1
|
Li XF, Wu FG. Aggregation-induced emission-based fluorescent probes for cellular microenvironment detection. Biosens Bioelectron 2025; 274:117130. [PMID: 39904094 DOI: 10.1016/j.bios.2025.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025]
Abstract
The cellular microenvironment exerts a pivotal regulatory influence on cell survival, function, and behavior. Dynamic analysis and detection of the cellular microenvironment can promptly elucidate changes in cellular microenvironmental information, uncover the pathogenesis of diseases associated with aberrant microenvironments, and aid in predicting disease risk and monitoring disease progression. Aggregation-induced emission (AIE) fluorescent molecules possess unique AIE characteristics and offer significant advantages in imaging and sensing cellular microenvironments. In this review, we present a profile of the remarkable progress achieved in utilizing AIE fluorescent molecules for detecting cellular microenvironments in recent years. We particularly focus on AIE fluorescent probes applied in imaging key parameters of the cellular microenvironment, including pH, viscosity, polarity, and temperature, as well as in analyzing critical biological components of the microenvironment, such as gas signal molecules, metal ions, redox state, and proteins. We underscore the design principles, detection mechanisms, sensing performance, and biological applications of these fluorescent probes. Furthermore, we address the current challenges confronting this field and provide prospects for the future development of AIE probes used for microenvironment detection. We trust that this review will inspire researchers to develop more precise and sensitive AIE fluorescent probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Xiang-Fei Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China.
| |
Collapse
|
2
|
Liu Z, Zhang Z, Li J, Zhu G, Li Q. An activatable azophenyl fluorescent probe for hypoxic fluorescence imaging in living cells. LUMINESCENCE 2024; 39:e4798. [PMID: 38825785 DOI: 10.1002/bio.4798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Cellular hypoxia is a common pathological process in various diseases. Detecting cellular hypoxia is of great scientific significance for early diagnosis of tumors. The hypoxia fluorescence probe analysis method can efficiently and conveniently evaluate the hypoxia status in tumor cells. These probes are covalently linked by hypoxic recognition groups and organic fluorescent molecules. Currently, the fluorescent molecules used in these probes often exhibit the aggregation-caused quenching effect, which is not conducive to fluorescence imaging in water. Herein, an activatable hypoxia fluorescence probe was constructed by covalently linking aggregation-induced emission luminogens to the hypoxic recognition group azobenzene. It does not emit fluorescence in solution and in solid state under light excitation due to the presence of photosensitive azo bonds. It can be cleaved by intracellular azoreductase into fluorescent amino derivatives with aggregation-induced emission characteristic. As the concentration of oxygen in cells decreases, its fluorescence intensity increases, making it suitable for fluorescence imaging to detect hypoxic environment in live cancer cells. This work broadens the molecular design approach for activatable hypoxia fluorescent probes.
Collapse
Affiliation(s)
- Zhiyang Liu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Zongyu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Juping Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Guanqun Zhu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Wang S, Tan W, Lang W, Qian H, Guo S, Zhu L, Ge J. Fluorogenic and Mitochondria-Localizable Probe Enables Selective Labeling and Imaging of Nitroreductase. Anal Chem 2022; 94:7272-7277. [PMID: 35549110 DOI: 10.1021/acs.analchem.2c00512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nitroreductase (NTR), one of the flavin-dependent enzymes and an upregulated enzyme under tumor hypoxia, has been studied for decades. Many fluorescent probes were developed to detect NTR activity; however, these probes tend to diffuse away from their reaction site (NTR) inevitably, leading to inappropriate sample fixation, lower accuracy of NTR localization, and weaker signal-to-noise ratio. Herein, we present the design, synthesis, in vitro evaluation, and biological applications of an NTR-activatable fluorogenic and labeling probe FY. By integrating with quinone methide (QM) proximity-based protein labeling, the additional fluoromethyl group on FY serves as a potential origin of QM. Compared with conventional fluorescent probes, this new NTR probe not only offers mitochondrial localizable and fluorogenic response but also achieves permanent retention on the site of activation with an enhanced spatial resolution to improve the detection sensitivity even after cell fixation. We believe our work could offer an expandable synthetic approach to develop these permanent labeling and imaging fluorescence probes for deciphering complex biological events.
