1
|
Kim H, Choi MR, Jeon SH, Jang Y, Yang YD. Pathophysiological Roles of Ion Channels in Epidermal Cells, Immune Cells, and Sensory Neurons in Psoriasis. Int J Mol Sci 2024; 25:2756. [PMID: 38474002 DOI: 10.3390/ijms25052756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the rapid abnormal growth of skin cells in the epidermis, driven by an overactive immune system. Consequently, a complex interplay among epidermal cells, immune cells, and sensory neurons contributes to the development and progression of psoriasis. In these cellular contexts, various ion channels, such as acetylcholine receptors, TRP channels, Ca2+ release-activated channels, chloride channels, and potassium channels, each serve specific functions to maintain the homeostasis of the skin. The dysregulation of ion channels plays a major role in the pathophysiology of psoriasis, affecting various aspects of epidermal cells, immune responses, and sensory neuron signaling. Impaired function of ion channels can lead to altered calcium signaling, inflammation, proliferation, and sensory signaling, all of which are central features of psoriasis. This overview summarizes the pathophysiological roles of ion channels in epidermal cells, immune cells, and sensory neurons during early and late psoriatic processes, thereby contributing to a deeper understanding of ion channel involvement in the interplay of psoriasis and making a crucial advance toward more precise and personalized approaches for psoriasis treatment.
Collapse
Affiliation(s)
- Hyungsup Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seong Ho Jeon
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Republic of Korea
| | - Yongwoo Jang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Young Duk Yang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Republic of Korea
| |
Collapse
|
2
|
Di Battista M, Wasson CW, Alcacer-Pitarch B, Del Galdo F. Autonomic dysfunction in systemic sclerosis: A scoping review. Semin Arthritis Rheum 2023; 63:152268. [PMID: 37776665 DOI: 10.1016/j.semarthrit.2023.152268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Over the years several lines of evidence have implied a pathological involvement of autonomic nervous system (ANS) in systemic sclerosis (SSc). However, the relationship between autonomic dysfunction and SSc is not yet fully understood. The aims of this scoping review were to map the research done in this field and inform future research to investigate pathogenic hypotheses of ANS involvement. METHODS We performed a scoping review of publications collected through a literature search of MEDLINE and Web of Science databases, looking for dysautonomia in SSc. We included original data from papers that addressed ANS involvement in SSc regarding pathogenesis, clinical presentation and diagnostic tools. RESULTS 467 papers were identified, 109 studies were selected to be included in the present review, reporting data from a total of 2742 SSc patients. Cardiovascular system was the most extensively investigated, assessing heart rate variability with 24 h HolterECG or Ewing's autonomic tests. Important signs of dysautonomia were also found in digital vasculopathy, gastrointestinal system and SSc skin, assessed both with non-invasive techniques and histologically. Research hypotheses mainly regarding the relationship between sympathetic system - ischemia and the role of neurotrophins were then developed and discussed. CONCLUSION We described the currently available evidence on pathogenesis, clinical presentation and diagnostic assessment of dysautonomia in SSc patients. A strong influence of ANS deregulation on SSc clearly emerges from the literature. Future research is warranted to clarify the mechanisms and timing of autonomic dysfunction in SSc.
Collapse
Affiliation(s)
- Marco Di Battista
- Rheumatology Unit, University of Pisa, Pisa, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Christopher W Wasson
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Begonya Alcacer-Pitarch
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, UK.
| | - Francesco Del Galdo
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, UK
| |
Collapse
|
3
|
Stegemann A, Raker V, Del Rey A, Steinbrink K, Böhm M. Expression of the α7 Nicotinic Acetylcholine Receptor Is Critically Required for the Antifibrotic Effect of PHA-543613 on Skin Fibrosis. Neuroendocrinology 2022; 112:446-456. [PMID: 34120115 DOI: 10.1159/000517772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Targeting the α7 nicotinic acetylcholine receptor (α7nAChR) has recently been suggested as a potential new treatment for fibrotic skin diseases. Here, we performed a genetic and pharmacologic approach to clarify the role of this receptor in the bleomycin (BLM) mouse model of skin fibrosis using α7nAChR KO mice. METHODS We analyzed the expression of extracellular matrix (ECM) components in murine skin using quantitative RT-PCR, pepsin digestion/SDS-PAGE of proteins and performed hydroxyproline assays as well as histological/immunohistochemical staining of skin sections. To identity the target cells of the α7nAChR agonist PHA-543613, we used murine dermal fibroblasts (MDF). We tested their response to the profibrotic cytokine transforming growth factor-β1 (TGF-β1) and utilized gene silencing to elucidate the role of the α7nAChR. RESULTS We confirmed our previous findings on C3H/HeJ mice and detected a suppressive effect of PHA-543613 on BLM-induced skin fibrosis in the mouse strain C57BL/6J. This antifibrotic effect of PHA-543613 was abrogated in α7nAChR-KO mice. Interestingly, α7nAChR-KO animals exhibited a basal profibrotic signature by higher RNA expression of ECM genes and hydroxyproline content than WT mice. In WT MDF, PHA-543613 suppressed ECM gene expression induced by TGF-β1. Gene silencing of α7nAChR by small interfering RNA neutralized the effects of PHA-543613 on TGF-β1-mediated ECM gene expression. CONCLUSION In summary, we have identified the α7nAChR as the essential mediator of the antifibrotic effect of PHA-543613. MDF are directly targeted by PHA-543613 to suppress collagen synthesis. Our findings emphasize therapeutic exploitation of α7nAChR receptor agonists in fibrotic skin diseases.
Collapse
Affiliation(s)
- Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany
| | - Verena Raker
- Department of Dermatology, University of Münster, Münster, Germany
- Department of Dermatology, University of Mainz, Mainz, Germany
| | - Adriana Del Rey
- Institute for Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | | | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Lv J, Ji X, Li Z, Hao H. The role of the cholinergic anti-inflammatory pathway in autoimmune rheumatic diseases. Scand J Immunol 2021; 94:e13092. [PMID: 34780075 DOI: 10.1111/sji.13092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is a classic neuroimmune pathway, consisting of the vagus nerve, acetylcholine (ACh)-the pivotal neurotransmitter of the vagus nerve-and its receptors. This pathway can activate and regulate the activities of immune cells, inhibit cell proliferation and differentiation, as well as suppress cytokine release, thereby playing an anti-inflammatory role, and widely involved in the occurrence and development of various diseases; recent studies have demonstrated that the CAP may be a new target for the treatment of autoimmune rheumatic diseases. In this review, we will summarize the latest progress with the view of figuring out the role of the cholinergic pathway and how it interacts with inflammatory reactions in several autoimmune rheumatic diseases, and many advances are results from a wide range of experiments performed in vitro and in vivo.
