1
|
Lazo PA. VRK2 kinase pathogenic pathways in cancer and neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119949. [PMID: 40187568 DOI: 10.1016/j.bbamcr.2025.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The VRK2 ser-thr kinase, belonging to the dark kinome, is implicated in the pathogenesis of cancer progression, neurological and psychiatric diseases. The VRK2 gene codes for two isoforms. The main isoform (VRK2A) is mainly located in the cytoplasm, and anchored to different types of membranes, such as the endoplasmic reticulum, mitochondria and nuclear envelope. The VRK2A isoform interacts with signaling modules assembled on scaffold proteins such as JIP1 or KSR1, forming stable complexes and blocking the activation of regulatory signaling pathways by altering their intracellular localization and the balance among them. VRK2 regulates apoptosis, nuclear membrane organization, immune responses, and Cajal bodies. Wild-type VRK2 is overexpressed in tumors and contributes to cancer development. In cells and tumors with low levels of nuclear VRK1, VRK2 generates by alternative splicing a shorter isoform (VRK2B) that lacks the C-terminal hydrophobic tail and permits its relocation to nuclei. Furthermore, rare VRK2 gene variants are associated with different neurological or psychiatric diseases such as schizophrenia, epilepsy, bipolar disorder, depression, autism, circadian clock alterations and insomnia, but their pathogenic mechanism is unknown. These diseases are a likely consequence of an altered balance among different signaling pathways that are regulated by VRK2.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Walker A, Karlsson R, Szatkiewicz JP, Thornton LM, Yilmaz Z, Leppä VM, Savva A, Lin T, Sidorenko J, McRae A, Kirov G, Davies HL, Fundín BT, Chawner SJRA, Song J, Borg S, Wen J, Watson HJ, Munn-Chernoff MA, Baker JH, Gordon S, Berrettini WH, Brandt H, Crawford S, Halmi KA, Kaplan AS, Kaye WH, Mitchell J, Strober M, Woodside DB, Pedersen NL, Parker R, Jordan J, Kennedy MA, Birgegård A, Landén M, Martin NG, Sullivan PF, Bulik CM, Wray NR. Genome-wide copy number variation association study in anorexia nervosa. Mol Psychiatry 2025; 30:2009-2016. [PMID: 39533101 PMCID: PMC12014356 DOI: 10.1038/s41380-024-02811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study represents the first large-scale investigation of rare (<1% population frequency) copy number variants (CNVs) in anorexia nervosa (AN). Large, rare CNVs are reported to be causally associated with anthropometric traits, neurodevelopmental disorders, and schizophrenia, yet their role in the genetic basis of AN is unclear. Using genome-wide association study (GWAS) array data from the Anorexia Nervosa Genetics Initiative (ANGI), which included 7414 AN case and 5044 controls, we investigated the association of 67 well-established syndromic CNVs and 178 pleiotropic disease-risk dosage-sensitive CNVs with AN. To identify novel CNV regions (CNVRs) that increase the risk of AN, we conducted genome-wide association studies with a focus on rare CNV-breakpoints (CNV-GWAS). We found no net enrichment of rare CNVs, either deletions or duplications, in AN, and none of the well-established syndromic or pleiotropic CNVs had a significant association with AN status. However, the CNV-GWAS found 21 nominally associated CNVRs that contribute to AN risk, covering protein-coding genes implicated in synaptic function, metabolic/mitochondrial factors, and lipid characteristics, like the CD36 (7q21.11) gene, which transports long-chain fatty acids into cells. CNVRs intersecting genes previously related to neurodevelopmental traits include deletions of NRXN1 intron 5 (2p16.3), IMMP2L (7q31.1), and PTPRD (9p23). Overall, given that our study is well powered to detect the CNV burden level reported for schizophrenia, we can conclude that rare CNVs have a limited role in the etiology of AN, as reported for bipolar disorder. Our nominal associations for the 21 discovered CNVRs are consistent with AN being a metabo-psychiatric trait, as demonstrated by the common genetic architecture of AN, and we provide association results to allow for replication in future research.
Collapse
Affiliation(s)
- Alicia Walker
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jin P Szatkiewicz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura M Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zeynep Yilmaz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Virpi M Leppä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Androula Savva
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tian Lin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Julia Sidorenko
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Allan McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - George Kirov
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Helena L Davies
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- Centre for Eating and feeding Disorders Research, Mental Health Centre Ballerup, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | - Bengt T Fundín
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Samuel J R A Chawner
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stina Borg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hunna J Watson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Psychology, Curtin University, Perth, WA, Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Melissa A Munn-Chernoff
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Community, Family, and Addiction Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Scott Gordon
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wade H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Harry Brandt
- The Center for Eating Disorders at Sheppard Pratt, Baltimore, MD, USA
| | - Steven Crawford
- The Center for Eating Disorders at Sheppard Pratt, Baltimore, MD, USA
| | - Katherine A Halmi
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Allan S Kaplan
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Walter H Kaye
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - James Mitchell
- Department of Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Fargo, ND, USA
| | - Michael Strober
- Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - D Blake Woodside
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
- Program for Eating Disorders, University Health Network, Toronto, ON, Canada
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jennifer Jordan
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
- Canterbury District Health Board, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Andreas Birgegård
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.
- Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Zhu K, Xie X, Hou F, Chen Y, Wang H, Jiang Q, Feng Y, Xiao P, Zhang Q, Xiang Z, Fan Y, Wu X, Li L, Song R. The Association Between Functional Variants in Long Non-coding RNAs and the Risk of Autism Spectrum Disorder Was Not Mediated by Gut Microbiota. Mol Neurobiol 2025; 62:412-420. [PMID: 38861233 DOI: 10.1007/s12035-024-04276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The effect of functional variants in long non-coding RNA (lncRNA) gene regions on autism spectrum disorder (ASD) remains unclear. The present study aimed to investigate the association of functional variants located in lncRNA genes with the risk of ASD and explore whether gut microbiota would mediate the relationship. A total of 87 cases and 71 healthy controls were enrolled in the study. MassARRAY platform and 16S rRNA sequencing were respectively applied to assess the genotype of candidate SNPs and gut microbiota of children. The logistic regression models showed that the association between rs2295412 and the risk of ASD was statistically significant after Bonferroni adjustments. The risk of ASD decreased by 19% for each additional C allele carried by children in multiplicative models (OR = 0.81, 95% CI, 0.69-0.94, P = 0.007). Although we identified significant correlations between rs8113922 polymorphisms, Bifidobacteriales, and ASD, the mediating effect of gut microbiota on the relationship of the polymorphisms with the risk of ASD was not significant. The findings demonstrated that functional variants in lncRNA genes play an important role in ASD and gut microbiota could not mediate the association. Future studies are warranted to verify the results and search for more possible mechanisms of variants located in lncRNA genes implicated in ASD.
Collapse
Affiliation(s)
- Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Fang Hou
- Maternity and Children, Health Care Hospital of Luohu District, Shenzhen, China
| | - Yanlin Chen
- Maternity and Children, Health Care Hospital of Luohu District, Shenzhen, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Pei Xiao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Quan Zhang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Yixi Fan
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Xufang Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Li Li
- Maternity and Children, Health Care Hospital of Luohu District, Shenzhen, China.
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China.
| |
Collapse
|
4
|
Xia W, Liu Y, Lu J, Cheung HH, Meng Q, Huang B. RNA methylation in neurodevelopment and related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1723-1732. [PMID: 39344412 PMCID: PMC11693867 DOI: 10.3724/abbs.2024159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Biological development and genetic information transfer are governed by genetic, epigenetic, transcriptional, and posttranscriptional mechanisms. RNA methylation, the attachment of methyl (-CH 3) groups to RNA molecules, is a posttranscriptional modification that has gained increasing attention in recent years because of its role in RNA epitranscriptomics. RNA modifications (RMs) influence various aspects of RNA metabolism and are involved in the regulation of diverse biological processes and diseases. Neural cell types emerge at specific stages of brain development, and recent studies have revealed that neurodevelopment, aging, and disease are tightly linked to transcriptome dysregulation. In this review, we discuss the roles of N6-methyladenine (m6A) and 5-methylcytidine (m5C) RNA modifications in neurodevelopment, physiological functions, and related diseases.
Collapse
Affiliation(s)
- Wenjuan Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Hoi-Hung Cheung
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong 999077China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| |
Collapse
|
5
|
Chair SY, Chow KM, Chan CWL, Chan JYW, Law BMH, Waye MMY. Structural Variations Identified in Patients with Autism Spectrum Disorder (ASD) in the Chinese Population: A Systematic Review of Case-Control Studies. Genes (Basel) 2024; 15:1082. [PMID: 39202440 PMCID: PMC11353326 DOI: 10.3390/genes15081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Autistic spectrum disorder (ASD) is a neurodevelopmental disability characterised by the impairment of social interaction and communication ability. The alarming increase in its prevalence in children urged researchers to obtain a better understanding of the causes of this disease. Genetic factors are considered to be crucial, as ASD has a tendency to run in families. In recent years, with technological advances, the importance of structural variations (SVs) in ASD began to emerge. Most of these studies, however, focus on the Caucasian population. As a populated ethnicity, ASD shall be a significant health issue in China. This systematic review aims to summarise current case-control studies of SVs associated with ASD in the Chinese population. A list of genes identified in the nine included studies is provided. It also reveals that similar research focusing on other genetic backgrounds is demanded to manifest the disease etiology in different ethnic groups, and assist the development of accurate ethnic-oriented genetic diagnosis.
