within the same patient over the years. In view of the scarcity of data about lupus in the East Malaysian population, we aimed to study the disease activity and damage index in patients with SLE hospitalized in a tertiary center in Sabah, East Malaysia. METHODS We retrospectively studied all patients with SLE admitted from 1 January 2013 to 31 December 2015. Demographic data, clinical features, treatment received, SLEDAI and SLICC/ACR (Systemic Lupus International Collaborating Clinics/American College of Rheumatology) criteria and outcomes were collected. RESULTS There were 108 patients studied whereby 88.9% were females. They had a mean age of 31.4 ± 11.02 years at admission and were multiethnic in origin. The mean number of ACR criteria for SLE was 5.03 ± 1.5 at the time of diagnosis. There were 158 hospitalizations during the 3 years. The main causes of hospitalization were flare of SLE (66.5%), infection (57.6%), renal biopsy (15.5%) and others (11.4%). Active nephritis (65%), cutaneous (44.4%) and hematological involvement (40.2%) were the three commonest manifestations. There was concurrent flare of SLE and infection in 41.1% of the admissions. The mean SLEDAI score at admission was 10.8 ± 7.20, with a mean SLEDAI of 9.3 ± 6.9 in those without damage and 11.9 ± 7.21 in those with damage (p-value = 0.026). The median SLICC score was 1 with a mean of 0.93 ± 1.07. There were nine deaths (5.6%) during the study period and all patients were females. Compared with those who survived, they had a significantly higher SLEDAI score of 15.80 ± 8.2 (p-value = 0.0207) and a SLICC score of 2.70 ± 1.6 (p-value <0.001). CONCLUSION SLE is more common among the indigenous population of Sabah, the Kadazan-Dusun, which has not been shown before this study. Disease characteristics were, however, similar to reports from the Asia-Pacific region. Acute flare of SLE and infection remained the main causes of admission and readmissions and was present in 44.4% of the mortalities in our cohort.
Collapse
Affiliation(s)
- S Selvananda
- Rheumatology unit, Department of Medicine, Queen Elizabeth Hospital, Sabah, Malaysia
| | | | - R J Thundyil
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| |
Collapse
|
29
|
Ramírez-Bello J, Sun C, Valencia-Pacheco G, Singh B, Barbosa-Cobos RE, Saavedra MA, López-Villanueva RF, Nath SK. ITGAM is a risk factor to systemic lupus erythematosus and possibly a protection factor to rheumatoid arthritis in patients from Mexico. PLoS One 2019; 14:e0224543. [PMID: 31774828 PMCID: PMC6881022 DOI: 10.1371/journal.pone.0224543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
Introduction ITGAM has consistently been associated with susceptibility to systemic lupus erythematosus (SLE) in many ethnically diverse populations. However, in populations with higher Amerindian ancestry (like Yucatan) or highly admixed population (like Mexican), ITGAM has seldom been evaluated (except few studies where patients with childhood-onset SLE were included). In addition, ITGAM has seldom been evaluated in patients with rheumatoid arthritis (RA). Here, we evaluated whether four single nucleotide polymorphisms (SNPs), located within ITGAM, were associated with SLE and RA susceptibility in patients from Mexico. Methods Our study consisted of 1,462 individuals, which included 363 patients with SLE (292 from Central Mexico and 71 from Yucatan), and 621 healthy controls (504 from Central Mexico and 117 from Yucatan). Our study also included 478 patients with RA from Central Mexico. TaqMan assays were used to obtain the genotypes of the four SNPs: rs34572943 (G/A), rs1143679 (G/A), rs9888739 (C/T), and rs1143683 (C/T). We also verified the genotypes by Sanger sequencing. Fisher's exact test and permutation test were employed to evaluate the distribution of genotype, allele, and haplotype between patients and controls. Results Our data show that all four ITGAM SNPs are significantly associated with susceptibility to SLE using both genotypic and allelic association tests (corrected for multiple testing, but not for population stratification). A second study carried out in patients from Yucatan, a southeastern part of Mexico (with a high Amerindian ancestry), also replicated SLE association with all four SNPs, including the functional SNP, rs1143679 (OR = 24.6 and p = 9.3X10-6). On the other hand, none of the four SNPs are significant in RA after multiple testing. Interestingly, the GACC haplotype, which carries the ITGAM rs1143679 (A) minor allele, showed an association with protection against RA (OR = 0.14 and p = 3.0x10-4). Conclusion Our data displayed that ITGAM is a risk factor to SLE in individuals of Mexican population. Concurrently, a risk haplotype in ITGAM confers protection against RA.
Collapse
Affiliation(s)
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | | | - Bhupinder Singh
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | | | - Miguel A. Saavedra
- Rheumatology Department, Centro Médico Nacional “La Raza”, Mexico City, Mexico
| | | | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bilodeau EA, Lalla RV. Recurrent oral ulceration: Etiology, classification, management, and diagnostic algorithm. Periodontol 2000 2019; 80:49-60. [PMID: 31090148 DOI: 10.1111/prd.12262] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recurrent oral ulcerations are manifestations of a heterogeneous set of both general and more-or-less specific oral diseases due to numerous potential etiologies, including, but not limited to, infections, medications, autoimmune disease, and other systemic disease. This review discusses the pathogenesis, clinical presentation, diagnosis, and management of the common causes of recurrent oral ulceration. The following types/etiologies of recurrent oral ulceration are covered: traumatic ulceration, chemical ulceration, recurrent aphthous stomatitis, medication-related ulceration, infectious ulceration, mucocutaneous disease, and autoimmune/systemic disease. A diagnostic algorithm for recurrent oral ulceration is also presented.
