1
|
Ding Y, Luan X, Hou J. The critical involvement of monocytes/macrophages in the pathogenesis of primary Sjögren's syndrome: New evidence from Mendelian randomization and single-cell sequencing. Heliyon 2024; 10:e39130. [PMID: 39497977 PMCID: PMC11532255 DOI: 10.1016/j.heliyon.2024.e39130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Background Primary Sjögren's syndrome (pSS) stands as a chronic autoimmune disease characterized by an elusive pathogenesis. The synergy of single-cell RNA sequencing and Mendelian randomization (MR) analysis provides an opportunity to comprehensively unravel the contributory role of monocytes/macrophages in the intricate pathogenesis of pSS. Methods Differentially expressed genes (DEGs) of various types of immune cells were analyzed after annotating single-cell RNA sequencing (scRNA-seq) data. MR analysis of expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) was conducted to search for key pathogenic genes and proteins. Cellular localization of pathogenic genes was performed based on scRNA-seq data. Variations in signaling pathways between immune cells were further analyzed. Results A total of 1434 significant DEGs were identified. Among these, 60 genes exhibited strong relevance to the occurrence of pSS, of which 32 genes differentially expressed in monocytes/macrophages. CTSS was found to be a significant risk protein with a p-value of 0.001 and an odds ratio of 1.384 (1.147-1.669), showing pronounced expression in monocytes/macrophages. Furthermore, monocytes/macrophages displayed heightened expression levels of MXD1, AMPD2, TNFSF10, FTL, UBXN11, CSF3R, and LILRA5. The analysis of intercellular signaling revealed increased signal intensity in both incoming and outgoing signals in monocytes/macrophages. The signaling interactions between monocytes/macrophages, B cells, and T cells exhibited varying degrees of deviation. Conclusions This study highlights the significant involvement of monocytes/macrophages in the pathogenesis of pSS, as evidenced by MR analysis and scRNA-seq analysis. This suggests monocytes/macrophages as a focal point for pathogenesis research and potential therapeutic targeting in pSS.
Collapse
Affiliation(s)
- Yimei Ding
- Department of Rheumatology and Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Luan
- Department of Rheumatology and Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Hou
- Department of Rheumatology and Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Peng J, Feinstein D, DeSimone S, Gentile P. A Review of the Tear Film Biomarkers Used to Diagnose Sjogren's Syndrome. Int J Mol Sci 2024; 25:10380. [PMID: 39408709 PMCID: PMC11476667 DOI: 10.3390/ijms251910380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
This literature review looks at Sjogren's Syndrome (SS), a chronic autoimmune disorder affecting exocrine glands, particularly the lacrimal and salivary glands. SS manifests as ocular and oral dryness, with severe complications like visual dysfunction and corneal perforation, as well as systemic implications, such as interstitial lung disease and lymphoma. This review explores the use of tear film biomarkers to diagnose SS, emphasizing the significance of their identification in aiding clinical diagnosis and differentiation from other diseases. This study identified and analyzed 15 papers, encompassing 1142 patients and employing various tear sample collection methods. Tear biomarkers were categorized by function and explored in-depth. Categories include (1) antimicrobials, antivirals, and antifungals; (2) components of immune regulation; (3) components that regulate metabolic processes; and (4) inflammatory markers. Noteworthy findings include the potential diagnostic values of tear lysozyme, lactoferrin, dinucleoside polyphosphates, cathepsin, defensin, antibodies, epidermal fatty acid-binding protein, HLA-DR, ADAM10, aquaporin 5, and various miRNAs and mRNAs. Overall, our understanding of SS tear film composition is enhanced, providing valuable insights into the pathogenesis of SS and offering a foundation for future diagnostic and therapeutic advancements in autoimmune conditions affecting the ocular surface.
Collapse
Affiliation(s)
- Jason Peng
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA;
| | - David Feinstein
- Department of Rheumatology, Cooper University Hospital, Camden, NJ 08103, USA; (D.F.); (P.G.)
| | - Salvatore DeSimone
- Department of Ophthalmology, Cooper University Hospital, Camden, NJ 08103, USA
| | - Pietro Gentile
- Department of Rheumatology, Cooper University Hospital, Camden, NJ 08103, USA; (D.F.); (P.G.)
| |
Collapse
|
3
|
Górska E, Tylicka M, Kamińska J, Hermanowicz A, Matuszczak E, Ołdak Ł, Gorodkiewicz E, Karpińska E, Socha K, Kochanowicz J, Jakoniuk M, Homšak E, Koper-Lenkiewicz OM. 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S are high-sensitivity and independent markers of immunological activity in relapsing-remitting type of multiple sclerosis. J Neurochem 2024; 168:2880-2892. [PMID: 38923513 DOI: 10.1111/jnc.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Research on the markers of autoimmune response in multiple sclerosis (MS) is still of great importance. The aim of our study was the evaluation of plasma 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S concentrations as potential biomarkers of a relapsing-remitting type of MS (RRMS). Surface plasmon resonance imaging (SPRI) biosensors were used for the evaluation of protein concentrations. Plasma 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S concentrations were significantly higher in RRMS patients compared to the control group. All three parameters were characterized by excellent usefulness in differentiating MS patients from healthy individuals (AUC equal to or close to 1.000). The plasma concentration of analyzed parameters was not correlated with severity of disability in the course of RRMS (EDSS value), the number of years from the first MS symptoms, the number of years from MS diagnosis, or the number of relapses within the 24-month observational period. Our study has shown that plasma concentrations of 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S have promising potential in differentiating RRMS patients from healthy individuals. All of the analyzed parameters were found to be independent of the time of MS relapse and the severity of neurological symptoms. Hence, their potential as highly sensitive and independent circulating markers of RRMS suggests a stronger association with immunological activity (inflammatory processes) than with the severity of the disease.
Collapse
Affiliation(s)
- Ewelina Górska
- Neurological Private Practice, Bialystok, Poland
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Bialystok, Poland
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Łukasz Ołdak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Bialystok, Poland
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Bialystok, Poland
| | - Elżbieta Karpińska
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, Białystok, Poland
| | - Marta Jakoniuk
- Department of Invasive Neurology, Medical University of Białystok, Białystok, Poland
| | - Evgenija Homšak
- Department for Laboratory Diagnostics, University Clinical Centre Maribor, Maribor, Slovenia
- Department for Clinical Biochemistry, Medical Faculty, University Maribor, Maribor, Slovenia
| | | |
Collapse
|
4
|
Tan Y, Yin J, Wu Z, Xiong W. Integrative multi-omics analysis reveals cellular and molecular insights into primary Sjögren's syndrome. Heliyon 2024; 10:e33433. [PMID: 39027515 PMCID: PMC11255657 DOI: 10.1016/j.heliyon.2024.e33433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Objective This study aims to comprehensively analyze genomic, transcriptomic, proteomic, and single-cell sequencing data to unravel the molecular basis of primary Sjögren's syndrome (pSS) and explore potential therapeutic targets. Methods Mendelian randomization and single-cell RNA sequencing were employed to analyze pSS data. Differentially expressed genes specific to different blood cell types were identified. Integration of multiomics data facilitated the exploration of genetic regulatory relationships. Results The analysis revealed distinct cell clusters representing various immune cell subsets. Several genes, including cathepsin S (CTSS) and glutathione S-transferase omega 1 (GSTO1), were identified as potential biomarkers and therapeutic targets for pSS. Diagnostic utility analysis demonstrated the discriminatory power of CTSS and GSTO1 in distinguishing pSS patients from healthy controls. Conclusion The findings highlight the importance of integrating multiomics data for understanding pSS pathogenesis. CTSS and GSTO1 show promise as diagnostic biomarkers and potential therapeutic targets for pSS. Further investigations are warranted to elucidate the underlying mechanisms and develop targeted therapies for this complex autoimmune disease.
Collapse
Affiliation(s)
- Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
- Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Jiayang Yin
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
- Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Zhenkai Wu
- Department of Ophthalmology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, 415000, Hunan Province, China
| | - Wei Xiong
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
| |
Collapse
|
5
|
Fu S, Wu M, Cheng Y, Guan Y, Yu J, Wang X, Su S, Wu H, Ma F, Zou Y, Wu S, Xu H, Xu Z. Cathepsin S (CTSS) in IgA nephropathy: an exploratory study on its role as a potential diagnostic biomarker and therapeutic target. Front Immunol 2024; 15:1390821. [PMID: 38979419 PMCID: PMC11229174 DOI: 10.3389/fimmu.2024.1390821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction IgA nephropathy (IgAN), a prevalent form of glomerulonephritis globally, exhibits complex pathogenesis. Cathepsins, cysteine proteases within lysosomes, are implicated in various physiological and pathological processes, including renal conditions. Prior observational studies have suggested a potential link between cathepsins and IgAN, yet the precise causal relationship remains unclear. Methods We conducted a comprehensive bidirectional and multivariable Mendelian randomization (MR) study using publicly available genetic data to explore the causal association between cathepsins and IgAN systematically. Additionally, immunohistochemical (IHC) staining and enzyme-linked immunosorbent assay (ELISA) were employed to evaluate cathepsin expression levels in renal tissues and serum of IgAN patients. We investigated the underlying mechanisms via gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and immune cell infiltration analysis. Molecular docking and virtual screening were also performed to identify potential drug candidates through drug repositioning. Results Univariate MR analyses demonstrated a significant link between increased cathepsin S (CTSS) levels and a heightened risk of IgAN. This was evidenced by an odds ratio (OR) of 1.041 (95% CI=1.009-1.073, P=0.012) as estimated using the inverse variance weighting (IVW) method. In multivariable MR analysis, even after adjusting for other cathepsins, elevated CTSS levels continued to show a strong correlation with an increased risk of IgAN (IVW P=0.020, OR=1.037, 95% CI=1.006-1.069). However, reverse MR analyses did not establish a causal relationship between IgAN and various cathepsins. IHC and ELISA findings revealed significant overexpression of CTSS in both renal tissues and serum of IgAN patients compared to controls, and this high expression was unique to IgAN compared with several other primary kidney diseases such as membranous nephropathy, minimal change disease and focal segmental glomerulosclerosis. Investigations into immune cell infiltration, GSEA, and GSVA highlighted the role of CTSS expression in the immune dysregulation observed in IgAN. Molecular docking and virtual screening pinpointed Camostat mesylate, c-Kit-IN-1, and Mocetinostat as the top drug candidates for targeting CTSS. Conclusion Elevated CTSS levels are associated with an increased risk of IgAN, and this enzyme is notably overexpressed in IgAN patients' serum and renal tissues. CTSS could potentially act as a diagnostic biomarker, providing new avenues for diagnosing and treating IgAN.