Collapse
Affiliation(s)
- Jiaqi Lv
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.,Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, China
| | - Xiaoxiao Ji
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhen Li
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
5
|
Shen SY, Ren LQ, Chen HD, Zhu HF, Zhou DF, Zhang B, Tan XQ, Xie YH. Geniposide protects pulmonary arterial smooth muscle cells from lipopolysaccharide-induced injury via α7nAchR-mediated TLR-4/MyD88 signaling. Exp Ther Med 2021; 22:1234. [PMID: 34539830 PMCID: PMC8438699 DOI: 10.3892/etm.2021.10668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Geniposide is a bioactive iridoid glucoside derived from Gardenia jasminoides that has proven anti-inflammatory effects against acute lung injury. The aim of this study was to determine whether geniposide could protect pulmonary arterial smooth muscle cells (PASMCs) from lipopolysaccharide (LPS)-induced injury and to explore the participation of α7 nicotinic acetylcholine receptor (α7nAChR), which was previously reported to suppress pro-inflammatory cytokine production in LPS-stimulated macrophages. In the present study, rat PASMCs were isolated and stimulated using LPS. The effect of geniposide on LPS-induced PASMC injury was then explored. Geniposide exerted anti-apoptotic and anti-inflammatory effects on LPS-treated PASMCs, as demonstrated by the downregulation of pro-apoptotic proteins and pro-inflammatory cytokines, respectively. Furthermore, the α7nAChR agonist PNU282987 accentuated the protective effect of geniposide against LPS-induced injury in PASMCs by inhibiting toll-like receptor-4/myeloid differentiation primary response 88 (TLR-4/MyD88) signaling and downregulating nuclear factor (NF)-κB expression. Conversely, methyllycaconitine, an inhibitor of α7nAChR, attenuated the effects of geniposide. These findings collectively suggested that in conjunction with geniposide, the activation of α7nAChR may contribute to further mitigating LPS-induced PASMC apoptosis and inflammation. In addition, the underlying mechanisms critically involve the NF-κB/MyD88 signaling axis. These results may provide novel insights into the treatment and management of lung diseases via geniposide administration.
Collapse
Affiliation(s)
- San-Ying Shen
- Department of Respiratory Medicine, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Li-Quan Ren
- Department of Medical Services, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Hui-Dong Chen
- Department of Respiratory Medicine, Wuhan Jinyintan Hospital, Wuhan, Hubei 430023, P.R. China
| | - Hong-Fei Zhu
- Hubei Research Institute of Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430072, P.R. China
| | - Deng-Feng Zhou
- Department of Respiratory Medicine, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Bo Zhang
- Department of Respiratory Medicine, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Xiao-Qin Tan
- Department of Respiratory Medicine, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Yong-Hua Xie
- Department of Traditional Chinese Medicine, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| |
Collapse
|
6
|
Hajiasgharzadeh K, Khabbazi A, Mokhtarzadeh A, Baghbanzadeh A, Asadzadeh Z, Adlravan E, Baradaran B. Cholinergic anti-inflammatory pathway and connective tissue diseases. Inflammopharmacology 2021; 29:975-986. [PMID: 34125373 DOI: 10.1007/s10787-021-00812-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Connective tissue diseases (CTDs) consist of an extensive range of heterogeneous medical conditions, which are caused by immune-mediated chronic inflammation and influences the various connective tissues of the body. They include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis, Sjögren's syndrome, Behcet's disease, and many other autoimmune CTDs. To date, several anti-inflammatory approaches have been developed to reduce the severity of inflammation or its subsequent organ manifestations. As a logical mechanism to harnesses the undesired inflammation, some studies investigated the role of the intrinsic cholinergic anti-inflammatory pathway (CAP) in the modulation of chronic inflammation. Many different experimental and clinical models have been developed to evaluate the therapeutic significance of the CAP in CTDs. On the other hand, an issue that is less emphasized in this regard is the presence of autonomic neuropathy in CTDs, which influences the efficiency of CAP in such clinical settings. This condition occurs during CTDs and is a well-known complication of patients suffering from them. The advantages and limitations of CAP in the control of inflammatory responses and its possible therapeutic benefits in the treatment of CTDs are the main subjects of the current study. Therefore, this narrative review article is provided based on the recent findings of the complicated role of CAP in CTDs which were retrieved by searching Science Direct, PubMed, Google Scholar, and Web of Science. It seems that delineating the complex influences of CAP would be of great interest in designing novel surgical or pharmacological therapeutic strategies for CTDs therapy.
Collapse
Affiliation(s)
- Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Elham Adlravan
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran. .,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Böhm M. In search of the needle in a haystack: Finding a suitable serum biomarker for monitoring disease activity of systemic sclerosis. Exp Dermatol 2021; 30:880-886. [PMID: 34121239 DOI: 10.1111/exd.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Pourheydar B, Samadi M, Habibi P, Nikibakhsh AA, Naderi R. Renoprotective effects of tropisetron through regulation of the TGF-β1, p53 and matrix metalloproteinases in streptozotocin-induced diabetic rats. Chem Biol Interact 2021; 335:109332. [PMID: 33387473 DOI: 10.1016/j.cbi.2020.109332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 02/02/2023]
Abstract
Renal fibrosis is a major cause of renal failure in diabetic nephropathy. Tropisetron is an antagonist of the 5HT3 receptor that exhibits anti-fibrosis effects. The present research aimed to investigate the protected role of tropisetron against renal fibrosis of diabetic nephropathy and its molecular mechanisms. For this purpose, male Wistar rats were allocated into 5 groups of control, tropisetron, diabetes, tropisetron + diabetes, and glibenclamide + diabetes (n = 7). After induction of type 1 diabetes with a single injection of STZ, tropisetron (3 mg/kg) and glibenclamide (1 mg/kg) were given to the rats daily by intraperitoneal injection for 2 weeks. The obtained data revealed that the treatment of diabetic rats with tropisetron led to a significant decrease in the elevated blood glucose, serum cystatin c, and urinary total protein (UTP) level, indicating the improvement of the impaired kidney function. Moreover, the results of Masson's trichrome staining showed that fibrosis attenuated in the kidney of diabetic rats after tropisetron treatment. RT-PCR and Western blotting revealed that TGF-β1, the apoptotic mediator, and p53 were considerably declined in the kidney of diabetic rats in response to tropisetron treatment. Meanwhile, the expressions of matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase-2 (MMP-2) were increased. These notable effects were equipotent with glibenclamide, as a standard drug, suggesting that tropisetron can alleviate renal fibrosis in diabetic nephropathy. Our data indicate that tropisetron could improve kidney function and attenuate renal fibrosis through regulation of TGF-β1, p53, and expression of extracellular matrix metalloproteinases.