Collapse
Affiliation(s)
- Sek-Ying Chair
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
- Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Croucher Laboratory for Human Genomics, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Ming Chow
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
- Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Croucher Laboratory for Human Genomics, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cecilia Wai-Ling Chan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
| | - Judy Yuet-Wa Chan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
| | - Bernard Man-Hin Law
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
| | - Mary Miu-Yee Waye
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
- Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Croucher Laboratory for Human Genomics, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Alhazmi S, Alharthi M, Alzahrani M, Alrofaidi A, Basingab F, Almuhammadi A, Alkhatabi H, Ashi A, Chaudhary A, Elaimi A. Copy number variations in autistic children. Biomed Rep 2024; 21:107. [PMID: 38868529 PMCID: PMC11168027 DOI: 10.3892/br.2024.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Autism spectrum disorder (ASD) manifests as a neurodevelopmental condition marked by challenges in social communication, interaction and the performing of repetitive behaviors. The prevalence of autism increases markedly on an annual basis; however, the etiology remains incompletely understood. Cytogenetically visible chromosomal abnormalities, including copy number variations (CNVs), have been shown to contribute to the pathogenesis of ASD. More than 1% of ASD conditions can be explained based on a known genetic locus, whereas CNVs account for 5-10% of cases. However, there are no studies on the Saudi Arabian population for the detection of CNVs linked to ASD, to the best of our knowledge. Therefore, the aim of the present study was to explore the prevalence of CNVs in autistic Saudi Arabian children. Genomic DNA was extracted from the peripheral blood of 14 autistic children along with four healthy control children and then array-based comparative genomic hybridization (aCGH) was used to detect CNVs. Bioinformatics analysis of the aCGH results showed the presence of recurrent and non-recurrent deletion/duplication CNVs in several regions of the genome of autistic children. The most frequent CNVs were 1q21.2, 3p26.3, 4q13.2, 6p25.3, 6q24.2, 7p21.1, 7q34, 7q11.1, 8p23.2, 13q32.3, 14q11.1-q11.2 and 15q11.1-q11.2. In the present study, CNVs in autistic Saudi Arabian children were identified to improve the understanding of the etiology of autism and facilitate its diagnosis. Additionally, the present study identified certain possible pathogenic genes in the CNV region associated with several developmental and neurogenetic diseases.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Central Laboratory of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maram Alharthi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aisha Alrofaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Abrar Ashi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Adeel Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Aisha Elaimi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
7
|
Cortés BI, Meza RC, Ancatén-González C, Ardiles NM, Aránguiz MI, Tomita H, Kaplan DR, Cornejo F, Nunez-Parra A, Moya PR, Chávez AE, Cancino GI. Loss of protein tyrosine phosphatase receptor delta PTPRD increases the number of cortical neurons, impairs synaptic function and induces autistic-like behaviors in adult mice. Biol Res 2024; 57:40. [PMID: 38890753 PMCID: PMC11186208 DOI: 10.1186/s40659-024-00522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The brain cortex is responsible for many higher-level cognitive functions. Disruptions during cortical development have long-lasting consequences on brain function and are associated with the etiology of brain disorders. We previously found that the protein tyrosine phosphatase receptor delta Ptprd, which is genetically associated with several human neurodevelopmental disorders, is essential to cortical brain development. Loss of Ptprd expression induced an aberrant increase of excitatory neurons in embryonic and neonatal mice by hyper-activating the pro-neurogenic receptors TrkB and PDGFRβ in neural precursor cells. However, whether these alterations have long-lasting consequences in adulthood remains unknown. RESULTS Here, we found that in Ptprd+/- or Ptprd-/- mice, the developmental increase of excitatory neurons persists through adulthood, affecting excitatory synaptic function in the medial prefrontal cortex. Likewise, heterozygosity or homozygosity for Ptprd also induced an increase of inhibitory cortical GABAergic neurons and impaired inhibitory synaptic transmission. Lastly, Ptprd+/- or Ptprd-/- mice displayed autistic-like behaviors and no learning and memory impairments or anxiety. CONCLUSIONS These results indicate that loss of Ptprd has long-lasting effects on cortical neuron number and synaptic function that may aberrantly impact ASD-like behaviors.
Collapse
Affiliation(s)
- Bastián I Cortés
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Rodrigo C Meza
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
- Programa de Doctorado en Ciencias mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Nicolás M Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - María-Ignacia Aránguiz
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Hideaki Tomita
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
- Ludna Biotech Co., Ltd, Suita, Osaka, 565-0871, Japan
| | - David R Kaplan
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1X8, Canada
| | - Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile
| | - Alexia Nunez-Parra
- Cell Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, 7800003, Chile
| | - Pablo R Moya
- Centro de Estudios Traslacionales en Estrés y Salud Mental (C-ESTRES), Universidad de Valparaíso, Valparaíso, 2340000, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Gonzalo I Cancino
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
| |
Collapse
|
8
|
Gardner Z, Holbrook O, Tian Y, Odamah K, Man HY. The role of glia in the dysregulation of neuronal spinogenesis in Ube3a-dependent ASD. Exp Neurol 2024; 376:114756. [PMID: 38508482 PMCID: PMC11058030 DOI: 10.1016/j.expneurol.2024.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Overexpression of the Ube3a gene and the resulting increase in Ube3a protein are linked to autism spectrum disorder (ASD). However, the cellular and molecular processes underlying Ube3a-dependent ASD remain unclear. Using both male and female mice, we find that neurons in the somatosensory cortex of the Ube3a 2× Tg ASD mouse model display reduced dendritic spine density and increased immature filopodia density. Importantly, the increased gene dosage of Ube3a in astrocytes alone is sufficient to confer alterations in neurons as immature dendritic protrusions, as observed in primary hippocampal neuron cultures. We show that Ube3a overexpression in astrocytes leads to a loss of astrocyte-derived spinogenic protein, thrombospondin-2 (TSP2), due to a suppression of TSP2 gene transcription. By neonatal intraventricular injection of astrocyte-specific virus, we demonstrate that Ube3a overexpression in astrocytes in vivo results in a reduction in dendritic spine maturation in prelimbic cortical neurons, accompanied with autistic-like behaviors in mice. These findings reveal an astrocytic dominance in initiating ASD pathobiology at the neuronal and behavior levels. SIGNIFICANCE STATEMENT: Increased gene dosage of Ube3a is tied to autism spectrum disorders (ASDs), yet cellular and molecular alterations underlying autistic phenotypes remain unclear. We show that Ube3a overexpression leads to impaired dendritic spine maturation, resulting in reduced spine density and increased filopodia density. We find that dysregulation of spine development is not neuron autonomous, rather, it is mediated by an astrocytic mechanism. Increased gene dosage of Ube3a in astrocytes leads to reduced production of the spinogenic glycoprotein thrombospondin-2 (TSP2), leading to abnormalities in spines. Astrocyte-specific Ube3a overexpression in the brain in vivo confers dysregulated spine maturation concomitant with autistic-like behaviors in mice. These findings indicate the importance of astrocytes in aberrant neurodevelopment and brain function in Ube3a-depdendent ASD.