Collapse
Affiliation(s)
- Shuyi Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Tan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjie Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijuan Qian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuhong Guo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Liu X, Han Y, Shu Y, Wang J, Qiu H. Fabrication and application of 2,4,6-trinitrophenol sensors based on fluorescent functional materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127987. [PMID: 34896707 DOI: 10.1016/j.jhazmat.2021.127987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 05/06/2023]
Abstract
2,4,6-Trinitrophenol (TNP) has been widely used for a long time. The adverse effects of TNP on ecological environment and human health have promoted researchers to develop various methods for detecting TNP. Among multifarious technologies utilized for the TNP detection, fluorescence strategy based on different functional materials has become an effective and efficient method attributed to its merits such as preferable sensitivity and selectivity, rapid response speed, simple operation, and lower cost, which is also the focus of review. This review summarizes the development status of fluorescence sensors for TNP in a detailed and systematic way, especially focusing on the research progress since 2015. The sensing properties of fluorescent materials for TNP are the core of this review, including nanomaterials, organic small molecules, emerging supramolecular systems, aggregation induced emission materials and others. Moreover, the development direction and prospect of fluorescence sensing method in the field of TNP detection are introduced and discussed at the end of review.
Collapse
Affiliation(s)
- Xingchen Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
5
|
Espinoza EM, Røise JJ, He M, Li IC, Agatep AK, Udenyi P, Han H, Jackson N, Kerr DL, Chen D, Stentzel MR, Ruan E, Riley L, Murthy N. A self-immolative linker that releases thiols detects penicillin amidase and nitroreductase with high sensitivity via absorption spectroscopy. Chem Commun (Camb) 2022; 58:3166-3169. [PMID: 35170593 PMCID: PMC9097719 DOI: 10.1039/d1cc05322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the synthesis and characterization of a novel self-immolative linker, based on thiocarbonates, which releases a free thiol upon activation via enzymes. We demonstrate that thiocarbonate self-immolative linkers can be used to detect the enzymes penicillin G amidase (PGA) and nitroreductase (NTR) with high sensitivity using absorption spectroscopy. Paired with modern thiol amplification technology, the detection of PGA and NTR were achieved at concentrations of 160 nM and 52 nM respectively. In addition, the PGA probe was shown to be compatible with both biological thiols and enzymes present in cell lysates.
Collapse
Affiliation(s)
- Eli M Espinoza
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Joachim J Røise
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maomao He
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - I-Che Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Alvin K Agatep
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Patrick Udenyi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hesong Han
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Nicole Jackson
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA.
| | - D Lucas Kerr
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dake Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Michael R Stentzel
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Emily Ruan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lee Riley
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA.
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
- Innovative Genomics Institute (IGI), 2151 Berkeley Way, Berkeley, CA, 94704, USA
| |
Collapse
|
6
|
Das S, Indurthi HK, Asati P, Sharma DK. Small Molecule Fluorescent Probes for Sensing and Bioimaging of Nitroreductase. ChemistrySelect 2022. [DOI: 10.1002/slct.202102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samarpita Das
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Harish K. Indurthi
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Pulkit Asati
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Deepak K. Sharma
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| |
Collapse
|
7
|
Chakravarty S, Roy Chowdhury S, Mukherjee S. AIE materials for cancer cell detection, bioimaging and theranostics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:19-44. [PMID: 34782105 DOI: 10.1016/bs.pmbts.2021.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
AIE materials exhibit weakly emissive or non-emissive properties in dilute solutions while emit powerful fluorescence in the aggregated/solid state. Recently, AIE based materials have gained immense attention due to their multifunctional role in cancer cell detection, bioimaging and cancer theranostics. In this present book chapter, we will highlight recent advancements of AIE materials for different cancer theranostics applications.
Collapse
Affiliation(s)
- Sudesna Chakravarty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, United States
| | - Sayan Roy Chowdhury
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
8
|
Akhtar N, Biswas O, Manna D. Stimuli-responsive transmembrane anion transport by AIE-active fluorescent probes. Org Biomol Chem 2021; 19:7446-7459. [PMID: 34612363 DOI: 10.1039/d1ob00584g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anticancer drug resistance implicates multifunctional mechanisms, and hypoxia is one of the key factors in therapeutic resistance. Hypoxia-specific therapy is considered an extremely effective strategy to fight against cancer. The development of small molecule-based synthetic anion transporters has also recently drawn attention for their potential therapeutic applications against several ion-transport-associated diseases, such as cancer and others. Herein, we describe the development of a hypoxia-responsive proanionophore to trigger controlled transport of anions across membranes under pathogenic conditions. Herein, we report the development of tetraphenylethene (TPE)-based anion transporters. The sulfonium-linked p-nitrobenzyl containing TPE-based proanionophore could be converted into a lipophilic fluorescent Cl- ion carrier in a hypoxic or reductive environment. Stimuli such as nitroreductase (NTR) and glutathione (GSH) mediated regeneration of the TPE-based active Cl- ion transporter also showed aggregation-induced emission (AIE) properties. We hypothesize that such hypoxia and reductive stimuli activatable proanionophores have tremendous potential to fight against channelopathies, including cancer.