Collapse
Affiliation(s)
- Elizabeth A Bilodeau
- Department of Diagnostic Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh V Lalla
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| |
Collapse
|
31
|
Abo El-Khair SM, Sameer W, Awadallah N, Shaalan D. Programmed cell death 1 gene polymorphism as a possible risk for systemic lupus erythematosus in Egyptian females. Lupus 2019; 28:1427-1434. [PMID: 31551030 DOI: 10.1177/0961203319878493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with a suggested genetic basis. The newly identified human programmed cell death 1 gene could be associated with SLE susceptibility. We aimed to investigate the association between programmed cell death 1 polymorphism (PD1.3G/A (rs11568821) and PD1.5C/T (rs2227981)) with the risk of SLE in the Egyptian female population. This retrospective case-control study included 150 Egyptian females; 70 patients diagnosed to have SLE and 80 age-matched healthy controls. The two single nucleotide polymorphisms of the pdcd1 gene were genotyped by allelic discrimination through TaqMan real-time polymerase chain reaction. The PD1.3GG genotype and G allele as well as the PD1.5CC genotype were significantly more frequent in SLE patients (67.1%; p = 0.023, 82.1%; p = 0.0021, 62.9%; p = 0.0287 respectively). The GC haplotype was the most common haplotype among SLE patients (70.77%) with a reported significant linkage disequilibrium between the two studied polymorphisms (p = 0.0041). Although most of the studies showed significant association of SLE with the minor alleles, we reported a significant association between the dominant genotypes (PD1.3GG and PD1.5CC) as well as the major G allele with the risk of SLE among Egyptian females.
Collapse
Affiliation(s)
- S M Abo El-Khair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - W Sameer
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - N Awadallah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - D Shaalan
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
32
|
Wang JM, Yuan ZC, Huang AF, Xu WD. Association of TNFSF4 rs1234315, rs2205960 polymorphisms and systemic lupus erythematosus susceptibility: a meta-analysis. Lupus 2019; 28:1197-1204. [PMID: 31299880 DOI: 10.1177/0961203319862610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The aim of this study was to explore the association between tumor necrosis factor superfamily number 4 (TNFSF4) rs1234315, rs2205960 polymorphisms and systemic lupus erythematosus (SLE) susceptibility. METHODS A meta-analysis was performed on the association between rs1234315 and rs2205960 polymorphisms and SLE by allelic contrast, additive model, recessive model and dominant model. RESULTS Regarding rs1234315 polymorphism, a total of five studies were included (6575 cases, 14,798 controls). Meta-analysis showed significant associations between the T allele and SLE in overall subjects and Asians (OR = 1.310, 95%CI: 1.104-1.553, p = 0.002; OR = 1.458, 95%CI: 1.328-1.602, p < 0.001). With respect to the rs2205960 polymorphism, significant associations between the T allele and SLE were found in all subjects (OR = 1.333, 95%CI: 1.254-1.418, p < 0.001), Asians (OR = 1.407, 95%CI: 1.345-1.471, p < 0.001) and Europeans (OR = 1.254, 95%CI: 1.185-1.328, p < 0.001). Results also showed significant associations between the additive model and SLE in all subjects and Asians (OR = 1.934, 95%CI: 1.500-2.494, p < 0.001; OR = 1.882, 95%CI: 1.318-2.689, p = 0.001). Furthermore, we detected significant associations between the dominant model and SLE in all subjects and Asians (OR = 1.421, 95%CI: 1.239-1.629, p < 0.001; OR = 1.297, 95%CI: 1.083-1.555, p = 0.005). Significant associations were found between the recessive model and SLE in overall subjects and Asians (OR = 1.677, 95%CI: 1.312-2.144, p < 0.001; OR = 1.751, 95%CI: 1.235-2.483, p = 0.002). CONCLUSION The present study suggested that TNFSF4 rs1234315 and rs2205960 polymorphisms were associated with SLE susceptibility.