Collapse
Affiliation(s)
- Bagher Pourheydar
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parisa Habibi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ali Nikibakhsh
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Böhm M, Paus R. Towards a renaissance of dermatoendocrinology: Selected current frontiers. Exp Dermatol 2020; 29:786-789. [PMID: 33319935 DOI: 10.1111/exd.14177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester and NIHR Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
10
|
Ramot Y, Böhm M, Paus R. Translational Neuroendocrinology of Human Skin: Concepts and Perspectives. Trends Mol Med 2020; 27:60-74. [PMID: 32981840 DOI: 10.1016/j.molmed.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
Human skin responds to numerous neurohormones, neuropeptides, and neurotransmitters that reach it via the vasculature or skin nerves, and/or are generated intracutaneously, thus acting in a para- and autocrine manner. This review focuses on how neurohormones impact on human skin physiology and pathology. We highlight basic concepts, major open questions, and translational research perspectives in cutaneous neuroendocrinology and argue that greater emphasis on neuroendocrine human skin research will foster the development of novel dermatological therapies. Furthermore, human skin and its appendages can be used as highly accessible and clinically relevant model systems for probing nonclassical, ancestral neurohormone functions. This calls for close interdisciplinary collaboration between dermatologists, skin biologists, neuroendocrinologists, and neuropharmacologists.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Monasterium Laboratory, Münster, Germany; Centre for Dermatology Research, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Stegemann A, Böhm M. Targeting the α7 nicotinic acetylcholine receptor-A novel road towards the future treatment of skin diseases. Exp Dermatol 2020; 29:924-931. [PMID: 32780438 DOI: 10.1111/exd.14173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the superfamily of neurotransmitter-gated ion channels. The natural ligand for nAChRs is the endogenous neurotransmitter acetylcholine. Among the nAChRs is the α7nAChR. It is not only expressed by neural tissues but also in the skin. A number of different resident cutaneous cell types including epidermal keratinocytes, sebocytes and dermal fibroblasts express functional α7nAChR. Moreover, cells of the immune system such as lymphocytes, macrophages and monocytes, playing an important role in skin homeostasis, also express α7nAChR. Translational research focusing on the exploitation of the α7nAChR in dermatology has revealed that this neuroendocrine receptor could be promising target for the treatment of inflammatory skin diseases. For example, α7nAChR agonists can counteract transforming growth factor-β1-mediated responses in dermal fibroblasts, key effector cells in scleroderma. In accordance with this α7nAChR, agonists are effective in both inflammation and non-inflammation-driven models of experimentally induced skin fibrosis. Moreover, α7nAChR agonists can modulate expression of proinflammatory cytokines in epidermal keratinocytes that are crucially involved in the pathogenesis of psoriasis and other inflammatory skin diseases. Finally, the capability of α7nAChR agonists to suppress ultraviolet light A/B-induced responses, for example production of proinflammatory cytokines and oxidative stress, the latter crucially involved in dermal photoageing, points to a potential of such agents in the prevention of extrinsic skin ageing. Therefore, emphasis on translational research targeting the α7nAChR in skin may lead to the development of new treatment and prevention modalities against fibrosclerotic skin diseases, psoriasis vulgaris, atopic dermatitis, acne, photodermatoses and extrinsic skin ageing.
Collapse
Affiliation(s)
| | - Markus Böhm
- Dept. of Dermatology, University of Münster, Germany
| |
Collapse
|
12
|
Juza R, Vlcek P, Mezeiova E, Musilek K, Soukup O, Korabecny J. Recent advances with 5-HT 3 modulators for neuropsychiatric and gastrointestinal disorders. Med Res Rev 2020; 40:1593-1678. [PMID: 32115745 DOI: 10.1002/med.21666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptophan [5-HT]) is a biologically active amine expressed in platelets, in gastrointestinal (GI) cells and, to a lesser extent, in the central nervous system (CNS). This biogenic compound acts through the activation of seven 5-HT receptors (5-HT1-7 Rs). The 5-HT3 R is a ligand-gated ion channel belonging to the Cys-loop receptor family. There is a wide variety of 5-HT3 R modulators, but only receptor antagonists (known as setrons) have been used clinically for chemotherapy-induced nausea and vomiting and irritable bowel syndrome treatment. However, since the discovery of the setrons in the mid-1980s, a large number of studies have been published exploring new potential applications due their potency in the CNS and mild side effects. The results of these studies have revealed new potential applications, including the treatment of neuropsychiatric disorders such as schizophrenia, depression, anxiety, and drug abuse. In this review, we provide information related to therapeutic potential of 5-HT3 R antagonists on GI and neuropsychiatric disorders. The major attention is paid to the structure, function, and pharmacology of novel 5-HT3 R modulators developed over the past 10 years.
Collapse
Affiliation(s)
- Radomir Juza
- National Institute of Mental Health, Klecany, Czech Republic
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Premysl Vlcek
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- National Institute of Mental Health, Klecany, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Soeberdt M, Kilic A, Abels C. Current and emerging treatments targeting the neuroendocrine system for disorders of the skin and its appendages. Exp Dermatol 2020; 29:801-813. [DOI: 10.1111/exd.14145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ana Kilic
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| |
Collapse
|
14
|
Stegemann A, Flis D, Ziolkowski W, Distler JHW, Steinbrink K, Böhm M. The α7 Nicotinic Acetylcholine Receptor: A Promising Target for the Treatment of Fibrotic Skin Disorders. J Invest Dermatol 2020; 140:2371-2379. [PMID: 32335129 DOI: 10.1016/j.jid.2020.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Targeting neuroendocrine receptors can be considered as another interesting approach to treating fibrotic disorders. Previously, we could demonstrate that tropisetron, a classical serotonin receptor blocker, can modulate collagen synthesis and acts in vitro through the α7 nicotinic acetylcholine receptor (α7nAchR). Here, we used a pharmacologic approach with specific α7nAchR agonists to validate this hypothesis. PHA-543613, an α7nAchR-specific agonist, not only prevented but also reversed established skin fibrosis of mice injected with bleomycin. Interestingly, agonistic stimulation of α7nAchR also attenuated experimental skin fibrosis in the non-inflammation driven adenovirus coding for TGFβ receptor Iact mouse model, indicating fibroblast-mediated and not only anti-inflammatory effects of such agents. The fibroblast-mediated effects were confirmed in vitro using human dermal fibroblasts, in which the α7nAchR-specific agonists strongly reduced the impact of TGFβ1-mediated expression on collagen and myofibroblast marker expression. These actions were linked to modulation of the redox-sensitive transcription factor JunB and impairment of the mitochondrial respiratory system. Our results indicate that pharmacologic stimulation of the α7nAchR could be a promising target for treatment of patients with skin fibrotic diseases. Moreover, our results suggest a mechanistic axis of collagen synthesis regulation through the mitochondrial respiratory system.
