1
|
Zhang Y, Zhang M, Song H, Dai Q, Liu C. Tumor Microenvironment-Responsive Polymer-Based RNA Delivery Systems for Cancer Treatment. SMALL METHODS 2025; 9:e2400278. [PMID: 38803312 DOI: 10.1002/smtd.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Indexed: 05/29/2024]
Abstract
Ribonucleic acid (RNA) therapeutics offer a broad prospect in cancer treatment. However, their successful application requires overcoming various physiological barriers to effectively deliver RNAs to the target sites. Currently, a number of RNA delivery systems based on polymeric nanoparticles are developed to overcome these barriers in RNA delivery. This work provides an overview of the existing RNA therapeutics for cancer gene therapy, and particularly summarizes those that are entering the clinical phase. This work then discusses the core features and latest research developments of tumor microenvironment-responsive polymer-based RNA delivery carriers which are designed based on the pathological characteristics of the tumor microenvironment. Finally, this work also proposes opportunities for the transformation of RNA therapies into cancer immunotherapy methods in clinical applications.
Collapse
Affiliation(s)
- Yahan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, 102206, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Dalei G, Pattanaik C, Patra R, Jena D, Das BR, Das S. Chitosan xerogel embedded with green synthesized cerium oxide nanoparticle: An effective controlled release fertilizer for improved cabbage growth. Int J Biol Macromol 2024; 282:136704. [PMID: 39442846 DOI: 10.1016/j.ijbiomac.2024.136704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
With the growing awareness on the adverse effects of conventional fertilizers; the use of sustainable and controlled release fertilizers has garnered much significance. In the present study, we report the synthesis of chitosan-benzaldehyde Schiff base xerogel incorporated with green synthesized cerium oxide nanoparticle using Psidium guajava leaves extract as a sustainable fertilizer. Spherical CeO2 NPs having an average particle size of 15.3 nm and zeta potential of - 39.9 mV was obtained. The urea-loaded nanocomposite xerogel (CsB@U/CeO2) was examined for cabbage growth. The water retention capacity extended for >2 weeks. A controlled release profile for urea was accomplished from CsB@U/CeO2 for a period extending for 30 days. The kinetics assay suggested that presence of CeO2 NPs asserted a greater role in urea-controlled release from the CsB@U/CeO2 nanocomposite hydrogel owing to polymer relaxation. The growth parameters of cabbages such as head height, diameter, fresh head weight, head circumference was enhanced in plants fertilized by CsB@U/CeO2 as compared to urea. Furthermore, the phenolic content, free radical scavenging activity, protein content, sugar and flavonoid content were also found higher in CsB@U/CeO2 fertilized plants. This study puts forth CsB@U/CeO2 xerogel can be potentially harnessed as an alternative to urea in sustainable agriculture.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Chiranjib Pattanaik
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Ritisma Patra
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Debasis Jena
- Department of Chemistry, Ravenshaw University, Cuttack 753003, Odisha, India
| | - Bijnyan Ranjan Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India; Department of Chemistry, Ravenshaw University, Cuttack 753003, Odisha, India.
| |
Collapse
|
3
|
Raveendran RL, Lekshmi GS, Anirudhan TS. Self-assembled sustainable bionanocomposite hydrogels from chitosan for the combination chemotherapy of hydrophobic and hydrophilic drugs. Int J Biol Macromol 2024; 283:137881. [PMID: 39571842 DOI: 10.1016/j.ijbiomac.2024.137881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Self-assembled hydrogels derived from naturally sourced polymers have gained significant interest in drug delivery applications, owing to their potential, exceptional biocompatibility and sustainable properties. This work presents the development and application of self-assembled nanocomposite hydrogels from chitosan and nanosilver as a pH responsive drug delivery system for the controlled release of doxorubicin and paclitaxel in anticancer therapy. Chitosan was functionalized with 4-formyl benzoic acid for incorporating both hydrophobic and hydrophilic anticancer drugs. The self-assembled nanocomposite hydrogels formed from chitosan and 4-formyl benzoic acid by various non-covalent interactions were studied by FT-IR, Dynamic Light Scattering (DLS), and rheology analysis. Rheology studies demonstrated the hydrogel's shear-thinning nature, enabling easy injection. The antibacterial activity can be evidenced by agar-well diffusion assay and MIC values were measured. The antibacterial effect was analyzed by agar-well diffusion assays and H2-DCFDA assay, providing a comprehensive understanding. In-vivo pharmacokinetic studies on Wistar rats demonstrated promising and effective systemic circulation of drug loaded material in blood, thus supporting its potential for therapeutic applications. All these studies and results demonstrates feasibility and a novel synergistic dual drug delivery approach, promising the synergy between hydrophobic paclitaxel (PTX) and hydrophilic Doxorubicin hydrochloride (Dox.HCl), for improved anticancer efficacy.
Collapse
Affiliation(s)
- Reshma L Raveendran
- Department of Chemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India.
| | - G S Lekshmi
- Department of Chemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
| | - T S Anirudhan
- Department of Chemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
4
|
Iftime MM, Ailiesei GL, Ailincai D. Tuning Antioxidant Function through Dynamic Design of Chitosan-Based Hydrogels. Gels 2024; 10:655. [PMID: 39451308 PMCID: PMC11507920 DOI: 10.3390/gels10100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Dynamic chitosan-based hydrogels with enhanced antioxidant activity were synthesized through the formation of reversible imine linkages with 5-methoxy-salicylaldehyde. These hydrogels exhibited a porous structure and swelling capacity, influenced by the crosslinking degree, as confirmed by SEM and POM analysis. The dynamic nature of the imine bonds was characterized through NMR, swelling studies in various media, and aldehyde release measurements. The hydrogels demonstrated significantly improved antioxidant activity compared to unmodified chitosan, as evaluated by the DPPH method. This research highlights the potential of developing pH-responsive chitosan-based hydrogels for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Manuela Maria Iftime
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
| | - Gabriela Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
| | - Daniela Ailincai
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (G.L.A.); (D.A.)
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| |
Collapse
|
5
|
Shawky H, Fayed DB, Ibrahim NE. pH-tailored delivery of a multitarget anticancer benzimidazole derivative using a PEGylated β-cyclodextrin-curcumin functionalized nanocomplex. BIOMATERIALS ADVANCES 2024; 163:213964. [PMID: 39053387 DOI: 10.1016/j.bioadv.2024.213964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
In this study, we aimed to enhance the bioavailability of a benzimidazole derivative with potent anticancer potential through a nano-based approach. Benzimidazole-loaded polyethylene glycol-β-cyclodextrin-functionalized curcumin nanocomplex (BMPE-Cur) was prepared and characterized for its physicochemical properties and drug release profiles under different pH conditions. In addition, the biological activities of the nanocomplex including antioxidant potentials and pro-apoptogenic properties, against HepG2, PC3, and the chemo-resistant MCF-7-ADR cell lines relative to the normal Wi-38 cell line were in vitro assessed and compared with those of the free benzimidazole compound. In addition to FTIR, XRD, and NMR spectral studies, a polymeric nanocomplex with an average particle size of 467.7 nm and high stability was successfully developed, as indicated by the negative zeta potential (-28.24 mV). The nanocomplex also showed prolonged pH-sensitive sustained drug release under conditions that replicated the tumor's extra/intracellular pH. The formulated nanocomplex also demonstrated potent radical scavenging capacity owing to the inclusion of curcumin, a known radical quencher. In addition, compared with the free compound, BMPE-Cur induced DNA fragmentation-driven cell cycle arrest in HepG2, PC3, and MCF-7-ADR cells at the G1/S, G1 & S phases; respectively, with remarkable selectivity. In conclusion, the newly formulated BMPE-Cur nanocomplex represents an attractive multitarget anticancer candidate.
