1
|
Schmitz TC, van Genabeek B, Pouderoijen MJ, Janssen HM, van Doeselaar M, Crispim JF, Tryfonidou MA, Ito K. Semi-synthetic degradable notochordal cell-derived matrix hydrogel for use in degenerated intervertebral discs: Initial in vitro characterization. J Biomed Mater Res A 2023; 111:1903-1915. [PMID: 37539663 DOI: 10.1002/jbm.a.37594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Low back pain is the leading cause of disability worldwide, but current therapeutic interventions are palliative or surgical in nature. Loss of notochordal cells (NCs) and degradation of the healthy matrix in the nucleus pulposus (NP), the central tissue of intervertebral discs (IVDs), has been associated with onset of degenerative disc changes. Recently, we established a protocol for decellularization of notochordal cell derived matrix (NCM) and found that it can provide regenerative cues to nucleus pulposus cells of the IVD. Here, we combined the biologically regenerative properties of decellularized NCM with the mechanical tunability of a poly(ethylene glycol) hydrogel to additionally address biomechanics in the degenerate IVD. We further introduced a hydrolysable PEG-diurethane crosslinker for slow degradation of the gels in vivo. The resulting hydrogels were tunable over a broad range of stiffness's (0.2 to 4.5 kPa), matching that of NC-rich and -poor NP tissues, respectively. Gels formed within 30 min, giving ample time for handling, and remained shear-thinning post-polymerization. Gels also slowly released dNCM over 28 days as measured by GAG effusion. Viability of encapsulated bone marrow stromal cells after extrusion through a needle remained high. Although encapsulated NCs stayed viable over two weeks, their metabolic activity decreased, and their phenotype was lost in physiological medium conditions in vitro. Overall, the obtained gels hold promise for application in degenerated IVDs but require further tuning for combined use with NCs.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23073993. [PMID: 35409356 PMCID: PMC8999935 DOI: 10.3390/ijms23073993] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual. Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression profiles at single-cell resolution revealed the potential functional differences linked to degeneration, and among NP and iAF subpopulations. GO and KEGG analyses discovered molecular functions, biological processes, and transcription factors linked to cell type and degeneration state. We propose two lists of biomarkers, one as specific cell type, including C2orf40, MGP, MSMP, CD44, EIF1, LGALS1, RGCC, EPYC, HILPDA, ACAN, MT1F, CHI3L1, ID1, ID3 and TMED2. The second list proposes predictive IVD degeneration genes, including MT1G, SPP1, HMGA1, FN1, FBXO2, SPARC, VIM, CTGF, MGST1, TAF1D, CAPS, SPTSSB, S100A1, CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MGP, SLPI, DCN, MT-ND2, MTCYB, ADIRF, FRZB, CLEC3A, UPP1, S100A2, PRG4, COL2A1, SOD2 and MT2A. Protein and mRNA expression of MGST1, vimentin, SOD2 and SYF2 (p29) genes validated our scRNA-seq findings. Our data provide new insights into disc cells phenotypes and biomarkers of IVD degeneration that could improve diagnostic and therapeutic options.
Collapse
|
3
|
Yang S, Liao W. Hydroxysafflor yellow A attenuates oxidative stress injury-induced apoptosis in the nucleus pulposus cell line and regulates extracellular matrix balance via CA XII. Exp Ther Med 2022; 23:182. [PMID: 35069863 PMCID: PMC8764902 DOI: 10.3892/etm.2021.11105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of lower back pain. Oxidative stress injury and degradation of the extracellular matrix (ECM) are important factors causing IVDD, while hydroxysafflor yellow A (HSYA) has significant anti-oxidative stress and anti-apoptotic effects. The present study aimed to investigate the protective role of HSYA in IVDD using nucleus pulposus (NP) cells. A Cell Counting Kit-8 assay was used to detect cell viability following HSYA and tert-Butyl hydroperoxide (TBHP) treatment. Cellular reactive oxygen species levels and the level of apoptosis were measured using flow cytometry. The concentration of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase GSH-Px were detected using ELISA. DAPI staining was performed for nuclear morphology analysis, while western blot analysis was used to detect apoptotic- and ECM-related protein expression levels. Bioinformatics analysis was used to predict the binding site between HSYA and carbonic anhydrase 12 (CA12; CA XII). NP cells were transfected withsmall interference RNA (siRNA) for CA XII downregulation. Following TBHP treatment, the level of ROS increased significantly, and the concentrations of SOD, CAT and GSH-Px were decreased. In addition, the apoptosis level of the NP cell line significantly increased following TBHP treatment. Furthermore, the expression levels of ECM-related proteins, collagen II and aggrecan were significantly decreased, and the protein expression level of MMP-13 was significantly increased. HSYA (10 µM) could effectively alleviate the effects of TBHP on NP cell apoptosis, oxidative stress damage and the expression level of ECM-related proteins. A binding site was found between HSYA and CA XII. In addition, CA XII-siRNA significantly reduced the increase in the expression level of collagen II and aggrecan proteins and decrease in the expression level of MMP-13 induced by HSYA in the NP cell line. In conclusion, HSYA could attenuate oxidative stress injury and apoptosis induced by TBHP in the NP cell line, and could improve the regulation of ECM balance.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
4
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
5
|
The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol 2021; 17:426-439. [PMID: 34083809 PMCID: PMC10019070 DOI: 10.1038/s41584-021-00621-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 01/18/2023]
Abstract
The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H+/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.
Collapse
|
6
|
Smirnovienė J, Smirnov A, Zakšauskas A, Zubrienė A, Petrauskas V, Mickevičiūtė A, Michailovienė V, Čapkauskaitė E, Manakova E, Gražulis S, Baranauskienė L, Chen W, Ladbury JE, Matulis D. Switching the Inhibitor-Enzyme Recognition Profile via Chimeric Carbonic Anhydrase XII. ChemistryOpen 2021; 10:567-580. [PMID: 33945229 PMCID: PMC8095314 DOI: 10.1002/open.202100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Indexed: 01/02/2023] Open
Abstract
A key part of the optimization of small molecules in pharmaceutical inhibitor development is to vary the molecular design to enhance complementarity of chemical features of the compound with the positioning of amino acids in the active site of a target enzyme. Typically this involves iterations of synthesis, to modify the compound, and biophysical assay, to assess the outcomes. Selective targeting of the anti-cancer carbonic anhydrase isoform XII (CA XII), this process is challenging because the overall fold is very similar across the twelve CA isoforms. To enhance drug development for CA XII we used a reverse engineering approach where mutation of the key six amino acids in the active site of human CA XII into the CA II isoform was performed to provide a protein chimera (chCA XII) which is amenable to structure-based compound optimization. Through determination of structural detail and affinity measurement of the interaction with over 60 compounds we observed that the compounds that bound CA XII more strongly than CA II, switched their preference and bound more strongly to the engineered chimera, chCA XII, based on CA II, but containing the 6 key amino acids from CA XII, behaved as CA XII in its compound recognition profile. The structures of the compounds in the chimeric active site also resembled those determined for complexes with CA XII, hence validating this protein engineering approach in the development of new inhibitors.
Collapse
Affiliation(s)
- Joana Smirnovienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Alexey Smirnov
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Audrius Zakšauskas
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Edita Čapkauskaitė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Elena Manakova
- Department of Protein-DNA InteractionsInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Saulius Gražulis
- Department of Protein-DNA InteractionsInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Lina Baranauskienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Wen‐Yih Chen
- Department of Chemical and Materials EngineeringInstitute of Systems Biology and BioinformaticsNational Central UniversityTaiwan
| | - John E. Ladbury
- School of Molecular and Cellular BiologyUniversity of LeedsLC Miall BuildingLeedsLS2 9JTUK
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| |
Collapse
|
7
|
van den Akker GGH, Cremers A, Surtel DAM, Voncken W, Welting TJM. Isolation of Nucleus Pulposus and Annulus Fibrosus Cells from the Intervertebral Disc. Methods Mol Biol 2021; 2221:41-52. [PMID: 32979197 DOI: 10.1007/978-1-0716-0989-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells isolated from the intervertebral disc are often used for in vitro experimentation. Correctly separating the intervertebral disc tissue in annulus fibrosus and nucleus pulposus is particularly challenging when working with surplus material from surgery or specimens from donors with an advanced age. Moreover, lineage controls are only sparsely reported to verify tissue of origin. Here we describe an approach to intervertebral disc cell isolation from human and bovine origin.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Donatus A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Willem Voncken
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Fearing BV, Speer JE, Jing L, Kalathil A, P. Kelly M, M. Buchowski J, P. Zebala L, Luhmann S, C. Gupta M, A. Setton L. Verteporfin treatment controls morphology, phenotype, and global gene expression for cells of the human nucleus pulposus. JOR Spine 2020; 3:e1111. [PMID: 33392449 PMCID: PMC7770208 DOI: 10.1002/jsp2.1111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cells of the nucleus pulposus (NP) are essential contributors to extracellular matrix synthesis and function of the intervertebral disc. With age and degeneration, the NP becomes stiffer and more dehydrated, which is associated with a loss of phenotype and biosynthetic function for its resident NP cells. Also, with aging, the NP cell undergoes substantial morphological changes from a rounded shape with pronounced vacuoles in the neonate and juvenile, to one that is more flattened and spread with a loss of vacuoles. Here, we make use of the clinically relevant pharmacological treatment verteporfin (VP), previously identified as a disruptor of yes-associated protein-TEA domain family member-binding domain (TEAD) signaling, to promote morphological changes in adult human NP cells in order to study variations in gene expression related to differences in cell shape. Treatment of adult, degenerative human NP cells with VP caused a shift in morphology from a spread, fibroblastic-like shape to a rounded, clustered morphology with decreased transcriptional activity of TEAD and serum-response factor. These changes were accompanied by an increased expression of vacuoles, NP-specific gene markers, and biosynthetic activity. The contemporaneous observation of VP-induced changes in cell shape and prominent, time-dependent changes within the transcriptome of NP cells occurred over all timepoints in culture. Enriched gene sets with the transition to VP-induced cell rounding suggest a major role for cell adhesion, cytoskeletal remodeling, vacuolar lumen, and MAPK activity in the NP phenotypic and functional response to changes in cell shape.