Collapse
Affiliation(s)
- Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany.
| | - Damian Flis
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Wieslaw Ziolkowski
- Department of Rehabilitation Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jörg H W Distler
- Institute for Rheumatology and Immunology, University of Erlangen, Erlangen, Germany
| | | | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
15
|
Mesdom P, Colle R, Lebigot E, Trabado S, Deflesselle E, Fève B, Becquemont L, Corruble E, Verstuyft C. Human Dermal Fibroblast: A Promising Cellular Model to Study Biological Mechanisms of Major Depression and Antidepressant Drug Response. Curr Neuropharmacol 2020; 18:301-318. [PMID: 31631822 PMCID: PMC7327943 DOI: 10.2174/1570159x17666191021141057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human dermal fibroblasts (HDF) can be used as a cellular model relatively easily and without genetic engineering. Therefore, HDF represent an interesting tool to study several human diseases including psychiatric disorders. Despite major depressive disorder (MDD) being the second cause of disability in the world, the efficacy of antidepressant drug (AD) treatment is not sufficient and the underlying mechanisms of MDD and the mechanisms of action of AD are poorly understood. OBJECTIVE The aim of this review is to highlight the potential of HDF in the study of cellular mechanisms involved in MDD pathophysiology and in the action of AD response. METHODS The first part is a systematic review following PRISMA guidelines on the use of HDF in MDD research. The second part reports the mechanisms and molecules both present in HDF and relevant regarding MDD pathophysiology and AD mechanisms of action. RESULTS HDFs from MDD patients have been investigated in a relatively small number of works and most of them focused on the adrenergic pathway and metabolism-related gene expression as compared to HDF from healthy controls. The second part listed an important number of papers demonstrating the presence of many molecular processes in HDF, involved in MDD and AD mechanisms of action. CONCLUSION The imbalance in the number of papers between the two parts highlights the great and still underused potential of HDF, which stands out as a very promising tool in our understanding of MDD and AD mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Céline Verstuyft
- Address correspondence to this author at the Laboratoire de Pharmacologie, Salle 416, Bâtiment Université, Hôpital du Kremlin Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; Tel: +33145213588; E-mail:
| |
Collapse
|
16
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
17
|
Rashidi M, Bazi A, Shiran MR, Bagheri A, Mehrabadi AR, Kalantar H, Ghafouri Z, Hosseini SM. Tropisetron attenuates tumor growth and progression in an experimental model of mouse lung cancer. J Cell Biochem 2019; 121:1610-1622. [PMID: 31535406 DOI: 10.1002/jcb.29395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022]
Abstract
The antineoplastic effects of 5-hydroxytryptamine (5-HT) receptor antagonists have been shown in previous studies. However, the exact underlying mechanisms mediating these antineoplastic effects are unclear. In the present study, we assessed the antineoplastic effects of tropisetron, a 5-HT receptor antagonist, in an experimental model of lung cancer in BALB/c mouse. Lewis lung carcinoma cell line was used to induce lung cancer. Mice were divided into four groups (n = 6) as follows: tumor-bearing mice + tropisetron (5 mg/kg intraperitoneally [IP]), tumor-bearing mice + tropisetron (10 mg/kg IP), tumor-bearing mice + saline, healthy mice + tropisetron (10 mg/kg). Tumor burden, interferon-γ (IFN-γ), interleukin (IL)-4, pathological response, Ki-67, and E-cadherin were assessed using enzyme-linked immunosorbent assay, and real-time polymerase chain reaction. Comet assay was used to assess DNA toxicity. Tropisetrone-treated animals (either 5 or 10 mg/kg) showed significantly lower tumor sizes at the day 24th after tumor induction. Tropisetron received animals also showed significantly higher levels of IFN-γ, E-cadherin, pathologic response, and necrotic cells compared to the saline-treated counterparts. In addition, the levels of IL-4, and Ki-67 were significantly lower in tropisetrone treated mice in comparison with control. Furthermore, tropisteron coadministration signifcantly reduced H2 O2 -induced DNA toxicity while treatment with tropisteron alone showed no adverse effect on DNA. Tropisetrone can be used as a potential antineoplastic drug in lung cancer. This agent can promote its antineoplastic effects in part through modulating inflammatory and proliferating markers.
Collapse
Affiliation(s)
- Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Molecular and Cell Biology Research Center, Faculty Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Bazi
- Department of Hematology, Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad R Shiran
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry-Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas R Mehrabadi
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hadi Kalantar
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Ghafouri
- Department of Clinical Biochemistry-Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sayed M Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI. Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Deliv Rev 2019; 146:37-59. [PMID: 30172924 DOI: 10.1016/j.addr.2018.08.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/08/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
Skin is the largest organ of the human body. Being the interface between the body and the outer environment, makes it susceptible to physical injury. To maintain life, nature has endowed skin with a fast healing response that invariably ends in the formation of scar at the wounded dermal area. In many cases, skin remodelling may be impaired, leading to local hypertrophic scars or keloids. One should also consider that the scarring process is part of the wound healing response, which always starts with inflammation. Thus, scarring can also be induced in the dermis, in the absence of an actual wound, during chronic inflammatory processes. Considering the significant portion of the population that is subject to abnormal scarring, this review critically discusses the state-of-the-art and upcoming therapies in skin scarring and fibrosis.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Geoffrey Hanley
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland.