Collapse
Affiliation(s)
- Nasim Akhtar
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | | |
Collapse
|
9
|
He X, Lam JWY, Kwok RTK, Tang BZ. Real-Time Visualization and Monitoring of Physiological Dynamics by Aggregation-Induced Emission Luminogens (AIEgens). ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:413-435. [PMID: 34314222 DOI: 10.1146/annurev-anchem-090420-101149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Physiological dynamics in living cells and tissues are crucial for maintenance and regulation of their normal activities and functionalities. Tiny fluctuations in physiological microenvironments can leverage significant influences on cell growth, metabolism, differentiation, and apoptosis as well as disease evolution. Fluorescence imaging based on aggregation-induced emission luminogens (AIEgens) exhibits superior advantages in real-time sensing and monitoring of the physiological dynamics in living systems, including its unique properties such as high sensitivity and rapid response, flexible molecular design, and versatile nano- to mesostructural fabrication. The introduction of canonic AIEgens with long-wavelength, near-infrared, or microwave emission, persistent luminescence, and diversified excitation source (e.g., chemo- or bioluminescence) offers researchers a tool to evaluate the resulting molecules with excellent performance in response to subtle fluctuations in bioactivities with broader dimensionalities and deeper hierarchies.
Collapse
Affiliation(s)
- Xuewen He
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- AIE Institute, Guangzhou Development Distinct, Huangpu, Guangzhou 516530, China
| |
Collapse
|
10
|
Qiao J, Wang M, Cui M, Fang Y, Li H, Zheng C, Li Z, Xu Y, Hua H, Li D. Small-molecule probes for fluorescent detection of cellular hypoxia-related nitroreductase. J Pharm Biomed Anal 2021; 203:114199. [PMID: 34130009 DOI: 10.1016/j.jpba.2021.114199] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022]
Abstract
Nitroreductase is a reductase that catalyzes nitro aromatic compounds to aromatic amines. It effectively reduces nitro to hydroxylamine or amino when in the presence of nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate. In terms of tumor, nitroreductase is upregulated in hypoxic tumor cells, and its content is directly related to the degree of hypoxia. Therefore, effective detection of nitroreductase is important not only for the study of cellular hypoxia, but also for the diagnosis and treatment of tumors and related diseases. In this review, we summarized the latest advances in small-molecule fluorescent probes for nitroreductase detection based on different fluorescence mechanisms, with a focus on research conducted between May 2018 and December 2020. The development trends and application prospect in this rapidly developing field were also highlighted.
Collapse
Affiliation(s)
- Jian Qiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Menghan Cui
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yuxi Fang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
11
|
Jenni S, Ponsot F, Baroux P, Collard L, Ikeno T, Hanaoka K, Quesneau V, Renault K, Romieu A. Design, synthesis and evaluation of enzyme-responsive fluorogenic probes based on pyridine-flanked diketopyrrolopyrrole dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119179. [PMID: 33248891 DOI: 10.1016/j.saa.2020.119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
The ever-growing demand for fluorogenic dyes usable in the rapid construction of analyte-responsive fluorescent probes, has recently contributed to a revival of interest in the chemistry of diketopyrrolopyrrole (DPP) pigments. In this context, we have explored the potential of symmetrical and unsymmetrical DPP derivatives bearing two or one 4-pyridyl substituents acting as optically tunable group(s). The unique fluorogenic behavior of these molecules, closely linked to N-substitution/charge state of their pyridine unit (i.e., neutral pyridine or cationic pyridinium), has been used to design DPP-based fluorescent probes for detection of hypoxia-related redox enzymes and penicillin G acylase (PGA). In this paper, we describe synthesis, spectral characterization and bioanalytical validations of these probes. Dramatic differences in terms of aqueous stability and enzymatic fluorescence activation were observed. This systematic study enables to delineate the scope of application of pyridine-flanked DPP fluorophores in the field of enzyme biosensing.
