1
|
Zhang WR, Bhutani T, North JP. The Association of Interleukin-36 Staining Intensity and Response to Biologic Therapy in Patients With Psoriasis: A Retrospective Immunohistochemical and Chart Review Pilot Study. J Cutan Pathol 2024. [PMID: 39377573 DOI: 10.1111/cup.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND There are limited surrogate biomarkers to identify the active inflammatory pathway in psoriasis to direct treatment with targeted biologic therapies. We investigated the association of interleukin (IL)-36 epidermal expression, a diagnostic marker of psoriasis, with response to biologic therapy in patients with psoriasis. METHODS Retrospective immunohistochemical and chart review pilot study. RESULTS Patients with psoriasis with low (scores 0-2) vs. high (scores 3-4) IL-36 expression did not have significantly different response rates to tumor necrosis factor α (TNFα), IL-17, and IL-12/23 or IL-23 inhibitors; and similarly, mean IL-36 expression scores did not significantly differ among responders vs. non-responders to each treatment mechanism. However, in patients with psoriasis treated with IL-12/23 or IL-23 inhibitors, there was a marked absolute difference in response rates in those with high vs. low IL-36 (84% vs. 50%, p = 0.12) and in mean IL-36 scores in responders vs. non-responders (3.35 vs. 2.57, p = 0.19). CONCLUSIONS Patients with psoriasis with high IL-36 expression were more likely to respond to IL-12/23 and IL-23 inhibition than those with low IL-36, though these findings were not statistically significant. Additional studies with larger sample sizes are needed to validate and expand upon these findings.
Collapse
Affiliation(s)
- William R Zhang
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Tina Bhutani
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Jeffrey P North
- Department of Dermatology, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Hren MG, Khattri S. Treatment of recalcitrant psoriasis and psoriatic arthritis with a combination of a biologic plus an oral JAK or TYK2 inhibitor: a case series. Ann Rheum Dis 2024; 83:1392-1393. [PMID: 38754982 DOI: 10.1136/ard-2024-225800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Affiliation(s)
- M Grace Hren
- Dermatology and Rheumatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Stony Brook University, Renaissance School of Medicine, Stony Brook, New York, USA
| | - Saakshi Khattri
- Dermatology and Rheumatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Schäfer S, Smelik M, Sysoev O, Zhao Y, Eklund D, Lilja S, Gustafsson M, Heyn H, Julia A, Kovács IA, Loscalzo J, Marsal S, Zhang H, Li X, Gawel D, Wang H, Benson M. scDrugPrio: a framework for the analysis of single-cell transcriptomics to address multiple problems in precision medicine in immune-mediated inflammatory diseases. Genome Med 2024; 16:42. [PMID: 38509600 PMCID: PMC10956347 DOI: 10.1186/s13073-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Ineffective drug treatment is a major problem for many patients with immune-mediated inflammatory diseases (IMIDs). Important reasons are the lack of systematic solutions for drug prioritisation and repurposing based on characterisation of the complex and heterogeneous cellular and molecular changes in IMIDs. METHODS Here, we propose a computational framework, scDrugPrio, which constructs network models of inflammatory disease based on single-cell RNA sequencing (scRNA-seq) data. scDrugPrio constructs detailed network models of inflammatory diseases that integrate information on cell type-specific expression changes, altered cellular crosstalk and pharmacological properties for the selection and ranking of thousands of drugs. RESULTS scDrugPrio was developed using a mouse model of antigen-induced arthritis and validated by improved precision/recall for approved drugs, as well as extensive in vitro, in vivo, and in silico studies of drugs that were predicted, but not approved, for the studied diseases. Next, scDrugPrio was applied to multiple sclerosis, Crohn's disease, and psoriatic arthritis, further supporting scDrugPrio through prioritisation of relevant and approved drugs. However, in contrast to the mouse model of arthritis, great interindividual cellular and gene expression differences were found in patients with the same diagnosis. Such differences could explain why some patients did or did not respond to treatment. This explanation was supported by the application of scDrugPrio to scRNA-seq data from eleven individual Crohn's disease patients. The analysis showed great variations in drug predictions between patients, for example, assigning a high rank to anti-TNF treatment in a responder and a low rank in a nonresponder to that treatment. CONCLUSIONS We propose a computational framework, scDrugPrio, for drug prioritisation based on scRNA-seq of IMID disease. Application to individual patients indicates scDrugPrio's potential for personalised network-based drug screening on cellulome-, genome-, and drugome-wide scales. For this purpose, we made scDrugPrio into an easy-to-use R package ( https://github.com/SDTC-CPMed/scDrugPrio ).
Collapse
Affiliation(s)
- Samuel Schäfer
- Centre for Personalised Medicine, Linköping University, Linköping, Sweden
- Department of Gastroenterology and Hepatology, University Hospital, Linköping, Sweden
| | - Martin Smelik
- Postal Address: LIME/Medical Digital Twin Research Group, Division of ENT, CLINTEC, Karolinska Institute, Tomtebodavägen 18A. 171 65 Solna, Stockholm, Sweden
| | - Oleg Sysoev
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linkoping University, Linköping, Sweden
| | - Yelin Zhao
- Postal Address: LIME/Medical Digital Twin Research Group, Division of ENT, CLINTEC, Karolinska Institute, Tomtebodavägen 18A. 171 65 Solna, Stockholm, Sweden
| | - Desiré Eklund
- Centre for Personalised Medicine, Linköping University, Linköping, Sweden
| | - Sandra Lilja
- Centre for Personalised Medicine, Linköping University, Linköping, Sweden
- Mavatar, Inc, Stockholm, Sweden
| | - Mika Gustafsson
- Division for Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Antonio Julia
- Grup de Recerca de Reumatologia, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - István A Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
- Northwestern Institute On Complex Systems, Northwestern University, Evanston, IL, 60208, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Marsal
- Grup de Recerca de Reumatologia, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Huan Zhang
- Centre for Personalised Medicine, Linköping University, Linköping, Sweden
| | - Xinxiu Li
- Postal Address: LIME/Medical Digital Twin Research Group, Division of ENT, CLINTEC, Karolinska Institute, Tomtebodavägen 18A. 171 65 Solna, Stockholm, Sweden
| | | | - Hui Wang
- Postal Address: LIME/Medical Digital Twin Research Group, Division of ENT, CLINTEC, Karolinska Institute, Tomtebodavägen 18A. 171 65 Solna, Stockholm, Sweden
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Mikael Benson
- Postal Address: LIME/Medical Digital Twin Research Group, Division of ENT, CLINTEC, Karolinska Institute, Tomtebodavägen 18A. 171 65 Solna, Stockholm, Sweden.
| |
Collapse
|
4
|
Fragoulis GE, Ntouros PA, Nezos A, Vlachogiannis NI, McInnes IB, Tektonidou MG, Skarlis C, Souliotis VL, Mavragani CP, Sfikakis PP. Type-I interferon pathway and DNA damage accumulation in peripheral blood of patients with psoriatic arthritis. Front Immunol 2023; 14:1274060. [PMID: 38124740 PMCID: PMC10731026 DOI: 10.3389/fimmu.2023.1274060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives The abnormal DNA damage response is associated with upregulation of the type-1 interferon (IFN-I) pathway in certain rheumatic diseases. We investigated whether such aberrant mechanisms operate in psoriatic arthritis (PsA). Methods DNA damage levels were measured by alkaline comet assay in peripheral blood mononuclear cells from 52 PsA patients and age-sex-matched healthy individuals. RNA expression of IFIT1, MX1 and IFI44, which are selectively induced by IFN-I, was quantitated by real-time polymerase chain reaction and their composite normalized expression resulted in IFN-I score calculation. RNA expression of IL1β, IL6, TNF, IL17A and IL23A was also assessed in PsA and control subgroups. Results In PsA, DNA damage accumulation was increased by almost two-fold compared to healthy individuals (olive tail moment arbitrary units, mean ± SD; 9.42 ± 2.71 vs 4.88 ± 1.98, p<0.0001). DNA damage levels significantly correlated with serum C-Reactive-protein and IL6 RNA expression in PBMCs. Despite increased DNA damage, the IFN-I score was strikingly lower in PsA patients compared to controls (-0.49 ± 6.99 vs 4.24 ± 4.26; p<0.0001). No correlation was found between IFN-I pathway downregulation and DNA damage. However, the IFN-I score in a PsA subgroup was lower in those patients with higher IL1β expression, as well as in those with higher TNF/IL23A PBMCs expression. Conclusion DNA damage in PsA correlates with measures of inflammation but is not associated with the IFN-I pathway induction. The unexpected IFN-I downregulation, albeit reminiscent to findings in experimental models of spondyloarthritis, may be implicated in PsA pathogenesis and explained by operation of other cytokines.
Collapse
Affiliation(s)
- George E. Fragoulis
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Panagiotis A. Ntouros
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolaos I. Vlachogiannis
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Iain B. McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Maria G. Tektonidou
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vassilis L. Souliotis
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Clio P. Mavragani
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Petros P. Sfikakis
- Joint Academic Rheumatology Program, First Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
5
|
Schäfer S, Smelik M, Sysoev O, Zhao Y, Eklund D, Lilja S, Gustafsson M, Heyn H, Julia A, Kovács IA, Loscalzo J, Marsal S, Zhang H, Li X, Gawel D, Wang H, Benson M. scDrugPrio: A framework for the analysis of single-cell transcriptomics to address multiple problems in precision medicine in immune-mediated inflammatory diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566249. [PMID: 38014022 PMCID: PMC10680570 DOI: 10.1101/2023.11.08.566249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Ineffective drug treatment is a major problem for many patients with immune-mediated inflammatory diseases (IMIDs). Important reasons are the lack of systematic solutions for drug prioritisation and repurposing based on characterisation of the complex and heterogeneous cellular and molecular changes in IMIDs. Methods Here, we propose a computational framework, scDrugPrio, which constructs network models of inflammatory disease based on single-cell RNA sequencing (scRNA-seq) data. scDrugPrio constructs detailed network models of inflammatory diseases that integrate information on cell type-specific expression changes, altered cellular crosstalk and pharmacological properties for the selection and ranking of thousands of drugs. Results scDrugPrio was developed using a mouse model of antigen-induced arthritis and validated by improved precision/recall for approved drugs, as well as extensive in vitro, in vivo, and in silico studies of drugs that were predicted, but not approved, for the studied diseases. Next, scDrugPrio was applied to multiple sclerosis, Crohn's disease, and psoriatic arthritis, further supporting scDrugPrio through prioritisation of relevant and approved drugs. However, in contrast to the mouse model of arthritis, great interindividual cellular and gene expression differences were found in patients with the same diagnosis. Such differences could explain why some patients did or did not respond to treatment. This explanation was supported by the application of scDrugPrio to scRNA-seq data from eleven individual Crohn's disease patients. The analysis showed great variations in drug predictions between patients, for example, assigning a high rank to anti-TNF treatment in a responder and a low rank in a nonresponder to that treatment. Conclusion We propose a computational framework, scDrugPrio, for drug prioritisation based on scRNA-seq of IMID disease. Application to individual patients indicates scDrugPrio's potential for personalised network-based drug screening on cellulome-, genome-, and drugome-wide scales. For this purpose, we made scDrugPrio into an easy-to-use R package (https://github.com/SDTC-CPMed/scDrugPrio).