| |
Collapse
|
19
|
Deng Y, Guo SL, Wei B, Gao XC, Zhou YC, Li JQ. Activation of Nicotinic Acetylcholine α7 Receptor Attenuates Progression of Monocrotaline-Induced Pulmonary Hypertension in Rats by Downregulating the NLRP3 Inflammasome. Front Pharmacol 2019; 10:128. [PMID: 30863307 PMCID: PMC6399137 DOI: 10.3389/fphar.2019.00128] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Inflammation and altered immunity contribute to the development of pulmonary arterial hypertension (PH). The alpha 7 nicotinic acetylcholine receptor (α7nAChR) possesses anti-inflammatory activities. The current study was performed to investigate the effects of a selective α7nAChR agonist, PNU-282987, on controlling a monocrotaline (MCT)-induced rat model of PH and explored the underlying mechanisms. Methods: Sprague-Dawley rats were injected with MCT and treated with PNU-282987 at the prevention (starting 1 week before MCT) and treatment (starting 2 weeks after MCT) settings. Four weeks after MCT injection, hemodynamic changes, right ventricular structure, and lung morphological features were assessed. Enzyme-linked immunosorbent assay, Western blot and qRT-PCR were performed to assess levels of inflammatory cytokines and NLRP3 (Nod-like receptor family pyrin domain-containing 3) inflammasome pathway in the rat lung tissues. In addition, the lung macrophage line NR8383 was used to confirm the in vivo data. Results: Monocrotaline injection produced PH in rats and downregulated α7nAChR mRNA and protein expression in rat lung tissues compared to sham controls. Pharmacological activation of α7nAChR by PNU-282987 therapy improved the rat survival rate, attenuated the development of PH as assessed by remodeling of pulmonary arterioles, reduced the right ventricular (RV) systolic pressure, and ameliorated the hypertrophy and fibrosis of the RV in rats with MCT-induced PH. The expression of TNF-α, IL-6, IL-1β, and IL-18 were downregulated in rat lung tissues, which implied that PNU-282987 therapy may help regulate inflammation. These protective effects involved the inhibition of the NLRP3 inflammasome. In vitro assays of cultured rat lung macrophages confirmed that the anti-inflammation effect of PNU-282987 therapy may contribute to the disturbance of NLRP3 inflammasome activation. Conclusion: Targeting α7nAChR with PNU-282987 could effectively prevent and treat PH with benefits for preventing ongoing inflammation in the lungs of rats with MCT-induced PH by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, The Cardiovascular Disease Institute, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Sheng-Lan Guo
- Department of Ultrasound, The Cardiovascular Disease Institute, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Bin Wei
- Department of Cardiology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Xing-Cui Gao
- Department of Cardiology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Ying-Chuan Zhou
- Department of Pathology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Jia-Quan Li
- The Experimental Center of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Stegemann A, Böhm M. Tropisetron via α7 nicotinic acetylcholine receptor suppresses tumor necrosis factor-α-mediated cell responses of human keratinocytes. Exp Dermatol 2019; 28:276-282. [DOI: 10.1111/exd.13883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Agatha Stegemann
- Department of Dermatology; University of Münster; Münster Germany
| | - Markus Böhm
- Department of Dermatology; University of Münster; Münster Germany
| |
Collapse
|
21
|
Mikawa S, Kondo M, Kaji N, Mihara T, Yoshitake R, Nakagawa T, Takamoto M, Nishimura R, Shimada S, Ozaki H, Hori M. Serotonin 3 receptor signaling regulates 5-fluorouracil-mediated apoptosis indirectly via TNF-α production by enhancing serotonin release from enterochromaffin cells. FASEB J 2018; 33:1669-1680. [PMID: 30207796 DOI: 10.1096/fj.201701200rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antagonists of the 5-hydroxytryptamine (serotonin) 3 receptor (5-HT3R) have anti-inflammatory and anti-apoptotic activities, but the detailed, underlying mechanisms are not well understood. We focused on anti-apoptotic activities via 5-HT3R signaling to clarify the underlying mechanisms. Mice were administered 5-fluorouracil (5-FU), which induced apoptosis in intestinal epithelial cells. Coadministration with 5-HT3R antagonists or agonists tended to decrease or increase the number of apoptotic cells, respectively. In serotonin 3A receptor (5-HT3AR) null (HTR3A-/-) mice, the number of apoptotic cells induced by 5-FU was decreased compared with that in wild-type (WT) mice. Bone marrow (BM) transplantation was performed to determine if BM-derived immune cells regulated 5-FU-induced apoptosis, but they were found to be unrelated to this process. Data from 5-HT3AR/enhanced green fluorescent protein reporter mice revealed that 50% of enterochromaffin (EC) cells expressed 5-HT3AR, but the number of apoptotic cells induced by 5-FU in the intestinal crypt organoids of HTR3A-/- mice was not altered compared with WT mice. In contrast, plasma 5-HT concentrations in WT mice but not in HTR3A-/- mice administered 5-FU were increased significantly. In conclusion, 5-HT3R signaling may enhance 5-HT release, possibly from EC cells intravascularly, or paracrine, resulting in increases in plasma 5-HT concentration, which in turn, enhances apoptotic activities induced by 5-FU.-Mikawa, S., Kondo, M., Kaji, N., Mihara, T., Yoshitake, R., Nakagawa, T., Takamoto, M., Nishimura, R., Shimada, S., Ozaki, H., Hori, M. Serotonin 3 receptor signaling regulates 5-fluorouracil-mediated apoptosis indirectly via TNF-α production by enhancing serotonin release from enterochromaffin cells.