Collapse
Affiliation(s)
- Sébastien Jenni
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France.
| | - Flavien Ponsot
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Pierre Baroux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Lucile Collard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Takayuki Ikeno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Valentin Quesneau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Kévin Renault
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France.
| |
Collapse
|
12
|
Jia C, Zhang Y, Wang Y, Ji M. A fast-responsive fluorescent turn-on probe for nitroreductase imaging in living cells. RSC Adv 2021; 11:8516-8520. [PMID: 35423362 PMCID: PMC8695130 DOI: 10.1039/d0ra09512e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Nitroreductase (NTR) may be more active under the environment of hypoxic conditions, which are the distinctive features of the multiphase solid tumor. It is of great significance to effectively detect and monitor NTR in the living cells for the diagnosis of hypoxia in a tumor. Here, we synthesized a novel turn-on fluorescent probe NTR-NO2 based on a fused four-ring quinoxaline skeleton for NTR detection. The highly efficient probe can be easily synthesized. The probe NTR-NO2 showed satisfactory sensitivity and selectivity to NTR. Upon incubation with NTR, NTR-NO2 could successively undergo a nitro reduction reaction and then generate NTR-NH2 along with significant fluorescence enhancement (30 folds). Moreover, the fluorescent dye NTR-NH2 exhibits a large Stokes shift (Δλ = 111 nm) due to the intramolecular charge transfer (ICT) process. As a result, NTR-NO2 displayed a wide linear range (0–4.5 μg mL−1) and low detection limit (LOD = 58 ng mL−1) after responding to NTR. In addition, this probe was adopted for the detection of endogenous NTR within hypoxic HeLa cells. Probe NTR-NO2 was effectively reduced in the presence of NTR generating a highly fluorescent product.![]()
Collapse
Affiliation(s)
- Chengli Jia
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| | - Yong Zhang
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| | - Yuesong Wang
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| | - Min Ji
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| |
Collapse
|
13
|
Boddu RS, Perumal O, K D. Microbial nitroreductases: A versatile tool for biomedical and environmental applications. Biotechnol Appl Biochem 2020; 68:1518-1530. [PMID: 33156534 DOI: 10.1002/bab.2073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Nitroreductases, enzymes found mostly in bacteria and also in few eukaryotes, use nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor for their activity and metabolize an enormous list of a diverse nitro group-containing compounds. Nitroreductases that are capable of metabolizing nitroaromatic and nitro heterocyclic compounds have drawn great attention in recent years owing to their biotechnological, biomedical, environmental, and human impact. These enzymes attracted medicinal chemists and pharmacologists because of their prodrug selectivity for activation/reduction of nitro compounds that wipe out pathogens/cancer cells, leaving the host/normal cells unharmed. It is applied in diverse fields of study like prodrug activation in treating cancer and leishmaniasis, designing fluorescent probes for hypoxia detection, cell imaging, ablation of specific cell types, biodegradation of nitro-pollutants, and interpretation of mutagenicity of nitro compounds. Keeping in view the immense prospects of these enzymes and a large number of research contributions in this area, the present review encompasses the enzymatic reaction mechanism, their role in antibiotic resistance, hypoxia sensing, cell imaging, cancer therapy, reduction of recalcitrant nitro chemicals, enzyme variants, and their specificity to substrates, reaction products, and their applications.
Collapse
Affiliation(s)
- Ramya Sree Boddu
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Onkara Perumal
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Divakar K
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, India
| |
Collapse
|
14
|
Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Xu L, Sun L, Zeng F, Wu S. Activatable fluorescent probe based on aggregation-induced emission for detecting hypoxia-related pathological conditions. Anal Chim Acta 2020; 1125:152-161. [DOI: 10.1016/j.aca.2020.05.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
|
16
|
Zhang J, Yang Z, Zhang S, Xie Z, Han S, Wang L, Zhang B, Sun S. Investigation of endogenous malondialdehyde through fluorescent probe MDA-6 during oxidative stress. Anal Chim Acta 2020; 1116:9-15. [DOI: 10.1016/j.aca.2020.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
|
17
|
|
18
|
Xue T, Shen J, Shao K, Wang W, Wu B, He Y. Strategies for Tumor Hypoxia Imaging Based on Aggregation-Induced Emission Fluorogens. Chemistry 2020; 26:2521-2528. [PMID: 31692097 DOI: 10.1002/chem.201904327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 01/13/2023]
Abstract
Hypoxia, as a crucial characteristic of cancer, has become an extremely significant direction for researchers to construct fluorescent probes for early diagnosis of tumors. Aggregation-induced emission fluorogens (AIEgens) possess many superior properties to those of conventional fluorophores due to aggregation-induced emission (AIE) features, such as a linear concentration-dependent increase in brightness, remarkable resistance to photobleaching, and the long-term tracking and imaging of cells. Constructing hypoxic response AIEgen-based probes will be very useful for the early diagnosis of tumors. Herein, several hypoxia-responsive probes based on AIEgens reported in the last three years are reported; these examples may lead to the construction of hypoxia-responsive AIE probes used for tumor hypoxia imaging in the future. In addition, typical, conventional hypoxia-responsive bioprobes are presented to further understand hypoxia-responsive fluorescent probes based on AIEgens.