Collapse
Affiliation(s)
- Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Meiyan Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yan Guan
- Department of Nephrology, Meihe Hospital, The First Hospital of Jilin University, Meihekou, China
- Department of Nephrology, Meihekou Central Hospital, Meihekou, China
| | - Jinyu Yu
- Center for Renal Pathology, The First Hospital of Jilin University, Changchun, China
| | - Xueyao Wang
- Department of Cardiac Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Sensen Su
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yan Zou
- Department of Nephrology, Meihe Hospital, The First Hospital of Jilin University, Meihekou, China
- Department of Nephrology, Meihekou Central Hospital, Meihekou, China
| | - Shan Wu
- Center for Renal Pathology, The First Hospital of Jilin University, Changchun, China
| | - Hongzhao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Shih KC, Tong L. The Conjunctival Microbiome and Dry Eye: What We Know and Controversies. Eye Contact Lens 2024; 50:208-211. [PMID: 38345108 DOI: 10.1097/icl.0000000000001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 04/26/2024]
Abstract
ABSTRACT Dry eye disease is a common multifactorial condition that may be idiopathic or associated with autoimmune conditions, such as Sjogren syndrome. Commensal microorganisms modify immune responses, so it is relevant to understand how they modify such immune-mediated diseases. Microbiota in the gut regulate inflammation in the eye, and conversely, severe inflammation of the ocular surface results in alteration of gut microbiome. The conjunctiva microbiome can be analyzed using 16S or shotgun metagenomics. The amount of microbial DNA in ocular surface mucosa relative to human DNA is limited compared with the case of the intestinal microbiome. There are challenges in defining, harvesting, processing, and analyzing the microbiome in the ocular surface mucosa. Recent studies have shown that the conjunctiva microbiome depends on age, presence of local and systemic inflammation, and environmental factors. Microbiome-based therapy, such as the use of oral probiotics to manage dry eye disease, has initial promising results. Further longitudinal studies are required to investigate the alteration of the conjunctival microbiome after local therapy and surgery.
Collapse
Affiliation(s)
- Kendrick C Shih
- Department of Ophthalmology (K.C.S.), The University of Hong Kong; Corneal and External Eye Disease Service (L.T.), Singapore National Eye Center, Singapore; Ocular Surface Research Group (L.T.), Singapore Eye Research Institute, Singapore; and Eye Academic Clinical Program (L.T.), Duke-National University of Singapore, Singapore
| | | |
Collapse
|
7
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
8
|
Li SJ, Cheng RJ, Wei SX, Xia ZJ, Pu YY, Liu Y. Advances in mesenchymal stem cell-derived extracellular vesicles therapy for Sjogren's syndrome-related dry eye disease. Exp Eye Res 2023; 237:109716. [PMID: 37951337 DOI: 10.1016/j.exer.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disorder that affects exocrine glands, particularly lacrimal glands, leading to dry eye disease (DED). DED is a common ocular surface disease that affects millions of people worldwide, causing discomfort, visual impairment, and even blindness in severe cases. However, there is no definitive cure for DED, and existing treatments primarily relieve symptoms. Consequently, there is an urgent need for innovative therapeutic strategies based on the pathophysiology of DED. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic tool for various autoimmune disorders, including SS-related DED (SS-DED). A particularly intriguing facet of MSCs is their ability to produce extracellular vesicles (EVs), which contain various bioactive components such as proteins, lipids, and nucleic acids. These molecules play a key role in facilitating communication between cells and modulating a wide range of biological processes. Importantly, MSC-derived EVs (MSC-EVs) have therapeutic properties similar to those of their parent cells, including immunomodulatory, anti-inflammatory, and regenerative properties. In addition, MSC-EVs offer several notable advantages over intact MSCs, including lower immunogenicity, reduced risk of tumorigenicity, and greater convenience in terms of storage and transport. In this review, we elucidate the underlying mechanisms of SS-DED and discuss the relevant mechanisms and targets of MSC-EVs in treating SS-DED. In addition, we comprehensively review the broader landscape of EV application in autoimmune and corneal diseases. This review focuses on the efficacy of MSC-EVs in treating SS-DED, a field of study that holds considerable appeal due to its multifaceted regulation of immune responses and regenerative functions.
Collapse
Affiliation(s)
- Su-Jia Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Rheumatology and Immunology, Yantai Yuhuangding Hospital, Yantai, Shandong, 264099, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Shi-Xiong Wei
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zi-Jing Xia
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yao-Yu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
Bentley D, Fisher BA, Barone F, Kolb FA, Attley G. A randomized, double-blind, placebo-controlled, parallel group study on the effects of a cathepsin S inhibitor in primary Sjögren's syndrome. Rheumatology (Oxford) 2023; 62:3644-3653. [PMID: 36864622 PMCID: PMC10629789 DOI: 10.1093/rheumatology/kead092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
OBJECTIVES Primary SS (pSS) is a chronic autoimmune disorder characterized by mucosal dryness and systemic symptoms. We tested the effects of inhibition of cathepsin S using the potent and selective inhibitor RO5459072 on disease activity and symptoms of pSS. METHODS This was a randomized, double-blind, placebo-controlled, parallel-group, Phase IIA study to investigate the effects of RO5459072 (100 mg twice daily; 200 mg per day). Seventy-five patients with pSS were randomized 1:1 to receive either RO5459072 or placebo for 12 weeks. The primary outcome was the proportion of patients with a ≥3 point reduction from baseline in EULAR SS Disease Activity Index (ESSDAI) score. We also investigated the effects of RO5459072 on quality of life, exocrine gland function, biomarkers related to SS, and safety and tolerability. RESULTS The proportion of patients showing an improvement in ESSDAI score was not significantly different between the RO5459072 and placebo arms. No clinically meaningful treatment effects were observed in favour of RO5459072 for all secondary outcomes. Analysis of soluble biomarkers indicated target engagement between RO5459072 and cathepsin S. There were modest decreases in the number of circulating B cells and T cells in the RO5459072 group, although these did not reach significance. RO5459072 was safe and well-tolerated. CONCLUSIONS There was no clinically relevant improvement in ESSDAI score (primary endpoint), and no apparent benefit in favour of RO5459072 in any of the secondary clinical endpoints. Further work is needed in order to understand the mechanisms of MHC-II-mediated immune stimulation in pSS. TRIAL REGISTRATION ClinicalTrials.gov; NCT02701985.
Collapse
Affiliation(s)
| | - Benjamin A Fisher
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- National Institute of Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | - Gemma Attley
- Roche Pharma Research and Early Development, Little Falls, NJ, USA
| |
Collapse
|
10
|
Kelagere Y, Scholand KK, DeJong EN, Boyd AI, Yu Z, Astley RA, Callegan MC, Bowdish DM, Makarenkova HP, de Paiva CS. TNF is a critical cytokine in age-related dry eye disease. Ocul Surf 2023; 30:119-128. [PMID: 37634571 PMCID: PMC10812879 DOI: 10.1016/j.jtos.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex biological process that is characterized by low-grade inflammation, called inflammaging. Aging affects multiple organs including eye and lacrimal gland. Tumor necrosis factor (TNF) is a pleiotropic cytokine that participates in inflammation, activation of proteases such as cathepsin S, and formation of ectopic lymphoid organs. Using genetic and pharmacological approaches, we investigated the role of TNF in age-related dry eye disease, emphasizing the ocular surface and lacrimal gland inflammation. Our results show the increased protein and mRNA levels of TNF in aged lacrimal glands, accompanied by increased TNF, IL1β, IL-18, CCL5, CXCL1, IL-2, IL-2 receptor alpha (CD25), IFN-γ, IL-12p40, IL-17, and IL-10 proteins in tears of aged mice. Moreover, genetic loss of the Tnf-/- in mice decreased goblet cell loss and the development of ectopic lymphoid structures in the lacrimal gland compared to wild-type mice. This was accompanied by a decrease in cytokine production. Treatment of mice at an early stage of aging (12-14-month-old) with TNF inhibitor tanfanercept eye drops for eight consecutive weeks decreased cytokine levels in tears, improved goblet cell density, and decreased the marginal zone B cell frequency in the lacrimal gland compared to vehicle-treated animals. Our studies indicate that modulation of TNF during aging could be a novel strategy for age-related dry eye disease.