Collapse
Affiliation(s)
- Shoma Mikawa
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taiki Mihara
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaya Takamoto
- Department of Infection and Host Defense and Pathobiology, Shinshu University School of Medicine, Nagano, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Dosoki H, Stegemann A, Taha M, Schnittler H, Luger TA, Schröder K, Distler JHW, Kerkhoff C, Böhm M. Targeting of NADPH oxidase in vitro and in vivo suppresses fibroblast activation and experimental skin fibrosis. Exp Dermatol 2018; 26:73-81. [PMID: 27576129 DOI: 10.1111/exd.13180] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 12/15/2022]
Abstract
Although there is increasing evidence that oxidative stress is involved in collagen synthesis and myofibroblast activation, the NADPH oxidase (Nox) system is incompletely investigated in the context of human dermal fibroblasts (HDFs) and skin fibrosis. Using the pan-Nox inhibitor diphenyleneiodonium (DPI) as an initial tool, we show that gene expression of collagen type I, α-smooth muscle actin (α-SMA) and fibronectin 1 is suppressed in HDFs. Detailed expression analysis of all Nox isoforms and adaptors revealed expression of RNA and protein expression of Nox4, p22phox and Poldip2 but neither Nox1 nor Nox2. Nox4 could be immunolocalized to the endoplasmic reticulum. Importantly, TGF-β1 had a dose- and time-dependent upregulating effect on NADH activity and Nox4 gene expression in HDFs. Genetic silencing of Nox4 as demonstrated by siRNA in HDFs as well as in murine fibroblasts established from Nox4 knockout mice confirmed that TGF-β1 -mediated collagen type I gene, α-SMA and fibronectin 1 gene expressions were Nox4-dependent. This TGF-β1 effect was mediated by Smad3 as shown by in silico promoter analysis, pharmacological inhibition and gene silencing of Smad3. The relevance of these findings is highlighted in the bleomycin-induced scleroderma mouse model. DPI treatment attenuated skin fibrosis and myofibroblast activation. Moreover, Nox4 knockdown by siRNA reduced skin collagen synthesis, α-SMA and fibronectin 1 expression in vivo. Finally, analyses of HDFs from patients with systemic sclerosis confirmed the expression of Nox4 and its adaptors, whereas Nox1 and Nox2 were not detectable. Our findings indicate that Nox4 targeting is a promising future treatment for fibrotic skin diseases.
Collapse
Affiliation(s)
- Heba Dosoki
- Department of Dermatology, University of Münster, Münster, Germany.,Department of Botany and Microbiology, Alexandria University, Alexandria, Egypt
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany
| | - Muna Taha
- Institute of Anatomy & Vascular Biology, University of Münster, Münster, Germany
| | - Hans Schnittler
- Institute of Anatomy & Vascular Biology, University of Münster, Münster, Germany
| | - Thomas A Luger
- Department of Dermatology, University of Münster, Münster, Germany
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Claus Kerkhoff
- Department of Biomedical Sciences, School of Human Sciences, University of Osnabrück, Osnabrück, Germany
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
23
|
Raker VK, Ook KY, Haub J, Lorenz N, Schmidt T, Stegemann A, Böhm M, Schuppan D, Steinbrink K. Myeloid cell populations and fibrogenic parameters in bleomycin- and HOCl-induced fibrosis. Exp Dermatol 2018; 25:887-894. [PMID: 27307019 DOI: 10.1111/exd.13124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/11/2022]
Abstract
Mouse models resembling systemic sclerosis can be chemically induced by application of bleomycin or hypochloric acid (HOCl). To date, little is known about inflammatory cells and their potential role in scleroderma (Scl)-related fibrosis. Therefore, we compared both Scl models to define the early immune cell subsets in relation to fibrosis-related parameters. Both agents induced a significant increase in dermal thickness and collagen deposition after 4 weeks, as hallmarks of Scl. However, clinical skin thickness, densely packed, sirius red-stained collagen bundles and collagen cross-links were more pronounced in HOCl-induced Scl. In parallel, there was a significant upregulation of procollagen α1(I), α-SMA and TGF-β transcripts in HOCl animals, whereas IL-1β and MMP-13 mRNA levels were significantly increased in bleomycin-treated mice. Flow cytometric analysis of the Scl skin demonstrated an early cellular infiltrate containing mainly CD19+ B cells, CD4+ T cells, CD11c+ DC and CD11b+ myeloid cells, the latter ones being significantly more prominent after HOCl injection. Subanalysis revealed that Scl mice exhibited a significant increase of inflammatory myeloid CD11b+ Ly6Clow-high CD64low-high cells (HOCl>bleomycin). In particular, in the HOCl model, activated dermal macrophages (CCR2low MHCIIhigh ) and monocyte-derived DC (CCR2high MHCIIhigh ) predominated over less activated CD11b+ myeloid cells. In conclusion, the two models differ in certain aspects of the murine and human scleroderma but in the HOCl model, myeloid CD11b+ MHCIIhigh cells correlate with some fibrosis-related parameters. Therefore, analysis of both models is suggested to cover a comprehensive profile of Scl symptoms but with focus on the HOCl model when the role of early myeloid immune cells will be evaluated.
Collapse
Affiliation(s)
- Verena K Raker
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany. .,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Kim Y Ook
- Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jessica Haub
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadine Lorenz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Talkea Schmidt
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Markus Böhm
- University Medical Center Münster, Munster, Germany
| | - Detlef Schuppan
- Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
24
|
Stegemann A, Böhm M. The α7 nicotinic acetylcholine receptor agonist tropisetron counteracts ultraviolet A-mediated oxidative stress in human dermal fibroblasts. Exp Dermatol 2016; 25:994-996. [DOI: 10.1111/exd.13220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Agatha Stegemann
- Department of Dermatology; University of Münster; Münster Germany
| | - Markus Böhm
- Department of Dermatology; University of Münster; Münster Germany
| |
Collapse
|
25
|
Rahimian R, Zirak MR, Keshavarz M, Fakhraei N, Mohammadi-Farani A, Hamdi H, Mousavizadeh K. Involvement of PPARγ in the protective action of tropisetron in an experimental model of ulcerative colitis. Immunopharmacol Immunotoxicol 2016; 38:432-440. [DOI: 10.1080/08923973.2016.1231202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Reza Rahimian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Keshavarz
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Fakhraei
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences Tehran, Tehran, Iran
| | - Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacology, Toxicology and Medical Services, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hanan Hamdi
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
α7nAChR is expressed in satellite cells at different myogenic status during skeletal muscle wound healing in rats. J Mol Histol 2016; 46:499-509. [PMID: 26498641 DOI: 10.1007/s10735-015-9641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Recent study has reported that α7 nicotine acetylcholine receptor (α7nAChR) is expressed in regenerated multinucleated myotubes. But the distribution of α7nAChR in satellite cells in different myogenic status is unknown. A preliminary study on the dynamic distribution of α7nAChR in satellite cells was performed by double indirect immunofluorescent procedures during skeletal muscle wound healing in rats. An animal model of skeletal muscle contusion was established in 40 Sprague-Dawley male rats. Samples were taken at 1, 3, 5, 7, 9, 13, 17 and 21 days after injury, respectively (five rats in each posttraumatic interval). Five rats were employed as control. In normal muscle specimens, weak immunoreactivity for α7nAChR was detected in a few satellite cells (considered as quiescent). α7nAChR-positive signals were observed in proliferated and differentiated satellite cells and regenerated multinucleated myotubes in the wounded areas. By morphometric analysis, the average number of α7nAChR+/Pax7+ and α7nAChR+/MyoD+ cells climaxed at 5 days post-injury. The average number of α7nAChR+/myogenin+ cells was significantly increased from 3 to 9 days post-injury as compared with other posttraumatic intervals. The protein level of α7nAChR maximized at 9 days post-injury, which implies that α7nAChR was associated with the satellite cells status. Our observations on expression of α7nAChR in satellite cells from quiescence to myotube formation suggest that α7nAChR may be involved in muscle regeneration by regulating satellite cell status.