Collapse
Affiliation(s)
- Samuel Schäfer
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Department of Gastroenterology and Hepatology, University Hospital, Linköping, Sweden
| | - Martin Smelik
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Division of ENT, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Oleg Sysoev
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linkoping University; Linköping, Sweden
| | - Yelin Zhao
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Division of ENT, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Desiré Eklund
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
| | - Sandra Lilja
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Mavatar, Inc., Stockholm. Sweden
| | - Mika Gustafsson
- Division for Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University; Linköping, Sweden
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Antonio Julia
- Grup de Recerca de Reumatologia, Institut de Recerca Vall d’Hebron, Barcelona, España
| | - István A. Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Sara Marsal
- Grup de Recerca de Reumatologia, Institut de Recerca Vall d’Hebron, Barcelona, España
| | - Huan Zhang
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
| | - Xinxiu Li
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Division of ENT, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Danuta Gawel
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Mavatar, Inc., Stockholm. Sweden
| | - Hui Wang
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
| | - Mikael Benson
- Centre for Personalised Medicine, Linköping University; Linköping, Sweden
- Division of ENT, CLINTEC, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Biță CE, Dinescu ȘC, Riza AL, Ciurea PL, Mușetescu AE, Marinescu D, Dumitrașcu RM, Șuiu LI, Ionescu RA, Popoviciu HV, Vreju FA. Dickkopf-Related Protein 1 (DKK-1) as a Possible Link between Bone Erosions and Increased Carotid Intima-Media Thickness in Psoriatic Arthritis: An Ultrasound Study. Int J Mol Sci 2023; 24:14970. [PMID: 37834418 PMCID: PMC10573344 DOI: 10.3390/ijms241914970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Psoriatic arthritis (PsA) is a heterogenous systemic inflammatory disorder that affects peripheral joints and skin, but also causes inflammation at entheseal sites, digits (dactylitis) and the axial skeleton. Despite considerable advances, our understanding of the pathogenesis and management of PsA is hampered by its complex clinical expression. We enrolled patients who met the ClASsification for Psoriatic Arthritis (CASPAR) criteria for PsA (n = 17), and healthy controls (n = 13). The lipid profile, C-reactive protein (CRP) and Dickkopf-related protein 1 (DKK-1) circulating levels were measured for all subjects. For the patients with PsA, (1) the erosive character of the articular disease was assessed by a musculoskeletal ultrasound and (2) the cardiovascular risk was evaluated using the Systematic Coronary Risk Evaluation (SCORE) chart and the ultrasound measurement of the carotid intima-media thickness. A higher titer of serum DKK-1 was associated with the presence of erosions (p < 0.005) and the cIMT correlated with DKK-1 levels in patients with PsA (r = 0.6356, p = 0.0061). Additionally, we observed a positive correlation between increased cIMT and CRP (r = 0.5186, p = 0.0329). Our results suggest that DKK-1 could be used as an early biomarker for the erosive character of the articular disease and for the assessment of the cardiovascular risk in PsA patients.
Collapse
Affiliation(s)
- Cristina-Elena Biță
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.-E.B.); (P.L.C.); (A.E.M.); (F.A.V.)
| | - Ștefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.-E.B.); (P.L.C.); (A.E.M.); (F.A.V.)
| | - Anca-Lelia Riza
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
- Regional Center for Medical Genetics Dolj, Emergency County Hospital Craiova, 1 Tabaci Street, 200642 Craiova, Dolj County, Romania
| | - Paulina Lucia Ciurea
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.-E.B.); (P.L.C.); (A.E.M.); (F.A.V.)
| | - Anca Emanuela Mușetescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.-E.B.); (P.L.C.); (A.E.M.); (F.A.V.)
| | - Daniela Marinescu
- Department of General Surgery, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Roxana Mihaela Dumitrașcu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (R.M.D.); (L.I.Ș.)
| | - Larisa Ionela Șuiu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (R.M.D.); (L.I.Ș.)
| | - Răzvan Adrian Ionescu
- Third Internal Medicine Department, ‘Carol Davila’ University of Medicine and Pharmacy, 8 Eroii Sanitari Avenue, 050471 Bucharest, Romania;
| | - Horațiu Valeriu Popoviciu
- Department of Rheumatology, BFK and Medical Rehabilitation, University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu Street, 540142 Târgu Mureș, Mureș County, Romania;
| | - Florentin Ananu Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.-E.B.); (P.L.C.); (A.E.M.); (F.A.V.)
| |
Collapse
|
7
|
Wang C, Hu J, Shi J. Role of Interleukin-36 in inflammatory joint diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:249-259. [PMID: 37283111 PMCID: PMC10409900 DOI: 10.3724/zdxbyxb-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.
Collapse
Affiliation(s)
- Cunyi Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Ji'an Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
8
|
Azuaga AB, Ramírez J, Cañete JD. Psoriatic Arthritis: Pathogenesis and Targeted Therapies. Int J Mol Sci 2023; 24:4901. [PMID: 36902329 PMCID: PMC10003101 DOI: 10.3390/ijms24054901] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Psoriatic arthritis (PsA), a heterogeneous chronic inflammatory immune-mediated disease characterized by musculoskeletal inflammation (arthritis, enthesitis, spondylitis, and dactylitis), generally occurs in patients with psoriasis. PsA is also associated with uveitis and inflammatory bowel disease (Crohn's disease and ulcerative colitis). To capture these manifestations as well as the associated comorbidities, and to recognize their underlining common pathogenesis, the name of psoriatic disease was coined. The pathogenesis of PsA is complex and multifaceted, with an interplay of genetic predisposition, triggering environmental factors, and activation of the innate and adaptive immune system, although autoinflammation has also been implicated. Research has identified several immune-inflammatory pathways defined by cytokines (IL-23/IL-17, TNF), leading to the development of efficacious therapeutic targets. However, heterogeneous responses to these drugs occur in different patients and in the different tissues involved, resulting in a challenge to the global management of the disease. Therefore, more translational research is necessary in order to identify new targets and improve current disease outcomes. Hopefully, this may become a reality through the integration of different omics technologies that allow better understanding of the relevant cellular and molecular players of the different tissues and manifestations of the disease. In this narrative review, we aim to provide an updated overview of the pathophysiology, including the latest findings from multiomics studies, and to describe current targeted therapies.
Collapse
Affiliation(s)
- Ana Belén Azuaga
- Rheumatology Department, Hospital Clinic and IDIBAPS of Barcelona, 08036 Barcelona, Spain
| | | | - Juan D. Cañete
- Rheumatology Department, Hospital Clinic and IDIBAPS of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
9
|
Phenotypic heterogeneity in psoriatic arthritis: towards tissue pathology-based therapy. Nat Rev Rheumatol 2023; 19:153-165. [PMID: 36596924 DOI: 10.1038/s41584-022-00874-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 01/04/2023]
Abstract
Psoriatic arthritis (PsA) is a heterogeneous disease involving multiple potential tissue domains. Most outcome measures used so far in randomized clinical trials do not sufficiently reflect this domain heterogeneity. The concept that pathogenetic mechanisms might vary across tissues within a single disease, underpinning such phenotype diversity, could explain tissue-distinct levels of response to different therapies. In this Review, we discuss the tissue, cellular and molecular mechanisms that drive clinical heterogeneity in PsA phenotypes, and detail existing tissue-based research, including data generated using sophisticated interrogative technologies with single-cell precision. Finally, we discuss how these elements support the need for tissue-based therapy in PsA in the context of existing and new therapeutic modes of action, and the implications for future PsA trial outcomes and design.
Collapse
|
10
|
Michalak-Stoma A, Bartosińska J, Raczkiewicz D, Kowal M, Kozak J, Gujski M, Krasowska D, Chodorowska G. Multiple Cytokine Analysis of Th1/Th2/Th9/Th17/Th22/Treg Cytokine Pathway for Individual Immune Profile Assessment in Patients with Psoriasis. Med Sci Monit 2022; 28:e938277. [PMID: 36419330 PMCID: PMC9707043 DOI: 10.12659/msm.938277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Psoriasis is an autoimmune and autoinflammatory disorder that has a significant impact on patient quality of life. The aim of the study was to assess the immune profiles of patients with psoriasis with multiple cytokine analysis. MATERIAL AND METHODS Fifty-two male psoriatic patients and 24 healthy male volunteers were recruited. Granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-gamma), interleukin (IL)-1 beta, IL-2, Il-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17A, IL-18, IL-21, IL-22, IL-23, IL-27, and tumor necrosis factor (TNF)-alpha were measured in patients' serum with a Th1/Th2/Th9/Th17/Th22/Treg Cytokine 18-Plex Human ProcartaPlex Panel, based on Luminex xMAP technology. RESULTS The median fluorescence intensities of serum GM-CSF, IL-2, IL-5, IL-10, IL-13, IL-17A, IL-21, and IL-22 were not intensive enough to calculate the cytokine concentration. We observed elevated levels of IL-6 (P=0.001) and IL-9 (P=0.003) in patients, compared with the control group. The levels of IL-1beta (P=0.008) and IL-27 (P=0.006) were decreased. In patients with psoriatic arthritis, we noticed a decreased level of IL-9 compared with that in patients without arthritis (P=0.034). The levels of IL-12 (P<0.05) and IL-18 (P<0.05) correlated positively with the Psoriasis Area and Severity Index. We found negative correlations of IL-9 (P<0.05), IL-12 (P<0.05), and IL-23 (P<0.05) with the age of psoriatic patients; IL-12 (P<0.05) and IL-23 (P<0.05) with psoriasis duration; and IL-6 (P<0.05) and IL-9 (P<0.05) with the Nail Psoriasis Severity Index. CONCLUSIONS Multiple cytokine analysis seems to be an important form of individual immune profile assessment before treatment selection.