Collapse
Affiliation(s)
- Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Erica N DeJong
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Andrea I Boyd
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, USA.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Roger A Astley
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Michelle C Callegan
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Dawn Me Bowdish
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
11
|
Ohno Y, Satoh K, Kashimata M. Review of genes potentially related to hyposecretion in male non-obese diabetic (NOD) mice, a Sjögren's syndrome model. J Oral Biosci 2023; 65:211-217. [PMID: 37209839 DOI: 10.1016/j.job.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS) is known to cause dry eyes and mouth due to inflammation of the lacrimal and salivary glands. However, some reports imply that other factors trigger dry eyes and mouth. We previously investigated various factors using RNA-sequencing analysis of lacrimal glands from male non-obese diabetic (NOD) mice, an SS model. In this review, we described (1) the exocrine features of male and female NOD mice, (2) the up- and down-regulated genes in the lacrimal glands of male NOD mice as revealed by our RNA-sequencing data, and (3) comparisons between these genes and data in the Salivary Gland Gene Expression Atlas. HIGHLIGHTS Male NOD mice exhibit a steady worsening of lacrimal hyposecretion and dacryoadenitis, whereas females exhibit a complex pathophysiological condition that includes diabetic disease, salivary hyposecretion, and sialadenitis. Ctss, an up-regulated gene, is a potential inducer of lacrimal hyposecretion and is also expressed in salivary glands. Two other up-regulated genes, Ccl5 and Cxcl13, may worsen the inflammation of SS in both the lacrimal and salivary glands. The genes Esp23, Obp1a, and Spc25 were detected as down-regulated, but judging the relationship between these genes and hyposecretion is difficult as only limited information is available. Another down-regulated gene, Arg1, is involved in lacrimal hyposecretion, and it also has the potential to cause salivary hyposecretion in NOD mice. CONCLUSION In NOD mice, males may be better than females at evaluating the pathophysiology of SS. Some regulated genes revealed by our RNA-sequencing data might be potential therapeutic targets for SS.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
12
|
Qi X, Huang Q, Wang S, Qiu L, Chen X, Ouyang K, Chen Y. Identification of the shared mechanisms and common biomarkers between Sjögren's syndrome and atherosclerosis using integrated bioinformatics analysis. Front Med (Lausanne) 2023; 10:1185303. [PMID: 37727764 PMCID: PMC10506082 DOI: 10.3389/fmed.2023.1185303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Background Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by exocrine and extra-glandular symptoms. The literature indicates that SS is an independent risk factor for atherosclerosis (AS); however, its pathophysiological mechanism remains undetermined. This investigation aimed to elucidate the crosstalk genes and pathways influencing the pathophysiology of SS and AS via bioinformatic analysis of microarray data. Methods Microarray datasets of SS (GSE40611) and AS (GSE28829) were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were acquired using R software's "limma" packages, and the functions of common DEGs were determined using Gene Ontology and Kyoto Encyclopedia analyses. The protein-protein interaction (PPI) was established using the STRING database. The hub genes were assessed via cytoHubba plug-in and validated by external validation datasets (GSE84844 for SS; GSE43292 for AS). Gene set enrichment analysis (GSEA) and immune infiltration of hub genes were also conducted. Results Eight 8 hub genes were identified using the intersection of four topological algorithms in the PPI network. Four genes (CTSS, IRF8, CYBB, and PTPRC) were then verified as important cross-talk genes between AS and SS with an area under the curve (AUC) ≥0.7. Furthermore, the immune infiltration analysis revealed that lymphocytes and macrophages are essentially linked with the pathogenesis of AS and SS. Moreover, the shared genes were enriched in multiple metabolisms and autoimmune disease-related pathways, as evidenced by GSEA analyses. Conclusion This is the first study to explore the common mechanism between SS and AS. Four key genes, including CTSS, CYBB, IRF8, and PTPRC, were associated with the pathogenesis of SS and AS. These hub genes and their correlation with immune cells could be a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Xiaoyi Qi
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
- Medical College, Shantou University, Shantou, China
| | - Qianwen Huang
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shijia Wang
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Liangxian Qiu
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiongbiao Chen
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanjun Chen
- Departments of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
13
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Haap W, Santos-Ferreira T, Ullmer C, Yu Z, de Paiva CS. Effects of Cathepsin S Inhibition in the Age-Related Dry Eye Phenotype. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37540176 PMCID: PMC10414132 DOI: 10.1167/iovs.64.11.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose Aged C57BL/6J (B6) mice have increased levels of cathepsin S, and aged cathepsin S (Ctss-/-) knockout mice are resistant to age-related dry eye. This study investigated the effects of cathepsin S inhibition on age-related dry eye disease. Methods Female B6 mice aged 15.5 to 17 months were randomized to receive a medicated diet formulated by mixing the RO5461111 cathepsin S inhibitor or a standard diet for at least 12 weeks. Cornea mechanosensitivity was measured with a Cochet-Bonnet esthesiometer. Ocular draining lymph nodes and lacrimal glands (LGs) were excised and prepared for histology or assayed by flow cytometry to quantify infiltrating immune cells. The inflammatory foci (>50 cells) were counted under a 10× microscope lens and quantified using the focus score. Goblet cell density was investigated in periodic acid-Schiff stained sections. Ctss-/- mice were compared to age-matched wild-type mice. Results Aged mice subjected to cathepsin S inhibition or Ctss-/- mice showed improved conjunctival goblet cell density and cornea mechanosensitivity. There was no change in total LG focus score in the diet or Ctss-/- mice, but there was a lower frequency of CD4+IFN-γ+ cell infiltration in the LGs. Furthermore, aged Ctss-/- LGs had an increase in T central memory, higher numbers of CD19+B220-, and fewer CD19+B220+ cells than wild-type LGs. Conclusions Our results indicate that therapies aimed at decreasing cathepsin S can ameliorate age-related dry eye disease with a highly beneficial impact on the ocular surface. Further studies are needed to investigate the role of cathepsin S during aging.
Collapse
Affiliation(s)
- Jeremias G. Galletti
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Kaitlin K. Scholand
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
14
|
Scholand KK, Mack AF, Guzman GU, Maniskas ME, Sampige R, Govindarajan G, McCullough LD, de Paiva CS. Heterochronic Parabiosis Causes Dacryoadenitis in Young Lacrimal Glands. Int J Mol Sci 2023; 24:4897. [PMID: 36902330 PMCID: PMC10003158 DOI: 10.3390/ijms24054897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Aging is associated with inflammation and oxidative stress in the lacrimal gland (LG). We investigated if heterochronic parabiosis of mice could modulate age-related LG alterations. In both males and females, there were significant increases in total immune infiltration in isochronic aged LGs compared to that in isochronic young LGs. Male heterochronic young LGs were significantly more infiltrated compared to male isochronic young LGs. While both females and males had significant increases in inflammatory and B-cell-related transcripts in isochronic and heterochronic aged LGs compared to levels isochronic and heterochronic young LGs, females had a greater fold expression of some of these transcripts than males. Through flow cytometry, specific subsets of B cells were increased in the male heterochronic aged LGs compared to those in male isochronic aged LGs. Our results indicate that serum soluble factors from young mice were not enough to reverse inflammation and infiltrating immune cells in aged tissues and that there were specific sex-related differences in parabiosis treatment. This suggests that age-related changes in the LG microenvironment/architecture participate in perpetuating inflammation, which is not reversible by exposure to youthful systemic factors. In contrast, male young heterochronic LGs were significantly worse than their isochronic counterparts, suggesting that aged soluble factors can enhance inflammation in the young host. Therapies that aim at improving cellular health may have a stronger impact on improving inflammation and cellular inflammation in LGs than parabiosis.
Collapse
Affiliation(s)
- Kaitlin K. Scholand
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Alexis F. Mack
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gary U. Guzman
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael E. Maniskas
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ritu Sampige
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gowthaman Govindarajan
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Louise D. McCullough
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
15
|
Desvaux E, Pers JO. Autoimmune epithelitis in primary Sjögren's syndrome. Joint Bone Spine 2023; 90:105479. [PMID: 36336290 DOI: 10.1016/j.jbspin.2022.105479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Abstract
Primary Sjögren's syndrome (pSS) is characterized by an autoimmune epithelitis associated with chronic inflammation of the exocrine glands. Alterations of extra-glandular functions in pSS is associated with lymphocytic infiltrates that invade the epithelial structures of affected organs. Within epithelial tissue, the expression of class II major histocompatibility complexes and costimulatory molecules by epithelial cells acting as non-professional antigen presenting cells, leads to the activation of T and B lymphocytes through multiple cellular crosstalk pathways. Although the pathogenetic mechanisms underlying pSS have not yet been elucidated, it is accepted that glandular epithelial cells are central regulators of the local autoimmune response.
Collapse
Affiliation(s)
| | - Jacques-Olivier Pers
- UMR 1227, Univ Brest, Inserm, 29609 Brest, France; CHU de Brest, 29609 Brest, France.
| |
Collapse
|
16
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Yu Z, Mauduit O, Delcroix V, Makarenkova HP, de Paiva CS. Ectopic lymphoid structures in the aged lacrimal glands. Clin Immunol 2023; 248:109251. [PMID: 36740002 PMCID: PMC10323865 DOI: 10.1016/j.clim.2023.109251] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Aging is a complex biological process in which many organs are pathologically affected. We previously reported that aged C57BL/6J had increased lacrimal gland (LG) lymphoid infiltrates that suggest ectopic lymphoid structures. However, these ectopic lymphoid structures have not been fully investigated. Using C57BL/6J mice of different ages, we analyzed the transcriptome of aged murine LGs and characterized the B and T cell populations. Age-related changes in the LG include increased differentially expressed genes associated with B and T cell activation, germinal center formation, and infiltration by marginal zone-like B cells. We also identified an age-related increase in B1+ cells and CD19+B220+ cells. B220+CD19+ cells were GL7+ (germinal center-like) and marginal zone-like and progressively increased with age. There was an upregulation of transcripts related to T follicular helper cells, and the number of these cells also increased as mice aged. Compared to a mouse model of Sjögren syndrome, aged LGs have similar transcriptome responses but also unique ones. And lastly, the ectopic lymphoid structures in aged LGs are not exclusive to a specific mouse background as aged diverse outbred mice also have immune infiltration. Altogether, this study identifies a profound change in the immune landscape of aged LGs where B cells become predominant. Further studies are necessary to investigate the specific function of these B cells during the aged LGs.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Claudia M Trujillo-Vargas
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Senjor E, Kos J, Nanut MP. Cysteine Cathepsins as Therapeutic Targets in Immune Regulation and Immune Disorders. Biomedicines 2023; 11:biomedicines11020476. [PMID: 36831012 PMCID: PMC9953096 DOI: 10.3390/biomedicines11020476] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Cysteine cathepsins, as the most abundant proteases found in the lysosomes, play a vital role in several processes-such as protein degradation, changes in cell signaling, cell morphology, migration and proliferation, and energy metabolism. In addition to their lysosomal function, they are also secreted and may remain functional in the extracellular space. Upregulation of cathepsin expression is associated with several pathological conditions including cancer, neurodegeneration, and immune-system dysregulation. In this review, we present an overview of cysteine-cathepsin involvement and possible targeting options for mitigation of aberrant function in immune disorders such as inflammation, autoimmune diseases, and immune response in cancer.