Collapse
Affiliation(s)
- Tianhao Xue
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Jiajia Shen
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Kuanchun Shao
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Wei Wang
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Bing Wu
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Yaning He
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
19
|
Lin Y, Sun L, Zeng F, Wu S. An Unsymmetrical Squaraine-Based Activatable Probe for Imaging Lymphatic Metastasis by Responding to Tumor Hypoxia with MSOT and Aggregation-Enhanced Fluorescent Imaging. Chemistry 2019; 25:16740-16747. [PMID: 31674063 DOI: 10.1002/chem.201904675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Optoacoustic imaging has great potential for preclinical research and clinical practice, and designing robust activatable optoacoustic probes for specific diseases is beneficial for its further development. Herein, an activatable probe has been developed for tumor hypoxia imaging. For this probe, indole and quinoline were linked on each side of an oxocyclobutenolate core to form an unsymmetrical squaraine. A triarylamine group was incorporated to endow the molecule with the aggregation enhanced emission (AEE) properties. In aqueous media, the squaraine chromophore aggregates into the nanoprobe, which specifically responds to nitroreductase and produces strong optoacoustic signals due to its high extinction coefficient, as well as prominent fluorescence emission as a result of its AEE feature. The nanoprobe was used to image tumor metastasis via the lymphatic system both optoacoustically and fluorescently. Moreover, both the fluorescence signals and three-dimensional multispectral optoacoustic tomography signals from the activated nanoprobe allow us to locate the tumor site and to map the metastatic route.
Collapse
Affiliation(s)
- Yi Lin
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| |
Collapse
|
20
|
Abstract
The availability of electrons to biological systems underpins the mitochondrial electron transport chain (ETC) that powers living cells. It is little wonder, therefore, that the sufficiency of electron supply is critical to cellular health. Considering mitochondrial redox activity alone, a lack of oxygen (hypoxia) leads to impaired production of adenosine triphosphate (ATP), the major energy currency of the cell, whereas excess oxygen (hyperoxia) is associated with elevated production of reactive oxygen species (ROS) from the interaction of oxygen with electrons that have leaked from the ETC. Furthermore, the redox proteome, which describes the reversible and irreversible redox modifications of proteins, controls many aspects of biological structure and function. Indeed, many major diseases, including cancer and diabetes, are now termed "redox diseases", spurring much interest in the measurement and monitoring of redox states and redox-active species within biological systems. In this Account, we describe recent efforts to develop magnetic resonance (MR) and fluorescence imaging probes for studying redox biology. These two classes of molecular imaging tools have proved to be invaluable in supplementing the structural information that is traditionally provided by MRI and fluorescence microscopy, respectively, with highly sensitive chemical information. Importantly, the study of biological redox processes requires sensors that operate at biologically relevant reduction potentials, which can be achieved by the use of bioinspired redox-sensitive groups. Since oxidation-reduction reactions are so crucial to modulating cellular function and yet also have the potential to damage cellular structures, biological systems have developed highly sophisticated ways to regulate and sense redox changes. There is therefore a plethora of diverse chemical structures in cells with biologically relevant reduction potentials, from transition metals to organic molecules to proteins. These chemical groups can be harnessed in the development of exogenous molecular imaging agents that are well-tuned to biological redox events. To date, small-molecule redox-sensitive tools for oxidative stress and hypoxia have been inspired from four classes of cellular regulators. The redox-sensitive groups found in redox cofactors, such as flavins and nicotinamides, can be used as reversible switches in both fluorescent and MR probes. Enzyme substrates that undergo redox processing within the cell can be modified to provide fluorescence or MR readout while maintaining their selectivity. Redox-active first-row transition metals are central to biological homeostasis, and their marked electronic and magnetic changes upon oxidation/reduction have been used to develop MR sensors. Finally, redox-sensitive amino acids, particularly cysteine, can be utilized in both fluorescent and MR sensors.