Collapse
Affiliation(s)
- Anna Michalak-Stoma
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Joanna Bartosińska
- Department of Cosmetology and Aesthetic Medicine, Medical University of Lublin, Lublin, Poland
| | - Dorota Raczkiewicz
- Department of Medical Statistics, School of Public Health, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Kowal
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kozak
- Chair of Human Anatomy, Department of Normal Anatomy, Medical University of Lublin, Lublin, Poland
| | - Mariusz Gujski
- Department of Public Health, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Krasowska
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Grażyna Chodorowska
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Fragoulis GE, Siebert S. The role of IL-23 and the use of IL-23 inhibitors in psoriatic arthritis. Musculoskeletal Care 2022; 20 Suppl 1:S12-S21. [PMID: 36069174 PMCID: PMC9825973 DOI: 10.1002/msc.1694] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Psoriatic arthritis (PsA) is a chronic inflammatory arthritis characterised by musculoskeletal and extra-articular manifestations, most notably psoriasis. While the underlying pathogenetic mechanisms are not yet fully understood, a central role has been identified for the IL-23/IL-17 pathway. OBJECTIVES We briefly describe the role of IL-23 in the pathogenesis of PsA and go on to describe the available anti-IL-23 agents and their place in the management of PsA. METHODS This is a narrative review of the current literature, focussing on the results of the phase 3 studies in PsA for the IL-12/23 p40 inhibitor ustekinumab and the more recent IL-23 p19 inhibitors guselkumab, risankizumab and tildrakizumab. RESULTS IL-23 triggers expression of IL-17 and other effector cytokines in a variety of cells, leading to tissue inflammation and injury. Targeting IL-23, particularly with p19 inhibitors, appears to be an effective and safe strategy for multiple clinical domains in PsA, most notably the skin, with some differences in efficacy emerging between these agents. CONCLUSION The development of IL-23 inhibitors represents a significant advance in the management of psoriatic disease. In the absence of head-to-head studies, future data emerging from real-world experiences of individual IL-23 p19 inhibitors will help inform the use of these agents in relation to other biologics in PsA.
Collapse
Affiliation(s)
- George E. Fragoulis
- Joint Rheumatology ProgramNational and Kapodistrian University of AthensAthensGreece
- School of Infection and ImmunityUniversity of GlasgowGlasgowUK
| | - Stefan Siebert
- School of Infection and ImmunityUniversity of GlasgowGlasgowUK
| |
Collapse
|
12
|
How does age determine the development of human immune-mediated arthritis? Nat Rev Rheumatol 2022; 18:501-512. [PMID: 35948692 PMCID: PMC9363867 DOI: 10.1038/s41584-022-00814-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Does age substantially affect the emergence of human immune-mediated arthritis? Children do not usually develop immune-mediated articular inflammation during their first year of life. In patients with juvenile idiopathic arthritis, this apparent ‘immune privilege’ disintegrates, and chronic inflammation is associated with variable autoantibody signatures and patterns of disease that resemble adult arthritis phenotypes. Numerous mechanisms might be involved in this shift, including genetic and epigenetic predisposing factors, maturation of the immune system with a progressive modulation of putative tolerogenic controls, parallel development of microbial dysbiosis, accumulation of a pro-inflammatory burden driven by environmental exposures (the exposome) and comorbidity-related drivers. By exploring these mechanisms, we expand the discussion of three (not mutually exclusive) hypotheses on how these factors can contribute to the differences and similarities between the loss of immune tolerance in children and the development of established immune-mediated arthritis in adults. These three hypotheses relate to a critical window in genetics and epigenetics, immune maturation, and the accumulation of burden. The varied manifestation of the underlying mechanisms among individuals is only beginning to be clarified, but the establishment of a framework can facilitate the development of an integrated understanding of the pathogenesis of arthritis across all ages. In this Review, the authors discuss age-related arthropathy and the similarities and differences between childhood loss of immune tolerance and adult development of immune-mediated arthritis, and develop three hypotheses describing age-related mechanisms that contribute to the onset of arthritis. The arthritis-free ‘immune privilege’ of early childhood is overridden by multiple mechanisms, progressively and age-dependently, generating recognizable patterns of chronic inflammatory arthritis. The emergence of arthritis involves interconnected mechanisms related to immune priming, to a situational susceptibility and to the accumulation of an inflammatory burden. The accumulation of epigenetic drift may contribute to differences across ages. The exposome is expected to contribute to arthritis emergence in adults as well as in children.
Collapse
|
13
|
Tenazinha C, Barros R, Fonseca JE, Vieira-Sousa E. Histopathology of Psoriatic Arthritis Synovium—A Narrative Review. Front Med (Lausanne) 2022; 9:860813. [PMID: 35847785 PMCID: PMC9283901 DOI: 10.3389/fmed.2022.860813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriatic arthritis (PsA) is a phenotypically heterogeneous chronic inflammatory disease associated to type I major histocompatibility complex alleles whose complex pathogenesis is still not completely understood. The psoriatic synovium shares general features of chronic inflammation with rheumatoid arthritis (RA) and other arthritis, such as hyperplasia of the intimal lining layer, sublining influx of inflammatory cells and neoangiogenesis, but recognizing disease-specific histopathologic findings may help in diagnosis and definition of therapeutic targets. Available literature reports conflicting data regarding the extension of lining hyperplasia, that does not allow depiction from RA. Sublining inflammatory cells consist of T and B cells and macrophages, plasma cells, mast cells and follicular dendritic cells, with a higher amount of overall T, mast cell and IL-17 producing CD8+ T lymphocytes and lower proportion of plasma cells when compared to the rheumatoid synovium. The amount of synovium IL17+ CD8+ T cells correlates positively to measures of disease activity. Lymphoid follicles with characteristics of germinal centers have been identified, similar to the ones described in RA. Neoangiogenesis is more prominent in PsA but can also be an outstanding feature in some RA samples, and different molecules involved in the process appear to have different influence in each disease. IL-17 and IL-22 expression in the synovium does not allow depiction between diseases. Among other cytokines and molecules likely implicated in disease physiopathology, only IL-35 is demonstrated to be reduced in PsA when compared to RA.
Collapse
Affiliation(s)
- Catarina Tenazinha
- Department of Rheumatology and Metabolic Bone Diseases, Hospital de Santa Maria, Centro Hospitalar Universitàrio de Lisboa-Norte, Lisbon, Portugal
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Lisbon Academic Medical Center, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Catarina Tenazinha,
| | - Rita Barros
- Department of Rheumatology and Metabolic Bone Diseases, Hospital de Santa Maria, Centro Hospitalar Universitàrio de Lisboa-Norte, Lisbon, Portugal
| | - João Eurico Fonseca
- Department of Rheumatology and Metabolic Bone Diseases, Hospital de Santa Maria, Centro Hospitalar Universitàrio de Lisboa-Norte, Lisbon, Portugal
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Lisbon Academic Medical Center, Universidade de Lisboa, Lisbon, Portugal
| | - Elsa Vieira-Sousa
- Department of Rheumatology and Metabolic Bone Diseases, Hospital de Santa Maria, Centro Hospitalar Universitàrio de Lisboa-Norte, Lisbon, Portugal
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Lisbon Academic Medical Center, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Guthridge JM, Wagner CA, James JA. The promise of precision medicine in rheumatology. Nat Med 2022; 28:1363-1371. [PMID: 35788174 PMCID: PMC9513842 DOI: 10.1038/s41591-022-01880-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023]
Abstract
Systemic autoimmune rheumatic diseases (SARDs) exhibit extensive heterogeneity in clinical presentation, disease course, and treatment response. Therefore, precision medicine - whereby treatment is tailored according to the underlying pathogenic mechanisms of an individual patient at a specific time - represents the 'holy grail' in SARD clinical care. Current strategies include treat-to-target therapies and autoantibody testing for patient stratification; however, these are far from optimal. Recent innovations in high-throughput 'omic' technologies are now enabling comprehensive profiling at multiple levels, helping to identify subgroups of patients who may taper off potentially toxic medications or better respond to current molecular targeted therapies. Such advances may help to optimize outcomes and identify new pathways for treatment, but there are many challenges along the path towards clinical translation. In this Review, we discuss recent efforts to dissect cellular and molecular heterogeneity across multiple SARDs and future directions for implementing stratification approaches for SARD treatment in the clinic.
Collapse
Affiliation(s)
- Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Catriona A Wagner
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Molecular and cellular regulation of psoriatic inflammation. Clin Sci (Lond) 2022; 136:935-952. [PMID: 35730381 DOI: 10.1042/cs20210916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023]
Abstract
This review highlights the molecular and cellular mechanisms underlying psoriatic inflammation with an emphasis on recent developments which may impact on treatment approaches for this chronic disease. We consider both the skin and the musculoskeletal compartment and how different manifestations of psoriatic inflammation are linked. This review brings a focus to the importance of inflammatory feedback loops that exist in the initiation and chronic stages of the condition, and how close interaction between the epidermis and both innate and adaptive immune compartments drives psoriatic inflammation. Furthermore, we highlight work done on biomarkers to predict the outcome of therapy as well as the transition from psoriasis to psoriatic arthritis.
Collapse
|
16
|
Laborde CM, Larzabal L, González-Cantero Á, Castro-Santos P, Díaz-Peña R. Advances of Genomic Medicine in Psoriatic Arthritis. J Pers Med 2022; 12:jpm12010035. [PMID: 35055350 PMCID: PMC8780979 DOI: 10.3390/jpm12010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriatic arthritis (PsA) is a common type of inflammatory arthritis found in up to 40% of patients with psoriasis. Although early diagnosis is important for reducing the risk of irreversible structural damage, there are no adequate screening tools for this purpose, and there are no clear markers of predisposition to the disease. Much evidence indicates that PsA disorder is complex and heterogeneous, where genetic and environmental factors converge to trigger inflammatory events and the development of the disease. Nevertheless, the etiologic events that underlie PsA are complex and not completely understood. In this review, we describe the existing data in PsA in order to highlight the need for further research in this disease to progress in the knowledge of its pathobiology and to obtain early diagnosis tools for these patients.