Collapse
Affiliation(s)
- J-M Wang
- 1 Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Z-C Yuan
- 1 Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - A-F Huang
- 2 Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - W-D Xu
- 1 Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene 2018; 668:59-72. [DOI: 10.1016/j.gene.2018.05.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/13/2018] [Indexed: 01/21/2023]
|
34
|
Patel ZH, Lu X, Miller D, Forney CR, Lee J, Lynch A, Schroeder C, Parks L, Magnusen AF, Chen X, Pujato M, Maddox A, Zoller EE, Namjou B, Brunner HI, Henrickson M, Huggins JL, Williams AH, Ziegler JT, Comeau ME, Marion MC, Glenn SB, Adler A, Shen N, Nath SK, Stevens AM, Freedman BI, Pons-Estel BA, Tsao BP, Jacob CO, Kamen DL, Brown EE, Gilkeson GS, Alarcón GS, Martin J, Reveille JD, Anaya JM, James JA, Sivils KL, Criswell LA, Vilá LM, Petri M, Scofield RH, Kimberly RP, Edberg JC, Ramsey-Goldman R, Bang SY, Lee HS, Bae SC, Boackle SA, Cunninghame Graham D, Vyse TJ, Merrill JT, Niewold TB, Ainsworth HC, Silverman ED, Weisman MH, Wallace DJ, Raj P, Guthridge JM, Gaffney PM, Kelly JA, Alarcón-Riquelme ME, Langefeld CD, Wakeland EK, Kaufman KM, Weirauch MT, Harley JB, Kottyan LC. A plausibly causal functional lupus-associated risk variant in the STAT1-STAT4 locus. Hum Mol Genet 2018; 27:2392-2404. [PMID: 29912393 PMCID: PMC6005081 DOI: 10.1093/hmg/ddy140] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/21/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE or lupus) (OMIM: 152700) is a chronic autoimmune disease with debilitating inflammation that affects multiple organ systems. The STAT1-STAT4 locus is one of the first and most highly replicated genetic loci associated with lupus risk. We performed a fine-mapping study to identify plausible causal variants within the STAT1-STAT4 locus associated with increased lupus disease risk. Using complementary frequentist and Bayesian approaches in trans-ancestral Discovery and Replication cohorts, we found one variant whose association with lupus risk is supported across ancestries in both the Discovery and Replication cohorts: rs11889341. In B cell lines from patients with lupus and healthy controls, the lupus risk allele of rs11889341 was associated with increased STAT1 expression. We demonstrated that the transcription factor HMGA1, a member of the HMG transcription factor family with an AT-hook DNA-binding domain, has enriched binding to the risk allele compared with the non-risk allele of rs11889341. We identified a genotype-dependent repressive element in the DNA within the intron of STAT4 surrounding rs11889341. Consistent with expression quantitative trait locus (eQTL) analysis, the lupus risk allele of rs11889341 decreased the activity of this putative repressor. Altogether, we present a plausible molecular mechanism for increased lupus risk at the STAT1-STAT4 locus in which the risk allele of rs11889341, the most probable causal variant, leads to elevated STAT1 expression in B cells due to decreased repressor activity mediated by increased binding of HMGA1.
Collapse
Affiliation(s)
- Zubin H Patel
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaoming Lu
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carmy R Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua Lee
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Arthur Lynch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Connor Schroeder
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lois Parks
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Albert F Magnusen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mario Pujato
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Avery Maddox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Erin E Zoller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hermine I Brunner
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael Henrickson
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer L Huggins
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adrienne H Williams
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Julie T Ziegler
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mary E Comeau
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Miranda C Marion
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Stuart B Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Nan Shen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Anne M Stevens
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | - Betty P Tsao
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chaim O Jacob
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Diane L Kamen
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth E Brown
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gary S Gilkeson
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Graciela S Alarcón
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Javier Martin
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, CSIC, Granada 18001-18016, Spain
| | - John D Reveille
- Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogota 111711, Colombia
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lindsey A Criswell
- Department of Medicine, Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, CA 94143-0500, USA
| | - Luis M Vilá
- Division of Rheumatology, Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Michelle Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- United States Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Robert P Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey C Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Deborah Cunninghame Graham
- Divisions of Genetics/Molecular Medicine and Immunology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Timothy J Vyse
- Divisions of Genetics/Molecular Medicine and Immunology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Joan T Merrill
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Timothy B Niewold
- Division of Rheumatology, Department of Pathology, New York University, New York, NY 10016, USA
| | - Hannah C Ainsworth
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Earl D Silverman
- Division of Rheumatology, The Hospital for Sick Children, Hospital for Sick Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Michael H Weisman
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Marta E Alarcón-Riquelme
- Unit of Chronic Inflammatory Diseases, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17167, Sweden
- Center for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucia, Parque Tecnológica de la Salud, Granada 18016, Spain
| | - Carl D Langefeld
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- United States Department of Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- United States Department of Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| |
Collapse
|
35
|
Anaya JM, Leon KJ, Rojas M, Rodriguez Y, Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Ramirez-Santana C. Progress towards precision medicine for lupus: the role of genetic biomarkers. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1448266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Kelly J. Leon
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yhojan Rodriguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yovana Pacheco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Ramirez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
36
|
Zhang C, Wang W, Zhang H, Wei L, Guo S. Association of FCGR2A rs1801274 polymorphism with susceptibility to autoimmune diseases: A meta-analysis. Oncotarget 2018; 7:39436-39443. [PMID: 27270653 PMCID: PMC5129943 DOI: 10.18632/oncotarget.9831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/28/2016] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The aim of this meta-analysis was to estimate the association between the FCGR2A rs1801274 polymorphism and the susceptibility to autoimmune diseases more precisely. METHODS A meta-analysis was conducted on the association between the FCGR2A gene variants and ADs by allelic contrast, homozygote contrast, the recessive model, and the dominant model. RESULTS A total of 17 studies with 30 comparisons in different populations and genotype-methods were available for this meta-analysis, including 10 Kawasaki disease (KD), 7 Ulcerative colitis (UC), 6 Crohn's disease (CD), 3 Rheumatoid arthritis (RA), 2 Systemic lupus erythematosus (SLE), 1 Autoimmune thyroid disease (ATD) and 1 diabetes mellitus type 1 (T1D). A significant association between FCGR2A rs1801274 polymorphism were found in KD (OR = 1.409, P < 0.001) and UC (OR = 1.237, P < 0.001). A overall meta-analysis increased risk of AD significant association between FCGR2A rs1801274 gene polymorphism and ADs under allelic (OR = 1.378, P=0.000), homozygous (OR: 1.866, P=0.001), dominant (OR = 1.667, P = 0.000) and recessive (OR = 1.434, P=0.000) in Asian population. Meanwhile, a decreased risk of AD was detected in the allelic (OR= 0.882, P = 0.011), homozygous (OR = 0.777, P = 0.013), dominant (OR = 0.850, P = 0.032) and recessive (OR = 0.840, P = 0.048) in African-American population. CONCLUSIONS This meta-analysis demonstrates that the FCGR2A rs1801274 G-allele confers susceptibility to KD and UC. Data also suggests that the FCGR2A rs1801274 polymorphism may be associated with the susceptibility of multiple ADs in Asian and African-American populations.