Collapse
Affiliation(s)
- Bailey V. Fearing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | - Julie E. Speer
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Liufang Jing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Aravind Kalathil
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Michael P. Kelly
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Jacob M. Buchowski
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lukas P. Zebala
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Scott Luhmann
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Munish C. Gupta
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lori A. Setton
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
9
|
Veras MA, Lim YJ, Kuljanin M, Lajoie GA, Urquhart BL, Séguin CA. Protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc tissues. JOR Spine 2020; 3:e1099. [PMID: 33015574 PMCID: PMC7524214 DOI: 10.1002/jsp2.1099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
The comprehensiveness of data collected by "omics" modalities has demonstrated the ability to drastically transform our understanding of the molecular mechanisms of chronic, complex diseases such as musculoskeletal pathologies, how biomarkers are identified, and how therapeutic targets are developed. Standardization of protocols will enable comparisons between findings reported by multiple research groups and move the application of these technologies forward. Herein, we describe a protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc (IVD) tissues, building from the combined expertise of our collaborative team. This protocol covers dissection of murine IVD tissues, sample isolation, and data analysis for both proteomics and metabolomics applications. The protocol presented below was optimized to maximize the utility of a mouse model for "omics" applications, accounting for the challenges associated with the small starting quantity of sample due to small tissue size as well as the extracellular matrix-rich nature of the tissue.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| | - Yong J Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Miljan Kuljanin
- Department of Cell Biology Harvard Medical School Boston Massachusetts USA
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|
10
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
11
|
Veras MA, McCann MR, Tenn NA, Séguin CA. Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus. Connect Tissue Res 2020; 61:63-81. [PMID: 31597481 DOI: 10.1080/03008207.2019.1665034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: The intervertebral disc (IVD) is composed of cell types whose subtle phenotypic differences allow for the formation of distinct tissues. The role of the nucleus pulposus (NP) in the initiation and progression of IVD degeneration is well established; however, the genes and pathways associated with NP degeneration are poorly characterized.Materials and Methods: Using a genetic strategy for IVD lineage-specific fluorescent reporter expression to isolate cells, gene expression and bioinformatic analysis was conducted on the murine NP at 2.5, 6, and 21 months-of-age and the annulus fibrosus (AF) at 2.5 and 6 months-of-age. A subset of differentially regulated genes was validated by qRT-PCR.Results: Transcriptome analysis identified distinct profiles of NP and AF gene expression that were remarkably consistent at 2.5 and 6 months-of-age. Prg4, Cilp, Ibsp and Comp were increased >50-fold in the AF relative to NP. The most highly enriched NP genes included Dsc3 and Cdh6, members of the cadherin superfamily, and microRNAs mir218-1 and mir490. Changes in the NP between 2.5 and 6 months-of-age were associated with up-regulation of molecular functions linked to laminin and Bmp receptor binding (including up-regulation of Bmp5 & 7), with the most up-regulated genes being Mir703, Shh, and Sfrp5. NP degeneration was associated with molecular functions linked to alpha-actinin binding (including up-regulation of Ttn & Myot) and cytoskeletal protein binding, with the overall most up-regulated genes being Rnu3a, Snora2b and Mir669h.Conclusions: This study provided insight into the phenotypes of NP and AF cells, and identified candidate pathways that may regulate degeneration.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Matthew R McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Neil A Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| |
Collapse
|
12
|
Fibrin-Hyaluronic Acid Hydrogel (RegenoGel) with Fibroblast Growth Factor-18 for In Vitro 3D Culture of Human and Bovine Nucleus Pulposus Cells. Int J Mol Sci 2019; 20:ijms20205036. [PMID: 31614494 PMCID: PMC6834142 DOI: 10.3390/ijms20205036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
We investigated the effects of a fibrin-hyaluronic acid hydrogel (FBG-HA) and fibroblast growth factor 18 (FGF-18) for nucleus pulposus (NP) regeneration. Healthy bovine (n = 4) and human degenerated NP cells (n = 4) were cultured for 14 days in FBG-HA hydrogel with FGF-18 (∆51-mutant or wild-type) in the culture medium. Gene expression, DNA content, and glycosaminoglycan (GAG) synthesis were evaluated on day 7 and 14. Additionally, histology was performed. Human NP cells cultured in FBG-HA hydrogel showed an increase in collagen type II (COL2) and carbonic anhydrase XII (CA12) gene expression after 14 or 7 days of culture, respectively. GAG release into the conditioned medium increased over 14 days. Healthy bovine NP cells showed increased gene expression of ACAN from day 7 to day 14. Wild type FGF-18 up-regulated CA12 gene expression of human NP cells. Histology revealed an increase of proteoglycan deposition upon FGF-18 stimulation in bovine but not in human NP cells. The FBG-HA hydrogel had a positive modulatory effect on human degenerated NP cells. Under the tested conditions, no significant effect of FGF-18 was observed on cell proliferation or GAG synthesis in human NP cells.
Collapse
|
13
|
Abstract
INTRODUCTION The physiologic importance of fast CO2/HCO3- interconversion in various tissues requires the presence of carbonic anhydrase (CA, EC 4.2.1.1). Fourteen CA isozymes are present in humans, all of them being used as biomarkers. AREAS COVERED A great number of patents and articles were focused on the use of CA isozymes as biomarkers for various diseases and syndromes in the recent years, in an ascending trend over the last decade. The review highlights the most important studies related with each isozyme and covers the most recent patent literature. EXPERT OPINION The CAs biomarker research area expanded significantly in recent years, shifting from the predominant use of CA IX and CA XII in cancer diagnostic, staging, and prognosis towards a wider use of CA isozymes as disease biomarkers. CA isozymes are currently used either alone, in tandem with other CA isozymes and/or in combination with other proteins for the detection, staging, and prognosis of a huge repertoire of human dysfunctions and diseases, ranging from mild transformation of the normal tissues to extreme shifts in tissue organization and function. The techniques used for their detection/quantitation and the state-of-the-art in each clinical application are presented through relevant clinical examples and corresponding statistical data.
Collapse
Affiliation(s)
- Sabina Zamanova
- a Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA
| | - Ahmed M Shabana
- a Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA
| | - Utpal K Mondal
- a Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA
| | - Marc A Ilies
- a Department of Pharmaceutical Sciences and Moulder Center of Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA.,b Temple Fox Chase Cancer Center , Philadelphia , PA , USA
| |
Collapse
|
14
|
Quantitative Single-Cell Transcript Assessment of Biomarkers Supports Cellular Heterogeneity in the Bovine IVD. Vet Sci 2019; 6:vetsci6020042. [PMID: 31083612 PMCID: PMC6631975 DOI: 10.3390/vetsci6020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Severe and chronic low back pain is often associated with intervertebral disc (IVD) degeneration. While imposing a considerable socio-economic burden worldwide, IVD degeneration is also severely impacting on the quality of life of affected individuals. Cell-based regenerative medicine approaches have moved into clinical trials, yet IVD cell identities in the mature disc remain to be fully elucidated and tissue heterogeneity exists, requiring a better characterization of IVD cells. The bovine coccygeal IVD is an accepted research model to study IVD mechano-biology and disc homeostasis. Recently, we identified novel IVD biomarkers in the outer annulus fibrosus (AF) and nucleus pulposus (NP) of the mature bovine coccygeal IVD through RNA in situ hybridization (AP-RISH) and z-proportion test. Here we follow up on Lam1, Thy1, Gli1, Gli3, Noto, Ptprc, Scx, Sox2 and Zscan10 with fluorescent RNA in situ hybridization (FL-RISH) and confocal microscopy. This permits sub-cellular transcript localization and the addition of quantitative single-cell derived values of mRNA expression levels to our previous analysis. Lastly, we used a Gaussian mixture modeling approach for the exploratory analysis of IVD cells. This work complements our earlier cell population proportion-based study, confirms the previously proposed biomarkers and indicates even further heterogeneity of cells in the outer AF and NP of a mature IVD.
Collapse
|
15
|
Wang R, Wen B, Sun D. miR-573 regulates cell proliferation and apoptosis by targeting Bax in nucleus pulposus cells. Cell Mol Biol Lett 2019; 24:2. [PMID: 30936926 PMCID: PMC6425651 DOI: 10.1186/s11658-018-0132-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023] Open
Abstract
Background MicroRNA (miRNA) plays a vital role in the pathogenesis of intervertebral disc degeneration (IDD). The expression and potential mechanism of miR-573 in human nucleus pulposus (NP) remains to be elucidated. In this study, we aimed to investigate the role of miR-573 in IDD. Methods Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis was applied to examine the expression of miR-573 and Bax in idiopathic scoliosis tissues and IDD tissues. Human NP cells were employed for analysis. Moreover, the proliferation and apoptosis of NP cells were detected using MTT and flow cytometry assay respectively. The expression levels of Bcl-2, cleaved caspase-3, cleaved caspase-9, caspase-3 and caspase-9 in degenerative NP cells were measured by Western blotting assay. Furthermore, a luciferase reporter assay was used to verify the relationship between miR-573 and Bax. Results The results revealed that the mRNA expression level of miR-573 was down-regulated whereas Bax was up-regulated notably in degenerative NP cells. In addition, overexpression of miR-573 increased cell viability remarkably, coupled with inhibition of cell apoptosis. The expression level of Bcl-2 was increased while cleaved caspase-3 and cleaved caspase-9 expression levels were decreased in miR-573 overexpression NP cells. Additionally, the bioinformatics analysis underscored that Bax was a direct target gene of miR-573. Conclusion These results suggest that overexpression of miR-573 inhibited NP cell apoptosis by down-regulating Bax, which proved to be a novel effective strategy for IDD therapies.