Collapse
Affiliation(s)
| | | | - Álvaro González-Cantero
- Department of Dermatology, Hospital Universitario Ramon y Cajal, 28034 Madrid, Spain;
- Faculty of Medicine, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, 28223 Pozuelo de Alarcón, 28034 Madrid, Spain
| | - Patricia Castro-Santos
- Immunology, Centro de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, 36310 Vigo, Spain;
| | - Roberto Díaz-Peña
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
- Correspondence: or ; Tel.: +34-981-955-073
| |
Collapse
|
17
|
Skougaard M, Ditlev SB, Stisen ZR, Coates LC, Ellegaard K, Kristensen LE. Four emerging immune cellular blood phenotypes associated with disease duration and activity established in Psoriatic Arthritis. Arthritis Res Ther 2022; 24:262. [PMID: 36447253 PMCID: PMC9706839 DOI: 10.1186/s13075-022-02956-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Psoriatic Arthritis (PsA) is an immune-mediated disease with heterogenous symptoms indicating differences in the underlying immunopathogenesis. The primary objective of the study explored the dynamic mechanisms and interplay between immune cell subtypes constituting the immune response driving PsA to evaluate possible differences in immune cellular phenotypes, and secondary examined associations between emerging immune cellular phenotypes and disease outcomes. METHODS Peripheral blood was collected from 70 PsA patients. Frequencies of nine immune cell subtypes were determined by multicolor flow cytometry. The interplay between immune cells were examined with principal component analysis (PCA) to establish immune cellular phenotypes. Disease characteristics, Disease Activity in Psoriatic Arthritis (DAPSA) and Psoriasis Area Severity Index (PASI) were retrieved to examine associations to individual cellular phenotypes. RESULTS Four components were identified using PCA resembling four immune cellular phenotypes. Component 1, explaining 25.6% of the variance with contribution from T-helper 17 cells (Th17), memory T regulatory cells (mTregs), dendritic cells and monocytes, was associated with longer disease duration and higher DAPSA. Component 2, driven by Th1, naïve Tregs and mTregs, was associated with shorter disease duration. Component 3 was driven by both Th1, Th17 and CD8+ T cells, while component 4 was characterized by a reverse correlation between CD8+ T cells and natural killer cells. CONCLUSION Four immune cellular phenotypes of PsA were suggested at baseline demonstrating complex immune cellular mechanisms in PsA implying the possibility of improving PsA patient stratification based on both clinical and immune cellular phenotypes.
Collapse
Affiliation(s)
- Marie Skougaard
- grid.512917.9The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark ,grid.154185.c0000 0004 0512 597XDepartment of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark ,grid.512917.9Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Sisse B. Ditlev
- grid.512917.9Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Zara R. Stisen
- grid.512917.9The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Laura C. Coates
- grid.4991.50000 0004 1936 8948Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Karen Ellegaard
- grid.512917.9The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Lars Erik Kristensen
- grid.512917.9The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| |
Collapse
|
18
|
Batko B. Exploring the Diverse Immune and Genetic Landscape of Psoriatic Arthritis. J Clin Med 2021; 10:jcm10245926. [PMID: 34945224 PMCID: PMC8706996 DOI: 10.3390/jcm10245926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Psoriatic arthritis (PsA) is characterized by delays in diagnosis and modest effect of treatment in terms of joint response. An understanding of molecular pathomechanisms may aid in developing diagnostic and prognostic models. Genetic susceptibility (e.g., HLA class I genes, IL-23-related genes) can be responsible for the pattern of psoriatic manifestations and affinity for tissue involvement. Gene expression analysis indicates an inflammatory profile that is distinct for PsA, but disparate across tissues. This has clinical implications, as for example, dual blockade of IL-17A and IL-17F can lead to superior clinical effects if there is differential expression of IL-17 receptors in tissues. Structural and functional impairment of barrier tissue, including host-microbiome interactions, may be the source of immune activation. Interplay between different cell populations of innate and adaptive immunity is emerging, potentially providing a link between the transition of skin-to-joint disease. Th17 subsets, IL-17A, IL-17F and IL-23 are crucial in PsA pathogenesis, with both clinical and experimental evidence suggesting a differential molecular landscape in cutaneous and articular compartments.
Collapse
Affiliation(s)
- Bogdan Batko
- Department of Rheumatology and Immunology, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University, 30-705 Krakow, Poland
| |
Collapse
|
19
|
Qi F, Tan Y, Yao A, Yang X, He Y. Psoriasis to Psoriatic Arthritis: The Application of Proteomics Technologies. Front Med (Lausanne) 2021; 8:681172. [PMID: 34869404 PMCID: PMC8635007 DOI: 10.3389/fmed.2021.681172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Psoriatic disease (PsD) is a spectrum of diseases that affect both skin [cutaneous psoriasis (PsC)] and musculoskeletal features [psoriatic arthritis (PsA)]. A considerable number of patients with PsC have asymptomatic synovio-entheseal inflammations, and approximately one-third of those eventually progress to PsA with an enigmatic mechanism. Published studies have shown that early interventions to the very early-stage PsA would effectively prevent substantial bone destructions or deformities, suggesting an unmet goal for exploring early PsA biomarkers. The emergence of proteomics technologies brings a complete view of all involved proteins in PsA transitions, offers a unique chance to map all potential peptides, and allows a direct head-to-head comparison of interaction pathways in PsC and PsA. This review summarized the latest development of proteomics technologies, highlighted its application in PsA biomarker discovery, and discussed the possible clinical detectable PsA risk factors in patients with PsC.
Collapse
Affiliation(s)
- Fei Qi
- Department of Dermatology, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, China
| | - Yaqi Tan
- Department of Dermatology, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, China
| | - Amin Yao
- Department of Dermatology, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, China
| | - Xutong Yang
- Department of Dermatology, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, China
| | - Yanling He
- Department of Dermatology, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
20
|
Advanced genomics and clinical phenotypes in psoriatic arthritis. Semin Immunol 2021; 58:101665. [PMID: 36307312 DOI: 10.1016/j.smim.2022.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psoriatic Arthritis (PsA) is a complex polygenic inflammatory disease showing a variable musculoskeletal involvement in patients with skin psoriasis. PsA coexist in 25-40 % of patients with the dermatological manifestations, but PsA may also predate the appearance of psoriasis. Nonetheless, the immunopathogenesis of psoriasis and PsA manifest significant similarities, with a major role of the individual susceptibility in both cases. Genome wide association studies (GWAS) identified several genes/loci associated with the risk to develop PsA, both dependent and independent of psoriasis. The major challenge is thus represented by the need to translate the identification of functional polymorphisms and other genetics findings into biological mechanisms along with the identification of novel putative drug targets. A functional genomics approach aims to increase GWAS power and recent evidence supports the use of a multilayer process, including eQTL, methylome, chromatin conformation analysis and genome editing to discover novel genes that can be affected by disease-associated variants, such as PsA. The available data have considered PsA as a unique homogeneous clinical entity while the clinical experience supports a wide variability of skin and joint manifestations coexisting in diverse patients with different mechanisms underlying the musculoskeletal and dermatological domains. A better discrimination of the patient features is encouraged by the limited data on functional genomics. We provide herein a review of the latest findings on PsA functional genomics highlighting the exciting developments in the field and how these might lead to a better understanding of gene regulation underpinning disease mechanisms and ultimately refine clinical phenotyping.
Collapse
|
21
|
Akşan B, Akadam-Teker AB. Genetic variants in IL-17A rs10484879 and serum levels of IL-17A are associated with psoriasis risk. Arch Dermatol Res 2021; 314:937-942. [PMID: 34853870 DOI: 10.1007/s00403-021-02308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
Psoriasis is an inflammatory skin disease characterized by keratinocyte hyperproliferation with effective environmental and genetic factors. Recent studies showing that the IL-23/IL-17 axis plays a central role in the pathogenesis of the disease. Experimental and clinical studies suggest that IL-17A, an important regulatory effector cytokine in this pathway and triggers changes mainly in affected tissues. Based on the central role of IL-17A in the pathogenesis of psoriasis, we thought that variations in this gene could affect the susceptibility and severity of this disease. Therefore, in this study, we aimed to analyze whether IL-17A rs10484879 variant has an effect on psoriasis pathogenesis in Turkish population. In this case-control study, the study group consisting of 564 patient (188 psoriasis patients (66 males/122 females)/376 controls (132 males/244 females) and they were genotyped in terms of IL-17A (rs10484879) polymorphism with TaqMan 5 'Allelic Discrimination Test. IL-17A serum levels were measured with the Enzyme-linked immunosorbent assay (ELISA). The genotype distributions of the IL-17A rs10484879 polymorphism between the patient and control groups were statistically different in the TT genotype and it was observed more commonly in the patient group compared to the controls (p < 0.001). Similarly, the T allele was observed with a higher prevalence in the patient group compared to the controls (p = 0.007). IL-17A serum levels were associated with increased serum concentration, respectively, TT > GT > GG in all study groups (p < 0.05). We would like to report that IL-17A rs10484879 TT genotype and T allele are associated with increased risk of psoriasis in the Turkish population.
Collapse
Affiliation(s)
- Burak Akşan
- Department of Skin Diseases, Faculty of Medicine, Giresun University, Giresun, Turkey
| | | |
Collapse
|
22
|
Reiff DD, Stoll ML, Cron RQ. Precision medicine in juvenile idiopathic arthritis-has the time arrived? THE LANCET. RHEUMATOLOGY 2021; 3:e808-e817. [PMID: 38297525 DOI: 10.1016/s2665-9913(21)00252-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022]
Abstract
The introduction of disease-modifying anti-rheumatic drug therapies for treating children and adolescents with chronic arthritis (ie, juvenile idiopathic arthritis [JIA]) has revolutionised care and outcomes. The biologic revolution continues to expand, with ever-changing immunological targets coming to market after basic research and clinical trials. The first class of biologics that was beneficial for children with JIA was tumour necrosis factor (TNF) inhibitors. If used early and aggressively, TNF inhibitors are capable of inducing disease remission for most of the seven subtypes of JIA, with the exception of systemic JIA (which more frequently responds to interleukin [IL]-1 or IL-6 inhibition). Nevertheless, there are still subsets of patients with JIA with disease that is difficult to treat or who develop extra-articular features that require a different therapeutic approach. Although finding an effective biological therapy for individual children with JIA can be trial and error, ongoing research and clinical trials are providing insight into a more personalised approach to care. In addition, redefining the JIA classification, in part based on shared similarities with various adult arthritides, could allow for extrapolation of knowledge from studies in adults with chronic arthritis.