Collapse
Affiliation(s)
- Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Dalia B Fayed
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Noha E Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| |
Collapse
|
6
|
Ren H, Zhang J, Jiang Y, Hao S, You J, Yin Z. C-di-GMP@ZIF-8 nanocomposite injectable hydrogel based on modified chitosan and hyaluronic acid for infected wound healing by activating STING signaling. Int J Biol Macromol 2024; 280:135660. [PMID: 39284469 DOI: 10.1016/j.ijbiomac.2024.135660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
The treatment of infected wounds relies on antibiotics; however, increasing drug resistance has made therapeutic processes more difficult. Activating self-innate immune abilities may provide a promising alternative to treat wounds with bacterial infections. In this work, we constructed an immunogenic injectable hydrogel crosslinked by the Schiff base reaction of carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA) and encapsulated with stimulator of interferon genes (STING) agonist c-di-GMP loaded ZIF-8 nanoparticles (c-di-GMP@ZIF-8). Nanocubic ZIF-8 was screened as the most efficient intracellular drug delivery vector from five differently-shaped morphologies. The NOCC/AHA hydrogel released c-di-GMP@ZIF-8 more quickly (43 %) in acidic environment (pH = 5.5) of infected wounds compared with 34 % in non-infected wound environment (pH = 7.4) at 96 h due to pH-responsive degradation performance. The released c-di-GMP@ZIF-8 was found to activate the STING signaling of macrophages and enhance the secretion of IFN-β, CCL2, and CXCL12 5.8-7.6 times compared with phosphate buffer saline control, which effectively inhibited S. aureus growth and promoted fibroblast migration. In rat models with infected wounds, the c-di-GMP@ZIF-8 nanocomposite hydrogels improved infected wound healing by promoting granulation tissue regeneration, alleviating S. aureus-induced inflammation, and improving angiogenesis. Altogether, this study demonstrated a feasible strategy using STING-targeted and pH-responsive hydrogels for infected wound management.
Collapse
Affiliation(s)
- Huajian Ren
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Jinpeng Zhang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Yungang Jiang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Shuai Hao
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Jiongming You
- Department of Orthopedic, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000, Zhejiang, China.
| | - Zhenglu Yin
- Yangzhou Second People's Hospital (North District Hospital of Northern Jiangsu People's Hospital) Affiliated to Nanjing University, Yangzhou 225007, Jiangsu, China.
| |
Collapse
|
7
|
Mahmoudi C, Tahraoui Douma N, Mahmoudi H, Iurciuc (Tincu) CE, Popa M. Hydrogels Based on Proteins Cross-Linked with Carbonyl Derivatives of Polysaccharides, with Biomedical Applications. Int J Mol Sci 2024; 25:7839. [PMID: 39063081 PMCID: PMC11277554 DOI: 10.3390/ijms25147839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Adding carbonyl groups into the hydrogel matrix improves the stability and biocompatibility of the hydrogels, making them suitable for different biomedical applications. In this review article, we will discuss the use of hydrogels based on polysaccharides modified by oxidation, with particular attention paid to the introduction of carbonyl groups. These hydrogels have been developed for several applications in tissue engineering, drug delivery, and wound healing. The review article discusses the mechanism by which oxidized polysaccharides can introduce carbonyl groups, leading to the development of hydrogels through cross-linking with proteins. These hydrogels have tunable mechanical properties and improved biocompatibility. Hydrogels have dynamic properties that make them promising biomaterials for various biomedical applications. This paper comprehensively analyzes hydrogels based on cross-linked proteins with carbonyl groups derived from oxidized polysaccharides, including microparticles, nanoparticles, and films. The applications of these hydrogels in tissue engineering, drug delivery, and wound healing are also discussed.
Collapse
Affiliation(s)
- Chahrazed Mahmoudi
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
| | - Naïma Tahraoui Douma
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria
| | - Hacene Mahmoudi
- National Higher School of Nanosciences and Nanotechnologies, Algiers 16000, Algeria;
| | - Camelia Elena Iurciuc (Tincu)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| |
Collapse
|
8
|
Charland-Martin A, Collier GS. Understanding Degradation Dynamics of Azomethine-containing Conjugated Polymers. Macromolecules 2024; 57:6146-6155. [PMID: 39005947 PMCID: PMC11238594 DOI: 10.1021/acs.macromol.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Understanding the influence of chemical environments on the degradation properties of conjugated polymers is an important task for the continued development of sustainable materials with potential utility in biomedical and optoelectronic applications. Azomethine-containing polymers were synthesized via palladium-catalyzed direct arylation polymerization (DArP) and used to study fundamental degradation trends upon exposure to acid. Shifts in the UV-vis absorbance spectra and the appearance/disappearance of aldehyde and imine diagnostic peaks within the 1H NMR spectra indicate that the polymers will degrade in the presence of acid. After degradation, the aldehyde starting material was recovered in high yields and was shown to maintain structural integrity when compared with commercial starting materials. Solution-degradation studies found that rates of degradation vary from 5 h to 90 s depending on the choice of solvent or acid used for hydrolysis. Additionally, the polymer was shown to degrade in the presence of perfluoroalkyl substances (PFASs), which makes them potentially useful as PFAS-sensitive sensors. Ultimately, this research provides strategies to control the degradation kinetics of azomethine-containing polymers through the manipulation of environmental factors and guides the continued development of azomethine-based materials.
Collapse
Affiliation(s)
- Ariane Charland-Martin
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
| | - Graham S. Collier
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
- School
of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
9
|
Andrade-Gagnon B, Casillas-Popova SN, Jazani AM, Oh JK. Design, Synthesis, and Acid-Responsive Disassembly of Shell-Sheddable Block Copolymer Labeled with Benzaldehyde Acetal Junction. Macromol Rapid Commun 2024; 45:e2400097. [PMID: 38499007 DOI: 10.1002/marc.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Smart nanoassemblies degradable through the cleavage of acid-labile linkages have attracted significant attention because of their biological relevance found in tumor tissues. Despite their high potential to achieve controlled/enhanced drug release, a systematic understanding of structural factors that affect their pH sensitivity remains challenging, particulary in the consruction of effective acid-degradable shell-sheddable nanoassemblies. Herein, the authors report the synthesis and acid-responsive degradation through acid-catalyzed hydrolysis of three acetal and ketal diols and identify benzaldehyde acetal (BzAA) exhibiting optimal hydrolysis profiles in targeted pH ranges to be a suitable candidate for junction acid-labile linkage. The authors explore the synthesis and aqueous micellization of well-defined poly(ethylene glycol)-based block copolymer bearing BzAA linkage covalently attached to a polymethacrylate block for the formation of colloidally-stable nanoassemblies with BzAA groups at core/corona interfaces. Promisingly, the investigation on acid-catalyzed hydrolysis and disassembly shows that the formed nanoassemblies meet the criteria for acid-degradable shell-sheddable nanoassemblies: slow degradation at tumoral pH = 6.5 and rapid disassembly at endo/lysosomal pH = 5.0, while colloidal stability at physiological pH = 7.4. This work guides the design principle of acid-degradable shell-sheddable nanoassemblies bearing BzAA at interfaces, thus offering the promise to address the PEG dilemma and improve endocytosis in tumor-targeting drug delivery.
Collapse
Affiliation(s)
- Brandon Andrade-Gagnon
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
| | | | - Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
| |
Collapse
|
10
|
Ai S, Gao Q, Cheng G, Zhong P, Cheng P, Ren Y, Wang H, Zhu X, Guan S, Qu X. Construction of an Injectable Composite Double-Network Hydrogel as a Liquid Embolic Agent. Biomacromolecules 2024; 25:2052-2064. [PMID: 38426456 DOI: 10.1021/acs.biomac.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Conventional embolists disreputably tend to recanalization arising from the low filling ratio due to their rigidity or instability. As a result, intelligent hydrogels with a tunable modulus may meaningfully improve the therapeutic efficacy. Herein, an injectable composite double-network (CDN) hydrogel with high shear responsibility was prepared as a liquid embolic agent by cross-linking poly(vinyl alcohol) (PVA) and carboxymethyl chitosan (CMC) via dynamic covalent bonding of borate ester and benzoic-imine. A two-dimensional nanosheet, i.e., layered double hydroxide (LDH), was incorporated into the network through physical interactions which led to serious reduction of yield stress for the injection of the hydrogel and the capacity for loading therapeutic agents like indocyanine green (ICG) and doxorubicin (DOX) for the functions of photothermal therapy (PTT) and chemotherapy. The CDN hydrogel could thus be transported through a thin catheter and further in situ strengthened under physiological conditions, like in blood, by secondarily cross-linking with phosphate ions for longer degradation duration and better mechanical property. These characteristics met the requirements of arterial interventional embolization, which was demonstrated by renal embolism operation on rabbits, and meanwhile favored the inhibition of subcutaneous tumor growth on an animal model. Therefore, this work makes a breakthrough in the case of largely reducing the embolism risks, thus affording a novel generation for interventional embolization.