Collapse
Affiliation(s)
- Zachary Gardner
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Otto Holbrook
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America; Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., L-603, Boston, MA 02118, United States of America; Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, United States of America.
| |
Collapse
|
9
|
Bui HTP, Huy Do D, Ly HTT, Tran KT, Le HTT, Nguyen KT, Pham LTD, Le HD, Le VS, Mukhopadhyay A, Nguyen LT. De novo copy number variations in candidate genomic regions in patients of severe autism spectrum disorder in Vietnam. PLoS One 2024; 19:e0290936. [PMID: 38451970 PMCID: PMC10919600 DOI: 10.1371/journal.pone.0290936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/09/2023] [Indexed: 03/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder with a prevalence of around 1% children worldwide and characterized by patient behaviour (communication, social interaction, and personal development). Data on the efficacy of diagnostic tests using copy number variations (CNVs) in candidate genes in ASD is currently around 10% but it is overrepresented by patients of Caucasian background. We report here that the diagnostic success of de novo candidate CNVs in Vietnamese ASD patients is around 6%. We recruited one hundred trios (both parents and a child) where the child was clinically diagnosed with ASD while the parents were not affected. We performed genetic screening to exclude RETT syndrome and Fragile X syndrome and performed genome-wide DNA microarray (aCGH) on all probands and their parents to analyse for de novo CNVs. We detected 1708 non-redundant CNVs in 100 patients and 118 (7%) of them were de novo. Using the filter for known CNVs from the Simons Foundation Autism Research Initiative (SFARI) database, we identified six CNVs (one gain and five loss CNVs) in six patients (3 males and 3 females). Notably, 3 of our patients had a deletion involving the SHANK3 gene-which is the highest compared to previous reports. This is the first report of candidate CNVs in ASD patients from Vietnam and provides the framework for building a CNV based test as the first tier screening for clinical management.
Collapse
Affiliation(s)
- Hoa Thi Phuong Bui
- High Technology Center, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
- Translational Medicine Laboratory, Biomedical Research Centre, University of Salford, Salford, United Kingdom
| | - Duong Huy Do
- High Technology Center, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Ha Thi Thanh Ly
- High Technology Center, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Kien Trung Tran
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Huong Thi Thanh Le
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Kien Trung Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Linh Thi Dieu Pham
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Hau Duc Le
- Big Data Institute, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Vinh Sy Le
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
- University of Engineering and Technology, Vietnam National University Hanoi, Cau Giay, Hanoi, Vietnam
| | - Arijit Mukhopadhyay
- Translational Medicine Laboratory, Biomedical Research Centre, University of Salford, Salford, United Kingdom
| | - Liem Thanh Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| |
Collapse
|
10
|
Cornejo F, Franchini N, Cortés BI, Elgueta D, Cancino GI. Neural conditional ablation of the protein tyrosine phosphatase receptor Delta PTPRD impairs gliogenesis in the developing mouse brain cortex. Front Cell Dev Biol 2024; 12:1357862. [PMID: 38487272 PMCID: PMC10937347 DOI: 10.3389/fcell.2024.1357862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Neurodevelopmental disorders are characterized by alterations in the development of the cerebral cortex, including aberrant changes in the number and function of neural cells. Although neurogenesis is one of the most studied cellular processes in these pathologies, little evidence is known about glial development. Genetic association studies have identified several genes associated with neurodevelopmental disorders. Indeed, variations in the PTPRD gene have been associated with numerous brain disorders, including autism spectrum disorder, restless leg syndrome, and schizophrenia. We previously demonstrated that constitutive loss of PTPRD expression induces significant alterations in cortical neurogenesis, promoting an increase in intermediate progenitors and neurons in mice. However, its role in gliogenesis has not been evaluated. To assess this, we developed a conditional knockout mouse model lacking PTPRD expression in telencephalon cells. Here, we found that the lack of PTPRD in the mouse cortex reduces glial precursors, astrocytes, and oligodendrocytes. According to our results, this decrease in gliogenesis resulted from a reduced number of radial glia cells at gliogenesis onset and a lower gliogenic potential in cortical neural precursors due to less activation of the JAK/STAT pathway and reduced expression of gliogenic genes. Our study shows PTPRD as a regulator of the glial/neuronal balance during cortical neurodevelopment and highlights the importance of studying glial development to understand the etiology of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Nayhara Franchini
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Bastián I. Cortés
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Elgueta
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I. Cancino
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Lu L, Shi Y, Wei B, Li W, Yu X, Zhao Y, Yu D, Sun M. YTHDF3 modulates the Cbln1 level by recruiting BTG2 and is implicated in the impaired cognition of prenatal hypoxia offspring. iScience 2024; 27:108703. [PMID: 38205248 PMCID: PMC10776956 DOI: 10.1016/j.isci.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The "Fetal Origins of Adult Disease (FOAD)" hypothesis holds that adverse factors during pregnancy can increase the risk of chronic diseases in offspring. Here, we investigated the effects of prenatal hypoxia (PH) on brain structure and function in adult offspring and explored the role of the N6-methyladenosine (m6A) pathway. The results suggest that abnormal cognition in PH offspring may be related to the dysregulation of the m6A pathway, specifically increased levels of YTHDF3 in the hippocampus. YTHDF3 interacts with BTG2 and is involved in the decay of Cbln1 mRNA, leading to the down-regulation of Cbln1 expression. Deficiency of Cbln1 may contribute to abnormal synaptic function, which in turn causes cognitive impairment in PH offspring. This study provides a scientific clues for understanding the mechanisms of impaired cognition in PH offspring and provides a theoretical basis for the treatment of cognitive impairment in offspring exposed to PH.