Collapse
Affiliation(s)
- Rui Wang
- 1Department of Massage and Physiotherapy, Guang Xing Hospital, Zhejiang University of Traditional Chinese Medicine, No. 453, Tiyuchang Road, Xihu District, Hangzhou, Zhejiang 310007 People's Republic of China
| | - Boping Wen
- Department of Rehabilitation, Western Theater General Hospital, Chengdu, Sichuan 610011 People's Republic of China
| | - Dong Sun
- 1Department of Massage and Physiotherapy, Guang Xing Hospital, Zhejiang University of Traditional Chinese Medicine, No. 453, Tiyuchang Road, Xihu District, Hangzhou, Zhejiang 310007 People's Republic of China
| |
Collapse
|
16
|
Hodgkinson T, Shen B, Diwan A, Hoyland JA, Richardson SM. Therapeutic potential of growth differentiation factors in the treatment of degenerative disc diseases. JOR Spine 2019; 2:e1045. [PMID: 31463459 PMCID: PMC6686806 DOI: 10.1002/jsp2.1045] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a major contributing factor to chronic low back pain and disability, leading to imbalance between anabolic and catabolic processes, altered extracellular matrix composition, loss of tissue hydration, inflammation, and impaired mechanical functionality. Current treatments aim to manage symptoms rather than treat underlying pathology. Therefore, IVD degeneration is a target for regenerative medicine strategies. Research has focused on understanding the molecular process of degeneration and the identification of various factors that may have the ability to halt and even reverse the degenerative process. One such family of growth factors, the growth differentiation factor (GDF) family, have shown particular promise for disc regeneration in in vitro and in vivo models of IVD degeneration. This review outlines our current understanding of IVD degeneration, and in this context, aims to discuss recent advancements in the use of GDF family members as anabolic factors for disc regeneration. An increasing body of evidence indicates that GDF family members are central to IVD homeostatic processes and are able to upregulate healthy nucleus pulposus cell marker genes in degenerative cells, induce mesenchymal stem cells to differentiate into nucleus pulposus cells and even act as chemotactic signals mobilizing resident cell populations during disc injury repair. The understanding of GDF signaling and its interplay with inflammatory and catabolic processes may be critical for the future development of effective IVD regeneration therapies.
Collapse
Affiliation(s)
- Tom Hodgkinson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Bojiang Shen
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ashish Diwan
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation TrustManchester Academic Health Sciences CentreManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
17
|
Li K, Kapper D, Youngs B, Kocsis V, Mondal S, Kraus P, Lufkin T. Potential biomarkers of the mature intervertebral disc identified at the single cell level. J Anat 2018; 234:16-32. [PMID: 30450595 PMCID: PMC6284444 DOI: 10.1111/joa.12904] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration and trauma is a major socio-economic burden and the focus of cell-based regenerative medicine approaches. Despite numerous ongoing clinical trials attempting to replace ailing IVD cells with mesenchymal stem cells, a solid understanding of the identity and nature of cells in a healthy mature IVD is still in need of refinement. Although anatomically simple, the IVD is comprised of heterogeneous cell populations. Therefore, methods involving cell pooling for RNA profiling could be misleading. Here, by using RNA in situ hybridization and z proportion test, we have identified potential novel biomarkers through single cell assessment. We quantified the proportion of RNA transcribing cells for 50 genetic loci in the outer annulus fibrosus (AF) and nucleus pulposus (NP) in coccygeal bovine discs isolated from tails of four skeletally mature animals. Our data reconfirm existing data and suggest 10 novel markers such as Lam1 and Thy1 in the outer AF and Gli1, Gli3, Noto, Scx, Ptprc, Sox2, Zscan10 and LOC101904175 in the NP, including pluripotency markers, that indicate stemness potential of IVD cells. These markers could be added to existing biomarker panels for cell type characterization. Furthermore, our data once more demonstrate heterogeneity in cells of the AF and NP, indicating the need for single cell assessment by methods such as RNA in situ hybridization. Our work refines the molecular identity of outer AF and NP cells, which can benefit future regenerative medicine and tissue engineering strategies in humans.
Collapse
Affiliation(s)
- Kangning Li
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Devin Kapper
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | - Brittany Youngs
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Victoria Kocsis
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Sumona Mondal
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
18
|
Séguin CA, Chan D, Dahia CL, Gazit Z. Latest advances in intervertebral disc development and progenitor cells. JOR Spine 2018; 1:e1030. [PMID: 30687811 PMCID: PMC6338208 DOI: 10.1002/jsp2.1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
This paper is a concise review aiming to assemble the most relevant topics presented by the authors at ORS-Philadelphia Spine Research Society Fourth International Spine Research Symposium. It centers on the latest advances in disc development, its main structural entities, and the populating cells, with emphasis on the advances in pivotal molecular pathways responsible for forming the intervertebral discs (IVD). The objective of finding and emphasizing pathways and mechanisms that function to control tissue formation is to identify and to explore modifications occurring during normal aging, disease, and tissue repair. Thus, to comprehend that the cellular and molecular basis of tissue degeneration are crucial in the study of the dynamic interplay that includes cell-cell communication, gene regulation, and growth factors required to form a healthy and functional tissue during normal development.
Collapse
Affiliation(s)
- Cheryle A Séguin
- Schulich School of Medicine and Dentistry Bone and Joint Institute, The University of Western Ontario London ON Canada
| | - Danny Chan
- School of Biomedical Sciences LKS Faculty of Medicine, The University of Hong Kong Hong Kong China
| | - Chitra L Dahia
- Hospital for Special Surgery Weill Cornell Medical College New York New York
| | - Zulma Gazit
- Department of Surgery Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles California
| |
Collapse
|
19
|
Aberrantly expressed messenger RNAs and long noncoding RNAs in degenerative nucleus pulposus cells co-cultured with adipose-derived mesenchymal stem cells. Arthritis Res Ther 2018; 20:182. [PMID: 30115120 PMCID: PMC6097446 DOI: 10.1186/s13075-018-1677-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background Stem cell therapy is considered as a promising alternative to treat intervertebral disc degeneration (IDD). Extensive work had been done on identifying and comparing different types of candidate stem cells, both in vivo and in vitro. However, few studies have shed light on degenerative nucleus pulposus cells (NPCs), especially their biological behavior under the influence of exogenous stem cells, specifically the gene expression and regulation pattern. In the present study, we aimed to determine messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs), which are differentially expressed during the co-culturing process with adipose-derived mesenchymal stem cells (ASCs) and to explore the involved signaling pathways and the regulatory networks. Methods We compared degenerative NPCs co-cultured with ASCs with those cultured solely using lncRNA-mRNA microarray analysis. Based on these data, we investigated the significantly regulated signaling pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Moreover, 23 micro RNAs (miRNAs), which were demonstrated to be involved in IDD were chosen; we investigated their theoretic regulatory importance associated with our microarray data. Results We found 632 lncRNAs and 1682 mRNAs were differentially expressed out of a total of 40,716 probes. We then confirmed the microarray data by real-time PCR. Furthermore, we demonstrated 197 upregulated, and 373 downregulated Gene Ontology terms and 176 significantly enriched pathways, such as the mitogen-activated protein kinase (MAPK) pathway. Also, a signal-net was constructed to reveal the interplay among differentially expressed genes. Meanwhile, a mRNA-lncRNA co-expression network was constructed for the significantly changed mRNAs and lncRNAs. Also, the competing endogenous RNA (ceRNA) network was built. Conclusion Our results present the first comprehensive identification of differentially expressed lncRNAs and mRNAs of degenerative NPCs, altered by co-culturing with ASCs, and outline the gene expression regulation pattern. These may provide valuable information for better understanding of stem cell therapy and potential candidate biomarkers for IDD treatment. Electronic supplementary material The online version of this article (10.1186/s13075-018-1677-x) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Song J, Wang HL, Song KH, Ding ZW, Wang HL, Ma XS, Lu FZ, Xia XL, Wang YW, Fei-Zou, Jiang JY. CircularRNA_104670 plays a critical role in intervertebral disc degeneration by functioning as a ceRNA. Exp Mol Med 2018; 50:1-12. [PMID: 30089772 PMCID: PMC6082839 DOI: 10.1038/s12276-018-0125-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
This study was carried out to explore the roles of circular RNAs (circRNAs) in nucleus pulposus (NP) tissues in intervertebral disc degeneration (IDD). Differentially expressed circRNAs in IDD and normal NP tissues were identified based on the results of microarray analysis. Bioinformatics techniques were employed to predict the direct interactions of selected circRNAs, microRNAs (miR), and mRNAs. CircRNA_104670 was selected as the target circRNA due to its large multiplier expression in IDD tissues. After luciferase reporter and EGFP/RFP reporter assays, we confirmed that circRNA_104670 directly bound to miR-17-3p, while MMP-2 was the direct target of miR-17-3p. The receiver-operating characteristic (ROC) curve showed that circRNA_104670 and miR-17-3p had good diagnostic significance for IDD (AUC circRNA_104670 = 0.96; AUC miRNA-17-3p = 0.91). A significant correlation was detected between the Pfirrmann grade and expression of circRNA_104670 (r = 0.63; p = 0.00) and miR-17-3p (r = −0.62; p = 0.00). Flow-cytometric analysis and the MTT assay showed that interfering with circRNA_104670 using small interfering RNA (siRNA) inhibited NP cell apoptosis (p < 0.01), and this inhibition was reduced by interfering with miR-17-3p. Interfering with circRNA_104670 suppressed MMP-2 expression and increased extracellular matrix (ECM) formation, which were also reduced by interfering with miR-17-3p. Finally, an MRI evaluation showed that circRNA_104670 inhibition mice had a lower IDD grade compared with control mice (p < 0.01), whereas circRNA_104670 and miRNA-17-3p inhibition mice had a higher IDD grade compared with circRNA_104670 inhibition mice (p < 0.05). CircRNA_104670 is highly expressed in the NP tissues of IDD and acts as a ceRNA during NP degradation. ‘RNA sponges’ may provoke lower back pain by soaking up regulatory RNAs that normally protect the protein infrastructure surrounding cells in intervertebral discs. Many people suffer from lower back pain arising from disc degeneration (IDD). A team led by Fei-Zou and Jian-Yuan Jiang at Fudan University, Shanghai, China set out to identify molecular mechanisms that might contribute to IDD. They focused on circular RNAs, non-protein coding RNAs that have been linked to a variety of diseases. The researchers learned that IDD is associated with strongly elevated expression of a circular RNA that acts as an ‘RNA sponge’, binding to and thereby inactivating other RNA molecules. This inactivation ultimately results in the excessive production of an enzyme that can damage the protein matrix that supports cells within spinal discs, potentially setting up the conditions for IDD.