Collapse
Affiliation(s)
- Shili Ai
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qinzong Gao
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Gele Cheng
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- Duke Kunshan University, Suzhou, Jiangsu 215316, China
| | - Pengfei Zhong
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Peiyu Cheng
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hao Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xu Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
11
|
Wang Y, Tang Q, Wu R, Yang S, Geng Z, He P, Li X, Chen Q, Liang X. Metformin-Mediated Fast Charge-Reversal Nanohybrid for Deep Penetration Piezocatalysis-Augmented Chemodynamic Immunotherapy of Cancer. ACS NANO 2024; 18:6314-6332. [PMID: 38345595 DOI: 10.1021/acsnano.3c11174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Immune checkpoint blockade (ICB) therapy still suffers from insufficient immune response and adverse effect of ICB antibodies. Chemodynamic therapy (CDT) has been demonstrated to be an effective way to synergize with ICB therapy. However, a low generation rate of reactive oxygen species and poor tumor penetration of CDT platforms still decline the immune effects. Herein, a charge-reversal nanohybrid Met@BF containing both Fe3O4 and BaTiO3 nanoparticles in the core and Metformin (Met) on the surface was fabricated for tumor microenvironment (TME)- and ultrasound (US)-activated piezocatalysis-chemodynamic immunotherapy of cancer. Interestingly, Met@BF had a negative charge in blood circulation, which was rapidly changed into positive when exposed to acidic TME attributed to quaternization of tertiary amine in Met, facilitating deep tumor penetration. Subsequently, with US irradiation, Met@BF produced H2O2 based on piezocatalysis of BaTiO3, which greatly enhanced the Fenton reaction of Fe3O4, thus boosting robust antitumor immune response. Furthermore, PD-L1 expression was inhibited by the local released Met to further augment the antitumor immune effect, achieving effective inhibitions for both primary and metastatic tumors. Such a combination of piezocatalysis-enhanced chemodynamic therapy and Met-mediated deep tumor penetration and downregulation of PD-L1 provides a promising strategy to augment cancer immunotherapy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Ruiqi Wu
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shiyuan Yang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Zhishuai Geng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ping He
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
12
|
Tsai CC, Chandel AKS, Mitsuhashi K, Fujiyabu T, Inagaki NF, Ito T. Injectable, Shear-Thinning, Self-Healing, and Self-Cross-Linkable Benzaldehyde-Conjugated Chitosan Hydrogels as a Tissue Adhesive. Biomacromolecules 2024; 25:1084-1095. [PMID: 38289249 DOI: 10.1021/acs.biomac.3c01117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Benzaldehyde-conjugated chitosan (CH-CBA) was synthesized by a coupling reaction between chitosan (CH) and carboxybenzaldehyde (CBA). The pH-sensitive self-cross-linking can be achieved through the Schiff base reaction. The degree of substitution (DS) of CH-CBA was controlled at 1.4-12.7% by optimizing the pH and reagent stoichiometry. The dynamic Schiff base linkages conferred strong shear-thinning and self-healing properties to the hydrogels. The viscosity of the 2 wt/v % CH-CBA hydrogel decreased from 5.3 × 107 mPa·s at a shear rate of 10-2 s-1 to 2.0 × 103 mPa·s at 102 s-1 at pH 7.4. The CH-CBA hydrogel exhibited excellent biocompatibility in vitro and in vivo. Moreover, the hydrogel adhered strongly to porcine small intestine, colon, and cecum samples, comparable to commercial fibrin glue, and exhibited effective in vivo tissue sealing in a mouse cecal ligation and puncture model, highlighting its potential as a biomaterial for application in tissue adhesives, tissue engineering scaffolds, etc.
Collapse
Affiliation(s)
- Ching-Cheng Tsai
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Arvind K Singh Chandel
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kento Mitsuhashi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Fujiyabu
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Radiology and Biomedical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Li S, Wang Q, Ren Y, Zhong P, Bao P, Guan S, Qiu X, Qu X. Oxygen and pH responsive theragnostic liposomes for early-stage diagnosis and photothermal therapy of solid tumours. Biomater Sci 2024; 12:748-762. [PMID: 38131275 DOI: 10.1039/d3bm01514a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The development of cancer treatment is of great importance, especially in the early stage. In this work, we synthesized a pH-sensitive amphiphilic ruthenium complex containing two alkyl chains and two PEG chains, which was utilized as an oxygen sensitive fluorescent probe for co-assembly with lipids to harvest a liposomal delivery system (RuPC) for the encapsulation of a photothermal agent indocyanine green (ICG). The resultant ICG encapsulated liposome (RuPC@ICG) enabled the delivery of ICG into cells via a membrane fusion pathway, by which the ruthenium complex was localized in the cell membrane for better detection of the extracellular oxygen concentration. Such characteristics allowed ratiometric imaging to distinguish the tumour location from normal tissues just 3 days after cancer cells were implanted, by monitoring the hypoxia condition and tracing the metabolism. Moreover, the pH sensitivity of the liposomes favoured cell uptake, and improved the anti-tumour efficiency of the formulation in vivo under NIR irradiation. Assuming liposomal systems have fewer safety issues, our work not only provides a facile method for the construction of a theragnostic system by combining phototherapy with photoluminescence imaging, but hopefully paves the way for clinical translation from bench to bedside.
Collapse
Affiliation(s)
- Siyi Li
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Qinglin Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Pengfei Zhong
- Hebei North University, Hebei 075000, China
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100094, China
| | - Pengtao Bao
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100094, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiaochen Qiu
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Shandong 256606, China
| |
Collapse
|
14
|
Veider F, Sanchez Armengol E, Bernkop-Schnürch A. Charge-Reversible Nanoparticles: Advanced Delivery Systems for Therapy and Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304713. [PMID: 37675812 DOI: 10.1002/smll.202304713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/24/2023] [Indexed: 09/08/2023]
Abstract
The past two decades have witnessed a rapid progress in the development of surface charge-reversible nanoparticles (NPs) for drug delivery and diagnosis. These NPs are able to elegantly address the polycation dilemma. Converting their surface charge from negative/neutral to positive at the target site, they can substantially improve delivery of drugs and diagnostic agents. By specific stimuli like a shift in pH and redox potential, enzymes, or exogenous stimuli such as light or heat, charge reversal of NP surface can be achieved at the target site. The activated positive surface charge enhances the adhesion of NPs to target cells and facilitates cellular uptake, endosomal escape, and mitochondrial targeting. Because of these properties, the efficacy of incorporated drugs as well as the sensitivity of diagnostic agents can be essentially enhanced. Furthermore, charge-reversible NPs are shown to overcome the biofilm formed by pathogenic bacteria and to shuttle antibiotics directly to the cell membrane of these microorganisms. In this review, the up-to-date design of charge-reversible NPs and their emerging applications in drug delivery and diagnosis are highlighted.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| |
Collapse
|
15
|
Wu H, Zhang X, Wang Z, Chen X, Li Y, Fang J, Zheng S, Zhang L, Li C, Hao L. Preparation, properties and in vitro osteogensis of self-reinforcing injectable hydrogel. Eur J Pharm Sci 2024; 192:106617. [PMID: 37865283 DOI: 10.1016/j.ejps.2023.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
As an attractive biomaterial for bone reconstruction, injectable biomaterials have many prominent characteristics such as good biocompatibility and bone-filling ability. However, there are weak as load-bearing scaffolds. In this study, polyvinyl alcohol (PVA) and bioactive glass (BAG) were interpenetrated into sodium alginate (SA) network to obtain self-enhanced injectable hydrogel. The optimum ratio of PVA/SA/BAG hydrogel was determined based on injectability, gelation time and chemical characterization. Results showed that the selected ratio had the shortest gelation time of 3.5min, and the hydrogel had a rough surface and good coagulation property. The hydrogel was capable of carrying 1kg of weight by mineralization for 14 d The compressive strength, compressive modulus, and fracture energy of the hydrogel reached 0.12MPa, 0.376MPa and 17.750kJ m-2, respectively. Meanwhile, the hydrogel had high moisture content and dissolution rate, and it was sensitive to temperature and ionic strength. Hydroxyapatite was generated on the hydrogel surface, and the hydrogel pores increased, and the pore size enlarged. The biocompatibility of PVA/SA/BAG hydrogel was analyzed using hemolysis and cytotoxicity assays. Results revealed its good biocompatibility with low hemolysis rate and no cytotoxicity to MC3T3-E1 cells. The hydrogel was also found to promote the differentiation of MC3T3-E1 cells with significantly increased in ALP activity and expression of relevant differentiation factors. In vitro mineralization assay showed an increase in calcium nodules and calcification area, indicating the ability of hydrogel to promote mineralization MC3T3-E1 cells. These findings indicated that PVA/SA/BAG hydrogel had potential uses in the field of irregular bone-defect repair due to its injectability, cytocompatibility, and tailorable functionality.
Collapse
Affiliation(s)
- Hongyan Wu
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Xunming Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Yi Li
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Jiayuan Fang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Libo Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Changhong Li
- College of Life Sciences, Baicheng Normal University, Baicheng, Jilin, China.