Collapse
Affiliation(s)
- Chang'e Zhang
- Department of Dermatology, Zhengzhou Children's Hospital, Henan, China
| | - Wenju Wang
- Department of Dermatology, The Second People's Hospital in Chengdu, Sichuan, China
| | - Hong'e Zhang
- Department of Medicine, Xiangfu District Hospital of Traditional Chinese Medicine, Kaifeng, Henan, China
| | - Lulu Wei
- Department of Dermatology, The First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuping Guo
- Department of Dermatology, The First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
37
|
Abstract
Few studies have examined the clinical epidemiology of alopecia areata (AA) in regard to patient race, and therefore, any disparities in incidence or prevalence of disease are largely unexplored. We sought to investigate potential racial disparities amongst two large cohorts of women. We conducted a cross-sectional analysis from the Nurses' Health Study (NHS) and Nurses' Health Study II (NHSII), wherein participants self-reported a diagnosis of AA. We determined odds ratios for AA by race in a multivariate analysis. Among 63,960 women from NHS and 88,368 women from NHSII with information on race and diagnosis of AA, we identified 418 and 738 cases of AA, respectively. In NHS, the multivariate-adjusted odds ratio for AA was 2.72 (95% confidence interval 1.61-4.61) amongst black women as compared with white women. In NHSII, the multivariate-adjusted odds ratio was 5.48 (95% confidence interval 4.10-7.32) amongst black as compared with white women. In a secondary analysis designating participants by Hispanic ethnicity, in NHSII the multivariate odds ratio was 1.94 (95% CI 1.24-3.02) in Hispanic compared with non-Hispanic white women. In this study, we found increased odds of AA based on self-reported race in black and Hispanic women as compared with white women. Further studies are needed to explore the mechanism of this racial disparity related to AA.
Collapse
Affiliation(s)
- Jordan M Thompson
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Min Kyung Park
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Abrar A Qureshi
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA; Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eunyoung Cho
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA; Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
38
|
Spolarics Z, Peña G, Qin Y, Donnelly RJ, Livingston DH. Inherent X-Linked Genetic Variability and Cellular Mosaicism Unique to Females Contribute to Sex-Related Differences in the Innate Immune Response. Front Immunol 2017; 8:1455. [PMID: 29180997 PMCID: PMC5694032 DOI: 10.3389/fimmu.2017.01455] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/21/2023] Open
Abstract
Females have a longer lifespan and better general health than males. Considerable number of studies also demonstrated that, after trauma and sepsis, females present better outcomes as compared to males indicating sex-related differences in the innate immune response. The current notion is that differences in the immuno-modulatory effects of sex hormones are the underlying causative mechanism. However, the field remains controversial and the exclusive role of sex hormones has been challenged. Here, we propose that polymorphic X-linked immune competent genes, which are abundant in the population are important players in sex-based immuno-modulation and play a key role in causing sex-related outcome differences following trauma or sepsis. We describe the differences in X chromosome (ChrX) regulation between males and females and its consequences in the context of common X-linked polymorphisms at the individual as well as population level. We also discuss the potential pathophysiological and immune-modulatory aspects of ChrX cellular mosaicism, which is unique to females and how this may contribute to sex-biased immune-modulation. The potential confounding effects of ChrX skewing of cell progenitors at the bone marrow is also presented together with aspects of acute trauma-induced de novo ChrX skewing at the periphery. In support of the hypothesis, novel observations indicating ChrX skewing in a female trauma cohort as well as case studies depicting the temporal relationship between trauma-induced cellular skewing and the clinical course are also described. Finally, we list and discuss a selected set of polymorphic X-linked genes, which are frequent in the population and have key regulatory or metabolic functions in the innate immune response and, therefore, are primary candidates for mediating sex-biased immune responses. We conclude that sex-related differences in a variety of disease processes including the innate inflammatory response to injury and infection may be related to the abundance of X-linked polymorphic immune-competent genes, differences in ChrX regulation, and inheritance patterns between the sexes and the presence of X-linked cellular mosaicism, which is unique to females.
Collapse
Affiliation(s)
- Zoltan Spolarics
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Geber Peña
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Yong Qin
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Robert J Donnelly
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - David H Livingston
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Our understanding on genetic basis of SLE has been advanced through genome-wide association studies. We review recent progress in lupus genetics with a focus on SLE-associated loci that have been functionally characterized, and discuss the potential for clinical translation of genetics data. RECENT FINDINGS Over 100 loci have been confirmed to show robust association with SLE and many share with other immune-mediated diseases. Although causative variants captured at these established loci are limited, they guide biological studies of gene targets for functional characterization which highlight the importance of aberrant recognition of self-nucleic acid, type I interferon overproduction, and defective immune cell signaling underlying the pathogenesis of SLE. Increasing examples illustrate a predictive value of genetic findings in susceptibility/prognosis prediction, clinical classification, and pharmacological implication. Genetic findings provide a foundation for better understanding of disease pathogenic mechanisms and opportunities for target selection in lupus drug development.