Collapse
Affiliation(s)
- Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
18
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
19
|
Zhang Y, Li JM, Lu R, Liu Z, Chen X, de Paiva CS, Pflugfelder SC, Li DQ. Imbalanced IL-37/TNF-α/CTSS signaling disrupts corneal epithelial barrier in a dry eye model in vitro. Ocul Surf 2022; 26:234-243. [PMID: 36208723 DOI: 10.1016/j.jtos.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE To explore novel role and molecular mechanism of a natural anti-inflammatory cytokine interleukin (IL) 37 in preventing corneal epithelial barrier disruption from hyperosmolar stress as can occur in dry eye disease. METHODS Primary human corneal epithelial cells (HCECs) were cultured from fresh donor limbal explants. An in vitro dry eye model with hyperosmolar stress was established by switching HCECs from isosmolar (312mOsM) to hyperosmolar medium (350-500 mOsM), and some cells were treated with rhIL-37 or rhTNF-α, for different periods (2-48 h). The expression of cytokines and cathepsin S, and barrier protein integrity were evaluated by RT-qPCR, ELISA, and immunofluorescent staining with confocal microscopy. RESULTS The integrity of epithelial barrier was significantly disrupted in HCECs exposed to hyperosmolar medium, as shown by immunofluorescent images of tight junction (TJ, ZO-1, occludin and claudin-1) and adheren junction (E-cadherin) proteins. TNF-α accentuated hyperosmolar-induced disruption of TJ barrier functional integrity whereas exposure to IL-37 blunted or even reversed these changes. Cathepsin S, encoded by CTSS gene, was found to directly disrupt epithelial barrier integrity. Interestingly, CTSS expression was significantly induced by TNF-α and hyperosmolarity, while exogenous rhIL-37 inhibited TNF-α and CTSS expression at mRNA and protein levels following hyperosmolar stress. Furthermore, rhIL-37 restored barrier protein integrity, observed in 2D and 3D confocal immunofluorescent images, in HCECs under hyperosmolar stress. CONCLUSION Our findings demonstrate a novel signaling pathway by which anti-inflammatory cytokine IL-37 prevents corneal epithelial barrier disruption under hyperosmotic stress via suppressing TNF-α and CTSS expression. This study provides new insight into mechanisms protecting corneal barrier in dry eye disease.
Collapse
Affiliation(s)
- Yun Zhang
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; School of Optometry and Ophthalmology, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jin-Miao Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangzhou, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangzhou, China
| | - Zhao Liu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Xin Chen
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; School of Optometry and Ophthalmology, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen C Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
21
|
Biochemistry of human tear film: A review. Exp Eye Res 2022; 220:109101. [DOI: 10.1016/j.exer.2022.109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
|
22
|
Bustamante-Arias A, Ruiz Lozano RE, Rodriguez-Garcia A. Dry eye disease, a prominent manifestation of systemic autoimmune disorders. Eur J Ophthalmol 2022; 32:3142-3162. [PMID: 35300528 DOI: 10.1177/11206721221088259] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Dry eye disease (DED) is arguably the most frequent ocular disease encountered in ophthalmic clinical practice. DED is frequently an underestimated condition causing a significant impact on visual function and quality of life. Many systemic autoimmune diseases (SAIDs) are related to moderate to severe DED. The main objective of this review is to enhance the awareness among ophthalmologists of the potential association of an underlying SAID in a high-risk patient with DED. METHODS An exhaustive literature search was performed in the National Library of Medicine's Pubmed, Scopus, Web of Science, and Google Scholar databases for all English language articles published until November 2021. The main keywords included "dry eye disease" associated with autoimmune, connective tissue, endocrine, gastrointestinal, hematopoietic, vascular, and pulmonary diseases. Case reports, series, letters to the editor, reviews, and original articles were included. RESULTS Although DED is frequently associated with SAIDs, its diagnosis is commonly delayed or missed, producing significant complications, including corneal ulceration, melting, scleritis, uveitis, and optic neuritis resulting in severe complications detrimental to visual function and quality of life. SAID should be suspected in a woman, 30 to 60 years old with a family history of autoimmunity, presenting with DED symptoms and extraocular manifestations including arthralgias, dry mouth, unexplained weight and hair loss, chronic fatigue, heat or cold intolerance, insomnia, and mood disorders. CONCLUSIONS Establishing the correct diagnosis and treatment of DED associated with SAIDs is crucial to avoid its significant burden and severe ocular complications.
Collapse
Affiliation(s)
- Andres Bustamante-Arias
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Raul E Ruiz Lozano
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| | - Alejandro Rodriguez-Garcia
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences. Monterrey, Mexico
| |
Collapse
|
23
|
Kakan SS, Edman MC, Yao A, Okamoto CT, Nguyen A, Hjelm BE, Hamm-Alvarez SF. Tear miRNAs Identified in a Murine Model of Sjögren's Syndrome as Potential Diagnostic Biomarkers and Indicators of Disease Mechanism. Front Immunol 2022; 13:833254. [PMID: 35309364 PMCID: PMC8931289 DOI: 10.3389/fimmu.2022.833254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The tear miRNAome of the male NOD mouse, a model of ocular symptoms of Sjögren's syndrome (SS), was analyzed to identify unique miRNAs. Methods Male NOD mice, aged 12-14 weeks, were used to identify tear miRNAs associated with development of autoimmune dacryoadenitis. Age- and sex-matched male BALB/c mice served as healthy controls while age-matched female NOD mice that do not develop the autoimmune dacryoadenitis characteristic of SS were used as additional controls. Total RNA was isolated from stimulated tears pooled from 5 mice per sample and tear miRNAs were sequenced and analyzed. Putative miRNA hits were validated in additional mouse cohorts as well as in tears of SS patients versus patients with another form of dry eye disease, meibomian gland disease (MGD) using qRT-PCR. The pathways influenced by the validated hits were identified using Ingenuity Pathway Analysis. Results In comparison to tears from both healthy (male BALB/c) and additional control (female NOD) mice, initial analy1sis identified 7 upregulated and 7 downregulated miRNAs in male NOD mouse tears. Of these, 8 were validated by RT-qPCR in tears from additional mouse cohorts. miRNAs previously implicated in SS pathology included mmu-miR-146a/b-5p, which were significantly downregulated, as well as mmu-miR-150-5p and mmu-miR-181a-5p, which were upregulated in male NOD mouse tears. All other validated hits including the upregulated miR-181b-5p and mmu-miR-203-3p, as well as the downregulated mmu-miR-322-5p and mmu-miR-503-5p, represent novel putative indicators of autoimmune dacryoadenitis in SS. When compared to tears from patients with MGD, miRNAs hsa-miR-203a-3p, hsa-miR-181a-5p and hsa-miR-181b-5p were also significantly increased in tears of SS patients. Conclusions A panel of differentially expressed miRNAs were identified in tears of male NOD mice, with some preliminary validation in SS patients, including some never previously linked to SS. These may have potential utility as indicators of ocular symptoms of SS; evaluation of the pathways influenced by these dysregulated miRNAs may also provide further insights into SS pathogenesis.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Alexander Yao
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Annie Nguyen
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brooke E. Hjelm
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Yu Z, Li J, Govindarajan G, Hamm-Alvarez S, Alam J, Li DQ, de Paiva CS. Cathepsin S is a novel target for age-related dry eye. Exp Eye Res 2022; 214:108895. [PMID: 34910926 PMCID: PMC8908478 DOI: 10.1016/j.exer.2021.108895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Cathepsin S (Ctss) is a protease that is proinflammatory on epithelial cells. The purpose of this study was to investigate the role of Ctss in age-related dry eye disease. Ctss-/- mice [in a C57BL/6 (B6) background] of different ages were compared to B6 mice. Ctss activity in tears and lacrimal gland (LG) lysates was measured. The corneal barrier function was investigated in naïve mice or after topical administration of Ctss eye drops 5X/day for two days. Eyes were collected, and conjunctival goblet cell density was measured in PAS-stained sections. Immunoreactivity of the tight junction proteins, ZO-1 and occludin, was investigated in primary human cultured corneal epithelial cells (HCEC) without or with Ctss, with or without a Ctss inhibitor. A significant increase in Ctss activity was observed in the tears and LG lysates in aged B6 compared to young mice. This was accompanied by higher Ctss transcripts and protein expression in LG and spleen. Compared to B6, 12 and 24-month-old Ctss-/- mice did not display age-related corneal barrier disruption and goblet cell loss. Treatment of HCEC with Ctss for 48 h disrupted occludin and ZO-1 immunoreactivity compared to control cells. This was prevented by the Ctss inhibitor LY3000328 or Ctss-heat inactivation. Topical reconstitution of Ctss in Ctss-/- mice for two days disrupted corneal barrier function. Aging on the ocular surface is accompanied by increased expression and activity of the protease Ctss. Our results suggest that cathepsin S modulation might be a novel target for age-related dry eye disease.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - Jinmiao Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | | - Sarah Hamm-Alvarez
- Department of Ophthalmology and Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, United States
| | - Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - De-Quan Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
25
|
Das N, Menon NG, de Almeida LGN, Woods PS, Heynen ML, Jay GD, Caffery B, Jones L, Krawetz R, Schmidt TA, Dufour A. Proteomics Analysis of Tears and Saliva From Sjogren's Syndrome Patients. Front Pharmacol 2021; 12:787193. [PMID: 34950038 PMCID: PMC8689002 DOI: 10.3389/fphar.2021.787193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Sjogren's syndrome (SS) is characterized by dysfunctional mucous membranes and dysregulated moisture-secreting glands resulting in various symptoms, including dry mouth and dry eyes. Here, we wanted to profile and compare the tear and saliva proteomes of SS patients to healthy controls. Tear and saliva samples were collected and subjected to an isotopic dimethylation labeling shotgun proteomics workflow to identify alterations in protein levels. In tear samples, we identified 83 upregulated and 112 downregulated proteins. Pathway enrichment analysis of the changing proteins by Metascape identified leukocyte transendothelial migration, neutrophil degranulation, and post-translation protein phosphorylation in tears of SS patients. In healthy controls' tears, an enrichment for proteins related to glycolysis, amino acid metabolism and apoptotic signaling pathway were identified. In saliva, we identified 108 upregulated and 45 downregulated proteins. Altered pathways in SS patients' saliva included cornification, sensory perception to taste and neutrophil degranulation. In healthy controls' saliva, an enrichment for proteins related to JAK-STAT signaling after interleukin-12 stimulation, phagocytosis and glycolysis in senescence were identified. Dysregulated protease activity is implicated in the initiation of inflammation and immune cell recruitment in SS. We identified 20 proteases and protease inhibitors in tears and 18 in saliva which are differentially expressed between SS patients and healthy controls. Next, we quantified endogenous proteoglycan 4 (PRG4), a mucin-like glycoprotein, in tear wash and saliva samples via a bead-based immune assay. We identified decreased levels of PRG4 in SS patients' tear wash compared to normal samples. Conversely, in saliva, we found elevated levels of PRG4 concentration and visualized PRG4 expression in human parotid gland via immunohistological staining. These findings will improve our mechanistic understanding of the disease and changes in SS patients' protein expression will help identify new potential drug targets. PRG4 is among the promising targets, which we identified here, in saliva, for the first time.