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
16
|
Suzuki H, Akiyama Y, Yamashina M, Tanaka Y, Toyota S. Transformation of Highly Hydrophobic Triarylphosphines into Amphiphiles via Staudinger Reaction with Hydrophilic Trichlorophenyl Azide. Chemistry 2023; 29:e202303017. [PMID: 37766651 DOI: 10.1002/chem.202303017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Owing to its hydrophobic properties and reactivity, triarylphosphines (PAr3 ) are promising precursors for the development of new amphiphiles. However, an efficient and reliable synthetic method for amphiphiles based on highly hydrophobic PAr3 is still required. Herein, a straightforward transformation of highly hydrophobic PAr3 into amphiphiles via the Staudinger reaction is reported. By simply mixing PAr3 and a hydrophilic trichlorophenyl azide containing two hydrophilic chains, amphiphiles bearing a N=P bond (i. e., an azaylide moiety) were quantitatively formed. The obtained azaylide-based amphiphiles were remarkably water-soluble, enabling their spontaneous self-assembly into 2 nm-sized micelles composed of 4-5 molecules in water with a low critical micelle concentration (up to 0.05 mM or less) due to the effective intermolecular interactions among the hydrophobic surfaces. Although the azaylide moiety is easily hydrolyzed in the presence of water, the azaylide in the amphiphiles displayed notable stability in water even at 60 h, which stems from the LUMO modulation induced by the presence of three electron-withdrawing chloro groups and two twisted alkoxycarbonyl groups, according to DFT calculations. An amphiphile having a large hydrophobic surface solubilized various hydrophobic organic dyes through efficient intermolecular interactions, resulting in the dyes exhibiting either monomer or excimer emissions in water.
Collapse
Affiliation(s)
- Hayate Suzuki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yoshimori Akiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
17
|
Lu Y, Chen Y, Zhu Y, Zhao J, Ren K, Lu Z, Li J, Hao Z. Stimuli-Responsive Protein Hydrogels: Their Design, Properties, and Biomedical Applications. Polymers (Basel) 2023; 15:4652. [PMID: 38139904 PMCID: PMC10747532 DOI: 10.3390/polym15244652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Protein-based hydrogels are considered ideal biomaterials due to their high biocompatibility, diverse structure, and their improved bioactivity and biodegradability. However, it remains challenging to mimic the native extracellular matrices that can dynamically respond to environmental stimuli. The combination of stimuli-responsive functionalities with engineered protein hydrogels has facilitated the development of new smart hydrogels with tunable biomechanics and biological properties that are triggered by cyto-compatible stimuli. This review summarizes the recent advancements of responsive hydrogels prepared from engineered proteins and integrated with physical, chemical or biological responsive moieties. We underscore the design principles and fabrication approaches of responsive protein hydrogels, and their biomedical applications in disease treatment, drug delivery, and tissue engineering are briefly discussed. Finally, the current challenges and future perspectives in this field are highlighted.
Collapse
Affiliation(s)
- Yuxuan Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhe Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhan Zhu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jingyi Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ketong Ren
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Zhao Lu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jun Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ziyang Hao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| |
Collapse
|
18
|
Nakipoglu M, Tezcaner A, Contag CH, Annabi N, Ashammakhi N. Bioadhesives with Antimicrobial Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300840. [PMID: 37269168 DOI: 10.1002/adma.202300840] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Indexed: 06/04/2023]
Abstract
Bioadhesives with antimicrobial properties enable easier and safer treatment of wounds as compared to the traditional methods such as suturing and stapling. Composed of natural or synthetic polymers, these bioadhesives seal wounds and facilitate healing while preventing infections through the activity of locally released antimicrobial drugs, nanocomponents, or inherently antimicrobial polers. Although many different materials and strategies are employed to develop antimicrobial bioadhesives, the design of these biomaterials necessitates a prudent approach as achieving all the required properties including optimal adhesive and cohesive properties, biocompatibility, and antimicrobial activity can be challenging. Designing antimicrobial bioadhesives with tunable physical, chemical, and biological properties will shed light on the path for future advancement of bioadhesives with antimicrobial properties. In this review, the requirements and commonly used strategies for developing bioadhesives with antimicrobial properties are discussed. In particular, different methods for their synthesis and their experimental and clinical applications on a variety of organs are reviewed. Advances in the design of bioadhesives with antimicrobial properties will pave the way for a better management of wounds to increase positive clinical outcomes.
Collapse
Affiliation(s)
- Mustafa Nakipoglu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Department of Molecular Biology and Genetics, Faculty of Sciences, Bartin University, Bartin, 74000, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
19
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
20
|
Pallikkara Chandrasekharan S, Lakshmy S, Sanyal G, Kalarikkal N, Trivedi R, Chakraborty B. Metal-decorated γ-graphyne as a drug transporting agent for the mercaptopurine chemotherapy drug: a DFT study. Phys Chem Chem Phys 2023; 25:9461-9471. [PMID: 36930162 DOI: 10.1039/d2cp05379a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In recent years, carbon-based two-dimensional (2D) materials have gained popularity as the carriers of various anticancer therapy drugs, which could reduce the crucial side effects by directly applying the drugs to the intended tumor cells. In this study, through first-principles density functional theory simulations, we have investigated the adsorption properties of a famous cancer chemotherapy drug called mercaptopurine (MC) on a 2D γ-graphyne (GYN) monolayer. Analyzing the geometric and electronic properties, we can summarize that the MC interaction with the pristine GYN is weak, with a small adsorption energy of -0.15 eV, which is too low for potential applications. Therefore, we have decorated the GYN monolayer with biocompatible metals such as Al, Ag, and Cu to trigger the adsorption capacity. The Al- and Cu-decorated GYN offered improved adsorption towards MC compared to the pristine case. The drug release from these metal-decorated systems was examined by creating an acidic environment. In addition, the desorption temperature of the drug from the system was also evaluated using ab initio molecular dynamics simulations. The calculations demonstrated that the Al-decorated GYN is a potential vehicle for MC drug delivery because of the favourable adsorption energy of -0.63 eV, charge transfer of 0.17e and desorption temperature above 270 K. The current research will stimulate the investigation of other low-dimensional carbon materials for drug-delivery applications.
Collapse
Affiliation(s)
| | - Seetha Lakshmy
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560, India.
| | - Gopal Sanyal
- Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560, India. .,School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, India.,School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Ravi Trivedi
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| | - Brahmananda Chakraborty
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India. .,Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
21
|
Abdelghafour MM, Deák Á, Kiss T, Budai-Szűcs M, Katona G, Ambrus R, Lőrinczi B, Keller-Pintér A, Szatmári I, Szabó D, Rovó L, Janovák L. Self-Assembling Injectable Hydrogel for Controlled Drug Delivery of Antimuscular Atrophy Drug Tilorone. Pharmaceutics 2022; 14:2723. [PMID: 36559217 PMCID: PMC9782908 DOI: 10.3390/pharmaceutics14122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
A two-component injectable hydrogel was suitably prepared for the encapsulation and prolonged release of tilorone which is an antimuscular atrophy drug. The rapid (7-45 s, depending on the polymer concentration) in situ solidifications of the hydrogel were evoked by the evolving Schiff-base bonds between the aldehyde groups of modified PVA (4-formyl benzoate PVA, PVA-CHO, 5.9 mol% functionalization degree) and the amino groups of 3-mercaptopropionate chitosan (CHIT-SH). The successful modification of the initial polymers was confirmed by both FTIR and NMR measurements; moreover, a new peak appeared in the FTIR spectrum of the 10% w/v PVA-CHO/CHIT-SH hydrogel at 1647 cm-1, indicating the formation of a Schiff base (-CH=N-) and confirming the interaction between the NH2 groups of CHIT-SH and the CHO groups of PVA-CHO for the formation of the dynamic hydrogel. The reaction between the NH2 and CHO groups of the modified biopolymers resulted in a significant increase in the hydrogel's viscosity which was more than one thousand times greater (9800 mPa·s) than that of the used polymer solutions, which have a viscosity of only 4.6 and 5.8 mPa·s, respectively. Furthermore, the initial chitosan was modified with mercaptopropionic acid (thiol content = 201.85 ± 12 µmol/g) to increase the mucoadhesive properties of the hydrogel. The thiolated chitosan showed a significant increase (~600 mN/mm) in adhesion to the pig intestinal membrane compared to the initial one (~300 mN/mm). The in vitro release of tilorone from the hydrogel was controlled with the crosslinking density/concentration of the hydrogel; the 10% w/v PVA-CHO/CHIT-SH hydrogel had the slowest releasing (21.7 h-1/2) rate, while the 2% w/v PVA-CHO/CHIT-SH hydrogel had the fastest releasing rate (34.6 h-1/2). Due to the characteristics of these hydrogels, their future uses include tissue regeneration scaffolds, wound dressings for skin injuries, and injectable or in situ forming drug delivery systems. Eventually, we hope that the developed hydrogel will be useful in the local treatment of muscle atrophy, such as laryngotracheal atrophy.