Collapse
Affiliation(s)
- Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Weisheng Li
- Department of Gynaecology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic, Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Yang H, Zhang C, Chao X, Zhao J, Liu M, Chen J, Liu S, Wang T, Muhammad A, Schinckel AP, Zhou B. A Functional Single Nucleotide Polymorphism in the 3' Untranslated Region of the Porcine JARID2 Gene Is Associated with Aggressive Behavior of Weaned Pigs after Mixing. Int J Mol Sci 2023; 25:27. [PMID: 38203196 PMCID: PMC10779117 DOI: 10.3390/ijms25010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
In pig production, pigs often show more aggressive behavior after mixing, which adversely affects animal welfare and growth performance. The Jumonji and structural domain-rich AT interaction domain 2 (JARID2) gene plays an important role in neurodevelopment in mice and various psychiatric disorders in humans. The JARID2 gene may impact the aggressive behavior of pigs. By observing the behavior of 500 weaned pigs during the first 72 h after mixing, the ear tissue samples of the 12 most aggressive and 12 least aggressive pigs were selected for DNA resequencing based on the intensity of their aggressive behavior. Large group correlation analysis indicated that the rs3262221458 site located in the 3'-UTR region of the porcine JARID2 gene has a strong relationship with the aggressive behavior of weaned pigs. Pigs with the mutant TT genotype of rs3262221458 have more aggressive behavior than those pigs with the GG and GT genotypes. The dual luciferase assay indicated that the luciferase activity of the plasmids containing the G allele of rs326221458 was significantly less than that of plasmids containing the T allele of rs326221458 and control groups. The binding ability of miR-9828-3p to sequences containing the T allele was less than that of sequences containing the G allele. The overexpression of miR-9828-3p in porcine neuroglial cells (PNGCs) and PK15 cells significantly decreased the mRNA and protein levels of the JARID2 gene. In addition, miR-9828-3p inhibited the proliferation of PNGCs. After inhibiting miR-9828-3p, the mRNA and protein expression levels of JARID2 increased, and the proliferation of PNGCs showed an opposite trend to the cells that forced the expression of miR-9828-3p. In addition, interference with the JARID2 gene by siRNA can effectively inhibit the proliferation of PNGCs. In summary, we found that the rs326221458 locus regulates the expression of the JARID2 gene by affecting the binding of miR-9828-3p and the JARID2 gene, thereby affecting the aggressive behavior of weaned pigs after mixing.
Collapse
Affiliation(s)
- Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Shuhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Tianshuo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Asim Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| |
Collapse
|
13
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
14
|
Privitera F, Piccini F, Recalcati MP, Presi S, Mazzola S, Carrera P. APC-Related Phenotypes and Intellectual Disability in 5q Interstitial Deletions: A New Case and Review of the Literature. Genes (Basel) 2023; 14:1505. [PMID: 37510409 PMCID: PMC10379344 DOI: 10.3390/genes14071505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The 5q deletion syndrome is a relatively rare condition caused by the monoallelic interstitial deletion of the long arm of chromosome 5. Patients described in literature usually present variable dysmorphic features, behavioral disturbance, and intellectual disability (ID); moreover, the involvement of the APC gene (5q22.2) in the deletion predisposes them to tumoral syndromes (Familial Adenomatous Polyposis and Gardner syndrome). Although the development of gastrointestinal tract malignancies has been extensively described, the genetic causes underlying neurologic manifestations have never been investigated. In this study, we described a new patient with a 19.85 Mb interstitial deletion identified by array-CGH and compared the deletions and the phenotypes reported in other patients already described in the literature and the Decipher database. Overlapping deletions allowed us to highlight a common region in 5q22.1q23.1, identifying KCNN2 (5q22.3) as the most likely candidate gene contributing to the neurologic phenotype.
Collapse
Affiliation(s)
- Flavia Privitera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Flavia Piccini
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Paola Recalcati
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Presi
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Mazzola
- Medical Genetics, ASST del Garda, Desenzano, 25015 Brescia, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Unit of Genomics for Diagnosis of Human Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
15
|
Mpoulimari I, Zintzaras E. Analysis of convergence of linkage and association studies in autism spectrum disorders. Psychiatr Genet 2023; 33:113-124. [PMID: 37212558 DOI: 10.1097/ypg.0000000000000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Autism spectrum disorder (ASD) is a clinically and genetically heterogeneous group of pervasive neurodevelopmental disorders with a strong hereditary component. Although genome-wide linkage studies (GWLS) and [genome-wide association studies (GWAS)] have previously identified hundreds of ASD risk gene loci, the results remain inconclusive. In this study, a genomic convergence approach of GWAS and GWLS for ASD was implemented for the first time in order to identify genomic loci supported by both methods. A database with 32 GWLS and five GWAS for ASD was created. Convergence was quantified as the proportion of significant GWAS markers located within linked regions. Convergence was not found to be significantly higher than expected by chance (z-test = 1,177, P = 0,239). Although convergence is supportive of genuine effects, the lack of agreement between GWLS and GWAS is also indicative that these studies are designed to answer different questions and are not equally well suited for deciphering the genetics of complex traits.