Collapse
Affiliation(s)
- Nabangshu Das
- Departments of Physiology and Pharmacology and Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute, University of Calgary, Calgary, AB, Canada
| | - Nikhil G. Menon
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
| | - Luiz G. N. de Almeida
- Departments of Physiology and Pharmacology and Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute, University of Calgary, Calgary, AB, Canada
| | - Paige S. Woods
- Department of Emergency Medicine, Warren Alpert Medical School and School of Engineering, Brown University, Providence, RI, United States
| | - Miriam L. Heynen
- Centre for Ocular Research and Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Gregory D. Jay
- Department of Emergency Medicine, Warren Alpert Medical School and School of Engineering, Brown University, Providence, RI, United States
| | | | - Lyndon Jones
- Centre for Ocular Research and Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Roman Krawetz
- McCaig Institute, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Tannin A. Schmidt
- McCaig Institute, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Vlachogiannis NI, Tual-Chalot S, Zormpas E, Bonini F, Ntouros PA, Pappa M, Bournia VK, Tektonidou MG, Souliotis VL, Mavragani CP, Stamatelopoulos K, Gatsiou A, Sfikakis PP, Stellos K. Adenosine-to-inosine RNA editing contributes to type I interferon responses in systemic sclerosis. J Autoimmun 2021; 125:102755. [PMID: 34857436 PMCID: PMC8713031 DOI: 10.1016/j.jaut.2021.102755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Adenosine deaminase acting on RNA-1 (ADAR1) enzyme is a type I interferon (IFN)-stimulated gene (ISG) catalyzing the deamination of adenosine-to-inosine, a process called A-to-I RNA editing. A-to-I RNA editing takes place mainly in Alu elements comprising a primate-specific level of post-transcriptional gene regulation. Whether RNA editing is involved in type I IFN responses in systemic sclerosis (SSc) patients remains unknown. METHODS ISG expression was quantified in skin biopsies and peripheral blood mononuclear cells derived from SSc patients and healthy subjects. A-to-I RNA editing was examined in the ADAR1-target cathepsin S (CTSS) by an RNA editing assay. The effect of ADAR1 on interferon-α/β-induced CTSS expression was assessed in human endothelial cells in vitro. RESULTS Increased expression levels of the RNA editor ADAR1, and specifically the long ADAR1p150 isoform, and its target CTSS are strongly associated with type I IFN signature in skin biopsies and peripheral blood derived from SSc patients. Notably, IFN-α/β-treated human endothelial cells show 8-10-fold increased ADAR1p150 and 23-35-fold increased CTSS expression, while silencing of ADAR1 reduces CTSS expression by 60-70%. In SSc patients, increased RNA editing rate of individual adenosines located in CTSS 3' UTR Alu elements is associated with higher CTSS expression (r = 0.36-0.6, P < 0.05 for all). Similar findings were obtained in subjects with activated type I IFN responses including SLE patients or healthy subjects after influenza vaccination. CONCLUSION ADAR1p150-mediated A-to-I RNA editing is critically involved in type I IFN responses highlighting the importance of post-transcriptional regulation of proinflammatory gene expression in systemic autoimmunity, including SSc.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Eleftherios Zormpas
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Francesca Bonini
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki-Kalliopi Bournia
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany.
| |
Collapse
|
27
|
Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J 2021; 12:449-475. [PMID: 34876936 PMCID: PMC8639411 DOI: 10.1007/s13167-021-00265-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
Over the last two decades, a large number of non-communicable/chronic disorders reached an epidemic level on a global scale such as diabetes mellitus type 2, cardio-vascular disease, several types of malignancies, neurological and eye pathologies-all exerted system's enormous socio-economic burden to primary, secondary, and tertiary healthcare. The paradigm change from reactive to predictive, preventive, and personalized medicine (3PM/PPPM) has been declared as an essential transformation of the overall healthcare approach to benefit the patient and society at large. To this end, specific biomarker panels are instrumental for a cost-effective predictive approach of individualized prevention and treatments tailored to the person. The source of biomarkers is crucial for specificity and reliability of diagnostic tests and treatment targets. Furthermore, any diagnostic approach preferentially should be noninvasive to increase availability of the biomaterial, and to decrease risks of potential complications as well as concomitant costs. These requirements are clearly fulfilled by tear fluid, which represents a precious source of biomarker panels. The well-justified principle of a "sick eye in a sick body" makes comprehensive tear fluid biomarker profiling highly relevant not only for diagnostics of eye pathologies but also for prediction, prognosis, and treatment monitoring of systemic diseases. One prominent example is the Sicca syndrome linked to a cascade of severe complications that include dry eye, neurologic, and oncologic diseases. In this review, protein profiles in tear fluid are highlighted and corresponding biomarkers are exemplified for several relevant pathologies, including dry eye disease, diabetic retinopathy, cancers, and neurological disorders. Corresponding analytical approaches such as sample pre-processing, differential proteomics, electrophoretic techniques, high-performance liquid chromatography (HPLC), enzyme-linked immuno-sorbent assay (ELISA), microarrays, and mass spectrometry (MS) methodology are detailed. Consequently, we proposed the overall strategies based on the tear fluid biomarkers application for 3P medicine practice. In the context of 3P medicine, tear fluid analytical pathways are considered to predict disease development, to target preventive measures, and to create treatment algorithms tailored to individual patient profiles.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, 250117 Shandong China
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People’s Republic of China
| | - Jiajia Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
| |
Collapse
|
28
|
Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct Target Ther 2021; 6:379. [PMID: 34744168 PMCID: PMC8572923 DOI: 10.1038/s41392-021-00778-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/26/2021] [Indexed: 01/18/2023] Open
Abstract
In recent years, accumulating evidence has elucidated the role of lysosomes in dynamically regulating cellular and organismal homeostasis. Lysosomal changes and dysfunction have been correlated with the development of numerous diseases. In this review, we interpreted the key biological functions of lysosomes in four areas: cellular metabolism, cell proliferation and differentiation, immunity, and cell death. More importantly, we actively sought to determine the characteristic changes and dysfunction of lysosomes in cells affected by these diseases, the causes of these changes and dysfunction, and their significance to the development and treatment of human disease. Furthermore, we outlined currently available targeting strategies: (1) targeting lysosomal acidification; (2) targeting lysosomal cathepsins; (3) targeting lysosomal membrane permeability and integrity; (4) targeting lysosomal calcium signaling; (5) targeting mTOR signaling; and (6) emerging potential targeting strategies. Moreover, we systematically summarized the corresponding drugs and their application in clinical trials. By integrating basic research with clinical findings, we discussed the current opportunities and challenges of targeting lysosomes in human disease.
Collapse
|
29
|
Targeted Therapy for Primary Sjögren's Syndrome: Where are We Now? BioDrugs 2021; 35:593-610. [PMID: 34731460 DOI: 10.1007/s40259-021-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune exocrinopathy characterized by dryness symptoms. This review briefly describes recent advances in the targeted therapies for pSS. Biologics evaluated for pSS treatment mainly include B cell-depleting agents, inhibitors of B cell activation, and agents that target co-signaling molecules or proinflammatory cytokines. Small molecule inhibitors that target signaling pathways have also been evaluated. However, current evidence for the efficacy of targeted therapies in pSS is still sparse. Although ianalumab (an anti-B cell-activating factor [BAFF]-receptor antibody) and iscalimab (an anti-CD40 antibody) are promising biologics for pSS, their efficacy still needs to be evaluated in larger clinical trials. For other biologics, clinical trials have found no differences versus placebo in the change from baseline in European League Against Rheumatism Sjögren's Syndrome Disease Activity Index (ESSDAI) score and fatigue score. Possible causes of the disappointing outcomes mainly include the inefficacy of those evaluated biologics in treating pSS, the high heterogeneous nature of pSS, irreversible exocrine glandular failure at advanced disease stages, inappropriate recruitment strategy in clinical trials, and outcome measures. Early diagnosis and glandular function-centered outcome measures may help to improve the current situation in the systemic therapy of pSS.
Collapse
|
30
|
Errachid A, Nohawica M, Wyganowska-Swiatkowska M. A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review). Biomed Rep 2021; 15:95. [PMID: 34631050 PMCID: PMC8493546 DOI: 10.3892/br.2021.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder that affects the salivary glands, leading to reduced secretory functions and oral and ocular dryness. The salivary glands are composed of acinar cells that are responsible for the secretion and production of secretory granules, which contain salivary components, such as amylase, mucins and immunoglobulins. This secretion process involves secretory vesicle trafficking, docking, priming and membrane fusion. A failure during any of the steps in exocytosis in the salivary glands results in the altered secretion of saliva. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors, actin, tight junctions and aquaporin 5 all serve an important role in the trafficking regulation of secretory vesicles in the secretion of saliva via exocytosis. Alterations in the expression and distribution of these selected proteins leads to salivary gland dysfunction, including SS. Several studies have demonstrated that green tea polyphenols, most notably Epigallocatechin gallate (EGCG), possess both anti-inflammatory and anti-apoptotic properties in normal human cells. Molecular, cellular and animal studies have indicated that EGCG can provide protective effects against autoimmune and inflammatory reactions in salivary glands in diseases such as SS. The aim of the present article is to provide a comprehensive and up-to-date review on the possible therapeutic interactions between EGCG and the selected molecular mechanisms associated with SS.