Collapse
Affiliation(s)
- Mohamed M. Abdelghafour
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Tamás Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Anikó Keller-Pintér
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Diána Szabó
- Department of Oto-Rhino-Laryngology and Head & Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6724 Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head & Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6724 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| |
Collapse
|
22
|
Pruksawan S, Chee HL, Wang Z, Luo P, Chong YT, Thitsartarn W, Wang F. Toughened Hydrogels for 3D Printing of Soft Auxetic Structures. Chem Asian J 2022; 17:e202200677. [PMID: 35950549 DOI: 10.1002/asia.202200677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Indexed: 11/06/2022]
Abstract
Materials with negative Poisson's ratio have attracted considerable attention and offered high potential applications as biomedical devices due to their ability to expand in every direction when stretched. Although negative Poisson's ratio has been obtained in various base materials such as metals and polymers, there are very limited works on hydrogels due to their intrinsic brittleness. Herein, we report the use of methacrylated cellulose nanocrystals (CNCMAs) as a macro-cross-linking agent in poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels for 3D printing of auxetic structures. Our developed CNCMA-pHEMA hydrogels exhibit significant improvements in mechanical properties, which is attributed to the coexistence of multiple chemical and physical interactions between the pHEMA and CNCMAs. Structures printed by using CNCMA-pHEMA hydrogels show auxetic behavior with greatly enhanced toughness and stretchability compared to the hydrogel with a traditional cross-linking agent. Such strong and tough auxetic hydrogels would contribute toward establishing advanced flexible implantable devices such as biodegradable oesophageal self-expandable stents.
Collapse
Affiliation(s)
| | - Heng Li Chee
- Institute of Materials Research and Engineering, PMC, SINGAPORE
| | - Zizhen Wang
- National University of Singapore - Kent Ridge Campus: National University of Singapore, bioengineering, SINGAPORE
| | - Ping Luo
- Institute of Materials Research and Engineering, AMC, SINGAPORE
| | - Yi Ting Chong
- Institute of Materials Research and Engineering, PMC, SINGAPORE
| | | | - FuKe Wang
- Institute of Materiasl Research and Engineering, 3 Research Link, 117602, Singapore, SINGAPORE
| |
Collapse
|
23
|
Yang HY, Jang MS, Li Y, Du JM, Liu C, Lee JH, Fu Y. pH-responsive dynamically cross-linked nanogels with effective endo-lysosomal escape for synergetic cancer therapy based on intracellular co-delivery of photosensitizers and proteins. Colloids Surf B Biointerfaces 2022; 217:112638. [PMID: 35772354 DOI: 10.1016/j.colsurfb.2022.112638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Co-delivery of photosensitizers (PSs) and protein drugs represents great potentiality for enhancing the efficiency of synergistic cancer therapy. However, the intricate tumor-microenvironment and the lack of nanoplatforms to co-deliver both into cancer cells and activate their functions significantly hinder the clinical translation of this combined approach for cancer treatment. Herein, a chlorine e6 (Ce6)-functionalized and pH-responsive dynamically cross-linked nanogel (Ce6@NG) is fabricated by formation of benzoic imine linkages between Ce6-modified methoxy poly (ethyleneglycol)-block-poly (diethylenetriamine)-L-glutamate-Ce6 [MPEG-b-P(Deta)LG-Ce6] and terephthalaldehyde as cross-linkers for effective intracellular co-delivery of Ce6 and cytochrome c (CC), which could form a novel combination therapy system (CC/Ce6@NGs). The pH-sensitive benzoic imine bonds in the CC/Ce6@NGs endow them with excellent systemic stability under normal physiological environment while this nanosystem can be further cationized to enhance cell uptake in acidic extracellular environment. Upon cellular internalization, CC/Ce6@NGs can rapidly escape from the endo/lysosomal compartments and subsequently activate Ce6 to generate cytotoxic singlet oxygen upon laser irradiation and release of CC to induce programmed cell death by complete cleavage of benzoic imines at more acidic intracellular environments. Importantly, the catalase-like activity of CC can decompose H2O2 to produce O2 for hypoxia alleviation and improvement of the photodynamic therapy (PDT) of cancer. Moreover, this enhanced synergistic anticancer activity is confirmed both in vitro and in vivo. In view of the versatile chemical conjugation, this research offers a promising and smart nanosystem for intracellular co-delivery of PSs and therapeutic proteins.
Collapse
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, the Republic of Korea
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing City 314001, Zhejiang Province, PR China
| | - Jia Meng Du
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, the Republic of Korea.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
24
|
Jazani AM, Arezi N, Shetty C, Oh JK. Shell-Sheddable/Core-Degradable ABA Triblock Copolymer Nanoassemblies: Synthesis via RAFT and Concurrent ATRP/RAFT Polymerization and Drug Delivery Application. Mol Pharm 2022. [DOI: 10.1021/acs.molpharmaceut.1c00622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Newsha Arezi
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Chaitra Shetty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
25
|
Zhao T, Liang C, Zhao Y, Xue X, Ma Z, Qi J, Shen H, Yang S, Zhang J, Jia Q, Du Q, Cao D, Xiang B, Zhang H, Qi X. Multistage pH-responsive codelivery liposomal platform for synergistic cancer therapy. J Nanobiotechnology 2022; 20:177. [PMID: 35366888 PMCID: PMC8976966 DOI: 10.1186/s12951-022-01383-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/17/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Small interfering RNA (siRNA) is utilized as a potent agent for cancer therapy through regulating the expression of genes associated with tumors. While the widely application of siRNAs in cancer treatment is severely limited by their insufficient biological stability and its poor ability to penetrate cell membranes. Targeted delivery systems hold great promise to selectively deliver loaded drug to tumor site and reduce toxic side effect. However, the elevated tumor interstitial fluid pressure and efficient cytoplasmic release are still two significant obstacles to siRNA delivery. Co-delivery of chemotherapeutic drugs and siRNA represents a potential strategy which may achieve synergistic anticancer effect. Herein, we designed and synthesized a dual pH-responsive peptide (DPRP), which includes three units, a cell-penetrating domain (polyarginine), a polyanionic shielding domain (ehG)n, and an imine linkage between them. Based on the DPRP surface modification, we developed a pH-responsive liposomal system for co-delivering polo-like kinase-1 (PLK-1) specific siRNA and anticancer agent docetaxel (DTX), D-Lsi/DTX, to synergistically exhibit anti-tumor effect.
Results
In contrast to the results at the physiological pH (7.4), D-Lsi/DTX lead to the enhanced penetration into tumor spheroid, the facilitated cellular uptake, the promoted escape from endosomes/lysosomes, the improved distribution into cytoplasm, and the increased cellular apoptosis under mildly acidic condition (pH 6.5). Moreover, both in vitro and in vivo study indicated that D-Lsi/DTX had a therapeutic advantage over other control liposomes. We provided clear evidence that liposomal system co-delivering siPLK-1 and DTX could significantly downregulate expression of PLK-1 and inhibit tumor growth without detectable toxic side effect, compared with siPLK-1-loaded liposomes, DTX-loaded liposomes, and the combinatorial administration.
Conclusion
These results demonstrate great potential of the combined chemo/gene therapy based on the multistage pH-responsive codelivery liposomal platform for synergistic tumor treatment.
Graphical Abstract
Collapse
|
26
|
He W, Wang Q, Tian X, Pan G. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. EXPLORATION (BEIJING, CHINA) 2022; 2:20210093. [PMID: 37324582 PMCID: PMC10191035 DOI: 10.1002/exp.20210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) provides not only physical support for the tissue structural integrity, but also dynamic biochemical cues capable of regulating diverse cell behaviors and functions. Biomaterial surfaces with dynamic ligand presentation are capable of mimicking the dynamic biochemical cues of ECM, showing ECM-like functions to modulate cell behaviors. This review paper described an overview of present dynamic biomaterial interfaces by focusing on currently developed molecular strategies for dynamic ligand presentation. The paradigmatic examples for each strategy were separately discussed. In addition, the regulation of some typical cell behaviors on these dynamic biointerfaces including cell adhesion, macrophage polarization, and stem cell differentiation, and their potential applications in pathogenic cell isolation, single cell analysis, and tissue engineering are highlighted. We hope it would not only clarify a clear background of this field, but also inspire to exploit novel molecular strategies and more applications to match the increasing demand of manipulating complex cellular processes in biomedicine.