Collapse
Affiliation(s)
- Jian Song
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Hong-Li Wang
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Ke-Han Song
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Zhi-Wen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Hai-Lian Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Xiao-Sheng Ma
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Fei-Zhou Lu
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Xin-Lei Xia
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Ying-Wei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Fei-Zou
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040.
| | - Jian-Yuan Jiang
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China, 200040.
| |
Collapse
|
21
|
Schubert AK, Smink JJ, Arp M, Ringe J, Hegewald AA, Sittinger M. Quality Assessment of Surgical Disc Samples Discriminates Human Annulus Fibrosus and Nucleus Pulposus on Tissue and Molecular Level. Int J Mol Sci 2018; 19:ijms19061761. [PMID: 29899321 PMCID: PMC6032144 DOI: 10.3390/ijms19061761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023] Open
Abstract
A discrimination of the highly specialised annulus fibrosus (AF) and nucleus pulposus (NP) cells in the mature human intervertebral disc (IVD) is thus far still not possible in a reliable way. The aim of this study was to identify molecular markers that distinguish AF and NP cells in human disc tissue using microarray analysis as a screening tool. AF and NP samples were obtained from 28 cervical discs. First, all samples underwent quality sorting using two novel scoring systems for small-sized disc tissue samples including macroscopic, haptic and histological evaluation. Subsequently, samples with clear disc characteristics of either AF or NP that were free from impurities of foreign tissue (IVD score) and with low signs of disc degeneration on cellular level (DD score) were selected for GeneChip analysis (HGU1332P). The 11 AF and 9 NP samples showed distinctly different genome-wide transcriptomes. The majority of differentially expressed genes (DEGs) could be specifically assigned to the AF, whereas no DEG was exclusively expressed in the NP. Nevertheless, we identified 11 novel marker genes that clearly distinguished AF and NP, as confirmed by quantitative gene expression analysis. The novel established scoring systems and molecular markers showed the identity of AF and NP in disc starting material and are thus of great importance in the quality assurance of cell-based therapeutics in regenerative treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
- CO.DON AG, 14513 Teltow, Germany.
| | | | - Mirko Arp
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Jochen Ringe
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| | - Aldemar A Hegewald
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
- Department of Neurosurgery and Spine Surgery, Helios Baltic Sea Hospital Damp, 24351 Damp, Germany.
| | - Michael Sittinger
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| |
Collapse
|
22
|
Riester SM, Lin Y, Wang W, Cong L, Ali AMM, Peck SH, Smith LJ, Currier BL, Clark M, Huddleston P, Krauss W, Yaszemski MJ, Morrey ME, Abdel MP, Bydon M, Qu W, Larson AN, van Wijnen AJ, Nassr A. RNA sequencing identifies gene regulatory networks controlling extracellular matrix synthesis in intervertebral disk tissues. J Orthop Res 2018; 36:1356-1369. [PMID: 29227558 PMCID: PMC5990467 DOI: 10.1002/jor.23834] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Degenerative disk disease of the spine is a major cause of back pain and disability. Optimization of regenerative medical therapies for degenerative disk disease requires a deep mechanistic understanding of the factors controlling the structural integrity of spinal tissues. In this investigation, we sought to identify candidate regulatory genes controlling extracellular matrix synthesis in spinal tissues. To achieve this goal we performed high throughput next generation RNA sequencing on 39 annulus fibrosus and 21 nucleus pulposus human tissue samples. Specimens were collected from patients undergoing surgical discectomy for the treatment of degenerative disk disease. Our studies identified associations between extracellular matrix genes, growth factors, and other important regulatory molecules. The fibrous matrix characteristic of annulus fibrosus was associated with expression of the growth factors platelet derived growth factor beta (PDGFB), vascular endothelial growth factor C (VEGFC), and fibroblast growth factor 9 (FGF9). Additionally we observed high expression of multiple signaling proteins involved in the NOTCH and WNT signaling cascades. Nucleus pulposus extracellular matrix related genes were associated with the expression of numerous diffusible growth factors largely associated with the transforming growth signaling cascade, including transforming factor alpha (TGFA), inhibin alpha (INHA), inhibin beta A (INHBA), bone morphogenetic proteins (BMP2, BMP6), and others. CLINICAL SIGNIFICANCE this investigation provides important data on extracellular matrix gene regulatory networks in disk tissues. This information can be used to optimize pharmacologic, stem cell, and tissue engineering strategies for regeneration of the intervertebral disk and the treatment of back pain. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1356-1369, 2018.
Collapse
Affiliation(s)
- Scott M. Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Occupational and Environmental Medicine, HealthPartners, MN, USA
| | - Yang Lin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lin Cong
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, The First Hospital of China Medical University, No.155, Nanjing Bei Street, Shenyang, 110001, P. R. China
| | | | - Sun H. Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Lachlan J. Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | | | - Michelle Clark
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Paul Huddleston
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - William Krauss
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mohamad Bydon
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Wenchun Qu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
- Spine Center, Mayo Clinic, Rochester, MN, USA
| | - A. Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Ahmad Nassr
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Age-Correlated Phenotypic Alterations in Cells Isolated From Human Degenerated Intervertebral Discs With Contained Hernias. Spine (Phila Pa 1976) 2018; 43:E274-E284. [PMID: 28678109 DOI: 10.1097/brs.0000000000002311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Human intervertebral disc (hIVD) cells were isolated from 41 surgically excised samples and assessed for their phenotypic alterations with age. OBJECTIVE Toward the design of novel anti-aging strategies to overcome degenerative disc disease (DDD), we investigated age-correlated phenotypic alterations that occur on primary hIVD cells. SUMMARY OF BACKGROUND DATA Although regenerative medicine holds great hope, much is still to be unveiled on IVD cell biology and its intrinsic signaling pathways, which can lead the way to successful therapies for IDD. A greater focus on age-related phenotypic changes at the cell level would contribute to establish more effective anti-aging/degeneration targets. METHODS The study was subdivided in four main steps: i) optimization of primary cells isolation technique; ii) high-throughput cell morphology analysis, by imaging flow cytometry (FC) and subsequent validation by histological analysis; iii) analysis of progenitor cell surface markers expression, by conventional FC; and iv) statistical analysis and correlation of cells morphology and phenotype with donor age. RESULTS Three subsets of cells were identified on the basis of their diameter: small cell (SC), large cell (LC), and super LC (SLC). The frequency of SCs decreased nearly 50% with age, whereas that of LCs increased nearly 30%. Interestingly, the increased cells size was due to an enlargement of the pericellular matrix (PCM). Moreover, the expression pattern for CD90 and CD73 was a reflexion of age, where older individuals show reduced frequencies of positive cells for those markers. Nevertheless, the elevated percentages of primary positive cells for the mesenchymal stem cells (MSCs) marker CD146 found, even in some older donors, refreshed hope for the hypothetical activation of the self-renewal potential of the IVD. CONCLUSION These findings highlight the remarkable morphological alterations that occur on hIVD cells with aging and degeneration, while reinforcing previous reports on the gradual disappearance of an endogenous progenitor cell population. LEVEL OF EVIDENCE N/A.
Collapse
|
24
|
Silagi ES, Schoepflin ZR, Seifert EL, Merceron C, Schipani E, Shapiro IM, Risbud MV. Bicarbonate Recycling by HIF-1-Dependent Carbonic Anhydrase Isoforms 9 and 12 Is Critical in Maintaining Intracellular pH and Viability of Nucleus Pulposus Cells. J Bone Miner Res 2018; 33:338-355. [PMID: 28940640 PMCID: PMC5947995 DOI: 10.1002/jbmr.3293] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/18/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration is a ubiquitous condition closely linked to chronic low-back pain. The health of the avascular nucleus pulposus (NP) plays a crucial role in the development of this pathology. We tested the hypothesis that a network comprising HIF-1α, carbonic anhydrase (CA) 9 and 12 isoforms, and sodium-coupled bicarbonate cotransporters (NBCs) buffer intracellular pH through coordinated bicarbonate recycling. Contrary to the current understanding of NP cell metabolism, analysis of metabolic-flux data from Seahorse XF analyzer showed that CO2 hydration contributes a significant source of extracellular proton production in NP cells, with a smaller input from glycolysis. Because enzymatic hydration of CO2 is catalyzed by plasma membrane-associated CAs we measured their expression and function in NP tissue. NP cells robustly expressed isoforms CA9/12, which were hypoxia-inducible. In addition to increased mRNA stability under hypoxia, we observed binding of HIF-1α to select hypoxia-responsive elements on CA9/12 promoters using genomic chromatin immunoprecipitation. Importantly, in vitro loss of function studies and analysis of discs from NP-specific HIF-1α null mice confirmed the dependency of CA9/12 expression on HIF-1α. As expected, inhibition of CA activity decreased extracellular acidification rate independent of changes in HIF activity or lactate/H+ efflux. Surprisingly, CA inhibition resulted in a concomitant decrease in intracellular pH that was mirrored by inhibition of sodium-bicarbonate importers. These results suggested that extracellular bicarbonate generated by CA9/12 is recycled to buffer cytosolic pH fluctuations. Importantly, long-term intracellular acidification from CA inhibition lead to compromised cell viability, suggesting that plasma-membrane proton extrusion pathways alone are not sufficient to maintain homeostatic pH in NP cells. Taken together, our studies show for the first time that bicarbonate buffering through the HIF-1α-CA axis is critical for NP cell survival in the hypoxic niche of the intervertebral disc. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Elizabeth S. Silagi
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Zachary R. Schoepflin
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Erin L. Seifert
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Christophe Merceron
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Medicine, Division of Endocrinology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Irving M. Shapiro
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Makarand V. Risbud
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
25
|
Aker L, Ghannam M, Alzuabi MA, Jumah F, Alkhdour SM, Mansour S, Samara A, Cronk K, Massengale J, Holsapple J, Adeeb N, Oskouian RJ, Tubbs RS. Molecular Biology and Interactions in Intervertebral Disc Development, Homeostasis, and Degeneration, with Emphasis on Future Therapies: A Systematic Review. ACTA ACUST UNITED AC 2017. [DOI: 10.26632/ss.3.2017.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Ehlicke F, Köster N, Salzig D, Czermak P. Non-invasive Raman Spectroscopy and Quantitative Real-Time PCR Distinguish Among Undifferentiated Human Mesenchymal Stem Cells and Redifferentiated Nucleus Pulposus Cells and Chondrocytes In Vitro. Open Biomed Eng J 2017; 11:72-84. [PMID: 28868091 PMCID: PMC5564017 DOI: 10.2174/1874120701711010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 07/01/2017] [Indexed: 12/03/2022] Open
Abstract
Background: The most common cause of lower back pain is the pathological degeneration of the nucleus pulposus (NP). Promising NP regeneration strategies involving human mesenchymal stem cells (hMSCs) would require specific markers to confirm successful differentiation into the NP lineage and to distinguish the articular cartilage (AC). Objective: We sought specific NP mRNA markers that are upregulated in native NP cells but not in dedifferentiated NP cells, undifferentiated hMSCs or chondrocytes. We also considered the suitability of non-invasive Raman spectroscopy to distinguish among these classes of cells. Method: We used quantitative real-time PCR and Raman spectroscopy to analyse undifferentiated hMSCs in monolayers and embedded in hydrogels, and compared the results with dedifferentiated and redifferentiated human NP and AC cells. Results: The redifferentiation of NP cells induced the expression of annexin A3 (ANXA3), collagen type II (COL2) and proteoglycan mRNAs, whereas the redifferentiation of AC cells only induced proteoglycan expression. Redifferentiated NP cells expressed higher levels of ANXA3, COL2, paired box 1 (PAX1) and OCT4 mRNA than redifferentiated AC cells. Redifferentiated NP cells and undifferentiated hMSC-TERT cells expressed similar amount of OCT4 mRNA, indicating that only ANXA3, COL2 and PAX1 are promising markers for redifferentiated NP cells. Raman spectra clearly differed among the three cell types and highlighted their differentiation status. Conclusion: We recommend ANXA3, COL2 and PAX1 as markers to determine the success of hMSC-based differentiation to regenerate NP cells. Raman spectroscopy can be used to determine cell type and differentiation status especially in the context of clinical trials.