Collapse
Affiliation(s)
- Abdelmounaim Errachid
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland.,Earth and Life Institute, University Catholique of Louvain, B-1348 Louvain-la-Neuve, Ottignies-Louvain-la-Neuve, Belgium
| | - Michal Nohawica
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| | - Marzena Wyganowska-Swiatkowska
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| |
Collapse
|
31
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
32
|
Phenylephrine increases tear cathepsin S secretion in healthy murine lacrimal gland acinar cells through an alternative secretory pathway. Exp Eye Res 2021; 211:108760. [PMID: 34487726 DOI: 10.1016/j.exer.2021.108760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Little is known about the relationship between stimulation of lacrimal gland (LG) tear protein secretion by parasympathetic versus sympathetic nerves, particularly whether the spectrum of tear proteins evoked through each innervation pathway varies. We have previously shown that activity and abundance of cathepsin S (CTSS), a cysteine protease, is greatly increased in tears of Sjögren's syndrome (SS) patients and in tears from the male NOD mouse of autoimmune dacryoadenitis that recapitulates SS-associated dry eye disease. Beyond the increased synthesis of CTSS detected in the diseased NOD mouse LG, increased tear CTSS secretion in NOD mouse tears was recently linked to increased exocytosis from a novel endolysosomal secretory pathway. Here, we have compared secretion and trafficking of CTSS in healthy mouse LG acinar cells stimulated with either the parasympathetic acetylcholine receptor agonist, carbachol (CCh), or the sympathetic α1-adrenergic agonist, phenylephrine (PE). In situ secretion studies show that PE significantly increases CTSS activity and protein in tears relative to CCh stimulation by 1.2-fold (***, p = 0.0009) and ∼5-fold (*, p-0.0319), respectively. A similar significant increase in CTSS activity with PE relative to CCh is observed when cultured LGAC are stimulated in vitro. CCh stimulation significantly elevates intracellular [Ca2+], an effect associated with increases in the size of Rab3D-enriched vesicles consistent with compound fusion, and subsequently decreases in their intensity of labeling consistent with their exocytosis. PE stimulation induces a lower [Ca2+] response and has minimal effects on Rab3D-enriched SV diameter or the intensity of Rab3D-enriched SV labeling. LG deficient in Rab3D exhibit a higher sensitivity to PE stimulation, and secrete more CTSS activity. Significant increases in the colocalization of endolysosomal vesicle markers (Lamp1, Lamp2, Rab7) with the subapical actin suggestive of fusion of endolysosomal vesicles at the apical membrane occur both with CCh and PE stimulation, but PE demonstrates increased colocalization. In conclusion, the α1-adrenergic agonist, PE, increases CTSS secretion into tears through a pathway independent of the exocytosis of Rab3D-enriched mature SV, possibly representing an alternative endolysosomal secretory pathway.
Collapse
|
33
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Roszkowska AM, Oliverio GW, Aragona E, Inferrera L, Severo AA, Alessandrello F, Spinella R, Postorino EI, Aragona P. Ophthalmologic Manifestations of Primary Sjögren's Syndrome. Genes (Basel) 2021; 12:genes12030365. [PMID: 33806489 PMCID: PMC7998625 DOI: 10.3390/genes12030365] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sjögren’s syndrome (SS) is a chronic, progressive, inflammatory, autoimmune disease, characterized by the lymphocyte infiltration of exocrine glands, especially the lacrimal and salivary, with their consequent destruction. The onset of primary SS (pSS) may remain misunderstood for several years. It usually presents with different types of severity, e.g., dry eye and dry mouth symptoms, due to early involvement of the lacrimal and salivary glands, which may be associated with parotid enlargement and dry eye; keratoconjunctivitis sicca (KCS) is its most common ocular manifestation. It is still doubtful if the extent ocular surface manifestations are secondary to lacrimal or meibomian gland involvement or to the targeting of corneal and conjunctival autoantigens. SS is the most representative cause of aqueous deficient dry eye, and the primary role of the inflammatory process was evidenced. Recent scientific progress in understanding the numerous factors involved in the pathogenesis of pSS was registered, but the exact mechanisms involved still need to be clarified. The unquestionable role of both the innate and adaptive immune system, participating actively in the induction and evolution of the disease, was recognized. The ocular surface inflammation is a central mechanism in pSS leading to the decrease of lacrimal secretion and keratoconjunctival alterations. However, there are controversies about whether the ocular surface involvement is a direct autoimmune target or secondary to the inflammatory process in the lacrimal gland. In this review, we aimed to present actual knowledge relative to the pathogenesis of the pSS, considering the role of innate immunity, adaptive immunity, and genetics.
Collapse
Affiliation(s)
- Anna Maria Roszkowska
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
- Correspondence:
| | - Giovanni William Oliverio
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Emanuela Aragona
- IRCCS San Raffaele Scientific Institute, Ophthalmology Clinic, Vita Salute San Raffaele University, 20132 Milan, Italy;
| | - Leandro Inferrera
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Alice Antonella Severo
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Federica Alessandrello
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Rosaria Spinella
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Elisa Imelde Postorino
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Pasquale Aragona
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| |
Collapse
|
35
|
Fu R, Edman MC, Hamm-Alvarez SF. Rab27a Contributes to Cathepsin S Secretion in Lacrimal Gland Acinar Cells. Int J Mol Sci 2021; 22:1630. [PMID: 33562815 PMCID: PMC7914720 DOI: 10.3390/ijms22041630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Altered lacrimal gland (LG) secretion is a feature of autoimmune dacryoadenitis in Sjögren's syndrome (SS). Cathepsin S (CTSS) is increased in tears of SS patients, which may contribute to disease. Rab3D and Rab27a/b isoforms are effectors of exocytosis in LG, but Rab27a is poorly studied. To investigate whether Rab27a mediates CTSS secretion, we utilized quantitative confocal fluorescence microscopy of LG from SS-model male NOD and control male BALB/c mice, showing that Rab27a-enriched vesicles containing CTSS were increased in NOD mouse LG. Live-cell imaging of cultured lacrimal gland acinar cells (LGAC) transduced with adenovirus encoding wild-type (WT) mCFP-Rab27a revealed carbachol-stimulated fusion and depletion of mCFP-Rab27a-enriched vesicles. LGAC transduced with dominant-negative (DN) mCFP-Rab27a exhibited significantly reduced carbachol-stimulated CTSS secretion by 0.5-fold and β-hexosaminidase by 0.3-fold, relative to stimulated LGAC transduced with WT mCFP-Rab27a. Colocalization of Rab27a and endolysosomal markers (Rab7, Lamp2) with the apical membrane was increased in both stimulated BALB/c and NOD mouse LG, but the extent of colocalization was much greater in NOD mouse LG. Following stimulation, Rab27a colocalization with endolysosomal membranes was decreased. In conclusion, Rab27a participates in CTSS secretion in LGAC though the major regulated pathway, and through a novel endolysosomal pathway that is increased in SS.
Collapse
Affiliation(s)
- Runzhong Fu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| |
Collapse
|
36
|
Tear Proteases and Protease Inhibitors: Potential Biomarkers and Disease Drivers in Ocular Surface Disease. Eye Contact Lens 2021; 46 Suppl 2:S70-S83. [PMID: 31369467 DOI: 10.1097/icl.0000000000000641] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tears are highly concentrated in proteins relative to other biofluids, and a notable fraction of tear proteins are proteases and protease inhibitors. These components are present in a delicate equilibrium that maintains ocular surface homeostasis in response to physiological and temporal cues. Dysregulation of the activity of protease and protease inhibitors in tears occurs in ocular surface diseases including dry eye and infection, and ocular surface conditions including wound healing after refractive surgery and contact lens (CL) wear. Measurement of these changes can provide general information regarding ocular surface health and, increasingly, has the potential to give specific clues regarding disease diagnosis and guidance for treatment. Here, we review three major categories of tear proteases (matrix metalloproteinases, cathepsins, and plasminogen activators [PAs]) and their endogenous inhibitors (tissue inhibitors of metalloproteinases, cystatins, and PA inhibitors), and the changes in these factors associated with dry eye, infection and allergy, refractive surgery, and CLs. We highlight suggestions for development of these and other protease/protease inhibitor biomarkers in this promising field.
Collapse
|
37
|
Byun YS, Lee HJ, Shin S, Choi MY, Kim HS, Chung SH. Tear ATG5 as a Potential Novel Biomarker in the Diagnosis of Sjögren Syndrome. Diagnostics (Basel) 2021; 11:diagnostics11010071. [PMID: 33406739 PMCID: PMC7824715 DOI: 10.3390/diagnostics11010071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 01/05/2023] Open
Abstract
Autophagy has been suggested to have an important role in the pathogenesis of Sjögren syndrome (SS). We previously identified that autophagy related 5 (ATG5) was elevated in the tear and conjunctival epithelial cells of SS dry eyes (DE) compared to non-SS DE. The purpose of this study was to investigate the role of tear ATG5 as a potential biomarker in the diagnosis of SS. To confirm this hypothesis, we evaluated the tear ATG5 concentration, and other ocular tests (Schirmer I, tear breakup time (TBUT), ocular surface staining (OSS) score, ocular surface disease index (OSDI)) in SS and non-DE, and compared their diagnostic performance to discriminate SS from non-SS DE. Tear ATG5 showed the greatest area under the curve (AUC = 0.984; 95% CI, 0.930 to 0.999) among the tests, and a 94.6% sensitivity and 93.6% specificity at a cutoff value of >4.0 ng/mL/μg. Our data demonstrated that tear ATG5 may be helpful as an ocular biomarker to diagnose and assess SS. In the future, the diagnostic power of tear ATG for SS should be validated.