Collapse
Affiliation(s)
- Daniel D Reiff
- Department of Pediatrics, Division of Rheumatology, University of Alabama, Birmingham, AL, USA
| | - Matthew L Stoll
- Department of Pediatrics, Division of Rheumatology, University of Alabama, Birmingham, AL, USA
| | - Randy Q Cron
- Department of Pediatrics, Division of Rheumatology, University of Alabama, Birmingham, AL, USA.
| |
Collapse
|
23
|
Campanati A, Marani A, Martina E, Diotallevi F, Radi G, Offidani A. Psoriasis as an Immune-Mediated and Inflammatory Systemic Disease: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021; 9:biomedicines9111511. [PMID: 34829740 PMCID: PMC8615182 DOI: 10.3390/biomedicines9111511] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is an immune-mediated inflammatory disease, with a chronic relapsing-remitting course, which affects 2–3% of the worldwide population. The progressive acquisitions of the inflammatory pathways involved in the development of psoriasis have led to the identification of the key molecules of the psoriatic inflammatory cascade. At the same time, psoriasis therapy has radically evolved with the introduction of target molecules able to modify the natural history of the disease, acting specifically on these inflammatory pathways. For these reasons, biologics have been demonstrated to be drugs able to change the disease’s natural history, as they reduce the inflammatory background to avoid irreversible organ damage and prevent systemic complications. However, several issues related to the use of biologics in patients with systemic comorbidities, remain open. All these data reflect the extraordinary potentiality of biologics, but also the unmet medical need to improve our knowledge on the long-term risk related to continuous use of these drugs, and their administration in special populations. This narrative review aims to highlight both the efficacy and safety profile of biologics in psoriasis, starting from pathophysiology and moving towards their clinical application.
Collapse
|
24
|
Novelli L, Lubrano E, Venerito V, Perrotta FM, Marando F, Curradi G, Iannone F. Extra-Articular Manifestations and Comorbidities in Psoriatic Disease: A Journey Into the Immunologic Crosstalk. Front Med (Lausanne) 2021; 8:737079. [PMID: 34631754 PMCID: PMC8495009 DOI: 10.3389/fmed.2021.737079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease primarily affecting peripheral and axial joints, with the possible presence of extra-articular manifestations (EAMs), such as psoriasis, uveitis, and inflammatory bowel disease. Recently, the concept of psoriatic disease (PsD) has been proposed to define a systemic condition encompassing, in addition to joints and EAMs, some comorbidities (e.g., metabolic syndrome, type II diabetes, hypertension) that can affect the disease outcome and the achievement of remission. EAMs and comorbidities in PsA share common immunopathogenic pathways linked to the systemic inflammation of this disease; these involve a broad variety of immune cells and cytokines. Currently, various therapeutics are available targeting different cytokines and molecules implicated in the inflammatory response of this condition; however, despite an improvement in the management of PsA, comprehensive disease control is often not achievable. There is, therefore, a big gap to fill especially in terms of comorbidities and EAMs management. In this review, we summarize the clinical aspects of the main comorbidities and EAMs in PsA, and we focus on the immunopathologic features they share with the articular manifestations. Moreover, we discuss the effect of a diverse immunomodulation and the current unmet needs in PsD.
Collapse
Affiliation(s)
| | - Ennio Lubrano
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Vincenzo Venerito
- Rheumatology Unit-Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro", Bari, Italy
| | - Fabio Massimo Perrotta
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | | | - Florenzo Iannone
- Rheumatology Unit-Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
25
|
Grivas A, Fragoulis G, Garantziotis P, Banos A, Nikiphorou E, Boumpas D. Unraveling the complexities of psoriatic arthritis by the use of -Omics and their relevance for clinical care. Autoimmun Rev 2021; 20:102949. [PMID: 34509654 DOI: 10.1016/j.autrev.2021.102949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
-Omic technologies represent a novel approach to unravel ill-defined aspects of psoriatic arthritis (PsA). Large-scale information can be acquired from analysis of affected tissues in PsA via high-throughput studies in the domains of genomics, transcriptomics, epigenetics, proteomics and metabolomics. This is a critical overview of the current knowledge of -omics in PsA, with emphasis on the pathophysiological insights of diagnostic and therapeutic relevance, the advent of novel biomarkers and their potential use for precision medicine in PsA.
Collapse
Affiliation(s)
- Alexandros Grivas
- National and Kapodistrian University of Athens, Faculty of medicine, Athens, Greece; Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| | - George Fragoulis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, "Laiko" General Hospital, Athens, Greece
| | - Panagiotis Garantziotis
- Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece; Division of Immunology and Rheumatology, Hannover Medical University, 30,625 Hannover, Germany
| | - Aggelos Banos
- Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Elena Nikiphorou
- Centre for Rheumatic Diseases, School of Immunology and Microbial Sciences, King's College London, King's Hospital, London, United Kingdom
| | - Dimitrios Boumpas
- National and Kapodistrian University of Athens, Faculty of medicine, Athens, Greece; Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
26
|
Elias M, Zhao S, Le HT, Wang J, Neurath MF, Neufert C, Fiocchi C, Rieder F. IL-36 in chronic inflammation and fibrosis - bridging the gap? J Clin Invest 2021; 131:144336. [PMID: 33463541 DOI: 10.1172/jci144336] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IL-36 is a member of the IL-1 superfamily and consists of three agonists and one receptor antagonist (IL-36Ra). The three endogenous agonists, IL-36α, -β, and -γ, act primarily as proinflammatory cytokines, and their signaling through the IL-36 receptor (IL-36R) promotes immune cell infiltration and secretion of inflammatory and chemotactic molecules. However, IL-36 signaling also fosters secretion of profibrotic soluble mediators, suggesting a role in fibrotic disorders. IL-36 isoforms and IL-36 have been implicated in inflammatory diseases including psoriasis, arthritis, inflammatory bowel diseases, and allergic rhinitis. Moreover, IL-36 has been connected to fibrotic disorders affecting the kidney, lung, and intestines. This review summarizes the expression, cellular source, and function of IL-36 in inflammation and fibrosis in various organs, and proposes that IL-36 modulation may prove valuable in preventing or treating inflammatory and fibrotic diseases and may reveal a mechanistic link between inflammation and fibrosis.
Collapse
Affiliation(s)
- Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Markus F Neurath
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie DZI, Universitaetsklinikum Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie DZI, Universitaetsklinikum Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Importance of lymphocyte-stromal cell interactions in autoimmune and inflammatory rheumatic diseases. Nat Rev Rheumatol 2021; 17:550-564. [PMID: 34345021 DOI: 10.1038/s41584-021-00665-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Interactions between lymphocytes and stromal cells have an important role in immune cell development and responses. During inflammation, stromal cells contribute to inflammation, from induction to chronicity or resolution, through direct cell interactions and through the secretion of pro-inflammatory and anti-inflammatory mediators. Stromal cells are imprinted with tissue-specific phenotypes and contribute to site-specific lymphocyte recruitment. During chronic inflammation, the modified pro-inflammatory microenvironment leads to changes in the stromal cells, which acquire a pathogenic phenotype. At the site of inflammation, infiltrating B cells and T cells interact with stromal cells. These interactions induce a plasma cell-like phenotype in B cells and T cells, associated with secretion of immunoglobulins and inflammatory cytokines, respectively. B cells and T cells also influence the stromal cells, inducing cell proliferation, molecular changes and cytokine production. This positive feedback loop contributes to disease chronicity. This Review describes the importance of these cell interactions in chronic inflammation, with a focus on human disease, using three selected autoimmune and inflammatory diseases: rheumatoid arthritis, psoriatic arthritis (and psoriasis) and systemic lupus erythematosus. Understanding the importance and disease specificity of these interactions could provide new therapeutic options.
Collapse
|
28
|
Sweet K, Song Q, Loza MJ, McInnes IB, Ma K, Leander K, Lakshminarayanan V, Franks C, Cooper P, Siebert S. Guselkumab induces robust reduction in acute phase proteins and type 17 effector cytokines in active psoriatic arthritis: results from phase 3 trials. RMD Open 2021; 7:rmdopen-2021-001679. [PMID: 34011674 PMCID: PMC8137258 DOI: 10.1136/rmdopen-2021-001679] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To investigate serum protein expression in participants with psoriatic arthritis (PsA) and changes after guselkumab treatment. METHODS Participants with PsA were treated with guselkumab or placebo in the DISCOVER-1 and DISCOVER-2 studies. Serum levels of acute phase reactants C reactive protein (CRP) and serum amyloid A (SAA) and inflammatory cytokines/chemokines were measured at weeks 0, 4 and 24 in 300 study participants and 34 healthy controls (HCs). The PSUMMIT studies measured serum interleukin (IL)-17A, IL-17F and CRP after ustekinumab treatment and levels with ustekinumab versus guselkumab treatment were compared. RESULTS Baseline serum levels of CRP, SAA, IL-6, IL-17A and IL-17F were elevated in participants with active PsA vs HCs (p<0.05, geometric mean (GM) ≥40% higher). Baseline T-helper cell 17 (Th17) effector cytokines were significantly associated with baseline psoriasis but not joint disease activity. Compared with placebo, guselkumab treatment resulted in decreases in serum CRP, SAA, IL-6, IL-17A, IL-17F and IL-22 as early as week 4 and continued to decrease through week 24 (p<0.05, GM decrease from baseline ≥33%). At week 24, IL-17A and IL-17F levels were not significantly different from HCs, suggesting normalisation of peripheral IL-23/Th17 axis effector cytokines postguselkumab treatment. Reductions in IL-17A/IL-17F levels were greater in guselkumab-treated versus ustekinumab-treated participants, whereas effects on CRP levels were similar. CONCLUSION Guselkumab treatment reduced serum protein levels of acute phase and Th17 effector cytokines and achieved comparable levels to those in HCs. In participants with PsA, reductions of IL-17A and IL-17F were of greater magnitude after treatment with guselkumab than with ustekinumab.
Collapse
Affiliation(s)
- Kristen Sweet
- Immunology Therapeutic Area, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - Qingxuan Song
- Immunology Therapeutic Area, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - Matthew J Loza
- Immunology Therapeutic Area, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Keying Ma
- Immunology Therapeutic Area, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - Karen Leander
- Immunology Therapeutic Area, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - Vani Lakshminarayanan
- Immunology Therapeutic Area, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - Carol Franks
- Immunology Therapeutic Area, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - Philip Cooper
- Immunology Therapeutic Area, Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - Stefan Siebert
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
An update on the pathogenic role of IL-6 in rheumatic diseases. Cytokine 2021; 146:155645. [PMID: 34303949 DOI: 10.1016/j.cyto.2021.155645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
Interleukin (IL)-6 is a pleiotropic cytokine that is involved in the pathogenesis of various rheumatic diseases. Direct inhibition of the IL-6 pathway by an anti-IL-6 receptor or inhibiting the ligand itself has proved to be efficacious in the treatment of these diseases. Juvenile idiopathic arthritis, adult-onset Still's disease, large vessel vasculitis including giant cell arteritis and Takayasu disease, systemic sclerosis, and polymyalgia rheumatica respond well to IL-6 inhibition as expected. However, no clinically meaningful effect has been observed with regard to IL-6 blockade in ankylosing spondylitis, psoriatic arthritis, and systemic lupus erythematosus. This review discusses the current state of IL-6 targeting approaches in various rheumatic diseases other than rheumatoid arthritis.