Collapse
Affiliation(s)
- Franziska Ehlicke
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany.,Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| | - Natascha Köster
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany.,Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.,Faculty of Biology and Chemistry, Justus-Liebig-University of Giessen, Ludwigstr. 23, 35390 Giessen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Winchesterstr. 3, 35394 Giessen, Germany
| |
Collapse
|
27
|
Waheed A, Sly WS. Carbonic anhydrase XII functions in health and disease. Gene 2017; 623:33-40. [PMID: 28433659 PMCID: PMC5851007 DOI: 10.1016/j.gene.2017.04.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022]
Abstract
Human CAXII was initially identified as a cancer marker in different cancers and tumors. Expression of CAXII is regulated by hypoxia and estrogen receptors. CAXII expression has been also detected in several tissues, whereas in cancer and tumor tissues its expression is several fold higher. In brain tumors, an alternatively spliced form of CAXII is expressed. Higher expression of CAXII in breast cancer is indicative of lower grade disease. CAXII plays a key role in several physiological functions. Mutation in the CAXII gene causes cystic fibrosis-like syndrome and salt wasting disease. CAXII is also seen in nuclear pulposus cells of the vertebrae. Aging dependent stiffness or degeneration of backbone correlates with CAXII expression level. This finding suggests a possible implication of CAXII as a biomarker for chronic back pain and a pharmacological target for possible treatment of chronic back pain.
Collapse
Affiliation(s)
- Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - William S Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
28
|
Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci Rep 2017; 7:1501. [PMID: 28473691 PMCID: PMC5431421 DOI: 10.1038/s41598-017-01567-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/28/2017] [Indexed: 01/07/2023] Open
Abstract
The nucleus pulposus (NP) of the intervertebral disc (IVD) demonstrates substantial changes in cell and matrix composition with both ageing and degeneration. While recent transcriptomic profiling studies have helped define human NP cell phenotype, it remains unclear how expression of these markers is influenced by ageing or degeneration. Furthermore, cells of the NP are thought to derive from the notochord, although adult NP lacks identifiable notochordal (NC) cells. This study aimed to confirm expression of previously identified NP and NC marker genes in adult human NP cells from a range of ages and degenerate states. Importantly, using gene expression analysis (N = 60) and immunohistochemistry (N = 56) the study demonstrates expression of NP markers FoxF1, Pax-1, keratin-8/18, carbonic anhydrase-12, and NC markers brachyury, galectin-3 and CD24 in cells of the NP irrespective of age or degeneration. Our immunohistochemical data, combined with flow cytometry (N = 5) which identified a small number of CA12+Gal3+T+CD24+ cells, suggests the possible presence of a sub-population of cells with an NC-like phenotype in adult NP tissue. These findings suggest that the NP contains a heterogeneous population of cells, which may possess varied phenotypic and functional profiles and thus warrant further investigation to improve our understanding of IVD homeostasis and repair.
Collapse
|
29
|
Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res 2017; 370:53-70. [PMID: 28413859 DOI: 10.1007/s00441-017-2613-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/17/2017] [Indexed: 01/07/2023]
Abstract
The degradation of cartilage in the human body is impacted by aging, disease, genetic predisposition and continued insults resulting from daily activity. The burden of cartilage defects (osteoarthritis, rheumatoid arthritis, intervertebral disc damage, knee replacement surgeries, etc.) is daunting in light of substantial economic and social stresses. This review strives to broaden the scope of regenerative medicine and tissue engineering approaches used for cartilage repair by comparing and contrasting the anatomical and functional nature of the meniscus, articular cartilage (AC) and nucleus pulposus (NP). Many review papers have provided detailed evaluations of these cartilages and cartilage-like tissues individually but none have comprehensively examined the parallels and inconsistencies in signaling, genetic expression and extracellular matrix composition between tissues. For the first time, this review outlines the importance of understanding these three tissues as unique entities, providing a comparative analysis of anatomy, ultrastructure, biochemistry and function for each tissue. This novel approach highlights the similarities and differences between tissues, progressing research toward an understanding of what defines each tissue as distinctive. The goal of this paper is to provide researchers with the fundamental knowledge to correctly engineer the meniscus, AC and NP without inadvertently developing the wrong tissue function or biochemistry.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, One Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Peiliang Fu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Haishan Wu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, One Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
| |
Collapse
|
30
|
RNA in situ hybridization characterization of non-enzymatic derived bovine intervertebral disc cell lineages suggests progenitor cell potential. Acta Histochem 2017; 119:150-160. [PMID: 28063600 DOI: 10.1016/j.acthis.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Degeneration of the intervertebral disc (IVD) is a meritorious target for therapeutic cell based regenerative medicine approaches, however, controversy over what defines the precise identity of mature IVD cells and lack of single cell based quality control measures is of concern. Bos taurus and human IVDs are histologically more similar than is Mus musculus. The mature bovine IVD is well suited as model system for technology development to be translated into therapeutic cell based regenerative medicine applications. We present a reproducible non-enzymatic protocol to isolate cell progenitor populations of three distinct areas of the mature bovine IVD. Bovine specific RNA probes were validated in situ and employed to assess fate changes, heterogeneity, stem cell characteristics and differentiation potential of the cultures. Quality control measures with single cell resolution like RNA in situ hybridization to assess culture heterogeneity (PISH) followed by optimization of culture conditions could be translated to human IVD cell culture to increase the safety of cell based regenerative medicine.
Collapse
|
31
|
Ghannam M, Jumah F, Mansour S, Samara A, Alkhdour S, Alzuabi MA, Aker L, Adeeb N, Massengale J, Oskouian RJ, Tubbs RS. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs. Clin Anat 2017; 30:251-266. [PMID: 27997062 DOI: 10.1002/ca.22822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a joint unique in structure and functions. Lying between adjacent vertebrae, it provides both the primary support and the elasticity required for the spine to move stably. Various aspects of the IVD have long been studied by researchers seeking a better understanding of its dynamics, aging, and subsequent disorders. In this article, we review the surgical anatomy, imaging modalities, and molecular biology of the lumbar IVD. Clin. Anat. 30:251-266, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malik Ghannam
- An-Najah National University Hospital, Nablus, Palestine
| | - Fareed Jumah
- An-Najah National University Hospital, Nablus, Palestine
| | - Shaden Mansour
- An-Najah National University Hospital, Nablus, Palestine
| | - Amjad Samara
- An-Najah National University Hospital, Nablus, Palestine
| | - Saja Alkhdour
- An-Najah National University Hospital, Nablus, Palestine
| | | | - Loai Aker
- An-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | - Justin Massengale
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | | | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
32
|
MicroRNA-15b silencing inhibits IL-1β-induced extracellular matrix degradation by targeting SMAD3 in human nucleus pulposus cells. Biotechnol Lett 2016; 39:623-632. [PMID: 28039556 DOI: 10.1007/s10529-016-2280-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To determine the role of microRNA-15b (miR-15b) in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation in the nucleus pulposus (NP). RESULTS MiR-15b was up-regulated in degenerative NP tissues and in IL-1β-stimulated NP cells, as compared to the levels in normal controls (normal tissue specimens from patients with idiopathic scoliosis). Bioinformatics and luciferase activity analyses showed that mothers against decapentaplegic homolog 3 (SMAD3), a key mediator of the transforming growth factor-β signaling pathway, was directly targeted by miR-15b. Functional analysis demonstrated that miR-15b overexpression aggravated IL-1β-induced ECM degradation in NP cells, while miR-15b inhibition had the opposite effects. Prevention of IL-1β-induced NP ECM degeneration by the miR-15b inhibitor was attenuated by small-interfering-RNA-mediated knockdown of SMAD3. In addition, activation of MAP kinase and nuclear factor-κB up-regulated miR-15b expression and down-regulated SMAD3 expression in IL-1β-stimulated NP cells. CONCLUSIONS MiR-15b contributes to ECM degradation in intervertebral disc degeneration (IDD) via targeting of SMAD3, thus providing a novel therapeutic target for IDD treatment.