Collapse
Affiliation(s)
- Wenbo He
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Qinghe Wang
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Xiaohua Tian
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
27
|
Puglisi A, Bassini S, Reimhult E. Cyclodextrin-Appended Superparamagnetic Iron Oxide Nanoparticles as Cholesterol-Mopping Agents. Front Chem 2021; 9:795598. [PMID: 34869239 PMCID: PMC8636776 DOI: 10.3389/fchem.2021.795598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Cholesterol plays a crucial role in major cardiovascular and neurodegenerative diseases, including Alzheimer's disease and rare genetic disorders showing altered cholesterol metabolism. Cyclodextrins (CDs) have shown promising therapeutic efficacy based on their capacity to sequester and mobilise cholesterol. However, the administration of monomeric CDs suffers from several drawbacks due to their lack of specificity and poor pharmacokinetics. We present core-shell superparamagnetic iron oxide nanoparticles (SPIONs) functionalised with CDs appended to poly (2-methyl-2-oxazoline) polymers grafted in a dense brush to the iron oxide core. The CD-decorated nanoparticles (CySPIONs) are designed so that the macrocycle is specifically cleaved off the nanoparticle's shell at a slightly acidic pH. In the intended use, free monomeric CDs will then mobilise cholesterol out of the lysosome to the cytosol and beyond through the formation of an inclusion complex. Hence, its suitability as a therapeutic platform to remove cholesterol in the lysosomal compartment. Synthesis and full characterization of the polymer as well as of the core-shell SPION are presented. Cholesterol-binding activity is shown through an enzymatic assay.
Collapse
Affiliation(s)
- Antonino Puglisi
- Department of Nanobiotechnology, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Simone Bassini
- Department of Nanobiotechnology, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.,Life Sciences Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Erik Reimhult
- Department of Nanobiotechnology, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
28
|
Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Zarrintaj P, Khodadadi Yazdi M, Youssefi Azarfam M, Zare M, Ramsey JD, Seidi F, Reza Saeb M, Ramakrishna S, Mozafari M. Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Eng Part A 2021; 27:821-843. [PMID: 33779319 DOI: 10.1089/ten.tea.2020.0341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering intends to create functionalized tissues/organs for regenerating the injured parts of the body using cells and scaffolds. A scaffold as a supporting substrate affects the cells' fate and behavior, including growth, proliferation, migration, and differentiation. Hydrogel as a biomimetic scaffold plays an important role in cellular behaviors and tissue repair, providing a microenvironment close to the extracellular matrix with adjustable mechanical and chemical features that can provide sufficient nutrients and oxygen. To enhance the hydrogel performance and compatibility with native niche, the cell-laden hydrogel is an attractive choice to mimic the function of the targeted tissue. Injectable hydrogels, due to the injectability, are ideal options for in vivo minimally invasive treatment. Cell-laden injectable hydrogels can be utilized for tissue regeneration in a noninvasive way. This article reviews the recent advances and future opportunities of cell-laden injectable hydrogels and their functions in tissue engineering. It is expected that this strategy allows medical scientists to develop a minimally invasive method for tissue regeneration in clinical settings. Impact statement Cell-laden hydrogels have been vastly utilized in biomedical application, especially tissue engineering. It is expected that this upcoming review article will be a motivation for the community. Although this strategy is still in its early stages, this concept is so alluring that it has attracted all scientists in the community and specialists at academic health centers. Certainly, this approach requires more development, and a bunch of crucial challenges have yet to be solved. In this review, we discuss this various aspects of this approach, the questions that must be answered, the expectations associated with it, and rational restrictions to develop injectable cell-laden hydrogels.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | | | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, China
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, and Faculty of Engineering, National University of Singapore, Singapore, Singapore.,Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Jazani AM, Shetty C, Movasat H, Bawa KK, Oh JK. Imidazole-Mediated Dual Location Disassembly of Acid-Degradable Intracellular Drug Delivery Block Copolymer Nanoassemblies. Macromol Rapid Commun 2021; 42:e2100262. [PMID: 34050688 DOI: 10.1002/marc.202100262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Indexed: 11/10/2022]
Abstract
Acid-degradable (or acid-cleavable) polymeric nanoassemblies have witnessed significant progress in anti-cancer drug delivery. However, conventional nanoassemblies designed with acid-cleavable linkages at a single location have several challenges, such as, sluggish degradation, undesired aggregation of degraded products, and difficulty in controlled and on-demand drug release. Herein, a strategy that enables the synthesis of acid-cleavable nanoassemblies labeled with acetaldehyde acetal groups in both hydrophobic cores and at core/corona interfaces, exhibiting synergistic response to acidic pH at dual locations and thus inducing rapid drug release is reported. The systematic analyses suggest that the acid-catalyzed degradation and disassembly are further enhanced by decreasing copolymer concentration (i.e., increasing proton/acetal mole ratio). Moreover, incorporation of acid-ionizable imidazole pendants in the hydrophobic cores improve the encapsulation of doxorubicin, the anticancer drug, through π-π interactions and enhance the acid-catalyzed hydrolysis of acetal linkages situated in the dual locations. Furthermore, the presence of the imidazole pendants induce the occurrence of core-crosslinking that compensates the kinetics of acetal hydrolysis and drug release. These results, combined with in vitro cell toxicity and cellular uptake, suggest the versatility of the dual location acid-degradation strategy in the design and development of effective intracellular drug delivery nanocarriers.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Chaitra Shetty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Hourieh Movasat
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Kamaljeet Kaur Bawa
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
31
|
Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021; 9:3543-3575. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Theranostic platforms that combine therapy with diagnosis not only prevent the undesirable biological responses that may occur when these processes are conducted separately, but also allow individualized therapies for patients. Polymer hydrogels have been employed to provide well-controlled drug release and targeted therapy in theranostics, where injectable hydrogels enable non-invasive treatment and monitoring with a single injection, offering greater patient comfort and efficient therapy. Efforts have been focused on applying injectable polymer hydrogels in theranostic research and clinical use. This review highlights recent progress in the design of injectable polymer hydrogels for cancer theranostics, particularly focusing on the elements/components of theranostic hydrogels, and their cross-linking strategies, structures, and performance with regard to drug delivery/tracking. Therapeutic agents and tracking modalities that are essential components of the theranostic platforms are introduced, and the design strategies, properties and applications of the injectable hydrogels developed via two approaches, namely chemical bonds and physical interactions, are described. The theranostic functions of the platforms are highly dependent on the architecture and components employed for the construction of hydrogels. Challenges currently presented by theranostic platforms based on injectable hydrogels are identified, and prospects of acquiring more comfortable and personalized therapies are proposed.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China. and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
32
|
Li YL, Zhu XM, Liang H, Orvig C, Chen ZF. Recent Advances in Asialoglycoprotein Receptor and Glycyrrhetinic Acid Receptor-Mediated and/or pH-Responsive Hepatocellular Carcinoma- Targeted Drug Delivery. Curr Med Chem 2021; 28:1508-1534. [PMID: 32368967 DOI: 10.2174/0929867327666200505085756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/01/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) seriously affects human health, especially, it easily develops multi-drug resistance (MDR) which results in treatment failure. There is an urgent need to develop highly effective and low-toxicity therapeutic agents to treat HCC and to overcome its MDR. Targeted drug delivery systems (DDS) for cancer therapy, including nanoparticles, lipids, micelles and liposomes, have been studied for decades. Recently, more attention has been paid to multifunctional DDS containing various ligands such as polymer moieties, targeting moieties, and acid-labile linkages. The polymer moieties such as poly(ethylene glycol) (PEG), chitosan (CTS), hyaluronic acid, pullulan, poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO) protect DDS from degradation. Asialoglycoprotein receptor (ASGPR) and glycyrrhetinic acid receptor (GAR) are most often used as the targeting moieties, which are overexpressed on hepatocytes. Acid-labile linkage, catering for the pH difference between tumor cells and normal tissue, has been utilized to release drugs at tumor tissue. OBJECTIVES This review provides a summary of the recent progress in ASGPR and GAR-mediated and/or pH-responsive HCC-targeted drug delivery. CONCLUSION The multifunctional DDS may prolong systemic circulation, continuously release drugs, increase the accumulation of drugs at the targeted site, enhance the anticancer effect, and reduce side effects both in vitro and in vivo. But it is rarely used to investigate MDR of HCC; therefore, it needs to be further studied before going into clinical trials.