Collapse
|
30
|
Secukinumab for the treatment of psoriasis, psoriatic arthritis, and axial spondyloarthritis: Physical and pharmacological properties underlie the observed clinical efficacy and safety. Pharmacol Ther 2021; 229:107925. [PMID: 34171337 DOI: 10.1016/j.pharmthera.2021.107925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Psoriasis, psoriatic arthritis, and axial spondyloarthritis are systemic inflammatory diseases, each commonly manifesting as a spectrum of symptoms, complications, and comorbidities that arise differently in individual patients. Drugs targeting inflammatory cytokines common to the pathogenesis of each of these conditions have been developed, although their specific actions in the different tissues involved are variable. For a drug to be effective, it must be efficiently delivered to and locally bioactive in disease-relevant tissues. Detailed clinical data shed light on the therapeutic effects of individual biologics on specific domains or clinical manifestations of disease and assist in guiding treatment decisions. Pharmacologic, molecular, and functional properties of drugs strongly impact their observed safety and efficacy, and an understanding of these properties provides complementary insight. Secukinumab, a fully human monoclonal IgG1/κ antibody selectively targeting interleukin (IL)-17A, has been in clinical use for >6 years in the treatment of moderate to severe psoriasis, psoriatic arthritis, and both radiographic (also known as ankylosing spondylitis) and nonradiographic axial spondyloarthritis. In this review, we discuss pharmacokinetic and pharmacodynamic data for secukinumab to introduce clinicians to the pharmacological properties of this widely used drug. Understanding how these properties affect the observed clinical efficacy, safety, and tolerability of this drug in the treatment of IL-17A-mediated systemic inflammatory diseases is important for all physicians treating these conditions.
Collapse
|
31
|
Silvagni E, Missiroli S, Perrone M, Patergnani S, Boncompagni C, Bortoluzzi A, Govoni M, Giorgi C, Alivernini S, Pinton P, Scirè CA. From Bed to Bench and Back: TNF-α, IL-23/IL-17A, and JAK-Dependent Inflammation in the Pathogenesis of Psoriatic Synovitis. Front Pharmacol 2021; 12:672515. [PMID: 34211394 PMCID: PMC8241099 DOI: 10.3389/fphar.2021.672515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory immune-mediated disease with a burdensome impact on quality of life and substantial healthcare costs. To date, pharmacological interventions with different mechanisms of action, including conventional synthetic (cs), biological (b), and targeted synthetic (ts) disease-modifying antirheumatic drugs (DMARDs), have been proven efficacious, despite a relevant proportion of failures. The current approach in clinical practice and research is typically "predictive": the expected response is based on stratification according to clinical, imaging, and laboratory data, with a "heuristic" approach based on "trial and error". Several available therapeutic options target the TNF-α pathway, while others are directed against the IL-23/IL-17A axis. Janus kinase inhibitors (JAKis), instead, simultaneously block different pathways, endowing these drugs with a potentially "broad-spectrum" mechanism of action. It is not clear, however, whether targeting a specific pathway (e.g., TNF-α or the IL-23/IL-17 axis) could result in discordant effects over other approaches. In particular, in the case of "refractory to a treatment" patients, other pathways might be hyperactivated, with opposing, synergistic, or redundant biological significance. On the contrary, refractory states could be purely resistant to treatment as a whole. Since chronic synovitis is one of the primary targets of inflammation in PsA, synovial biomarkers could be useful in depicting specific biological characteristics of the inflammatory burden at the single-patient level, and despite not yet being implemented in clinical practice, these biomarkers might help in selecting the proper treatment. In this narrative review, we will provide an up-to-date overview of the knowledge in the field of psoriatic synovitis regarding studies investigating the relationships among different activated proinflammatory processes suitable for targeting by different available drugs. The final objective is to clarify the state of the art in the field of personalized medicine for psoriatic disease, aiming at moving beyond the current treatment schedules toward a patient-centered approach.
Collapse
Affiliation(s)
- Ettore Silvagni
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara and Azienda Ospedaliero-Universitaria S. Anna, Cona, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Caterina Boncompagni
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Alessandra Bortoluzzi
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara and Azienda Ospedaliero-Universitaria S. Anna, Cona, Italy
| | - Marcello Govoni
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara and Azienda Ospedaliero-Universitaria S. Anna, Cona, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Stefano Alivernini
- Rheumatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Carlo Alberto Scirè
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara and Azienda Ospedaliero-Universitaria S. Anna, Cona, Italy
- Epidemiology Research Unit, Italian Society for Rheumatology, Milan, Italy
| |
Collapse
|
32
|
|
33
|
O'Rielly DD, Rahman P. Clinical and molecular significance of genetic loci associated with psoriatic arthritis. Best Pract Res Clin Rheumatol 2021; 35:101691. [PMID: 34020887 DOI: 10.1016/j.berh.2021.101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Psoriatic arthritis (PsA) is caused by a combination of environmental and multiple genetic factors, with clear evidence for a strong genetic basis. The remarkable accumulation of knowledge gained from genetic, pharmacogenetic, and therapeutic response of biologic agents in PsA has fundamentally changed and advanced our understanding of disease pathogenesis and has identified key signalling pathways. However, only one-quarter of the genetic contribution of PsA has been accounted for; and dissecting the genetic contributors of the cutaneous disease from those that would identify joint disease has been challenging. More importantly, the clinical utility of multiple proposed loci is unclear. In this review, we summarize the potential clinical relevance from established genetic associations and provide insight on the proposed molecular pathways that arise from these associations.
Collapse
Affiliation(s)
- Darren D O'Rielly
- Faculty of Medicine, Memorial University, Craig L Dobbin Genetics Research Centre, Suite 3M500, 300 Prince Philip Drive, St. John's, NL, A1B3V6, Canada
| | - Proton Rahman
- St. Clare's Mercy Hospital, 154 LeMarchant Rd, St. John's, Newfoundland, A1C5B8, Canada.
| |
Collapse
|
34
|
Nerviani A, Boutet MA, Tan WSG, Goldmann K, Purkayastha N, Lajtos TA, Hands R, Lewis M, Kelly S, Pitzalis C. IL-23 skin and joint profiling in psoriatic arthritis: novel perspectives in understanding clinical responses to IL-23 inhibitors. Ann Rheum Dis 2021; 80:591-597. [PMID: 33243781 PMCID: PMC8053336 DOI: 10.1136/annrheumdis-2020-218186] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To determine the relationship between synovial versus skin transcriptional/histological profiles in patients with active psoriatic arthritis (PsA) and explore mechanistic links between diseased tissue pathology and clinical outcomes. METHODS Twenty-seven active PsA patients were enrolled in an observational/open-label study and underwent biopsies of synovium and paired lesional/non-lesional skin before starting anti-tumour necrosis factor (TNF) (if biologic-naïve) or ustekinumab (if anti-TNF inadequate responders). Molecular analysis of 80-inflammation-related genes and protein levels for interleukin (IL)-23p40/IL-23p19/IL-23R were assessed by real-time-PCR and immunohistochemistry, respectively. RESULTS At baseline, all patients had persistent active disease as per inclusion criteria. At primary end-point (16-weeks post-treatment), skin responses favoured ustekinumab, while joint responses favoured anti-TNF therapies. Principal component analysis revealed distinct clustering of synovial tissue gene expression away from the matched skin. While IL12B, IL23A and IL23R were homogeneously expressed in lesional skin, their expression was extremely heterogeneous in paired synovial tissues. Here, IL-23 transcriptomic/protein expression was strongly linked to patients with high-grade synovitis who, however, were not distinguishable by conventional clinimetric measures. CONCLUSIONS PsA synovial tissue shows a heterogeneous IL-23 axis profile when compared with matched skin. Synovial molecular pathology may help to identify among clinically indistinguishable patients those with a greater probability of responding to IL-23 inhibitors.
Collapse
Affiliation(s)
- Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marie-Astrid Boutet
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Wang Sin Gina Tan
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katriona Goldmann
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nirupam Purkayastha
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tamas Ajtos Lajtos
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rebecca Hands
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Myles Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stephen Kelly
- Rheumatology Department, Mile End Hospital, Barts Health NHS Trust, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW To give an overview of the recently published trials relating to IL-23/IL-17 pathway in spondyloarthritis (SpA). RECENT FINDINGS Recent studies in psoriasis confirmed the efficacy of targeting the IL-23/IL-17 pathway, with emerging evidence from head-to-head studies suggesting functional hierarchy of these inhibitors. In psoriatic arthritis (PsA), recent studies have indicated the efficacy of inhibiting IL-23p19, in addition to IL-23p40 and IL-17A, albeit all with lower hurdle results than those seen in psoriasis. The first head-to-head study of an IL-17A and tumour necrosis factor inhibitor in PsA has also recently been published. Recent studies have demonstrated the efficacy of the IL-17A inhibitor, ixekizumab, across the axial SpA spectrum. In contrast, inhibition of IL-12/IL-23p40 and IL-23p19 both failed in axial SpA. In inflammatory bowel disease (IBD), recent studies indicate efficacy of IL-23p40 and IL-23p19 inhibition, in contrast to the previous failed studies of IL-17 inhibition. SUMMARY Clinical trials of IL-23/IL-17 inhibition have been transformative in psoriasis, with more mixed results in PsA and differential responses in axial SpA and IBD. These results pose challenges to our fundamental understanding of SpA pathogenesis and further head-to-head studies and more subtle evaluation of the local tissue-specific aspects will be required.