Collapse
|
33
|
Rodrigues‐Pinto R, Berry A, Piper‐Hanley K, Hanley N, Richardson SM, Hoyland JA. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res 2016; 34:1327-40. [PMID: 26910849 PMCID: PMC5021113 DOI: 10.1002/jor.23205] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte-like cells. Although animal studies indicate that notochord-derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5-18 weeks post-conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E-cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co-expressed by sclerotomal cells. CD90, Tie2, and E-cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord-specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327-1340, 2016.
Collapse
Affiliation(s)
- Ricardo Rodrigues‐Pinto
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
- Department of OrthopaedicsCentro Hospitalar do Porto—Hospital de Santo AntónioLargo Prof. Abel SalazarPorto4099‐001Portugal
| | - Andrew Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Karen Piper‐Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Neil Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Stephen M. Richardson
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Judith A. Hoyland
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
- NIHR Manchester Musculoskeletal Biomedical Research UnitManchester Academic Health Science CentreManchesterUnited Kingdom
| |
Collapse
|
34
|
Wronska MA, O'Connor IB, Tilbury MA, Srivastava A, Wall JG. Adding Functions to Biomaterial Surfaces through Protein Incorporation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5485-5508. [PMID: 27164952 DOI: 10.1002/adma.201504310] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The concept of biomaterials has evolved from one of inert mechanical supports with a long-term, biologically inactive role in the body into complex matrices that exhibit selective cell binding, promote proliferation and matrix production, and may ultimately become replaced by newly generated tissues in vivo. Functionalization of material surfaces with biomolecules is critical to their ability to evade immunorecognition, interact productively with surrounding tissues and extracellular matrix, and avoid bacterial colonization. Antibody molecules and their derived fragments are commonly immobilized on materials to mediate coating with specific cell types in fields such as stent endothelialization and drug delivery. The incorporation of growth factors into biomaterials has found application in promoting and accelerating bone formation in osteogenerative and related applications. Peptides and extracellular matrix proteins can impart biomolecule- and cell-specificities to materials while antimicrobial peptides have found roles in preventing biofilm formation on devices and implants. In this progress report, we detail developments in the use of diverse proteins and peptides to modify the surfaces of hard biomaterials in vivo and in vitro. Chemical approaches to immobilizing active biomolecules are presented, as well as platform technologies for isolation or generation of natural or synthetic molecules suitable for biomaterial functionalization.
Collapse
Affiliation(s)
- Małgorzata A Wronska
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Iain B O'Connor
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Maura A Tilbury
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Akshay Srivastava
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - J Gerard Wall
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| |
Collapse
|
35
|
Dysregulated miR-133a Mediates Loss of Type II Collagen by Directly Targeting Matrix Metalloproteinase 9 (MMP9) in Human Intervertebral Disc Degeneration. Spine (Phila Pa 1976) 2016; 41:E717-E724. [PMID: 26656045 DOI: 10.1097/brs.0000000000001375] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A microRNA (miRNA) study using Solexa sequencing. OBJECTIVE The purpose of this study was to identify intervertebral disc degeneration (IDD)-specific miRNA expression profile, and to validate its biological function. SUMMARY OF BACKGROUND DATA Accumulating evidence indicates that miRNAs play a critical role in IDD, but the role of specific miRNAs involved in this entity remains unclear. METHODS MiRNA expression profile was determined in nucleus pulposus (NP) tissues from patients with IDD and controls, employing Solexa sequencing and quantitative real-time PCR (qRT-PCR). Biological functions of differential expression miRNAs were further investigated. Luciferase reporter assays and western blotting were performed to determine miRNA targets. RESULTS We identified 31 miRNAs that were differentially expressed (22 upregulated and nine downregulated) in patients compared with controls. After qRT-PCR confirmation, miR-133a was significantly down-regulated in degenerative NP tissues. Moreover, its level was inversely correlated with grade of disc degeneration. Through gain- and loss-of-function studies, miR-133a was demonstrated to significantly promote type II collagen expression in NP cells. MMP9 was identified as a target of miR-133a. Knockdown of MMP9 induced effects on NP cells similar to those induced by miR-133a. Expression of MMP9 was inversely correlated with miR-133a expression in degenerative NP tissues. CONCLUSION These results suggest that the downregulation of miR-133a induces type II collagen loss by directly targeting MMP9. Our findings also highlight miR-133a as a novel hopeful therapeutic target for IDD. LEVEL OF EVIDENCE 3.
Collapse
|
36
|
Decoding the intervertebral disc: Unravelling the complexities of cell phenotypes and pathways associated with degeneration and mechanotransduction. Semin Cell Dev Biol 2016; 62:94-103. [PMID: 27208724 DOI: 10.1016/j.semcdb.2016.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Back pain is the most common cause of pain and disability worldwide. While its etiology remains unknown, it is typically associated with intervertebral disc (IVD) degeneration. Despite the prevalence of back pain, relatively little is known about the specific cellular pathways and mechanisms that contribute to the development, function and degeneration of the IVD. Consequently, current treatments for back pain are largely limited to symptomatic interventions. However, major progress is being made in multiple research directions to unravel the biology and pathology of the IVD, raising hope that effective disease-modifying interventions will soon be developed. In this review, we will discuss our current knowledge and gaps in knowledge on the developmental origin of the IVD, the phenotype of the distinct cell types found within the IVD tissues, molecular targets in IVD degeneration identified using bioinformatics strategies, and mechanotransduction pathways that influence IVD cell fate and function.
Collapse
|
37
|
PHD/HIF-1 upregulates CA12 to protect against degenerative disc disease: a human sample, in vitro and ex vivo study. J Transl Med 2016; 96:561-9. [PMID: 26901836 DOI: 10.1038/labinvest.2016.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/01/2015] [Accepted: 01/12/2016] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disc degeneration is a major cause of low back pain. The nucleus pulposus (NP) is an important intervertebral disc component. Recent studies have shown that carbonic anhydrase 12 (CA12) is a novel NP marker. However, the mechanism by which CA12 is regulated and its physiological function are unclear. In our study, CA12, hypoxia-inducible factor 1α (HIF-1α) and HIF-2α expression levels were examined in 81 human degenerated NP samples using real-time RT-PCR, immunohistochemistry and western blot. Rat NP cells were cultured in a hypoxic environment, and hypoxia-induced CA12 expression was examined. Rat NP cells were treated with HIF-1α siRNA or the prolyl hydroxylase (PHD) inhibitor dimethyloxalylglycine (DMOG) to evaluate the role of PHD/HIF-1 in regulating CA12 expression. Rat NP cells were treated with CA12 siRNA to determine the function of CA12. A rat ex vivo model was established to confirm that PHD, HIF-1, and CA12 have important roles in disc degeneration. We found that CA12 was significantly downregulated in degenerated human NP samples at the mRNA and protein levels. CA12 expression sharply increased by ~30-fold in response to hypoxia. The expression of HIF-1α, but not HIF-2α, also decreased in degenerated human NP samples and was positively correlated with CA12 expression. HIF-1α knockdown under hypoxia reduced the CA12 mRNA and protein expression levels. DMOG treatment increased HIF-1α and CA12 expression. CA12 knockdown significantly inhibited anabolic protein expression, whereas catabolic enzymes remained unchanged. The ex vivo experiments supported our in vitro studies of the role of PHD/HIF-1/CA12. In conclusion, CA12 is downregulated in degenerated NPs, and its expression may be regulated by the PHD/HIF-1 axis. Decreased CA12 expression may lead to decreased extracellular matrix synthesis, which contributes to degenerative disc disease progression.
Collapse
|
38
|
Ji ML, Zhang XJ, Shi PL, Lu J, Wang SZ, Chang Q, Chen H, Wang C. Downregulation of microRNA-193a-3p is involved in invertebral disc degeneration by targeting MMP14. J Mol Med (Berl) 2016; 94:457-68. [PMID: 26620678 DOI: 10.1007/s00109-015-1371-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/08/2015] [Accepted: 11/17/2015] [Indexed: 01/06/2023]
Abstract
UNLABELLED Accumulating evidence suggests that microRNAs (miRNAs) play an important role in intervertebral disc degeneration (IDD), but the precise role of specific miRNAs involved in this disease remains elusive. The purpose of this study was to identify IDD-specific miRNAs, followed by functional validation of results. MiRNA expression profile was determined in nucleus pulposus (NP) tissues from patients with IDD and controls, employing Solexa sequencing and quantitative real-time PCR (qRT-PCR). Biological functions of differential expression miRNAs were further investigated in vitro and in vivo. Luciferase reporter assays and Western blotting were performed to determine miRNA targets. We identified 28 miRNAs that were differentially expressed in patients compared with controls. Following qRT-PCR confirmation, miR-193a-3p was significantly down-regulated in degenerative NP tissues. Moreover, its level was correlated with grade of disc degeneration. Through gain- and loss-of-function studies, miR-193a-3p was demonstrated to significantly promote type II collagen expression in NP cells. Knockdown of MMP14 induced effects on NP cells similar to those induced by miR-193a-3p. Bioinformatics target prediction identified MMP14 as a putative target of miR-193a-3p. Furthermore, luciferase reporter assays and Western blotting demonstrated that miR-193a-3p directly targets MMP14. MiR-193a-3p inhibited IDD in vitro and in vivo. The downregulation of miR-193a-3p induces the expression of MMP14, which promotes loss of type II collagen and thereby contributes to the development of human IDD. Our findings extend the role of miR-193a-3p in the pathogenesis of IDD and provide a potential novel therapeutic target for degenerative disc disease. KEY MESSAGES Intervertebral disc degeneration (ICC)-specific miRNA profile generated by next generation sequencing. Downregulation of miR-193a-3p promoted loss of type II collagen by directly targeting MMP14 in IDD. miR-193a-3p inhibited IDD in vitro and in vivo. miR-193a-3p may be a promising candidate for prevention of degenerative disc disease.