Collapse
Affiliation(s)
- Yong-Soo Byun
- Department of Ophthalmology and Visual Science, Catholic Institute for Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.-S.B.); (S.S.); (M.Y.C.); (H.-S.K.)
| | - Hyun Jung Lee
- Department of Biochemical Engineering, Seoul University, Seoul 02192, Korea;
| | - Soojung Shin
- Department of Ophthalmology and Visual Science, Catholic Institute for Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.-S.B.); (S.S.); (M.Y.C.); (H.-S.K.)
| | - Moon Young Choi
- Department of Ophthalmology and Visual Science, Catholic Institute for Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.-S.B.); (S.S.); (M.Y.C.); (H.-S.K.)
| | - Hyung-Seung Kim
- Department of Ophthalmology and Visual Science, Catholic Institute for Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.-S.B.); (S.S.); (M.Y.C.); (H.-S.K.)
| | - So-Hyang Chung
- Department of Ophthalmology and Visual Science, Catholic Institute for Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.-S.B.); (S.S.); (M.Y.C.); (H.-S.K.)
- Correspondence:
| |
Collapse
|
38
|
Zhao J, Yang Y, Wu Y. The Clinical Significance and Potential Role of Cathepsin S in IgA Nephropathy. Front Pediatr 2021; 9:631473. [PMID: 33912521 PMCID: PMC8071879 DOI: 10.3389/fped.2021.631473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Objective: Cathepsin S (CTSS) is an important lysosomal cysteine protease. This study aimed at investigating the clinical significance of CTSS and underlying mechanism in immunoglobulin A nephropathy (IgAN). Methods: This study recruited 25 children with IgAN and age-matched controls and their serum CTSS levels were measured by enzyme-linked immunosorbent assay (ELISA). Following induction of IgAN in rats, their kidney CTSS expression, IgA accumulation and serum CTSS were characterized by immunohistochemistry, immunofluorescence, and ELISA. The impact of IgA1 aggregates on the proliferation of human mesangial cells (HMCs) was determined by Cell Counting Kit-8 and Western blot analysis of Ki67. Results: Compared to the non-IgAN controls, significantly up-regulated CTSS expression was detected in the renal tissues, particularly in the glomerular mesangium and tubular epithelial cells of IgAN patients, accompanied by higher levels of serum CTSS (P < 0.05), which were correlated with the levels of 24-h-urine proteins and microalbumin and urine erythrocytes and grades of IgAN Lee's classification in children with IgAN (P < 0.01 for all). Following induction of IgAN, we detected inducible IgA accumulation and increased levels of CTSS expression in the glomerular mesangium and glomerular damages in rats, which were mitigated by LY3000328, a CTSS-specific inhibitor. Treatment with LY3000328 significantly mitigated the Ki67 expression in the kidney of IgAN rats (P < 0.01) and significantly minimized the IgA1 aggregate-stimulated proliferation of HMCs and their Ki67 expression in vitro (P < 0.01). Conclusions: CTSS promoted the proliferation of glomerular mesangial cells, contributing to the pathogenesis of IgAN and may be a new therapeutic target for intervention of aberrant mesangial cell proliferation during the process of IgAN.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongchang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Modulation of Oxidative Stress and Inflammation in the Aged Lacrimal Gland. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:294-308. [PMID: 33159886 DOI: 10.1016/j.ajpath.2020.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Inflammation and oxidative stress accompany aging. This study investigated the interplay between oxidative stress and inflammation in the lacrimal gland. C57BL/6 mice were used at 2 to 3, 12, and 24 months of age. Nuclear factor erythroid derived-2-related factor 2 (Nrf2)-/- and corresponding wild-type mice were used at 2 to 3 and 12 to 13 months of age. A separate group of 15.5 to 17 months of age C57BL/6 mice received a diet containing an Nrf2 inducer (Oltipraz) for 8 weeks. Aged C57BL/6 lacrimal glands showed significantly greater lymphocytic infiltration, higher levels of MHC II, IFN-γ, IL-1β, TNF-α, and cathepsin S (Ctss) mRNA transcripts, and greater nitrotyrosine and 4-hydroxynonenal protein. Young Nrf2-/- mice showed an increase in IL-1β, IFN-γ, MHC II, and Ctss mRNA transcripts compared with young wild-type mice and greater age-related changes at 12 to 13 months of age. Oltipraz diet significantly decreased nitrotyrosine and 4-hydroxynonenal and decreased the expression of IL-1β and TNF-α mRNA transcripts, while decreasing the frequency of CD45+CD4+ cells in lacrimal glands and significantly increasing conjunctival goblet cell density compared with a standard diet. The findings provide novel insight into the development of chronic, low-grade inflammation and oxidative stress in age-related dry eye. New therapies targeting oxidative stress pathways will be valuable in treating age-related dry eye.
Collapse
|
40
|
Schade M, Merla B, Lesch B, Wagener M, Timmermanns S, Pletinckx K, Hertrampf T. Highly Selective Sub-Nanomolar Cathepsin S Inhibitors by Merging Fragment Binders with Nitrile Inhibitors. J Med Chem 2020; 63:11801-11808. [PMID: 32880457 DOI: 10.1021/acs.jmedchem.0c00949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pharmacological inhibition of cathepsin S (CatS) allows for a specific modulation of the adaptive immune system and many major diseases. Here, we used NMR fragment screening and crystal structure-aided merging to synthesize novel, highly selective CatS inhibitors with picomolar enzymatic Ki values and nanomolar functional activity in human Raji cells. Noncovalent fragment hits revealed binding hotspots, while the covalent inhibitor structure-activity relationship enabled efficient potency optimization.
Collapse
Affiliation(s)
- Markus Schade
- Grünenthal GmbH, Zieglerstr. 6, 52078 Aachen, Germany
| | - Beatrix Merla
- Grünenthal GmbH, Zieglerstr. 6, 52078 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Shodeinde AB, Murphy AC, Oldenkamp HF, Potdar AS, Ludolph CM, Peppas NA. Recent Advances in Smart Biomaterials for the Detection and Treatment of Autoimmune Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909556. [PMID: 33071713 PMCID: PMC7566744 DOI: 10.1002/adfm.201909556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/15/2020] [Indexed: 05/07/2023]
Abstract
Autoimmune diseases are a group of debilitating illnesses that are often idiopathic in nature. The steady rise in the prevalence of these conditions warrants new approaches for diagnosis and treatment. Stimuli-responsive biomaterials also known as "smart", "intelligent" or "recognitive" biomaterials are widely studied for their applications in drug delivery, biosensing and tissue engineering due to their ability to produce thermal, optical, chemical, or structural changes upon interacting with the biological environment. This critical analysis highlights studies within the last decade that harness the recognitive capabilities of these biomaterials towards the development of novel detection and treatment options for autoimmune diseases.
Collapse
Affiliation(s)
- Aaliyah B. Shodeinde
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, USA, 78712
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, USA, 78712
| | - Andrew C. Murphy
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, USA, 78712
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, USA, 78712
| | - Heidi F. Oldenkamp
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, USA, 78712
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, USA, 78712
| | - Abhishek S. Potdar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, USA, 78712
| | - Catherine M. Ludolph
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, USA, 78712
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, USA, 78712
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, USA, 78712
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, USA, 78712
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin, TX, USA, 78712
- Department of Surgery and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin, TX, USA, 78712
- Department of Pediatrics, Dell Medical School, 1400 Barbara Jordan Blvd., Austin, TX, USA, 78723
| |
Collapse
|
42
|
Kakan SS, Janga SR, Cooperman B, Craig DW, Edman MC, Okamoto CT, Hamm-Alvarez SF. Small RNA Deep Sequencing Identifies a Unique miRNA Signature Released in Serum Exosomes in a Mouse Model of Sjögren's Syndrome. Front Immunol 2020; 11:1475. [PMID: 32849505 PMCID: PMC7396589 DOI: 10.3389/fimmu.2020.01475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and loss of function of moisture-producing exocrine glands as well as systemic inflammation. SS diagnosis is cumbersome, subjective and complicated by manifestation of symptoms that overlap with those of other rheumatic and ocular diseases. Definitive diagnosis averages 4–5 years and this delay may lead to irreversible tissue damage. Thus, there is an urgent need for diagnostic biomarkers for earlier detection of SS. Extracellular vesicles called exosomes carry functional small non-coding RNAs which play a critical role in maintaining cellular homeostasis via transcriptional and translational regulation of mRNA. Alterations in levels of specific exosomal miRNAs may be predictive of disease status. Here, we have assessed serum exosomal RNA using next generation sequencing in a discovery cohort of the NOD mouse, a model of early-intermediate SS, to identify dysregulated miRNAs that may be indicative of SS. We found five miRNAs upregulated in serum exosomes of NOD mice with an adjusted p < 0.05—miRNA-127-3p, miRNA-409-3p, miRNA-410-3p, miRNA-541-5p, and miRNA-540-5p. miRNAs 127-3p and 541-5p were also statistically significantly upregulated in a validation cohort of NOD mice. Pathway analysis and existing literature indicates that differential expression of these miRNAs may dysregulate pathways involved in inflammation. Future studies will apply these findings in a human cohort to understand how they are correlated with manifestations of SS as well as understanding their functional role in systemic autoimmunity specific to SS.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Srikanth R Janga
- Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Benjamin Cooperman
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - David W Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria C Edman
- Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
43
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
44
|
Fu R, Guo H, Janga S, Choi M, Klinngam W, Edman MC, Hamm-Alvarez SF. Cathepsin S activation contributes to elevated CX3CL1 (fractalkine) levels in tears of a Sjögren's syndrome murine model. Sci Rep 2020; 10:1455. [PMID: 31996771 PMCID: PMC6989636 DOI: 10.1038/s41598-020-58337-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/14/2020] [Indexed: 11/09/2022] Open
Abstract
Autoimmune dacryoadenitis and altered lacrimal gland (LG) secretion are features of Sjögren's syndrome (SS). Activity of cathepsin S (CTSS), a cysteine protease, is significantly and specifically increased in SS patient tears. The soluble chemokine, CX3CL1 (fractalkine), is cleaved from membrane-bound CX3CL1 by proteases including CTSS. We show that CX3CL1 is significantly elevated by 2.5-fold in tears (p = 0.0116) and 1.4-fold in LG acinar cells (LGAC)(p = 0.0026) from male NOD mice, a model of autoimmune dacryoadenitis in SS, relative to BALB/c controls. Primary mouse LGAC and human corneal epithelial cells (HCE-T cells) exposed to interferon-gamma, a cytokine elevated in SS, showed up to 9.6-fold (p ≤ 0.0001) and 25-fold (p ≤ 0.0001) increases in CX3CL1 gene expression, and 1.9-fold (p = 0.0005) and 196-fold (p ≤ 0.0001) increases in CX3CL1 protein expression, respectively. Moreover, exposure of HCE-T cells to recombinant human CTSS at activity equivalent to that in SS patient tears increased cellular CX3CL1 gene and protein expression by 2.8-fold (p = 0.0021) and 5.1-fold (p ≤ 0.0001), while increasing CX3CL1 in culture medium by 5.8-fold (p ≤ 0.0001). Flow cytometry demonstrated a 4.5-fold increase in CX3CR1-expressing immune cells (p ≤ 0.0001), including increased T-cells and macrophages, in LG from NOD mice relative to BALB/c. CTSS-mediated induction/cleavage of CX3CL1 may contribute to ocular surface and LG inflammation in SS.