Collapse
Affiliation(s)
- Yu-Lan Li
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Xiao-Min Zhu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Chris Orvig
- Department of Chemistry, Faculty of Science, The University of British Columbia, 2036 Main Mall Vancouver, British Columbia V6T 1Z1, Canada
| | - Zhen-Feng Chen
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| |
Collapse
|
33
|
Zhao X, Bai J, Yang W. Stimuli-responsive nanocarriers for therapeutic applications in cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0496. [PMID: 33764711 PMCID: PMC8185873 DOI: 10.20892/j.issn.2095-3941.2020.0496] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer has become a very serious challenge with aging of the human population. Advances in nanotechnology have provided new perspectives in the treatment of cancer. Through the combination of nanotechnology and therapeutics, nanomedicine has been successfully used to treat cancer in recent years. In terms of nanomedicine, nanocarriers play a key role in delivering therapeutic agents, reducing severe side effects, simplifying the administration scheme, and improving therapeutic efficacies. Modulations of the structure and function of nanocarriers for improved therapeutic efficacy in cancer have attracted increasing attention in recent years. Stimuli-responsive nanocarriers penetrate deeply into tissues and respond to external or internal stimuli by releasing the therapeutic agent for cancer therapy. Notably, stimuli-responsive nanocarriers reduce the severe side effects of therapeutic agents, when compared with systemic chemotherapy, and achieve controlled drug release at tumor sites. Therefore, the development of stimuli-responsive nanocarriers plays a crucial role in drug delivery for cancer therapy. This article focuses on the development of nanomaterials with stimuli-responsive properties for use as nanocarriers, in the last few decades. These nanocarriers are more effective at delivering the therapeutic agent under the control of external or internal stimuli. Furthermore, nanocarriers with theranostic features have been designed and fabricated to confirm their great potential in achieving effective treatment of cancer, which will provide us with better choices for cancer therapy.
Collapse
Affiliation(s)
- Xubo Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Bai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Yang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
34
|
Falsafi M, Saljooghi AS, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Smart metal organic frameworks: focus on cancer treatment. Biomater Sci 2021; 9:1503-1529. [DOI: 10.1039/d0bm01839b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal–organic frameworks (MOFs), as a prominent category of hybrid porous materials, have been broadly employed as controlled systems of drug delivery due to their inherent interesting properties.
Collapse
Affiliation(s)
- Monireh Falsafi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| |
Collapse
|
35
|
Xu L, Wang H, Tian H, Zhang M, He J, Ni P. Facile construction of noncovalent graft copolymers with triple stimuli-responsiveness for triggered drug delivery. Polym Chem 2021. [DOI: 10.1039/d1py00135c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A triple stimuli-responsive noncovalent graft copolymer was designed and synthesized by the host–guest interactions between β-CD grafted dextran and ferrocene-terminated poly(lactide).
Collapse
Affiliation(s)
- Lei Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Hairong Wang
- Children's Hospital of Soochow University
- Pediatric Research Institute of Soochow University
- Suzhou
- China
| | - Hongrui Tian
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| |
Collapse
|
36
|
Hu X, Oh JK. Direct Polymerization Approach to Synthesize Acid‐Degradable Block Copolymers Bearing Imine Pendants for Tunable pH‐Sensitivity and Enhanced Release. Macromol Rapid Commun 2020; 41:e2000394. [DOI: 10.1002/marc.202000394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaolei Hu
- Department of Chemistry and Biochemistry Concordia University H4B 1R6 Montreal Quebec Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry Concordia University H4B 1R6 Montreal Quebec Canada
| |
Collapse
|
37
|
Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E916. [PMID: 32397449 PMCID: PMC7279540 DOI: 10.3390/nano10050916] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Mesoporous silica nanoparticles have been broadly applied as drug delivery systems owing to their exquisite features, such as excellent textural properties or biocompatibility. However, there are various biological barriers that prevent their proper translation into the clinic, including: (1) lack of selectivity toward tumor tissues, (2) lack of selectivity for tumoral cells and (3) endosomal sequestration of the particles upon internalization. In addition, their open porous structure may lead to premature drug release, consequently affecting healthy tissues and decreasing the efficacy of the treatment. First, this review will provide a comprehensive and systematic overview of the different approximations that have been implemented into mesoporous silica nanoparticles to overcome each of such biological barriers. Afterward, the potential premature and non-specific drug release from these mesoporous nanocarriers will be addressed by introducing the concept of stimuli-responsive gatekeepers, which endow the particles with on-demand and localized drug delivery.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
38
|
Yang HY, Li Y, Lee DS. Recent Advances of pH‐Induced Charge‐Convertible Polymer‐Mediated Inorganic Nanoparticles for Biomedical Applications. Macromol Rapid Commun 2020; 41:e2000106. [DOI: 10.1002/marc.202000106] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P. R. China
| | - Yi Li
- College of Material and Textile Engineering Jiaxing University Jiaxing Zhejiang 314001 P. R. China
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
39
|
Liao SC, Ting CW, Chiang WH. Functionalized polymeric nanogels with pH-sensitive benzoic-imine cross-linkages designed as vehicles for indocyanine green delivery. J Colloid Interface Sci 2020; 561:11-22. [PMID: 31812857 DOI: 10.1016/j.jcis.2019.11.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/03/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
|
40
|
Zhou Y, Zhou C, Zou Y, Jin Y, Han S, Liu Q, Hu X, Wang L, Ma Y, Liu Y. Multi pH-sensitive polymer–drug conjugate mixed micelles for efficient co-delivery of doxorubicin and curcumin to synergistically suppress tumor metastasis. Biomater Sci 2020; 8:5029-5046. [DOI: 10.1039/d0bm00840k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multi pH-responsive polymer-drug conjugate mixed micelles were fabricated to co-deliver doxorubicin and curcumin for synergistic suppression tumor metastasis via inhibiting the invasion, migration, intravasation and extravasation of tumor cells.
Collapse
|
41
|
Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py00234h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acid-degradable block copolymer-based nanoassemblies are promising intracellular candidates for tumor-targeting drug delivery as they exhibit the enhanced release of encapsulated drugs through their dissociation.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
42
|
Yang HY, Li Y, Jang MS, Fu Y, Wu T, Lee JH, Lee DS. Green preparation of pH-responsive and dual targeting hyaluronic acid nanogels for efficient protein delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Zhang T, Liu H, Li Y, Li C, Wan G, Chen B, Li C, Wang Y. A pH-sensitive nanotherapeutic system based on a marine sulfated polysaccharide for the treatment of metastatic breast cancer through combining chemotherapy and COX-2 inhibition. Acta Biomater 2019; 99:412-425. [PMID: 31494294 DOI: 10.1016/j.actbio.2019.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022]
Abstract
Metastasis and chemotherapy resistance are the leading causes of breast cancer mortality. Celecoxib (CXB), a selective cyclooxygenase-2 (COX-2) inhibitor, has antiangiogenetic activity and inhibitory effect on tumor metastasis, and can also enhance the sensitivity of chemotherapeutic drug doxorubicin (DOX) in breast cancer. To combine anticancer effects of DOX and CXB more efficiently, we designed a pH-sensitive nanotherapeutic system based on propylene glycol alginate sodium sulfate (PSS), a marine sulfated polysaccharide that possesses anti-platelet aggregation activity and has been used as a heparinoid drug in China. A facile one-pot nanoprecipitation method was used to prepare this nanotherapeutic system named as PSS@DC nanoparticles, in which DOX and CXB were complexed to form hydrophobic nanocores and PPS coated these nanocores through conjugation with DOX via a highly acid-labile benzoic-imine linker. PSS@DC nanoparticles showed distinct pH-sensitivity and significantly accelerated the release of DOX at the acidic pH mimicking the tumor microenvironment and endocytic-related organelles. Compared to single- and mixed-drug treatments, PSS@DC nanoparticles notably inhibited the growth of mouse breast cancer 4T1 cells with an IC50 of about 0.82 μg/mL DOX, and meanwhile reduced cell migration, invasion and adhesion abilities more efficiently. In 4T1 tumor-bearing mice, PSS@DC nanoparticles exhibited good tumor-targeting ability and markedly inhibited tumor growth with an inhibition rate of approximately 73.3%, and furthermore suppressed tumor metastasis through anti-angiogenesis. In summary, this nanotherapeutic system shows a great potential for the treatment of metastatic breast cancer by combining chemotherapy and COX-2 inhibitor. STATEMENT OF SIGNIFICANCE: A pH-sensitive nanotherapeutic system (PSS@DC nanoparticles) containing both chemotherapeutic drug doxorubicin (DOX) and COX-2 specific inhibitor celecoxib was designed based on a marine sulfated polysaccharide that possesses anti-platelet aggregation activity and has been used as a heparinoid drug in China. PSS@DC nanoparticles had distinct pH-sensitivity and could accelerate the release of DOX at the acidic pH values of tumor microenvironment and endocytic-related organelles. Both in vitro and in vivo, PSS@DC nanoparticles showed synergistic effects on the suppression of breast tumor growth and metastasis by combining chemotherapy and COX-2 inhibition.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Hui Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yating Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, China.