Collapse
Affiliation(s)
- Ming-Liang Ji
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao road 87, Nanjing, 210009, China
| | - Xue-Jun Zhang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao road 87, Nanjing, 210009, China
| | - Pei-Liang Shi
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao road 87, Nanjing, 210009, China
| | - Shan-Zheng Wang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao road 87, Nanjing, 210009, China
| | - Qing Chang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao road 87, Nanjing, 210009, China
| | - Hui Chen
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao road 87, Nanjing, 210009, China
| | - Chen Wang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao road 87, Nanjing, 210009, China.
| |
Collapse
|
39
|
Ji ML, Lu J, Shi PL, Zhang XJ, Wang SZ, Chang Q, Chen H, Wang C. Dysregulated miR-98 Contributes to Extracellular Matrix Degradation by Targeting IL-6/STAT3 Signaling Pathway in Human Intervertebral Disc Degeneration. J Bone Miner Res 2016; 31:900-9. [PMID: 26587789 DOI: 10.1002/jbmr.2753] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/30/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022]
Abstract
Intervertebral disc degeneration (IDD) is associated with dysregulated expression of microRNAs (miRNAs). However, the precise molecular mechanisms underlying this disorder remain unclear. Therefore, we tested the hypothesis that miRNAs modulate IDD through effects on the IL-6/STAT3 signaling pathway, a potential regulator of IDD. The miRNA expression profile was determined in nucleus pulposus (NP) tissues from patients with IDD and controls, employing miRNA microarray and quantitative real-time PCR (RT-qPCR). Biological functions of differential expression miRNAs were further investigated using immunofluorescent staining. Luciferase reporter assays and Western blotting were performed to determine miRNA targets. We identified 41 miRNAs that were differentially expressed in patients compared with controls. Following RT-qPCR confirmation, miR-98 was significantly downregulated in degenerative NP tissues. Moreover, its level was inversely correlated with grade of disc degeneration. Through gain-of-function and loss-of-function studies, miR-98 was shown to significantly promote type II collagen expression in NP cells. Interleukin-6 (IL-6) was identified as a target of miR-98. Knockdown of IL-6 induced effects on NP cells similar to those induced by miR-98. In contrast, IL-6 treatment abrogated the effects induced by miR-98 upregulation. Moreover, miR-98 dramatically suppressed expression of STAT3 target gene, MMP2. IL-6 treatment antagonized this effect, whereas knockdown of IL-6 by IL-6 short hairpin RNA (shIL-6) induced inhibitory effects on the expression of p-STAT3 and its main target genes, similar to miR-98. The mRNA level of IL-6 was inversely correlated with that of miR-98 in degenerative NP tissues. These results suggest the downregulation of miR-98 could promote IDD through the IL-6/STAT3 signaling pathway. Our findings also highlight miR-98 as a novel hopeful therapeutic target for IDD.
Collapse
Affiliation(s)
- Ming-liang Ji
- The Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jun Lu
- The Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Pei-liang Shi
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Xue-jun Zhang
- The Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shan-zheng Wang
- The Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qing Chang
- The Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hui Chen
- The Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chen Wang
- The Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
40
|
Unique glycosignature for intervertebral disc and articular cartilage cells and tissues in immaturity and maturity. Sci Rep 2016; 6:23062. [PMID: 26965377 PMCID: PMC4786852 DOI: 10.1038/srep23062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/29/2016] [Indexed: 01/07/2023] Open
Abstract
In this study, on/off markers for intervertebral disc (IVD) and articular cartilage (AC) cells (chondrocytes) and distinct glycoprofiles of cell and tissue-types were identified from immaturity to maturity. Three and eleven month-old ovine IVD and AC tissues were histochemically profiled with a panel of lectins and antibodies. Relationships between tissue and cell types were analysed by hierarchical clustering. Chondroitin sulfate (CS) composition of annulus fibrosus (AF), nucleus pulposus (NP) and AC tissues was determined by HPLC analysis. Clear on/off cell type markers were identified, which enabled the discrimination of chondrocytes, AF and NP cells. AF and NP cells were distinguishable using MAA, SNA-I, SBA and WFA lectins, which bound to both NP cells and chondrocytes but not AF cells. Chondrocytes were distinguished from NP and AF cells with a specific binding of LTA and PNA lectins to chondrocytes. Each tissue showed a unique CS composition with a distinct switch in sulfation pattern in AF and NP tissues upon disc maturity while cartilage maintained the same sulfation pattern over time. In conclusion, distinct glycoprofiles for cell and tissue-types across age groups were identified in addition to altered CS composition and sulfation patterns for tissue types upon maturity.
Collapse
|
41
|
Thorpe AA, Binch AL, Creemers LB, Sammon C, Le Maitre CL. Nucleus pulposus phenotypic markers to determine stem cell differentiation: fact or fiction? Oncotarget 2016; 7:2189-200. [PMID: 26735178 PMCID: PMC4823028 DOI: 10.18632/oncotarget.6782] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Progress in mesenchymal stem cell (MSC) based therapies for nucleus pulposus (NP) regeneration are hampered by a lack of understanding and consensus of the normal NP cell phenotype. Despite the recent consensus paper on NP markers, there is still a need to further validate proposed markers. This study aimed to determine whether an NP phenotypic profile could be identified within a large population of mature NP samples.qRT-PCR was conducted to assess mRNA expression of 13 genes within human non-degenerate articular chondrocytes (AC) (n=10) and NP cells extracted from patients across a spectrum of histological degeneration grades (n=71). qRT-PCR results were used to select NP marker candidates for protein expression analysis.Differential expression at mRNA between AC and non-degenerate NP cells was only observed for Paired Box Protein 1 (PAX1) and Forkhead box F1 (FOXF1). In contrast no other previously suggested markers displayed differential expression between non-degenerate NP and AC at mRNA level. PAX1 and FOXF1 protein expression was significantly higher in the NP compared to annulus fibrosus (AF), cartilaginous endplate (CEP) and AC. In contrast Laminin-5 (LAM-332), Keratin-19 (KRT-19) and Hypoxia Inducible Factor 1 alpha (HIF1α) showed no differential expression in NP cells compared with AC cells.A marker which exclusively differentiates NP cells from AF and AC cells remains to be identified, raising the question: is the NP a heterogeneous population of cells? Or does the natural biological variation during IVD development, degeneration state and even the life cycle of cells make finding one definitive marker impossible?
Collapse
Affiliation(s)
- Abbey A. Thorpe
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Abbie L.A. Binch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | | |
Collapse
|
42
|
Gene Expression Profiling Identifies Interferon Signalling Molecules and IGFBP3 in Human Degenerative Annulus Fibrosus. Sci Rep 2015; 5:15662. [PMID: 26489762 PMCID: PMC4614807 DOI: 10.1038/srep15662] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023] Open
Abstract
Low back pain is a major cause of disability especially for people between 20 and 50 years of age. As a costly healthcare problem, it imposes a serious socio-economic burden. Current surgical therapies fail to replace the normal disc in facilitating spinal movements and absorbing load. The focus of regenerative medicine is on identifying biomarkers and signalling pathways to improve our understanding about cascades of disc degeneration and allow for the design of specific therapies. We hypothesized that comparing microarray profiles from degenerative and non-degenerative discs will lead to the identification of dysregulated signalling and pathophysiological targets. Microarray data sets were generated from human annulus fibrosus cells and analysed using IPA ingenuity pathway analysis. Gene expression values were validated by qRT-PCR, and respective proteins were identified by immunohistochemistry. Microarray analysis revealed 238 differentially expressed genes in the degenerative annulus fibrosus. Seventeen of the dysregulated molecular markers showed log2-fold changes greater than ±1.5. Various dysregulated cellular functions, including cell proliferation and inflammatory response, were identified. The most significant canonical pathway induced in degenerative annulus fibrosus was found to be the interferon pathway. This study indicates interferon-alpha signalling pathway activation with IFIT3 and IGFBP3 up-regulation, which may affect cellular function in human degenerative disc.
Collapse
|
43
|
Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2015; 99:69-80. [PMID: 26384579 DOI: 10.1016/j.ymeth.2015.09.015] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/10/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023] Open
Abstract
Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future.
Collapse
|
44
|
Chen S, Hu ZJ, Zhou ZJ, Lin XF, Zhao FD, Ma JJ, Zhang JF, Wang JY, Qin A, Fan SW. Evaluation of 12 Novel Molecular Markers for Degenerated Nucleus Pulposus in a Chinese Population. Spine (Phila Pa 1976) 2015; 40:1252-60. [PMID: 25893345 DOI: 10.1097/brs.0000000000000929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A transcriptional expression assessment of human samples. OBJECTIVE To evaluate 12 new candidate nucleus pulposus (NP) markers in degenerative disc disease in a Chinese population. SUMMARY OF BACKGROUND DATA Disc degeneration is a major contributor of low back pain. However, no specific and reliable markers of degeneration of NP are available. METHODS Specimens of NP were collected from 81 patients and grouped into the degenerated disc group (undergoing discectomy and fusion with significant signs of disc degeneration) and the trauma control group (undergoing anterior vertebral body and disc excision and fusion without signs of disc degeneration). Lumbar spine magnetic resonance imaging, hematoxylin-eosin staining, and safranin O staining of sections of NP tissues were conducted to evaluate the severity of the disc degeneration in all samples. Quantitative reverse transcription polymerase chain reaction was performed to investigate the levels of mRNA expression of these genes, as well as those of aggrecan, type II collagen, and SRY-box 9 (SOX-9). Degenerated samples were also divided into groups according to Pfirrmann grading system to elucidate the association of severity of degeneration and gene transcriptional levels. We also tested the relationship between mRNA levels of these genes and clinical characteristics such as hypertension and diabetes mellitus. RESULTS We demonstrated that 11 of the 12 candidates showed significant differential expression in degenerated discs. Changes in the expression of these 11 genes were determined to be risk factors in degenerative disc diseases. The expression of neurochondrin (NCDN), keratin 8 (KRT8), and matrix Gla protein (MGP) even showed significant changes among subgroups of patients with degenerative disc disease stratified according to the Pfirrmann grading system. The expression of keratin 18 (KRT18), cadherin 2 (CDH2), synaptosomal-associated protein 25 (SNAP25), KRT8, and NCDN was significantly decreased in patients with hypertension. In contrast, the expression of MGP and cartilage oligomeric matrix protein was significantly upregulated in patients with diabetes mellitus. CONCLUSION Overall, we demonstrated the clinical utility of 11 novel NP markers for degenerative disc disease. Among them, the expression of NCDN, KRT8, and MGP may indicate the severity of disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Shuai Chen
- *Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China †Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China; and ‡Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chan WCW, Au TYK, Tam V, Cheah KSE, Chan D. Coming together is a beginning: the making of an intervertebral disc. ACTA ACUST UNITED AC 2015; 102:83-100. [PMID: 24677725 DOI: 10.1002/bdrc.21061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/27/2014] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a complex fibrocartilaginous structure located between the vertebral bodies that allows for movement and acts as a shock absorber in our spine for daily activities. It is composed of three components: the nucleus pulposus (NP), annulus fibrosus, and cartilaginous endplate. The characteristics of these cells are different, as they produce specific extracellular matrix (ECM) for tissue function and the niche in supporting the differentiation status of the cells in the IVD. Furthermore, cell heterogeneities exist in each compartment. The cells and the supporting ECM change as we age, leading to degenerative outcomes that often lead to pathological symptoms such as back pain and sciatica. There are speculations as to the potential of cell therapy or the use of tissue engineering as treatments. However, the nature of the cells present in the IVD that support tissue function is not clear. This review looks at the origin of cells in the making of an IVD, from the earliest stages of embryogenesis in the formation of the notochord, and its role as a signaling center, guiding the formation of spine, and in its journey to become the NP at the center of the IVD. While our current understanding of the molecular signatures of IVD cells is still limited, the field is moving fast and the potential is enormous as we begin to understand the progenitor and differentiated cells present, their molecular signatures, and signals that we could harness in directing the appropriate in vitro and in vivo cellular responses in our quest to regain or maintain a healthy IVD as we age.