Collapse
Affiliation(s)
- Amandeep Kaur
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Yang K, Leslie KG, Kim SY, Kalionis B, Chrzanowski W, Jolliffe KA, New EJ. Tailoring the properties of a hypoxia-responsive 1,8-naphthalimide for imaging applications. Org Biomol Chem 2019; 16:619-624. [PMID: 29302671 DOI: 10.1039/c7ob03164e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sensing hypoxia in tissues and cell models can provide insights into its role in disease states and cell development. Fluorescence imaging is a minimally-invasive method of visualising hypoxia in many biological systems. Here we present a series of improved bioreductive fluorescent sensors based on a nitro-naphthalimide structure, in which selectivity, photophysical properties, toxicity and cellular uptake are tuned through structural modifications. This new range of compounds provides improved probes for imaging and monitoring hypoxia, customised for a range of different applications. Studies in monolayers show the different reducing capabilities of hypoxia-resistant and non-resistant cell lines, and studies in tumour models show successful staining of the hypoxic region.
Collapse
Affiliation(s)
- Kylie Yang
- School of Chemistry, The University of Sydney, NSW, 2006 Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Yang J, Liu X, Wang H, Tan H, Xie X, Zhang X, Liu C, Qu X, Hua J. A turn-on near-infrared fluorescence probe with aggregation-induced emission based on dibenzo[a,c]phenazine for detection of superoxide anions and its application in cell imaging. Analyst 2019; 143:1242-1249. [PMID: 29431796 DOI: 10.1039/c7an01860f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new turn-on near-infrared fluorescence probe (BDP) based on dibenzo[a,c]phenazine for superoxide anion detection with aggregation-induced emission properties as well as a desirable large Stokes shift was designed and synthesized. After BDP reacted with superoxide, the initial diphenyl-phosphinyl groups of BDP were cleaved, resulting in the production of the pyridinium modified fluorophore (BD) with near-infrared emission. The fluorescent sensor BDP has a high selectivity for superoxide anions over some other intracellular ROSs, reductants, metal ions and amino acids. When HepG2 cells undergo apoptosis and inflammation, BDP is a good probe to keep track of the endogenous superoxide anion level by confocal laser scanning microscopic imaging.
Collapse
Affiliation(s)
- Ji Yang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, College of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lin M, Huang J, Zeng F, Wu S. A Fluorescent Probe with Aggregation‐Induced Emission for Detecting Alkaline Phosphatase and Cell Imaging. Chem Asian J 2018; 14:802-808. [DOI: 10.1002/asia.201801540] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/13/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Mingang Lin
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Jing Huang
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
24
|
|
25
|
Gao X, Sun JZ, Tang BZ. Reaction-based AIE-active Fluorescent Probes for Selective Detection and Imaging. Isr J Chem 2018. [DOI: 10.1002/ijch.201800035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoying Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- Department of Chemistry, Division of Biomedical Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Kowloon, Hong Kong China
| |
Collapse
|
26
|
Lin H, Yang H, Huang S, Wang F, Wang DM, Liu B, Tang YD, Zhang CJ. Caspase-1 Specific Light-Up Probe with Aggregation-Induced Emission Characteristics for Inhibitor Screening of Coumarin-Originated Natural Products. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12173-12180. [PMID: 29323474 DOI: 10.1021/acsami.7b14845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Caspase-1 is a key player in pyroptosis and inflammation. Caspase-1 inhibition is found to be beneficial to various diseases. Coumarin-originated natural products have an anti-inflammation function, but their direct inhibition effect to caspase-1 remains unexplored. To evaluate their interactions, the widely used commercial coumarin-based probe (Ac-YVAD-AMC) is not suitable, as the background signal from coumarin-originated natural products could interfere with the screening results. Therefore, fluorescent probes using a large Stokes shift could help solve this problem. In this work, we chose the fluorophore of tetraphenylethylene-thiophene (TPETH) with aggregation-induced emission characteristics and a large Stokes shift of about 200 nm to develop a molecular probe. Bioconjugation between TPETH and hydrophilic peptides (DDYVADC) through a thiol-ene reaction generated a light-up probe, C1-P3. The probe has little background signal in aqueous media and exerts a fluorescent turn-on effect in the presence of caspase-1. Moreover, when evaluating the inhibition potency of coumarin-originated natural products, the new probe could generate a true and objective result but not for the commercial probe (Ac-YVAD-AMC), which is evidenced by HPLC analysis. The quick light-up response and accurate screening results make C1-P3 very useful in fundamental study and inhibitior screening toward caspase-1.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Yi-Da Tang
- Fuwai Hospital, Chinese Academy of Medical Sciences , Beijing , China 100037
| | | |
Collapse
|
27
|
La DD, Bhosale SV, Jones LA, Bhosale SV. Tetraphenylethylene-Based AIE-Active Probes for Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12189-12216. [PMID: 29043778 DOI: 10.1021/acsami.7b12320] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This Review provides a comprehensive analysis of recent development in the field of aggregation-induced emission (AIE)-active tetraphenylethylene (TPE) luminophores and their applications in biomolecular science. It begins with a discussion of the diverse range of structural motifs that have found particular applications in sensing, and demonstrates that TPE structures and their derivatives have been used for a diverse range of analytes such as such as H+, anions, cations, heavy metals, organic volatiles, and toxic gases. Advances are discussed in depth where TPE is utilized as a mechanoluminescent material in bioinspired receptor units with specificity for analytes for such as glucose or RNA. The rapid advances in sensor research make this summary of recent developments in AIE-active TPE luminophores timely, in order to disseminate the advantages of these materials for sensing of analytes in solution, as well as the importance of solid and aggregated states in controlling sensing behavior.