Collapse
|
27
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
28
|
Abbate R, Al-Daghri NM, Andreozzi P, Borregaard N, Can G, Caridi G, Carstensen-Kirberg M, Cioni G, Conte E, Cuomo R, Denis MA, Fakhfouri G, Fakhfouri G, Fiasse R, Glenthøj A, Goliasc G, Gremmel T, Herder C, Iemmolo M, Jing ZC, Krause R, Marrone O, Miazgowski B, Miazgowski T, Minchiotti L, Mousavizadeh K, Ndrepepa G, Niessner A, Ogayar Luque C, Onat A, Papassotiriou I, Ruiz Ortiz M, Sabico S, Schooling CM, Sakka SD, Sołtysiak P, Visseren FLJ, Wagner J, Wang XJ, Westerink J. Research update for articles published in EJCI in 2013. Eur J Clin Invest 2015; 45:1005-16. [PMID: 26394055 DOI: 10.1111/eci.12512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Rosanna Abbate
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Nasser M Al-Daghri
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Paolo Andreozzi
- Department of Clinical Medicine and Surgery, 'Federico II' University, Naples, Italy
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark
| | - Günay Can
- Departments of Cardiology and Public Health, Cerrahpaşa Medical Faculty, University of Istanbul, Istanbul, Turkey
| | - Gianluca Caridi
- Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini IRCCS, Genoa, Italy
| | - Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Düsseldorf, Germany
| | - Gabriele Cioni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Enrico Conte
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosario Cuomo
- Department of Clinical Medicine and Surgery, 'Federico II' University, Naples, Italy
| | - Marie A Denis
- Department of Gastroenterology, St. Luc University Hospital, Brussels, Belgium
| | - Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - G Fakhfouri
- Institut Universitaire en Santé Mentale de Québec, Québec City, QC, Canada
| | - Renné Fiasse
- Department of Gastroenterology, St. Luc University Hospital, Brussels, Belgium
| | - Andreas Glenthøj
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark
| | - Georg Goliasc
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Düsseldorf, Germany
| | - Maria Iemmolo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Zhi-Cheng Jing
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Oreste Marrone
- Institute of Biomedicine and Molecular Immunology, National Research Council, Palermo, Italy
| | - Bartosz Miazgowski
- Department of Hypertension and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Miazgowski
- Department of Hypertension and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | | | - Kazem Mousavizadeh
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alexander Niessner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Altan Onat
- Departments of Cardiology and Public Health, Cerrahpaşa Medical Faculty, University of Istanbul, Istanbul, Turkey
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Martín Ruiz Ortiz
- Cardiology Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Shaun Sabico
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - C Mary Schooling
- CUNY School of Public Health and Hunter College, New York, NY, USA
| | - Sophia D Sakka
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham, UK
| | - P Sołtysiak
- Department of Hypertension and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jasmin Wagner
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Xiao-Jian Wang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jan Westerink
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
29
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
30
|
Khalifeh S, Fakhfouri G, Mehr SE, Mousavizadeh K, Dehpour AR, Khodagholi F, Kazmi S, Rahimian R. Beyond the 5-HT3 receptors. Hum Exp Toxicol 2015; 34:922-31. [DOI: 10.1177/0960327114562034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accumulation of reactive oxygen species, such as hydrogen peroxide (H2O2), generated by inflammatory cells or other pathological conditions, leads to oxidative stress, which may contribute to the neuronal degeneration observed in a wide variety of neurodegenerative disorders such as Alzheimer’s disease. Recent investigations have described effective properties of tropisetron, such as antiphlogistic action or protection against β-amyloid induced-neuroinflammation in rats. Our data revealed that H2O2-induced cell death in rat pheochromocytoma cell line (PC12) can be inhibited by tropisetron, as defined by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide assay, caspase 3 and caspase 12 levels. We further showed that tropisetron exerts its protective effects by upregulation of heme oxygenase-1, glutathione, catalase activity, and nuclear factor-erythroid 2 p45-related factor 2 level. Moreover, tropisetron was recently found to be a partial agonist of α7 nicotinic acetylcholine receptor (α7nAChR). The activation of α7nAChR could inhibit inflammatory and apoptotic signaling pathways in the oxidative stress conditions. In this study, selective α7nAChR antagonists (methyllycaconitine) reversed the effects of tropisetron on caspase 3 level. Our findings indicated that tropisetron can protect PC12 cells against H2O2-induced neurotoxicity through α7nAChR in vitro.
Collapse
Affiliation(s)
- S Khalifeh
- Department of Animal Physiology, Faculty of Biology, Kharazmi University, Tehran, Islamic Republic of Iran
| | - G Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, Québec, Canada. Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada
- Institut Universitaire en Sante Mentale de Quebec (IUSMQ) research center, Quebec, Canada
| | - SE Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - K Mousavizadeh
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - AR Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - F Khodagholi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - S Kazmi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - R Rahimian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
31
|
Böhm M, Stegemann A. Bleomycin-induced fibrosis in MC1 signalling-deficient C57BL/6J-Mc1r(e/e) mice further supports a modulating role for melanocortins in collagen synthesis of the skin. Exp Dermatol 2015; 23:431-3. [PMID: 24698097 DOI: 10.1111/exd.12409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2014] [Indexed: 12/25/2022]
Abstract
The melanocortin-1 receptor (MC1 ) binds α-melanocyte-stimulating hormone (α-MSH) with high affinity and has a physiological role in cutaneous melanin pigmentation. Previously, we reported that human dermal fibroblasts also express functional MC1 . α-MSH suppressed transforming growth factor-β1 - and bleomycin (BLM)-induced collagen synthesis in vitro and in vivo. Using MC1 signalling-deficient C57BL/6J-Mc1r(e/e) mice, we tested as to whether MC1 has a regulatory role on dermal collagen synthesis in the BLM model of scleroderma. Notably, mice with a C57BL/6J genetic background were previously shown to be BLM-non-susceptible. Interestingly, treatment of C57BL/6J-Mc1r(e/e) but not of C57BL/6J-wild-type mice with BLM increased cutaneous collagen type I content at RNA and protein level along with development of skin fibrosis. Cutaneous levels of connective tissue growth factor and monocyte chemotactic protein-1 were also increased in BLM-treated C57BL/6J-Mc1r(e/e) mice. Primary dermal fibroblasts from C57BL/6J-wt mice further expressed MC1 , suggesting that these cells are directly targeted by melanocortins to affect collagen production of the skin. Our findings support the concept that MC1 has an endogenous regulatory function in collagen synthesis and controls the extent of fibrotic stress responses of the skin.