Collapse
|
40
|
Lewis MJ, Jawad AS. The effect of ethnicity and genetic ancestry on the epidemiology, clinical features and outcome of systemic lupus erythematosus. Rheumatology (Oxford) 2017; 56:i67-i77. [PMID: 27940583 DOI: 10.1093/rheumatology/kew399] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 01/03/2023] Open
Abstract
In this in-depth review, we examine the worldwide epidemiology of SLE and summarize current knowledge on the influence of race/ethnicity on clinical manifestations, disease activity, damage accumulation and outcome in SLE. Susceptibility to SLE has a strong genetic component, and trans-ancestral genetic studies have revealed a substantial commonality of shared genetic risk variants across different genetic ancestries that predispose to the development of SLE. The highest increased risk of developing SLE is observed in black individuals (incidence 5- to 9-fold increased, prevalence 2- to 3-fold increased), with an increased risk also observed in South Asians, East Asians and other non-white groups, compared with white individuals. Black, East Asian, South Asian and Hispanic individuals with SLE tend to develop more severe disease with a greater number of manifestations and accumulate damage from lupus more rapidly. Increased genetic risk burden in these populations, associated with increased autoantibody reactivity in non-white individuals with SLE, may explain the more severe lupus phenotype. Even after taking into account socio-economic factors, race/ethnicity remains a key determinant of poor outcome, such as end-stage renal failure and mortality, in SLE. Community measures to expedite diagnosis through increased awareness in at-risk racial/ethnic populations and ethnically personalized treatment algorithms may help in future to improve long-term outcomes in SLE.
Collapse
Affiliation(s)
- Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ali S Jawad
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
41
|
Associations between PTPN22 and TLR9 polymorphisms and systemic lupus erythematosus: a comprehensive meta-analysis. Arch Dermatol Res 2017; 309:461-477. [PMID: 28528372 DOI: 10.1007/s00403-017-1745-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022]
Abstract
Previous studies have explored the relationship of PTPN22 and TLR9 polymorphisms with systemic lupus erythematosus (SLE). In consideration of the population stratification, conflicting results and updating data, we conducted a comprehensive meta-analysis, which consists of a total of 17 research articles (9120 cases and 11,724 controls) for PTPN22 and 20 articles (including up to 2808 cases and 3386 controls) for TLR9. Significant association was verified between PTPN22 rs2476601 and SLE in the overall population (OR = 1.511 per T allele, 95% CI 1.338-1.706, P = 2.931 × 10-11) and under dominant model of T allele (TT+CT vs. CC: OR = 1.531, 95% CI 1.346-1.742, P = 9.17 × 10-11). Analysis after stratification by ethnicity indicated that PTPN22 rs2476601 was related to SLE in Americans (OR = 2.566, 95% CI 1.796-3.665, P = 2.219 × 10-7), Europeans (OR = 1.399, 95% CI 1.261-1.552, P = 2.153 × 10-10), and Africans (OR = 4.14, 95% CI 1.753-9.775, P = 1.0 × 10-3). We did not observe any association between TLR9 polymorphisms (rs187084, rs352140, rs5743836 and rs352139) and SLE under any model, after excluding the data that were inconsistent with Hardy-Weinberg equilibrium (HWE). In summary, PTPN22 rs2476601 was significantly interrelated with SLE and contributed to susceptibility and development of SLE in Americans, Europeans and Africans in this analysis, while their relationship needs to be validated in Africans by future research.
Collapse
|
42
|
Defining biological subsets in systemic lupus erythematosus: progress toward personalized therapy. Pharmaceut Med 2017; 31:81-88. [PMID: 28827978 DOI: 10.1007/s40290-017-0178-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease with respect to disease severity, response to treatment, and organ damage. The pathogenesis of SLE includes immunological mechanisms which are driven by both genetic and environmental factors. There are clear differences in the pathogenesis of SLE between patients of different ancestral backgrounds, including differences in genetic risk factors, immunological parameters, and clinical manifestations. Patients with high vs. low levels of type I interferon (IFN) in circulation represents one major biological subset within SLE, and these two groups of patients are present in all ancestral backgrounds. Genetic factors, autoantibodies, and levels of other cytokines all differ between high and low IFN patients. This distinction has also been important in predicting response to treatment with anti-type I IFN therapies, providing a precedent in SLE for biological subsets predicting treatment response. This review will highlight some recent developments in defining biological subsets of SLE based on disease pathophysiology, and the idea that improved knowledge of disease heterogeneity will inform our efforts to personalize therapy in this disease.