Collapse
Affiliation(s)
| | - Sidhanath V Bhosale
- Polymers and Functional Material Division , CSIR-Indian Institute of Chemical Technology , Hyderabad , 500 007 Telangana , India
| | | | | |
Collapse
|
28
|
Zhan C, Zhang G, Zhang D. Zincke's Salt-Substituted Tetraphenylethylenes for Fluorometric Turn-On Detection of Glutathione and Fluorescence Imaging of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12141-12149. [PMID: 29116746 DOI: 10.1021/acsami.7b14446] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we report Zincke's salt-substituted tetraphenylethylenes 1a and 1b with Cl- and PF6- as counteranions, respectively. The crystal structure of 1b was determined. Both 1a and 1b are almost nonemissive even in the aggregated states. This is attributed to the photoinduced electron transfer from 2,2-bis(4-methoxyphenyl)-1-phenylvinyl-phenyl unit to 1-(2,4-dinitrophenyl) pyridinium unit within 1a and 1b. The results demonstrate that the emissions of 1a and 1b in aqueous solution can be switched on upon either reaction with GSH or light irradiation. On the basis of the reaction between 1a and GSH, 1a can be utilized for the fluorescence turn-on detection of GSH selectively, and GSH with concentration as low as 36.9 nM can be detected. The transformation of 1b into 2 under light irradiation results in the fluorescence imaging of Hela and U2OS cells and phototoxicity toward Hela and U2OS cells after the protonation of pyridine unit in 2 because of the acidic environment of tumor cells. Aggregates of 1b can be up-taken by Hela and U2OS cells and fluorescence imaging has been successfully recorded with CLSM. Moreover, the protonated form of 2 can function as photosensitizer and 1b shows phototoxicity toward tumor cells such as Hela and U2OS cells.
Collapse
Affiliation(s)
- Chi Zhan
- CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Guanxin Zhang
- CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Deqing Zhang
- CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
29
|
Shi J, Li Y, Li Q, Li Z. Enzyme-Responsive Bioprobes Based on the Mechanism of Aggregation-Induced Emission. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12278-12294. [PMID: 29231713 DOI: 10.1021/acsami.7b14943] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Enzymes play an indispensable role in maintaining normal life activities. The abnormalities of content and activity in specific enzymes are usually associated with the occurrence and the development of major diseases. Correspondingly, fluorescent bioprobes with distinctive sensing mechanisms and different functionalities have attracted growing attention as convenient tools for optical probing and monitoring the activity of enzymes. Ideally and excitedly, the recently emerged luminogens with an aggregation-induced emission (AIE) feature could perfectly overcome the aggregation-caused quenching (ACQ) effect of conventional bioprobes. Based on the fantastic characteristics of AIE luminogens (AIEgens), specific enzyme bioprobes have been designed through integration with recognition units, demonstrating many advantages including low background interference, a high signal-to-noise ratio (SNR), and superior photostability. In this review, by presenting some typical examples, we summarize the working principle and structural design of specific AIEgen-based bioprobes that are triggered by enzymes and discuss their great potential in biomedical applications, with the aim to promote the future research of fluorescent bioprobes involving enzymes.