Collapse
Affiliation(s)
- Ioanna Mpoulimari
- Department of Biomathematics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Elias Zintzaras
- Department of Biomathematics, Faculty of Medicine, University of Thessaly, Larissa, Greece
- The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Obergasteiger J, Castonguay AM, Pizzi S, Magnabosco S, Frapporti G, Lobbestael E, Baekelandt V, Hicks AA, Pramstaller PP, Gravel C, Corti C, Lévesque M, Volta M. The small GTPase Rit2 modulates LRRK2 kinase activity, is required for lysosomal function and protects against alpha-synuclein neuropathology. NPJ Parkinsons Dis 2023; 9:44. [PMID: 36973269 PMCID: PMC10042831 DOI: 10.1038/s41531-023-00484-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
In Parkinson's disease (PD) misfolded alpha-synuclein (aSyn) accumulates in the substantia nigra, where dopaminergic neurons are progressively lost. The mechanisms underlying aSyn pathology are still unclear, but they are hypothesized to involve the autophagy-lysosome pathway (ALP). LRRK2 mutations are a major cause of familial and sporadic PD, and LRRK2 kinase activity has been shown to be involved in pS129-aSyn inclusion modulation. We observed selective downregulation of the novel PD risk factor RIT2 in vitro and in vivo. Rit2 overexpression in G2019S-LRRK2 cells rescued ALP abnormalities and diminished aSyn inclusions. In vivo, viral mediated overexpression of Rit2 operated neuroprotection against AAV-A53T-aSyn. Furthermore, Rit2 overexpression prevented the A53T-aSyn-dependent increase of LRRK2 kinase activity in vivo. On the other hand, reduction of Rit2 levels leads to defects in the ALP, similar to those induced by the G2019S-LRRK2 mutation. Our data indicate that Rit2 is required for correct lysosome function, inhibits overactive LRRK2 to ameliorate ALP impairment, and counteracts aSyn aggregation and related deficits. Targeting Rit2 could represent an effective strategy to combat neuropathology in familial and idiopathic PD.
Collapse
Affiliation(s)
- Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Anne-Marie Castonguay
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Stefano Magnabosco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Evy Lobbestael
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Veerle Baekelandt
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Claude Gravel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada.
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy.
| |
Collapse
|
17
|
Wang J, Wei S, Zhang J, Wang H. Association between RIT2 rs16976358 Polymorphism and Autism Spectrum Disorder in Asian Populations: A Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8886927. [PMID: 36820223 PMCID: PMC9938773 DOI: 10.1155/2023/8886927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Recent studies have shown that Ras-like without CAAX2 (RIT2) polymorphism is a susceptible factor for Parkinson's disease (PD) and autism spectrum disorder (ASD). SNP rs12456492 and rs16976358 show the emerging evidence of increased risk of PD and ASD, respectively. A meta-analysis examining the relationship between rs12456492 and PD was reported, but the association between rs16976358 and ASD has not been investigated. METHODS We searched literature from the databases PubMed, Embase, Google Scholar, ScienceDirect, EBSCOhost, OVID, Web of Science, and Wiley up to February 2021. Three studies including 1160 ASD cases and 1367 controls were eventually enrolled in the meta-analysis based on strict inclusion and exclusion criteria. RESULTS All genetics models indicate a significant association between rs16976358 polymorphism and ASD susceptibility (C vs. T: p = 0.001; CC vs. TT: p = 0.001; CT vs. TT: p = 0.009; CC+CT vs. TT: p = 0.001; CC vs. CT+TT: p = 0.001; TT+CC vs. CT: p = 0.013). The results of sensitivity analysis and publication bias of Begg's and Egger's tests were stable in the models of allele (C vs. T), codominant (CC vs. TT), dominant (CC+CT vs. TT), and recessive (CC vs. CT+TT). CONCLUSIONS Our meta-analysis exhibits that the allele C, CC, and CT genotyping of rs16976358 suggest the risk for ASD, but additional studies using a large sample size and ethnically diverse populations need to be included in the future.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shoupeng Wei
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20807, USA
| | - Jin Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hu Wang
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore 21215, USA
| |
Collapse
|
18
|
Chang JC, Lai MC, Chien YL, Cheng CY, Wu YY, Gau SSF. Psychometric properties of the Mandarin version of the autism diagnostic observation Schedule-Generic. J Formos Med Assoc 2023:S0929-6646(23)00008-6. [PMID: 36732136 DOI: 10.1016/j.jfma.2023.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND/PURPOSE The diagnosis of autism spectrum disorder (ASD), involving multiple components of clinical assessments, is challenging. The Autism Diagnostic Observation Schedule-Generic (ADOS-G), one of the standardized and validated instruments for ASD diagnostic evaluation, has been widely used in many countries. With the preparation of the Mandarin version of the ADOS-G (Mandarin-ADOS-G), this study aims to examine its psychometric properties, including reliability and validity. METHODS The sample included 554 individuals clinically diagnosed with ASD (477 males, 86.1%) and 50 typically developing (TD) individuals (29 males, 58.0%) who were assessed with different modules of the Mandarin-ADOS-G between 4.1 and 34.0 years old with a mean age of 13.0 years (Module 1, n = 40; Module 2, n = 46; Module 3, n = 275; Module 4, n = 243). We evaluated the inter-rater reliability, test-retest reliability, internal consistency, and concurrent validity with the Chinese Autism Diagnostic Interview-Revised (ADI-R) and Social Responsiveness Scale (SRS) caregiver-report and self-report forms. The discriminative validity of Mandarin-ADOS-G was also examined. RESULTS The Mandarin-ADOS-G demonstrated good inter-rater reliability (agreement of ADOS classification 0.91), good test-retest reliability (intraclass correlations 0.55-0.73), and low to high good internal consistency (Cronbach's alpha 0.27-0.86). The concurrent validity showed significant correlations with ADI-R (Pearson correlations 0.22-0.37) and the SRS caregiver-report form (Pearson correlations 0.15-0.23). Moreover, all Mandarin-ADOS-G domains successfully differentiated autistic individuals from TD individuals (all p-values <0.001). CONCLUSION The Mandarin-ADOS-G is a reliable and valid instrument for assisting the diagnosis of ASD in the Mandarin-speaking population.