Collapse
Affiliation(s)
- Markus Böhm
- Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, Department of Dermatology, University of Münster, Münster, Germany
| | | |
Collapse
|
32
|
Wang Z, Liu X, Zhang D, Wang X, Zhao F, Zhang T, Wang R, Lin X, Shi P, Pang X. Phenotypic and functional modulation of 20-30 year old dermal fibroblasts by mid- and late-gestational keratinocytes in vitro. Burns 2015; 41:1064-75. [PMID: 25599870 DOI: 10.1016/j.burns.2014.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/24/2022]
Abstract
Fetal wound healing occurs rapidly and without scar formation early in gestation, but the mechanisms underlying this scarless healing are poorly understood. This study explores the phenotypic and functional modulation of 20-30 year old dermal fibroblasts by mid- and late-gestational keratinocytes (KCs) in vitro. Human KCs of different gestational ages were isolated, characterized, and co-cultured with human 20-30 year old fibroblasts. Gene expression and protein levels of TGF-β family members, precollagen, collagen, matrix metalloproteinases (MMPs), and the tissue inhibitors of metalloproteinases (TIMPs) were measured in the fibroblasts. Mid-gestational KCs promoted faster proliferation and migration of fibroblasts than late-gestational KCs. Additionally, significant differences in gene expression and protein levels of some markers were observed in fibroblasts co-cultured with mid- or late-gestational KCs. Fibroblasts co-cultured with mid-gestational KCs for 48 h exhibited downregulated gene expression of precollagen 1, collagen 1, TGF-β1, TGF-β2, TIMP-2 and TIMP-3, while precollagen 3, collagen 3, TGF-β3, and MMP-1, -2, -3, -9 and -14 were upregulated. In contrast, late-gestational KCs exhibited downregulated TIMP-1, TIMP-2 and TIMP-3 levels, while collagen 1, TGF-β2, TGF-β3, and MMP-2, -3, -9 and -14 were upregulated. Moreover, statistically significant differences in expression levels of precollagen 1, precollagen 3, collagen 1, TGF-β1, -β2, and -β3, MMP-1, -3 and MMP-14, TIMP-1 and TIMP-2 were found between fibroblasts co-cultured with mid- and late-gestational KCs. Furthermore, cytokine levels of IL-1a and HB-EGF were found to be statistically different between conditioned medium from mid- and late-gestational KCs. Therefore, the gestational age of KCs appears to have an important effect on scarless wound healing in the human fetus.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China; Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiliang Wang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Rui Wang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xuewen Lin
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ping Shi
- Department of General Practice, The First Affiliated Hospital of China Medical, Shenyang, China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| |
Collapse
|
33
|
Fakhfouri G, Mousavizadeh K, Mehr SE, Dehpour AR, Zirak MR, Ghia JE, Rahimian R. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists. Mol Neurobiol 2014; 52:1670-1679. [DOI: 10.1007/s12035-014-8957-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/21/2014] [Indexed: 01/11/2023]
|
34
|
Zirak MR, Rahimian R, Ghazi-Khansari M, Abbasi A, Razmi A, Ejtemaei Mehr S, Mousavizadeh K, Dehpour AR. Tropisetron attenuates cisplatin-induced nephrotoxicity in mice. Eur J Pharmacol 2014; 738:222-9. [DOI: 10.1016/j.ejphar.2014.05.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022]
|
35
|
Rahimian R, Fakhfouri G, Ejtemaei Mehr S, Ghia JE, Genazzani AA, Payandemehr B, Dehpour AR, Mousavizadeh K, Lim D. Tropisetron attenuates amyloid-beta-induced inflammatory and apoptotic responses in rats. Eur J Clin Invest 2013; 43:1039-51. [PMID: 23937291 DOI: 10.1111/eci.12141] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder featured by deposition of beta-amyloid (Aβ) plaques in the hippocampus and associated cortices and progressive cognitive decline. Tropisetron, a selective 5-HT3 receptor antagonist, is conventionally used to counteract chemotherapy-induced emesis. Recent investigations describe antiphlogistic properties for tropisetron. It has been shown that tropisetron protects against rat embolic stroke. We investigated protective properties of tropisetron in a beta-amyloid (Aβ) rat model of AD and possible involvement of 5-HT3 receptors. MATERIAL AND METHODS Aβ (1-42) was injected into the hippocampus of male rats. Animals were treated intracerebroventricularly with tropisetron, mCPBG (selective 5-HT3 receptor agonist) or mCPBG plus tropisetron on days 1, 3, 5 and 7. Seven days following Aβ administration, inflammatory markers (TNF-α, COX-2, iNOS and NF-κB), apoptotic markers (caspase 3 cytochrome c release) and calcineurin phosphatase activity were assessed in hippocampus. RESULTS Seven days following Aβ inoculation, control animals displayed dramatic increase in TNF-α, COX-2, iNOS, NF-κB, active caspase 3, cytochrome c release and calcineurin phosphatase activity in the hippocampus. Tropisetron significantly diminished the elevated levels of these markers and reversed the cognitive deficit. Interestingly, tropisetron was also found to be a potent inhibitor of calcineurin phosphatase activity. The selective 5-HT3 receptor agonist mCPBG, when co-administered with tropisetron, completely reversed the procognitive and anti-apoptotic properties of tropisetron while it could only partially counteract the anti-inflammatory effects. mCPBG alone significantly aggravated Aβ-induced injury. CONCLUSION Our findings indicate that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and independent pathways.
Collapse
Affiliation(s)
- Reza Rahimian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Injury Repair Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|