Collapse
Affiliation(s)
- Wilson C W Chan
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
46
|
Sakai D, Grad S. Advancing the cellular and molecular therapy for intervertebral disc disease. Adv Drug Deliv Rev 2015; 84:159-71. [PMID: 24993611 DOI: 10.1016/j.addr.2014.06.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/07/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Abstract
The healthy intervertebral disc (IVD) fulfils the essential function of load absorption, while maintaining multi-axial flexibility of the spine. The interrelated tissues of the IVD, the annulus fibrosus, the nucleus pulposus, and the cartilaginous endplate, are characterised by their specific niche, implying avascularity, hypoxia, acidic environment, low nutrition, and low cellularity. Anabolic and catabolic factors balance a slow physiological turnover of extracellular matrix synthesis and breakdown. Deviations in mechanical load, nutrient supply, cellular activity, matrix composition and metabolism may initiate a cascade ultimately leading to tissue dehydration, fibrosis, nerve and vessel ingrowth, disc height loss and disc herniation. Spinal instability, inflammation and neural sensitisation are sources of back pain, a worldwide leading burden that is challenging to cure. In this review, advances in cell and molecular therapy, including mobilisation and activation of endogenous progenitor cells, progenitor cell homing, and targeted delivery of cells, genes, or bioactive factors are discussed.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland.
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland.
| |
Collapse
|
47
|
Current trends in biologics delivery to restore intervertebral disc anabolism. Adv Drug Deliv Rev 2015; 84:146-58. [PMID: 25174310 DOI: 10.1016/j.addr.2014.08.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/31/2014] [Accepted: 08/20/2014] [Indexed: 12/30/2022]
Abstract
Low back pain is generally attributed to intervertebral disc (IVD) degeneration. This is a multifactorial disease induced by genetic and environmental factors and that progresses with aging. Disc degeneration is characterized by a limited ability of IVD cells to produce functional matrix while producing abnormal amounts of matrix-degrading enzymes. The prolonged imbalance between anabolism and catabolism in degenerative discs alters their composition and hydration. In turn, this results in increased angiogenesis and the loss of the disc's ability to maintain its aneural condition. Inflammation in the IVD, in particular the presence of pro-inflammatory cytokines, was found to favor innervation and also sensitization of the nociceptive pathways, thereby exacerbating degenerative symptoms. In this review, we discuss anti-inflammatory approaches to encounter disc catabolism, potential treatments to lower discogenic pain and pro-anabolic approaches in the form of protein delivery, gene therapy and cell delivery, to trigger regeneration in the IVD.
Collapse
|
48
|
Risbud MV, Schoepflin ZR, Mwale F, Kandel RA, Grad S, Iatridis JC, Sakai D, Hoyland JA. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting. J Orthop Res 2015; 33:283-93. [PMID: 25411088 PMCID: PMC4399824 DOI: 10.1002/jor.22789] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 02/04/2023]
Abstract
Low back pain is a major physical and socioeconomic problem. Degeneration of the intervertebral disc and especially that of nucleus pulposus (NP) has been linked to low back pain. In spite of much research focusing on the NP, consensus among the research community is lacking in defining the NP cell phenotype. A consensus agreement will allow easier distinguishing of NP cells from annulus fibrosus (AF) cells and endplate chondrocytes, a better gauge of therapeutic success, and a better guidance of tissue-engineering-based regenerative strategies that attempt to replace lost NP tissue. Most importantly, a clear definition will further the understanding of physiology and function of NP cells, ultimately driving development of novel cell-based therapeutic modalities. The Spine Research Interest Group at the 2014 Annual ORS Meeting in New Orleans convened with the task of compiling a working definition of the NP cell phenotype with hope that a consensus statement will propel disc research forward into the future. Based on evaluation of recent studies describing characteristic NP markers and their physiologic relevance, we make the recommendation of the following healthy NP phenotypic markers: stabilized expression of HIF-1α, GLUT-1, aggrecan/collagen II ratio >20, Shh, Brachyury, KRT18/19, CA12, and CD24.
Collapse
Affiliation(s)
- Makarand V. Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia PA
| | - Zachary R. Schoepflin
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia PA
| | - Fackson Mwale
- Division of Orthopaedic Surgery, McGill University, Lady Davis Institute for Medical Research, Montreal, Quebec H3T 1E2, Canada
| | - Rita A. Kandel
- Department of Pathology and Laboratory Medicine, Lunenfeld Tannenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - James C. Iatridis
- Department of Orthopaedics and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Judith A. Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
49
|
Omlor GW, Nerlich AG, Tirlapur UK, Urban JP, Guehring T. Loss of notochordal cell phenotype in 3D-cell cultures: implications for disc physiology and disc repair. Arch Orthop Trauma Surg 2014; 134:1673-81. [PMID: 25348151 DOI: 10.1007/s00402-014-2097-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Embryonic notochordal disc nucleus cells (NC) have been identified to protect disc tissue against disc degeneration but in human beings NC phenotype gets lost with aging and the pathophysiological mechanisms are poorly understood. NC may stimulate other cells via soluble factors, and NC-conditioned medium can be used to stimulate matrix production of other disc cells and mesenchymal stem cells and thus may be of special interest for biological disc repair. As this stimulatory effect is associated with the NC phenotype, we investigated how cell morphology and gene-expression of the NC phenotype changes with time in 3D-cell culture. MATERIALS AND METHODS NC and inner annulus chondrocyte-like cells (CLC) from immature pigtails (freshly isolated cells/tissue, 3D-alginate beads, 3D-clusters) were cultured for up to 16 days under normoxia and hypoxia. Protein-expression was analysed by immunohistology and gene-expression analysis was carried out on freshly isolated cells and cultured cells. Cell morphology and proliferation were analysed by two-photon-laser-microscopy. RESULTS Two-photon-laser-microscopy showed a homogenous and small CLC population in the inner annulus, which differed from the large vacuole-containing NC in the nucleus. Immunohistology found 93 % KRT8 positive cells in the nucleus and intracellular and pericellular Col2, IL6, and IL12 staining while CLC were KRT8 negative. Freshly isolated NC showed significantly higher KRT8 and CAIII but lower Col2 gene-expression than CLC. NC in 3D-cultures demonstrated significant size reduction and loss of vacuoles with culture time, all indicating a loss of the characteristic NC morphology. Hypoxia reduced the rate of decrease in NC size and vacuoles. Gene-expression of KRT8 and CAIII in NC fell significantly early in culture while Col2 did not decrease significantly within the culture period. In CLC, KRT8 and CAIII gene-expression was low and did not change noticeably in culture, whereas Col2 expression fell with time in culture. CONCLUSIONS 3D-culture caused a rapid loss of NC phenotype towards a CLC phenotype with disappearance of vacuoles, reduced cell size, increased proliferation, and gene-expression changes. These findings may be related to NC nutritional demands and support the latest hypothesis of NC maturation into CLC opposing the idea that NC get lost in human discs by cell death or apoptosis to be replaced by CLC from the inner annulus.
Collapse
Affiliation(s)
- G W Omlor
- Department of Orthopaedic Surgery and Trauma Surgery, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
50
|
Li Z, Kaplan KM, Wertzel A, Peroglio M, Amit B, Alini M, Grad S, Yayon A. Biomimetic fibrin–hyaluronan hydrogels for nucleus pulposus regeneration. Regen Med 2014; 9:309-26. [DOI: 10.2217/rme.14.5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: To develop a biomimetic polymeric injectable hydrogel that can support nucleus pulposus (NP) regeneration. Materials & methods: Natural polymer-based hydrogels were synthesized using fibrinogen (FBG) and hyaluronic acid (HA), conjugated by a novel two-step procedure. Bovine NP cells were cultured in FBG–HA conjugate-based 3D beads in vitro and in a nucleotomized organ culture model. Results: FBG–HA conjugate-based hydrogels prepared with 235 KDa HA at a FBG/HA w/w ratio of 17:1 showed superior gel stability and mechanical properties and markedly increased glycosaminoglycan synthesis compared with a FBG/HA mixture-based hydrogels or fibrin gels. Gene-expression levels of NP markers were maintained in vitro. In organ culture, NP cells seeded in FBG–HA conjugate-based hydrogels showed better integration with native NP tissue compared with fibrin gels. Moreover, FBG–HA conjugate-based hydrogels restored compressive stiffness and disc height after nucleotomy under dynamic load. Conclusion: Specific FBG–HA conjugate-based hydrogels may be suitable as injectable materials for minimally invasive, biological NP regeneration.
Collapse
Affiliation(s)
- Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | | | | | | | - Boaz Amit
- ProCore Biomed Ltd, Weizman Science Park, Nes Ziona, Israel
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Avner Yayon
- ProCore Biomed Ltd, Weizman Science Park, Nes Ziona, Israel
| |
Collapse
|