Collapse
Affiliation(s)
- Jung-Chi Chang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Chuan Lai
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry and Autism Research Unit, The Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chung-Yuan Cheng
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Yu Wu
- YuNing Psychiatric Clinic, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
The Repertoire of RNA Modifications Orchestrates a Plethora of Cellular Responses. Int J Mol Sci 2023; 24:ijms24032387. [PMID: 36768716 PMCID: PMC9916637 DOI: 10.3390/ijms24032387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Although a plethora of DNA modifications have been extensively investigated in the last decade, recent breakthroughs in molecular biology, including high throughput sequencing techniques, have enabled the identification of post-transcriptional marks that decorate RNAs; hence, epitranscriptomics has arisen. This recent scientific field aims to decode the regulatory layer of the transcriptome and set the ground for the detection of modifications in ribose nucleotides. Until now, more than 170 RNA modifications have been reported in diverse types of RNA that contribute to various biological processes, such as RNA biogenesis, stability, and transcriptional and translational accuracy. However, dysfunctions in the RNA-modifying enzymes that regulate their dynamic level can lead to human diseases and cancer. The present review aims to highlight the epitranscriptomic landscape in human RNAs and match the catalytic proteins with the deposition or deletion of a specific mark. In the current review, the most abundant RNA modifications, such as N6-methyladenosine (m6A), N5-methylcytosine (m5C), pseudouridine (Ψ) and inosine (I), are thoroughly described, their functional and regulatory roles are discussed and their contributions to cellular homeostasis are stated. Ultimately, the involvement of the RNA modifications and their writers, erasers, and readers in human diseases and cancer is also discussed.
Collapse
|
20
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
21
|
Song J, You G, Yin X, Zhu G, Wang W, Yu Y, Zhu J. Overexpression of YTHDC2 contributes to the progression of prostate cancer and predicts poor outcomes in patients with prostate cancer. J Biochem Mol Toxicol 2023; 37:e23308. [PMID: 36644951 DOI: 10.1002/jbt.23308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
YTH domain-containing protein 2 (YTHDC2), a member of N6-methyladenosine (m6A) readers, has been reported to be closely associated with multiple cancer types. However, very little is known about the YTHDC2 gene and its involvement in prostate cancer. YTHDC2 protein expression level was analyzed and correlated to clinical outcomes in prostate cancer patients who underwent prostatectomy in Guizhou Provincial People's Hospital. The YTHDC2 expression level was also detected in prostate cancer cell lines and an immortalized prostate epithelial cell line BPH-1 and RWPE1 by quantitative real-time reverse transcription polymerase chain reaction. Furthermore, we established stable cell lines (DU145 and PC-3) transfected with either empty vector or the full-length YTHDC2 gene and conducted cell function assays in vitro. Fisher's exact test and Pearson χ2 test were employed, Kaplan-Meier method was used for the survival analysis. Of 32 patient samples who enrolled in this study, YTHDC2 was significantly upregulated in prostate cancer (PCa) patients with higher Gleason scores and serum prostate-specific antigen levels. YTHDC2 expression was significantly elevated in all PCa cell lines compared to BPH-1 and RWPE1 (all p < 0.05). Functionally, the enforced expression of YTHDC2 markedly promoted cell growth, migration, and invasion efficacies in prostate cancer cells. Our data indicate that YTHDC2 upregulation may be potentially associated with the prognosis of prostate cancer patients.
Collapse
Affiliation(s)
- Jukun Song
- School Of Medicine, Guizhou University, Guizhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China
| | - Ganhua You
- The Second People's Hospital of Guizhou Province, Guizhou, China
| | - Xinhai Yin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China
| | - Guohua Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Wei Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Yongwei Yu
- Department of Pathology, Changhai Hospital, Shanghai, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, China
| |
Collapse
|
22
|
Chien YL, Wu CS, Chang YC, Cheong ML, Yao TC, Tsai HJ. Associations between parental psychiatric disorders and autism spectrum disorder in the offspring. Autism Res 2022; 15:2409-2419. [PMID: 36250255 DOI: 10.1002/aur.2835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/06/2022] [Indexed: 12/15/2022]
Abstract
Whether parental psychiatric disorders are associated with autism spectrum disorder (ASD) in offspring has remained inconclusive. We examined the associations of parental psychiatric disorders with ASD in offspring. This population-based case-control study used Taiwan's National Health Insurance Research Database to identify a cohort of children born from 2004 to 2017 and their parents. A total of 24,279 children with ASD (diagnostic ICD-9-CM code: 299.x or ICD-10 code F84.x) and 97,715 matched controls were included. Parental psychiatric disorders, including depressive disorders, bipolar spectrum disorders, anxiety disorders, obsessive-compulsive disorder, schizophrenia, substance use disorders, autism spectrum disorder, attention-deficit hyperactivity disorder (ADHD), and adjustment disorders were identified. Conditional logistic regressions with covariate adjustment were performed. The results suggest that parental diagnosis with any of the psychiatric disorders is associated with ASD in offspring (adjusted odds ratio [AOR] = 1.45, 95%CI: 1.40-1.51 for mothers; and AOR = 1.12, 95%CI: 1.08-1.17 for fathers). ASD in offspring was associated with schizophrenia, depressive disorders, obsessive-compulsive disorder, adjustment disorders, ADHD and ASD in both parents. The relationship between parental psychiatric disorders and the timing of the child's birth and ASD diagnosis varied across the different psychiatric disorders. The present study provides supportive evidence that parental psychiatric disorders are associated with autistic children. Furthermore, because the associations between parental psychiatric disorders and the timing of child's birth and ASD diagnosis varied across psychiatric disorders, the observed relationships may be affected by both genetic and environmental factors. Future studies are needed to disentangle the potential influence of genetic and environmental factors on the observed associations.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Douliu, Taiwan