Collapse
Affiliation(s)
- Runzhong Fu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Srikanth Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
45
|
Mechanisms of Disease in Sjögren Syndrome-New Developments and Directions. Int J Mol Sci 2020; 21:ijms21020650. [PMID: 31963817 PMCID: PMC7013496 DOI: 10.3390/ijms21020650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Sjögren Syndrome (SS) is an autoimmune disease that affects the exocrine glands, mainly salivary and lacrimal glands [...].
Collapse
|
46
|
Abstract
Proteoglycan 4 (or lubricin), a mucin-like glycoprotein, was originally classified as a lubricating substance within diarthrodial joints. More recently, lubricin has been found in other tissues and has been implicated in 2 inflammatory pathways within the cell, via the Toll-like receptors (TLRs) and CD44. Lubricin is an antagonist of TLR2 and TLR4, and appears to enter cells via the CD44 receptor. Because of lubricin's action on these receptors, downstream processes of inflammation are halted, thereby preventing release of cytokines (a hallmark of inflammation and sepsis) from the cell, indicating lubricin's role as a biomarker and possible therapeutic for sepsis.
Collapse
Affiliation(s)
- Holly Richendrfer
- Department of Emergency Medicine, Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI 02903, USA; Department of Emergency Medicine, Research Laboratory, Rhode Island Hospital, 1 Hoppin Street, CORO West, Room 4.303, Providence, RI 02903, USA
| | - Gregory D Jay
- Department of Emergency Medicine, Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI 02903, USA; Department of Emergency Medicine, Research Laboratory, Rhode Island Hospital, 1 Hoppin Street, CORO West, Room 4.303, Providence, RI 02903, USA.
| |
Collapse
|
47
|
Mavragani CP, Moutsopoulos HM. Sjögren's syndrome: Old and new therapeutic targets. J Autoimmun 2019; 110:102364. [PMID: 31831255 DOI: 10.1016/j.jaut.2019.102364] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/09/2023]
Abstract
Sjögren's syndrome (SS) is a prototype autoimmune disease characterized by oral and ocular mucosal dryness following chronic inflammation of salivary and lachrymal glands, respectively. Profound B cell hyperactivity along with systemic manifestations including fatigue, musculoskeletal complaints, features related to hepatic, pulmonary, renal and nervous system involvement, as well as lymphoma development can be also present. Despite that activation of both innate and adaptive immune pathways has been long well documented in SS pathogenesis, systemic immunosuppression in SS, in contrast to other autoimmune diseases, has been largely inefficacious. Biological agents previously implemented in successful therapeutic outcomes in rheumatoid arthritis (RA), such as anti-TNF agents, anakinra, tocilizumab and rituximab failed to reach primary outcomes in randomized double-blind controlled trials in the context of SS. Abatacept and belimumab, already licensed for the treatment of RA and lupus respectively, as well combination regimens of both rituximab and belimumab hold some promise in alleviation of SS-specific complaints, but data from large controlled trials are awaited. Recent advances in dissecting the molecular pathways underlying SS pathogenesis led to an expanding number of novel biological compounds directed towards type I interferon system, antigen presentation, costimulatory pathways, B and T cell activation, as well as germinal center formation. While targeting of cathepsin-S (Petesicatib), inducible costimulator of T cells ligand (prezalumab), and lymphotoxin beta receptor (baminercept) failed to fulfil the primary outcome measures, preliminary results from two randomized placebo controlled trials on CD40 blockade (Iscalimab) and B-cell activating factor receptor (Ianalumab) inhibition resulted in significant reduction of SS disease activity, with a favorable so far safety profile. Results from administration of other kinase inhibitors, a transmembrane activator and calcium-modulator and cytophilin ligand interactor TACI fusion protein (RC18), as well as low dose recombinant interleukin-2 to expand T-regulatory cells are currently awaited.
Collapse
Affiliation(s)
- Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
48
|
Abstract
Lysosomes are membrane-bound organelles with roles in processes involved in degrading and recycling cellular waste, cellular signalling and energy metabolism. Defects in genes encoding lysosomal proteins cause lysosomal storage disorders, in which enzyme replacement therapy has proved successful. Growing evidence also implicates roles for lysosomal dysfunction in more common diseases including inflammatory and autoimmune disorders, neurodegenerative diseases, cancer and metabolic disorders. With a focus on lysosomal dysfunction in autoimmune disorders and neurodegenerative diseases - including lupus, rheumatoid arthritis, multiple sclerosis, Alzheimer disease and Parkinson disease - this Review critically analyses progress and opportunities for therapeutically targeting lysosomal proteins and processes, particularly with small molecules and peptide drugs.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France.
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France.
- University of Strasbourg Institute for Advanced Study, Strasbourg, France.
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
49
|
Morthen MK, Tellefsen S, Richards SM, Lieberman SM, Rahimi Darabad R, Kam WR, Sullivan DA. Testosterone Influence on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. Invest Ophthalmol Vis Sci 2019; 60:2181-2197. [PMID: 31108549 PMCID: PMC6528840 DOI: 10.1167/iovs.19-26815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Sjögren syndrome is an autoimmune disorder that occurs almost exclusively in women and is associated with extensive inflammation in lacrimal tissue, an immune-mediated destruction and/or dysfunction of glandular epithelial cells, and a significant decrease in aqueous tear secretion. We discovered that androgens suppress the inflammation in, and enhance the function of, lacrimal glands in female mouse models (e.g., MRL/MpJ-Tnfrsf6lpr [MRL/lpr]) of Sjögren syndrome. In contrast, others have reported that androgens induce an anomalous immunopathology in lacrimal glands of nonobese diabetic/LtJ (NOD) mice. We tested our hypothesis that these hormone actions reflect unique, strain- and tissue-specific effects, which involve significant changes in the expression of immune-related glandular genes. Methods Lacrimal glands were obtained from age-matched, adult, female MRL/lpr and NOD mice after treatment with vehicle or testosterone for up to 3 weeks. Tissues were processed for analysis of differentially expressed mRNAs using CodeLink Bioarrays and Affymetrix GeneChips. Data were analyzed with bioinformatics and statistical software. Results Testosterone significantly influenced the expression of numerous immune-related genes, ontologies, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in lacrimal glands of MRL/lpr and NOD mice. The nature of this hormone-induced immune response was dependent upon the autoimmune strain, and was not duplicated within lacrimal tissues of nonautoimmune BALB/c mice. The majority of immune-response genes regulated by testosterone were of the inflammatory type. Conclusions Our findings support our hypothesis and indicate a major role for the lacrimal gland microenvironment in mediating androgen effects on immune gene expression.
Collapse
Affiliation(s)
- Mathias Kaurstad Morthen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital/Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sara Tellefsen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital/Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stephen M Richards
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Genetics & Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Raheleh Rahimi Darabad
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Clinical Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Wendy R Kam
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - David A Sullivan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
50
|
Fong PY, Shih KC, Lam PY, Chan TCY, Jhanji V, Tong L. Role of tear film biomarkers in the diagnosis and management of dry eye disease. Taiwan J Ophthalmol 2019; 9:150-159. [PMID: 31572651 PMCID: PMC6759547 DOI: 10.4103/tjo.tjo_56_19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been increasing scientific interest in the use of tear film biomarkers in the diagnosis and management of dry eye disease (DED), owing to their potential important roles in the pathogenesis of ocular surface damage, as well as the technical feasibility of tear sample collection techniques. An Entrez PubMed search was conducted on March 2, 2019, to include papers investigating the use of tear film biomarkers in DED, and the results were classified according to whether the DED is associated with systemic inflammatory disease or not and further classified within each section according to the molecular nature of the biomarker for further discussion. A total of 58 relevant articles were reviewed. Certain cytokines, including interleukin-6 (IL-6), tumor necrosis factor-alpha, IL-17, and IL-8, were found by a number of studies to consistently reflect disease severity well and had strong correlations with tear film metrics and tests for ocular surface damage in dry eye without systemic inflammatory disease. For dry eye with systemic inflammatory disease, IL-17, IL-8, and IL-1 receptor antagonists were shown to be consistently higher in affected eyes and correlated well with ocular surface disease severity in more than one type of inflammatory disease. With the advancement in technology and lowered costs in the future, tear film biomarker counts would allow better diagnosis and monitoring of DED, as well as facilitate personalized treatment strategies.
Collapse
Affiliation(s)
- Pak Yui Fong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Pun Yuet Lam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Tommy Chung Yan Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, Hong Kong.,Department of Ophthalmology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, Hong Kong
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Centre, Pittsburgh, USA
| | - Louis Tong
- Cornea and External Eye Disease Service, Singapore National Eye Centre, Singapore.,Ocular Surface Research Group, Singapore Eye Research Institute, Singapore
| |
Collapse
|