Collapse
|
43
|
Kraaij T, Bredewold OW, Trompet S, Huizinga TWJ, Rabelink TJ, de Craen AJM, Teng YKO. TAC-TIC use of tacrolimus-based regimens in lupus nephritis. Lupus Sci Med 2016; 3:e000169. [PMID: 28123768 PMCID: PMC5237713 DOI: 10.1136/lupus-2016-000169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 01/22/2023]
Abstract
Current guidelines do not mention tacrolimus (TAC) as a treatment option and no consensus has been reported on the role of TAC in lupus nephritis (LN). The present study aimed to guide clinical judgement on the use of TAC in patients with LN. A meta-analysis was performed for clinical studies investigating TAC regimens in LN on the basis of treatment target (induction or maintenance), concomitant immunosuppression and quality of the data. 23 clinical studies performed in patients with LN were identified: 6 case series, 9 cohort studies, 2 case-control studies and 6 randomised controlled trials (RCTs). Of the 6 RCTs, 5 RCTs investigated TAC regimens as induction treatment and 1 RCT as maintenance treatment. Five RCTs investigated TAC in combination with steroids and 2 TAC with mycophenolate plus steroids. All RCTs were performed in patients of Asian ethnicity. In a meta-analysis, TAC regimens achieved a significantly higher total response (relative risk (RR) 1.23, 95% CI 1.12 to 1.34, p<0.05) and significantly higher complete response (RR 1.48, 95% CI 1.23 to 1.77, p<0.05). The positive outcome was predominantly defined by the largest RCT investigating TAC with mycophenolate plus steroids. Regarding safety, the occurrence of leucopoenia was significantly lower, while the occurrence of increased creatine was higher. Clinical studies on TAC regimens for LN are limited to patients of Asian ethnicity and hampered by significant heterogeneity. The positive results on clinical efficacy of TAC as induction treatment in LN cannot be extrapolated beyond Asian patients with LN. Therefore, further confirmation in multiethnic, randomised trials is mandatory. Until then, TAC can be considered in selected patients with LN.
Collapse
Affiliation(s)
- Tineke Kraaij
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Clinic for Lupus-, Vasculitis and Complement-Mediated Systemic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Obbo W Bredewold
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Clinic for Lupus-, Vasculitis and Complement-Mediated Systemic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom W J Huizinga
- Clinic for Lupus-, Vasculitis and Complement-Mediated Systemic Diseases, Leiden University Medical Center, Leiden, The Netherlands; Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Clinic for Lupus-, Vasculitis and Complement-Mediated Systemic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton J M de Craen
- Department of Gerontology and Geriatrics , Leiden University Medical Center , Leiden , The Netherlands
| | - Y K Onno Teng
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Clinic for Lupus-, Vasculitis and Complement-Mediated Systemic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
44
|
Association of the C2-CFB locus with non-infectious uveitis, specifically predisposed to Vogt-Koyanagi-Harada disease. Immunol Res 2016; 64:610-8. [PMID: 26671509 DOI: 10.1007/s12026-015-8762-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Complement component 2 (C2) and factor B (CFB) are regulators of complement system and involved in the alternative pathway, which have been identified to be associated with multiple immune-related diseases. This study aimed to investigate the association of these genes with non-infectious intermediate and posterior uveitis. A total of 260 Chinese non-infectious uveitis patients were recruited, including 97 patients with Vogt-Koyanagi-Harada disease (VKH), 70 patients with intermediate uveitis (IU) and 93 patients with Behçet's disease (BD). Two hundred and ninety-three normal control subjects were also recruited. Five SNPs across the C2/CFB region were selected and genotyped using TaqMan SNP Genotyping Assays. Association analysis was adjusted for gender and stratified by different subtypes. The CFB SNP rs1048709 was significantly associated with non-infectious uveitis [P corr = 0.01, OR 1.49 (allele model) and P corr = 0.04, OR 1.58 (dominant model), respectively], and similar association was also detected between rs1048709 and female uveitis patients (P corr = 0.01, OR 1.70 and P corr = 0.049, OR 184, respectively). Moreover, subgroup analyses showed that CFB-rs1048709 was specifically associated with VKH, where significantly higher frequencies of A allele and AA homozygosity were observed in VKH patients compared with controls (P corr = 0.025 and P corr = 0.035, respectively), whereas none of these five SNPs was associated with IU or BD. In addition, a haplotype block across CFB (GTG) was significantly predisposed to uveitis with protective effect (OR 0.66, P corr = 0.048). Our results revealed a significant association of CFB with non-infectious uveitis, particularly predisposed to VKH disease. Genetic differences for uveitis could be gender-specific.
Collapse
|
45
|
Dang J, Li J, Xin Q, Shan S, Bian X, Yuan Q, Liu N, Ma X, Li Y, Liu Q. Gene-gene interaction of ATG5, ATG7, BLK and BANK1 in systemic lupus erythematosus. Int J Rheum Dis 2016; 19:1284-1293. [PMID: 26420661 DOI: 10.1111/1756-185x.12768] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIM Autophagy-related gene 5 (ATG5), ATG7, B-lymphoid tyrosine kinase (BLK) and B-cell scaffold protein with ankyrin repeats 1 (BANK1) are involved in B-cell signaling; several genome-wide association studies detected these genes as candidates involved in systemic lupus erythematosus (SLE). We aimed to replicate the association of these genes with SLE in Chinese Han and to search for possible gene-gene interactions. METHODS TaqMan single-nucleotide polymorphism (SNP) genotyping was used to detect rs548234, rs665791 in ATG5, rs11706903 in ATG7, rs2736340 in BLK and rs10516487 in BANK1 in 382 SLE patients and 660 healthy controls. The epistasis effect was analyzed by logistic regression, multifactor dimensionality reduction (MDR) and linear regression analysis. RESULTS SLE was associated with frequency of rs548234 (P = 0.010; odds ratio [OR] = 1.298), rs2736340 (P = 2.47 × 10-5 ; OR = 1.574) and rs10516487 (P = 0.002; OR = 0.642). Although no epistasis effects were found among three autophagy-related gene loci or with rs2736340 and rs10516487, BLK and BANK1 had the closest interaction effect on logistic regression analysis (P = 0.013; OR = 1.205), MDR (P < 0.0001), and linear regression analysis (P = 0.0017; R2 = 0.1806). The risk genotype TT of rs2736340 was associated with decreased messenger RNA level of BLK; BLK transcript level was lower in SLE patients than healthy controls. CONCLUSION We confirmed the association of rs548234, rs2736340 and rs10516487 with SLE in Chinese Han and reinforced our hypothesis of their epistasis effect in regulating B-cell signaling in SLE.