Collapse
Affiliation(s)
- Jie Shi
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Ya Li
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Qianqian Li
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , China
| | - Zhen Li
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
30
|
|
31
|
Xu S, Wang Q, Zhang Q, Zhang L, Zuo L, Jiang JD, Hu HY. Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe. Chem Commun (Camb) 2017; 53:11177-11180. [PMID: 28953270 DOI: 10.1039/c7cc07050k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of bacterial pathogens is the critical first step in conquering infection diseases. A novel turn-on fluorescent probe for the selective sensing of nitroreductase (NTR) activity and its initial applications in rapid, real-time detection and identification of ESKAPE pathogens have been reported.
Collapse
Affiliation(s)
- Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Guan Y, Lu H, Li W, Zheng Y, Jiang Z, Zou J, Gao H. Near-Infrared Triggered Upconversion Polymeric Nanoparticles Based on Aggregation-Induced Emission and Mitochondria Targeting for Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26731-26739. [PMID: 28745482 DOI: 10.1021/acsami.7b07768] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photodynamic therapy (PDT) is an auspicious strategy for cancer therapy by yielding reactive oxygen species (ROS) under light irradiation. Here, we have developed near-infrared (NIR) triggered polymer encapsulated upconversion nanoparticles (UCNPs) based on aggregation-induced emission (AIE) characteristics and mitochondria target ability for PDT. The coated AIE polymer as a photosensitizer can be photoactivated by the up-converted energy of UCNPs upon 980 nm laser irradiation, which could generate ROS efficiently in mitochondria and induce cell apoptosis. Moreover, a "sheddable" poly(ethylene glycol) (PEG) layer was easily conjugated at the surface of NPs. The pH-responsive PEG layer shields the surface positive charges and shows stronger protein-resistance ability. In the acidic tumor environment, PEGylated NPs lose the PEG layer and show the mitochondria-targeting ability by responding to tumor acidity. A cytotoxicity study indicated that these NPs have good biocompatibility in the dark but exert severe cytotoxicity to cancer cells, with only 10% cell viability, upon being irradiated with an NIR laser. The AIE nanoparticles are a good candidate for effective mitochondria targeting photosensitizer for PDT.
Collapse
Affiliation(s)
- Yue Guan
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Hongguang Lu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Wei Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Yadan Zheng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Zhu Jiang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Jialing Zou
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| | - Hui Gao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin 300384, P. R. China
| |
Collapse
|
33
|
You X, Ma H, Wang Y, Zhang G, Peng Q, Liu L, Wang S, Zhang D. Pyridinium-Substituted TetraphenylethyleneEntailing Alkyne Moiety: Enhancement of Photosensitizing Efficiency and Antimicrobial Activity. Chem Asian J 2017; 12:1013-1019. [DOI: 10.1002/asia.201700243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/13/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Xue You
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Huili Ma
- Key Laboratory of Organic OptoElectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Yuancheng Wang
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Guanxin Zhang
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qian Peng
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Libing Liu
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Shu Wang
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Deqing Zhang
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
34
|
Huang B, Chen W, Kuang YQ, Liu W, Liu XJ, Tang LJ, Jiang JH. A novel off–on fluorescent probe for sensitive imaging of mitochondria-specific nitroreductase activity in living tumor cells. Org Biomol Chem 2017; 15:4383-4389. [DOI: 10.1039/c7ob00781g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have developed a novel fluorescent probe of a benzoindocyanine probe (BICP), which is able to target mitochondria and realize sensitive and selective detection of NTR.
Collapse
Affiliation(s)
- Bo Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Changsha
| | - Wen Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Changsha
| | - Yong-Qing Kuang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Changsha
| | - Wei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Changsha
| | - Xian-Jun Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Changsha
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Changsha
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Hunan University
- Changsha
| |
Collapse
|
35
|
Wang Y, Zhang G, Gao M, Cai Y, Zhan C, Zhao Z, Zhang D, Tang BZ. Introductory lecture: recent research progress on aggregation-induced emission. Faraday Discuss 2017; 196:9-30. [DOI: 10.1039/c6fd00218h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of the aggregation-induced emission (AIE) phenomenon in 2001, research on AIE molecules has drawn much attention, and this area has been expanding tremendously. This brief review will focus on recent advances in the science and application of AIE molecules, including new mechanistic understanding, new AIE molecules for sensing and imaging, stimuli-responsive AIE molecules and applications of AIE molecules for OLEDs. Moreover, this review will give a perspective on the possible opportunities and challenges that exist in the future for this area.
Collapse
Affiliation(s)
- Yuancheng Wang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Meng Gao
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Yuanjing Cai
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Chi Zhan
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Ben Zhong Tang
- Department of Chemistry
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction
- The Hong Kong University of Science and Technology
- Kowloon
- China
| |
Collapse
|