Collapse
|
36
|
Wu D, Wong P, Lam SHM, Li EK, Qin L, Tam LS, Gu J. The causal effect of interleukin-17 on the risk of psoriatic arthritis: a Mendelian randomization study. Rheumatology (Oxford) 2021; 60:1963-1973. [PMID: 33188428 DOI: 10.1093/rheumatology/keaa629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/24/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To determine causal associations between genetically predicted TNF-α, IL-12p70 and IL-17 levels and risk of PsA. METHODS The publicly available summary-level findings from genome-wide association studies (GWAS) was used to identify loci influencing normal physiological concentrations of TNF-α, IL-12p70 and IL-17 (n = 8293) among healthy individuals as exposure and a GWAS for PsA from the UK Biobank (PsA = 900, control = 462 033) as the outcome. A two-sample Mendelian randomization (MR) analysis was performed using the inverse-variance weighted (IVW), weighted median and MR-Egger regression methods. Sensitivity analysis and MR-Egger regression analysis were performed to evaluate the heterogeneity and pleiotropic effects of each variant. RESULTS Single-nucleotide polymorphisms (SNPs) at genome-wide significance from GWASs on TNF-α, IL-12p70 and IL-17 were identified as the instrumental variables. The IVW method indicated a causal association between increased IL-17 level and risk of PsA (β = -0.00186 per allele, s.e. = 0.00043, P = 0.002). Results were consistent in the weighted median method (β = -0.00145 per allele, s.e. = 0.00059, P = 0.014) although the MR-Egger method suggested a non-significant association (β = -0.00133 per allele, s.e. = 0.00087; P = 0.087). Single SNP MR results revealed that the C allele of rs117556572 was robustly associated with risk of PsA (β = 0.00210, s.e. = 0.00069, P = 0.002). However, no evidence for a causal effect was observed between TNF-α, IL-12p70, decreased IL-17 levels and risk of PsA. CONCLUSION Our findings provide preliminary evidence that genetic variants predisposing to higher physiological IL-17 level are associated with decreased risk of PsA.
Collapse
Affiliation(s)
- Dongze Wu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Priscilla Wong
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Steven H M Lam
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Edmund K Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Bone Quality and Health Centre of the Department of Orthopedics & Traumatology, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lai-Shan Tam
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Carvalho AL, Hedrich CM. The Molecular Pathophysiology of Psoriatic Arthritis-The Complex Interplay Between Genetic Predisposition, Epigenetics Factors, and the Microbiome. Front Mol Biosci 2021; 8:662047. [PMID: 33869291 PMCID: PMC8047476 DOI: 10.3389/fmolb.2021.662047] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a symmetric autoimmune/inflammatory disease that primarily affects the skin. In a significant proportion of cases, it is accompanied by arthritis that can affect any joint, the spine, and/or include enthesitis. Psoriasis and psoriatic arthritis are multifactor disorders characterized by aberrant immune responses in genetically susceptible individuals in the presence of additional (environmental) factors, including changes in microbiota and/or epigenetic marks. Epigenetic changes can be heritable or acquired (e.g., through changes in diet/microbiota or as a response to therapeutics) and, together with genetic factors, contribute to disease expression. In psoriasis, epigenetic alterations are mainly related to cell proliferation, cytokine signaling and microbial tolerance. Understanding the complex interplay between heritable and acquired pathomechanistic factors contributing to the development and maintenance of psoriasis is crucial for the identification and validation of diagnostic and predictive biomarkers, and the introduction of individualized effective and tolerable new treatments. This review summarizes the current understanding of immune activation, genetic, and environmental factors that contribute to the pathogenesis of psoriatic arthritis. Particular focus is on the interactions between these factors to propose a multifactorial disease model.
Collapse
Affiliation(s)
- Ana L Carvalho
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
38
|
Navigating the diverse immune landscapes of psoriatic arthritis. Semin Immunopathol 2021; 43:279-290. [PMID: 33721040 DOI: 10.1007/s00281-021-00848-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
The goal of remission in psoriatic arthritis (PsA) has remained elusive despite the influx of a range of new therapies over the last 20 years. In contrast, therapeutic responses to agents that inhibit IL-23 or IL-17 have demonstrated impressive efficacy in psoriasis. In part, the divergent responses in these two disorders are likely related to the heterogeneity of tissue involvement in PsA and the interplay of multiple different cell populations and molecular pathways. In this narrative review, we will examine the plasticity of the immune response in PsA from the perspective of the Th17 cell and monocyte and discuss recent findings regarding the importance of CD8+ T resident cells in disease pathogenesis. We will then examine the effects of cytokines on epithelial cell and stromal populations and finally discuss new data regarding immune cell and tissue resident cell cross-talk in entheses and bone. Lastly, the potential therapeutic targets that have emerged from these investigations will be discussed.
Collapse
|
39
|
Chimenti MS, Conigliaro P, Biancone L, Perricone R. Update on the therapeutic management of patients with either psoriatic arthritis or ulcerative colitis: focus on the JAK inhibitor tofacitinib. Ther Adv Musculoskelet Dis 2021; 13:1759720X20977777. [PMID: 33680096 PMCID: PMC7897839 DOI: 10.1177/1759720x20977777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/09/2020] [Indexed: 01/12/2023] Open
Abstract
Psoriatic arthritis (PsA) and ulcerative colitis (UC) are immune-mediated diseases that cause significant burden worldwide. Recent advances in their management have improved patient outcomes. However, significant unmet needs still remain as not all patients respond to current treatments, and patients may lose responsiveness over time. An improved understanding of the pathophysiology of these diseases has brought about the development of novel disease-modifying agents, including interleukin inhibitors and, more recently, Janus kinase (JAK) inhibitors. With the approval of tofacitinib for the treatment of adults with active PsA and in adult patients with moderately-to-severely active UC, JAK inhibitors have recently entered the treatment armamentarium for PsA and UC. A number of other JAK inhibitors are also undergoing clinical development and are currently in phase III trials. This review provides an overview of the current therapeutic options for PsA and UC, with a focus on the JAK inhibitors.
Collapse
Affiliation(s)
- Maria Sole Chimenti
- Rheumatology, Allergology and Immunology, University of Rome Tor Vergata, Via Montpellier 1, Rome, Lazio, Italy
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Lazio, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Lazio, Italy
| | - Livia Biancone
- GI Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Lazio, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Lazio, Italy
| |
Collapse
|
40
|
Leijten E, Tao W, Pouw J, van Kempen T, Olde Nordkamp M, Balak D, Tekstra J, Muñoz-Elías E, DePrimo S, Drylewicz J, Pandit A, Boes M, Radstake T. Broad proteomic screen reveals shared serum proteomic signature in patients with psoriatic arthritis and psoriasis without arthritis. Rheumatology (Oxford) 2021; 60:751-761. [PMID: 32793974 PMCID: PMC7850582 DOI: 10.1093/rheumatology/keaa405] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To identify novel serum proteins involved in the pathogenesis of PsA as compared with healthy controls, psoriasis (Pso) and AS, and to explore which proteins best correlated to major clinical features of the disease. METHODS A high-throughput serum biomarker platform (Olink) was used to assess the level of 951 unique proteins in serum of patients with PsA (n = 20), Pso (n = 18) and AS (n = 19), as well as healthy controls (HC, n = 20). Pso and PsA were matched for Psoriasis Area and Severity Index (PASI) and other clinical parameters. RESULTS We found 68 differentially expressed proteins (DEPs) in PsA as compared with HC. Of those DEPs, 48 proteins (71%) were also dysregulated in Pso and/or AS. Strikingly, there were no DEPs when comparing PsA with Pso directly. On the contrary, hierarchical cluster analysis and multidimensional scaling revealed that HC clustered distinctly from all patients, and that PsA and Pso grouped together. The number of swollen joints had the strongest positive correlation to ICAM-1 (r = 0.81, P < 0.001) and CCL18 (0.76, P < 0.001). PASI score was best correlated to PI3 (r = 0.54, P < 0.001) and IL-17 receptor A (r = -0.51, P < 0.01). There were more proteins correlated to PASI score when analysing Pso and PsA patients separately, as compared with analysing Pso and PsA patients pooled together. CONCLUSION PsA and Pso patients share a serum proteomic signature, which supports the concept of a single psoriatic spectrum of disease. Future studies should target skin and synovial tissues to uncover differences in local factors driving arthritis development in Pso.
Collapse
Affiliation(s)
- Emmerik Leijten
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Weiyang Tao
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Juliette Pouw
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Tessa van Kempen
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Michel Olde Nordkamp
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Deepak Balak
- Department of Dermatology, UMC Utrecht, Utrecht, The Netherlands
| | - J Tekstra
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands
| | - Ernesto Muñoz-Elías
- Immunology Biomarkers, Janssen Research & Development LLC, San Diego, CA, USA
| | - Samuel DePrimo
- Immunology Biomarkers, Janssen Research & Development LLC, San Diego, CA, USA
| | - Julia Drylewicz
- Center for Translational Immunology, Utrecht, The Netherlands
| | - Aridaman Pandit
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, Utrecht, The Netherlands.,Department of Pediatrics, UMC Utrecht, Utrecht, The Netherlands
| | - Timothy Radstake
- Department of Rheumatology and Clinical Immunology, Utrecht, The Netherlands.,Center for Translational Immunology, Utrecht, The Netherlands
| |
Collapse
|
41
|
Kahremany S, Hofmann L, Harari M, Gruzman A, Cohen G. Pruritus in psoriasis and atopic dermatitis: current treatments and new perspectives. Pharmacol Rep 2021; 73:443-453. [PMID: 33460006 DOI: 10.1007/s43440-020-00206-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Psoriasis and atopic dermatitis (AD) are two common chronic inflammatory skin diseases. Although showing different etiology and clinical manifestations, patients with either disease suffer from low health-related quality of life due to pruritus (dermal itch). Recent studies have revealed that more than 85% of psoriasis patients suffer from pruritus, and it is also the dominating symptom of AD. However, as this is a non-life treating symptom, it was partly neglected for years. In this review, we focus on current findings as well as the impact and potential treatments of pruritus in these two skin diseases. We first distinguish the type of itch based on involved mediators and modulators. This clear delineation between the types of pruritus based on involved receptors and pathways allows for precise treatment. In addition, insights into recent clinical trials aimed to alleviate pruritus by targeting these receptors are presented. We also report about novel advances in combinatorial treatments, dedicated to the type of pruritus linked to a causal disease. Altogether, we suggest that only a focused treatment tailored to the primary disease and the underlying molecular signals will provide fast and sustained relief of pruritus associated with psoriasis or AD.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel. .,The Skin Research Institute, The Dead Sea and Arava Science Center, 86910, Masada, Israel.