Collapse
Affiliation(s)
- Jie Dang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
- Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qian Xin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Shan Shan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xianli Bian
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qianqian Yuan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Na Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xiaochun Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yan Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
46
|
Nanda SK, Lopez-Pelaez M, Arthur JSC, Marchesi F, Cohen P. Suppression of IRAK1 or IRAK4 Catalytic Activity, but Not Type 1 IFN Signaling, Prevents Lupus Nephritis in Mice Expressing a Ubiquitin Binding-Defective Mutant of ABIN1. THE JOURNAL OF IMMUNOLOGY 2016; 197:4266-4273. [PMID: 27807192 PMCID: PMC5114882 DOI: 10.4049/jimmunol.1600788] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
Polymorphisms in the TNIP1 gene encoding A20-binding inhibitor of NF-κB1 (ABIN1) predispose to lupus and other autoimmune diseases in at least eight human populations. We found previously that knock-in mice expressing a ubiquitin-binding-defective mutant of ABIN1 (ABIN1[D485N]) develop autoimmunity as they age and succumb to a disease resembling lupus nephritis in humans. In this article, we report that Flt3-derived dendritic cells from these mice overproduced type 1 IFNs upon stimulation with ligands that activate TLR7 or TLR9. However, crossing ABIN1[D485N] mice to IFNAR1-knockout mice that do not express the α-subunit of the type 1 IFNR did not prevent splenomegaly, the appearance of high serum levels of autoantibodies and other Igs, or liver inflammation and only reduced kidney inflammation modestly. In contrast, crossing ABIN1[D485N] mice to knock-in mice expressing catalytically inactive mutants of IRAK1 or IRAK4 prevented splenomegaly, autoimmunity, and liver and kidney inflammation. Our results support the notion that IRAK1 and/or IRAK4 are attractive targets for the development of drugs to prevent, and perhaps treat, lupus nephritis and other autoinflammatory diseases caused by the decreased ability of ABIN1 or other proteins to restrict the strength of MyD88 signaling.
Collapse
Affiliation(s)
- Sambit K Nanda
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | - Marta Lopez-Pelaez
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J Simon C Arthur
- Division of Immunology and Cell Signaling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; and
| | - Francesco Marchesi
- School of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
47
|
Dam EM, Habib T, Chen J, Funk A, Glukhova V, Davis-Pickett M, Wei S, James R, Buckner JH, Cerosaletti K. The BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling and development in humans. Clin Immunol 2016; 173:171-180. [PMID: 27816669 DOI: 10.1016/j.clim.2016.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/11/2016] [Accepted: 10/30/2016] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the development of autoantibodies that drive disease pathogenesis. Genetic studies have associated nonsynonymous variants in the BANK1 B cell scaffolding gene with susceptibility to SLE and autoantibodies in lupus. To determine how the BANK1 SLE-risk variants contribute to the dysregulated B cell program in lupus, we performed genotype/phenotype studies in human B cells. Targeted phospho-proteomics were used to evaluate BCR/CD40 signaling in human B cell lines engineered to express the BANK1 risk or non-risk variant proteins. We found that phosphorylation of proximal BCR signaling molecules was reduced in B cells expressing the BANK1 risk protein compared to the non-risk protein. Similar to these findings, we observed decreased B cell signaling in primary B cells from genotyped healthy control subjects carrying the BANK1 risk haplotype, including blunted BCR- and CD40-dependent AKT activation. Consistent with decreased AKT activation, we found that BANK1 risk B cells expressed increased basal levels of FOXO1 protein and increased expression of FOXO1 target genes upon stimulation compared to non-risk B cells. Healthy subjects carrying the BANK1 risk haplotype were also characterized by an expansion of memory B cells. Taken together, our results suggest that the SLE susceptibility variants in the BANK1 gene may contribute to lupus by altering B cell signaling, increasing FOXO1 levels, and enhancing memory B cell development.
Collapse
Affiliation(s)
- Elizabeth M Dam
- Translational Research Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101
| | - Tania Habib
- Translational Research Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101
| | - Janice Chen
- Translational Research Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101
| | - Andrew Funk
- Translational Research Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101
| | - Veronika Glukhova
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101
| | - Mel Davis-Pickett
- Translational Research Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101
| | - Shan Wei
- Translational Research Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101
| | - Richard James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101
- Department of Pediatrics and Pharmacology, University of Washington School of Medicine
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101
| | - Karen Cerosaletti
- Translational Research Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101
| |
Collapse
|
48
|
Williams EM, Bruner L, Adkins A, Vrana C, Logan A, Kamen D, Oates JC. I too, am America: a review of research on systemic lupus erythematosus in African-Americans. Lupus Sci Med 2016; 3:e000144. [PMID: 27651918 PMCID: PMC5013381 DOI: 10.1136/lupus-2015-000144] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder that can cause significant morbidity and mortality. A large body of evidence has shown that African-Americans experience the disease more severely than other racial-ethnic groups. Relevant literature for the years 2000 to August 2015 were obtained from systematic searches of PubMed, Scopus, and the EBSCOHost platform that includes MEDLINE, CINAHL, etc. to evaluate research focused on SLE in African-Americans. Thirty-six of the 1502 articles were classified according to their level of evidence. The systematic review of the literature reported a wide range of adverse outcomes in African-American SLE patients and risk factors observed in other mono and multi-ethnic investigations. Studies limited to African-Americans with SLE identified novel methods for more precise ascertainment of risk and observed novel findings that hadn't been previously reported in African-Americans with SLE. Both environmental and genetic studies included in this review have highlighted unique African-American populations in an attempt to isolate risk attributable to African ancestry and observed increased genetic influence on overall disease in this cohort. The review also revealed emerging research in areas of quality of life, race-tailored interventions, and self-management. This review reemphasizes the importance of additional studies to better elucidate the natural history of SLE in African-Americans and optimize therapeutic strategies for those who are identified as being at high risk.