| | - Guoyun Wan
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Bowei Chen
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, Key Laboratory of Glycoscience and Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yinsong Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
44
|
Xu Y, Shan Y, Zhang Y, Yu B, Shen Y, Cong H. Multifunctional Fe 3O 4@C-based nanoparticles coupling optical/MRI imaging and pH/photothermal controllable drug release as efficient anti-cancer drug delivery platforms. NANOTECHNOLOGY 2019; 30:425102. [PMID: 31261137 DOI: 10.1088/1361-6528/ab2e40] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multifunctional nanomedicines featuring high drug loading capacity, controllable drug release and real-time self-monitoring are attracting increasing attention due to their potential to improve cancer therapeutic efficacy. Herein, a new kind of Fe3O4@C-based nanoparticles modified with isoreticular metal organic frameworks (IRMOF-3), folic acid (FA) and detachable polyethylene glycol (PEG) under tumor microenvironment was developed. The core-shell structured Fe3O4@C was synthesized via the one-pot solvothermal reaction and the IRMOF-3 layers were coated on the outer shell of Fe3O4@C through layer-by-layer coating method. The FA and PEG were conjugated on the surface of nanoparticles by reacting with the amine groups provided by IRMOF-3. The as-synthesized nanoparticles showed stable photothermal effect, superparamagnetic properties and blue fluorescence characteristic under 360 nm irradiation. The in vitro experiments showed that the drug loaded nanoparticles exhibit pH-dependent drug release property, and PEGylation was proved effective in suppressing burst drug release (only 8.0% of drugs were released within 95 h). The confocal laser scanning microscopy study revealed that the as-synthesized nanoparticles could serve as a cell imaging agent and the cell internalization can be significantly enhanced after FA modified. The IRMOF-3 modified nanoparticles showed negligible cytotoxicity and the drug loaded nanoparticles showed pH/photothermal-stimuli enhanced cytotoxicity in vitro. It is believed that the present smart drug delivery platforms will hold great potential in imaging guided drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Yanhong Xu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Puglisi A, Bayir E, Timur S, Yagci Y. pH-Responsive Polymersome Microparticles as Smart Cyclodextrin-Releasing Agents. Biomacromolecules 2019; 20:4001-4007. [DOI: 10.1021/acs.biomac.9b01083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Antonino Puglisi
- Department of Chemistry, Maslak, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Ece Bayir
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University Bornova, Izmir, 35100, Turkey
| | - Suna Timur
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University Bornova, Izmir, 35100, Turkey
- Faculty of Science, Biochemistry Department, Ege University Bornova, Izmir, 35100, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Maslak, Istanbul Technical University, Istanbul, 34469, Turkey
| |
Collapse
|
46
|
Zhao Y, Cui Z, Liu B, Xiang J, Qiu D, Tian Y, Qu X, Yang Z. An Injectable Strong Hydrogel for Bone Reconstruction. Adv Healthc Mater 2019; 8:e1900709. [PMID: 31353829 DOI: 10.1002/adhm.201900709] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Indexed: 12/22/2022]
Abstract
For treating bone defects in periarticular fractures, there is a lack of biomaterial with injectable characteristics, tough structure, and osteogenic capacity for providing a whole-structure support and osteogenesis in the defect area. An injectable hydrogel is an ideal implant, however is weak as load-bearing scaffolds. Herein, a new strategy, i.e., an in situ formation of "active" composite double network (DN), is raised for the preparation of an injectable strong hydrogel particularly against compression. As a demonstration, 4-carboxyphenylboronic acid grafted poly(vinyl alcohol) (PVA) is crosslinked using calcium ions to provide a tough frame while bioactive glass (BG) microspheres are associated by poly(ethylene glycol) to obtain an interpenetrated inorganic network for reinforcement. The injected PVA/BG DN hydrogel gains compressive strength, modulus, and fracture energy of 34 MPa, 0.8 MPa, and 40 kJ m-2 , respectively. Then, the properties can be "autostrengthened" to 57 MPa, 2 MPa, and 65 kJ m-2 by mineralization in 14 days. In vivo experiments prove that the injected DN hydrogel is more efficient to treat femoral supracondylar bone defects than the implanted bulk DN gel. The work suggests a facile way to obtain a strong hydrogel with injectability, cytocompatibility, and tailorable functionality.
Collapse
Affiliation(s)
- Yanran Zhao
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiyong Cui
- Peking University Third Hospital Beijing 100191 China
| | - Bingchuan Liu
- Peking University Third Hospital Beijing 100191 China
| | - Junfeng Xiang
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Dong Qiu
- State Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Yun Tian
- Peking University Third Hospital Beijing 100191 China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Zhenzhong Yang
- Department of Chemical EngineeringTsinghua University Beijing 100084 China
| |
Collapse
|
47
|
Xu J, Liu Y, Hsu SH. Hydrogels Based on Schiff Base Linkages for Biomedical Applications. Molecules 2019; 24:E3005. [PMID: 31430954 PMCID: PMC6720009 DOI: 10.3390/molecules24163005] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 01/06/2023] Open
Abstract
Schiff base, an important family of reaction in click chemistry, has received significant attention in the formation of self-healing hydrogels in recent years. Schiff base reversibly reacts even in mild conditions, which allows hydrogels with self-healing ability to recover their structures and functions after damages. Moreover, pH-sensitivity of the Schiff base offers the hydrogels response to biologically relevant stimuli. Different types of Schiff base can provide the hydrogels with tunable mechanical properties and chemical stabilities. In this review, we summarized the design and preparation of hydrogels based on various types of Schiff base linkages, as well as the biomedical applications of hydrogels in drug delivery, tissue regeneration, wound healing, tissue adhesives, bioprinting, and biosensors.
Collapse
Affiliation(s)
- Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| | - Yi Liu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan.
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli 35053, Taiwan.
| |
Collapse
|
48
|
Jin Q, Deng Y, Chen X, Ji J. Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS NANO 2019; 13:954-977. [PMID: 30681834 DOI: 10.1021/acsnano.8b07746] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Owing to the complex and still not fully understood physiological environment, the development of traditional nanosized drug delivery systems is very challenging for precision cancer therapy. It is very difficult to control the in vivo distribution of nanoparticles after intravenous injection. The ideal drug nanocarriers should not only have stealth surface for prolonged circulation time but also possess enhanced cellular internalization in tumor sites. Unfortunately, the stealth surface and enhanced cellular uptake seem contradictory to each other. How to integrate the two opposite aspects into one system is a very herculean but meaningful task. As an alternative drug delivery strategy, chameleon-like drug delivery systems were developed to achieve long circulation time while maintaining enhanced cancer cell uptake. Such drug nanocarriers can "turn off" their internalization ability during circulation. However, the enhanced cellular uptake can be readily activated upon arriving at tumor tissues. In this way, stealth surface and enhanced uptake are of dialectical unity in drug delivery. In this review, we focus on the surface engineering of drug nanocarriers to obtain simultaneous stealth surfaces in circulation and enhanced uptake in tumors. The current strategies and ongoing developments, including programmed tumor-targeting strategies and some specific zwitterionic surfaces, will be discussed in detail.
Collapse
Affiliation(s)
- Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| | - Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| |
Collapse
|
49
|
Gennen S, Grignard B, Jérôme C, Detrembleur C. CO2
-Sourced Non-Isocyanate Poly(Urethane)s with pH-Sensitive Imine Linkages. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sandro Gennen
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit; University of Liège, Sart-Tilman B6 A, Quartier Agora; Allée du 6 Août 4000 Liège Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit; University of Liège, Sart-Tilman B6 A, Quartier Agora; Allée du 6 Août 4000 Liège Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit; University of Liège, Sart-Tilman B6 A, Quartier Agora; Allée du 6 Août 4000 Liège Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit; University of Liège, Sart-Tilman B6 A, Quartier Agora; Allée du 6 Août 4000 Liège Belgium
| |
Collapse
|
50
|
Ding X, Li G, Xiao C, Chen X. Enhancing the Stability of Hydrogels by Doubling the Schiff Base Linkages. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoya Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Gao Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 China
| | - Chunsheng Xiao
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 China
| |
Collapse
|