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Marco Harari
- Medical Climatotherapy Unit, The Dead Sea and Arava Science Center, 86910, Masada, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, 86910, Masada, Israel.,Ben Gurion University of the Negev, Eilat Campus, 8855630, Eilat, Israel
| |
Collapse
|
42
|
Vecellio M, Hake VX, Davidson C, Carena MC, Wordsworth BP, Selmi C. The IL-17/IL-23 Axis and Its Genetic Contribution to Psoriatic Arthritis. Front Immunol 2021; 11:596086. [PMID: 33574815 PMCID: PMC7871349 DOI: 10.3389/fimmu.2020.596086] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease belonging to the family of spondyloarthropathies (SpA). PsA commonly aggravates psoriasis of the skin and frequently manifests as an oligoarthritis with axial skeletal involvement and extraarticular manifestations including dactylitis, enthesitis, and uveitis. The weight of genetic predisposition to psoriasis and PsA is illustrated by the concordance rates in monozygotic twins which clearly demonstrate that genomics is insufficient to induce the clinical phenotype. The association of PsA with several single nucleotide polymorphisms (SNPs) at the IL23R locus and the involvement of Th17 cells in the immunopathogenesis of PsA clearly put the IL-23/IL-17 axis in the spotlight. The IL-23 and IL-17 cytokines have a pivotal role in the chronic inflammation of the synovium in PsA and are also prominent in the skin lesions of those with PsA. In this review, we focus on the genetic association of the IL-23/IL-17 axis with PsA and the contribution of these master cytokines in the pathophysiology of the disease, highlighting the main cell types incriminated in PsA and their specific role in the peripheral blood, lesional skin and joints of patients. We then provide an overview of the approved biologic drugs targeting the IL-23/IL-17 axis and discuss the advantages of genetic stratification to enhance personalized therapies in PsA.
Collapse
Affiliation(s)
- Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Vivien Xanath Hake
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Connor Davidson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | | | - B Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| |
Collapse
|
43
|
Liu T, Li S, Ying S, Tang S, Ding Y, Li Y, Qiao J, Fang H. The IL-23/IL-17 Pathway in Inflammatory Skin Diseases: From Bench to Bedside. Front Immunol 2020; 11:594735. [PMID: 33281823 PMCID: PMC7705238 DOI: 10.3389/fimmu.2020.594735] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Interleukin-17 (IL-17) is an essential proinflammatory cytokine, which is mainly secreted by the CD4+ helper T cells (Th17 cells) and subsets of innate lymphoid cells. IL-17A is associated with the pathogenesis of inflammatory diseases, including psoriasis, atopic dermatitis, hidradenitis suppurativa, alopecia areata, pityriasis rubra pilaris, pemphigus, and systemic sclerosis. Interleukin-23 (IL-23) plays a pivotal role in stimulating the production of IL-17 by activating the Th17 cells. The IL-23/IL-17 axis is an important pathway for targeted therapy for inflammatory diseases. Emerging evidence from clinical trials has shown that monoclonal antibodies against IL-23, IL-17, and tumor necrosis factor are effective in the treatment of patients with psoriasis, atopic dermatitis, hidradenitis suppurativa, pityriasis rubra pilaris, pemphigus, and systemic sclerosis. Here, we summarize the latest knowledge about the biology, signaling, and pathophysiological functions of the IL-23/IL-17 axis in inflammatory skin diseases. The currently available biologics targeting the axis is also discussed.
Collapse
Affiliation(s)
- Taoming Liu
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Li
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuni Ying
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shunli Tang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Ding
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yali Li
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Applying precision medicine to unmet clinical needs in psoriatic disease. Nat Rev Rheumatol 2020; 16:609-627. [PMID: 33024296 DOI: 10.1038/s41584-020-00507-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Psoriatic disease (PsD) is a heterogeneous condition that can affect peripheral and axial joints (arthritis), entheses, skin (psoriasis) and other structures. Over the past decade, considerable advances have been made both in our understanding of the pathogenesis of PsD and in the treatment of its diverse manifestations. However, several major areas of continued unmet need in the care of patients with PsD have been identified. One of these areas is the prediction of poor outcome, notably radiographic outcome in patients with psoriatic arthritis, so that stratified medicine approaches can be taken; another is predicting response to the numerous current and emerging therapies for PsD, so that precision medicine can be applied to rapidly improve clinical outcome and reduce the risk of toxicity. In order to address these needs, novel approaches, including imaging, tissue analysis and the application of proteogenomic technologies, are proposed as methodological solutions that will assist the dissection of the critical immune-metabolic pathways in this complex disease. Learning from advances made in other inflammatory diseases, it is time to address these unmet needs in a multi-centre partnership aimed at improving short-term and long-term outcomes for patients with PsD.
Collapse
|
45
|
Cutaneous immunohistochemical expression of interleukin-23 receptor (IL-23R) in psoriasis and psoriatic arthritis patients: Relation to musculoskeletal ultrasound findings. THE EGYPTIAN RHEUMATOLOGIST 2020. [DOI: 10.1016/j.ejr.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Zwicky P, Unger S, Becher B. Targeting interleukin-17 in chronic inflammatory disease: A clinical perspective. J Exp Med 2020; 217:jem.20191123. [PMID: 31727781 PMCID: PMC7037236 DOI: 10.1084/jem.20191123] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Although many chronic inflammatory diseases share the feature of elevated IL-17 production, therapeutic targeting of IL-17 has vastly different clinical outcomes. Here the authors summarize the recent progress in understanding the protective and pathogenic role of the IL-23/IL-17 axis in preclinical models and human inflammatory diseases. Chronic inflammatory diseases like psoriasis, Crohn’s disease (CD), multiple sclerosis (MS), rheumatoid arthritis (RA), and others are increasingly recognized as disease entities, where dysregulated cytokines contribute substantially to tissue-specific inflammation. A dysregulation in the IL-23/IL-17 axis can lead to inflammation of barrier tissues, whereas its role in internal organ inflammation remains less clear. Here we discuss the most recent developments in targeting IL-17 for the treatment of chronic inflammation in preclinical models and in patients afflicted with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Pascale Zwicky
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Castillo R, Scher JU. Not your average joint: Towards precision medicine in psoriatic arthritis. Clin Immunol 2020; 217:108470. [PMID: 32473975 DOI: 10.1016/j.clim.2020.108470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Precision medicine, propelled by advances in multi-omics methods and analytics, aims to revolutionize patient care by using clinically-actionable molecular markers to guide diagnostic and therapeutic decisions. We describe the applications of precision medicine in risk stratification, drug selection, and treatment response prediction in psoriatic arthritis, for which targeted, personalized approaches are steadily emerging.
Collapse
Affiliation(s)
- Rochelle Castillo
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, New York, NY, United States of America
| | - Jose U Scher
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, New York, NY, United States of America; Psoriatic Arthritis Center, New York University School of Medicine, New York, NY, United States of America.
| |
Collapse
|
48
|
Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun Rev 2020; 19:102429. [DOI: 10.1016/j.autrev.2019.102429] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/14/2019] [Indexed: 12/14/2022]
|
49
|
Queen D, Ediriweera C, Liu L. Function and Regulation of IL-36 Signaling in Inflammatory Diseases and Cancer Development. Front Cell Dev Biol 2019; 7:317. [PMID: 31867327 PMCID: PMC6904269 DOI: 10.3389/fcell.2019.00317] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
The IL-36 subfamily of cytokines belongs to the IL-1 superfamily and consists of three pro-inflammatory agonists IL-36α, IL-36β, IL-36γ, and an IL-36 receptor (IL-36R) antagonist, IL-36Ra. These IL-36 cytokines function through a common receptor to modulate innate and adaptive immune responses. IL-36 cytokines are expressed as inactive precursors and require proteolytic processing to become fully active. Upon binding to IL-36R, IL-36 agonists augment the expression and production of inflammatory cytokines via activating signaling pathways. IL-36 is mainly expressed in epidermal, bronchial, and intestinal epithelial cells that form the barrier structures of the body and regulates the balance between pro-inflammatory and anti-inflammatory cytokine production at these tissue sites. Dysregulation of IL-36 signaling is a major etiological factor in the development of autoimmune and inflammatory diseases. Besides its critical role in inflammatory skin diseases such as psoriasis, emerging evidence suggests that aberrant IL-36 activities also promote inflammatory diseases in the lung, kidneys, and intestines, underscoring the potential of IL-36 as a therapeutic target for common inflammatory diseases. The role of IL-36 signaling in cancer development is also under investigation, with limited studies suggesting a potential anti-tumor effect. In this comprehensive review, we summarize current knowledge regarding the expression, activation, regulatory mechanisms, and biological functions of IL-36 signaling in immunity, inflammatory diseases, and cancer development.
Collapse
Affiliation(s)
- Dawn Queen
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| |
Collapse
|
50
|
Sanz-Martínez MT, Moga E, Sánchez Martínez MA, Zamora Atenza C, Vidal S, Juárez C, Puig L. High Levels of Platelet-Lymphocyte Complexes in Patients with Psoriasis Are Associated with a Better Response to Anti-TNF-α Therapy. J Invest Dermatol 2019; 140:1176-1183. [PMID: 31778714 DOI: 10.1016/j.jid.2019.08.457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
Psoriasis is currently considered to be an immune-mediated disease whose patho-mechanisms involve platelet activation, which seems to correlate with the activity of the disease. Platelet activation is associated with the formation of platelet-lymphocyte complexes (PLyC), although their significance remains unknown. Moreover, biological treatments that target tumor necrosis factor-α (TNF-α) reduce platelet activation. To clarify the significance of PLyC, we compared their levels in patients with psoriasis with those of healthy donors and determined whether platelet binding modifies the secretion of IL-17A by T helper cells. Finally, we assessed the effect of anti-TNF-α treatment on PLyC in responder and non-responder patients with psoriasis. Ours results demonstrated an increase in PLyC in patients with psoriasis. Moreover, the percentage of IL-17-secreting cells was observed to be higher in the platelet-lymphocyte complex population, and these cells tended to secrete greater amounts of IL-17A. Psoriasis patients treated with anti-TNF-α normalized platelet-lymphocyte complex values, and the basal percentage of platelet-T helper lymphocyte complexes was significantly higher in the responder group. In conclusion, PLyC are increased in psoriasis patients, and the number of complexes decreases in response to anti-TNF-α treatment, specifically in the responder group of patients. This finding suggests that PLyC are a prognostic biomarker of response to anti-TNF-α therapy, but prospective studies are necessary to verify these results in patients with psoriasis.
Collapse
Affiliation(s)
| | - Esther Moga
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Carlos Zamora Atenza
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvia Vidal
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cándido Juárez
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|