Collapse
Affiliation(s)
- Edith M Williams
- Division of Rheumatology, Department of Public Health Sciences, Medicine,MUSC Center for Health Disparities Research, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Larisa Bruner
- Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Alyssa Adkins
- University of South Carolina, Columbia, South Carolina, USA
| | - Caroline Vrana
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ayaba Logan
- The Department of Public Health and Programs in Nurse Anesthesia, Liaison for College of Nursing, Medical University of South Carolina Library, Charleston, South Carolina, USA
| | - Diane Kamen
- Department of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James C Oates
- Department of Medicine, Division of Rheumatology,Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
49
|
Chua KH, Ooh YY, Chai HC. TNFSF4 polymorphisms are associated with systemic lupus erythematosus in the Malaysian population. Int J Immunogenet 2016; 43:303-9. [PMID: 27519474 DOI: 10.1111/iji.12287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/01/2016] [Accepted: 07/21/2016] [Indexed: 02/05/2023]
Abstract
Tumour necrosis factor superfamily 4 (TNFSF4) gene has been reported to be associated with systemic lupus erythematosus (SLE) susceptibility due to its encoding for OX40L protein that can increase autoantibody production and cause imbalance of T-cell proliferation. The purpose of this study was to investigate the association of TNFSF4 rs2205960, rs1234315, rs8446748 and rs704840 with SLE in the Malaysian population. A total of 476 patients with SLE and 509 healthy controls were recruited. Real-time polymerase chain reaction (PCR) was applied to genotype the selected single nucleotide polymorphisms (SNPs). Allelic and genotypic frequencies of each SNP were calculated for each ethnic group, and association test was performed using logistic regression. The overall association of each SNP in Malaysian patients with SLE was determined with meta-analysis. The frequency of minor T allele of TNFSF4 rs2205960 was significant in Chinese and Indian patients with SLE, with P values of 0.05 (OR = 1.27, 95% CI: 1.00-1.61) and 0.004 (OR = 3.16, 95% CI: 1.41-7.05), respectively. Significant association of minor G allele of rs704840 with SLE was also observed in Chinese (P = 0.03, OR = 1.26, 95% CI: 1.02-1.56). However, after Bonferroni correction, only T allele of rs2205960 remained significantly associated with Indian cohort. Overall, minor G allele of rs704840 showed significant association with SLE in the Malaysian population with P values of 0.05 (OR = 1.20, 95% CI: 1.00-1.43). We suggested TNFSF4 rs704840 could be the potential SLE risk factors in the Malaysian population.
Collapse
Affiliation(s)
- K H Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Y Y Ooh
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - H C Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Teruel M, Alarcón-Riquelme ME. The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned. J Autoimmun 2016; 74:161-175. [PMID: 27522116 DOI: 10.1016/j.jaut.2016.08.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
The genome-wide association study is a free-hypothesis approach based on screening of thousands or even millions of genetic variants distributed throughout the whole human genome in relation to a phenotype. The relevant role of the genome-wide association studies in the last decade is undisputed because it has permitted to elucidate multiple risk genetic factors associated with the susceptibility to several human complex diseases. Regarding systemic lupus erythematosus (SLE) this approach has allowed to identify more than 60 risk loci for SLE susceptibility across populations to date, increasing our understanding on the pathogenesis of this disease. We present the latest findings in the genetic of SLE across populations using genome-wide approaches. These studies revealed that most of the genetic risk is shared across borders and ethnicities. Finally, we focus on describing the most important risk loci for SLE attempting to cover the genetic findings in relation to functional polymorphisms, such as missense single nucleotide polymorphisms (SNPs) or regulatory variants involved in the development of the disease. The functional studies try to identify the causality of some GWAS-associated variants, many of which fall in non-coding regions of the genome, suggesting a regulatory role. Many loci show an environmental interaction, another aspect revealed by the studies of epigenetic modifications and those associated with genetic variants. Finally, new-generation sequencing technologies can open other paths in the research on SLE genetics, the role of rare variants and the detailed identification of causal regulatory variation. The clinical relevance of the genetic factors will be shown when we are able to use them or in combination with other molecular measurements to re-classify a heterogeneous disease such as SLE.
Collapse
Affiliation(s)
- Maria Teruel
- Center for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Government, PTS, Granada, 18016, Spain.
| | - Marta E Alarcón-Riquelme
- Center for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Government, PTS, Granada, 18016, Spain; Institute of Environmental Medicine, Karolinska Institute, Stockholm, 171 67, Sweden.
| |
Collapse
|