| | - Yen-Chen Chang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Leng Cheong
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan.,School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
23
|
Shafik AM, Allen EG, Jin P. Epitranscriptomic dynamics in brain development and disease. Mol Psychiatry 2022; 27:3633-3646. [PMID: 35474104 PMCID: PMC9596619 DOI: 10.1038/s41380-022-01570-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
Distinct cell types are generated at specific times during brain development and are regulated by epigenetic, transcriptional, and newly emerging epitranscriptomic mechanisms. RNA modifications are known to affect many aspects of RNA metabolism and have been implicated in the regulation of various biological processes and in disease. Recent studies imply that dysregulation of the epitranscriptome may be significantly associated with neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. Here we review the current knowledge surrounding the role of the RNA modifications N6-methyladenosine, 5-methylcytidine, pseudouridine, A-to-I RNA editing, 2'O-methylation, and their associated machinery, in brain development and human diseases. We also highlight the need for the development of new technologies in the pursuit of directly mapping RNA modifications in both genome- and single-molecule-level approach.
Collapse
Affiliation(s)
- Andrew M Shafik
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
24
|
Ma W, Cui S, Lu Z, Yan X, Cai L, Lu Y, Cai K, Zhou H, Ma R, Zhou S, Wang X. YTH Domain Proteins Play an Essential Role in Rice Growth and Stress Response. PLANTS 2022; 11:plants11172206. [PMID: 36079588 PMCID: PMC9460353 DOI: 10.3390/plants11172206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
As the most prevalent epi-transcriptional modification, m6A modifications play essential roles in regulating RNA fate. The molecular functions of YTH521-B homology (YTH) domain proteins, the most known READER proteins of m6A modifications, have been well-studied in animals. Although plants contain more YTH domain proteins than other eukaryotes, little is known about their biological importance. In dicot species Arabidopsis thaliana, the YTHDFA clade members ECT2/3/4 and CPSF30-L are well-studied and important for cell proliferation, plant organogenesis, and nitrate transport. More emphasis is needed on the biological functions of plant YTH proteins, especially monocot YTHs. Here we presented a detailed phylogenetic relationship of eukaryotic YTH proteins and clustered plant YTHDFC clade into three subclades. To determine the importance of monocot YTH proteins, YTH knockout mutants and RNAi-induced knockdown plants were constructed and used for phenotyping, transcriptomic analysis, and stress treatments. Knocking out or knocking down OsYTHs led to the downregulation of multicellular organismal regulation genes and resulted in growth defects. In addition, loss-of-function ythdfa mutants led to better salinity tolerance whereas ythdfc mutants were more sensitive to abiotic stress. Overall, our study establishes the functional relevance of rice YTH genes in plant growth regulation and stress response.
Collapse
Affiliation(s)
- Weiwei Ma
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenfei Lu
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Xiaofeng Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Long Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfa Lu
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Kefeng Cai
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Huacheng Zhou
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Rongrong Ma
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (S.Z.); (X.W.)
| | - Xiaole Wang
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
- Correspondence: (S.Z.); (X.W.)
| |
Collapse
|
25
|
Gunturkun MH, Flashner E, Wang T, Mulligan MK, Williams RW, Prins P, Chen H. GeneCup: mining PubMed and GWAS catalog for gene-keyword relationships. G3 (BETHESDA, MD.) 2022; 12:jkac059. [PMID: 35285473 PMCID: PMC9073678 DOI: 10.1093/g3journal/jkac059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022]
Abstract
Interpreting and integrating results from omics studies typically requires a comprehensive and time consuming survey of extant literature. GeneCup is a literature mining web service that retrieves sentences containing user-provided gene symbols and keywords from PubMed abstracts. The keywords are organized into an ontology and can be extended to include results from human genome-wide association studies. We provide a drug addiction keyword ontology that contains over 300 keywords as an example. The literature search is conducted by querying the PubMed server using a programming interface, which is followed by retrieving abstracts from a local copy of the PubMed archive. The main results presented to the user are sentences where gene symbol and keywords co-occur. These sentences are presented through an interactive graphical interface or as tables. All results are linked to the original abstract in PubMed. In addition, a convolutional neural network is employed to distinguish sentences describing systemic stress from those describing cellular stress. The automated and comprehensive search strategy provided by GeneCup facilitates the integration of new discoveries from omic studies with existing literature. GeneCup is free and open source software. The source code of GeneCup and the link to a running instance is available at https://github.com/hakangunturkun/GeneCup.
Collapse
Affiliation(s)
- Mustafa H Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Efraim Flashner
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| |
Collapse
|
26
|
Okhuijsen-Pfeifer C, van der Horst MZ, Bousman CA, Lin B, van Eijk KR, Ripke S, Ayhan Y, Babaoglu MO, Bak M, Alink W, van Beek H, Beld E, Bouhuis A, Edlinger M, Erdogan IM, Ertuğrul A, Yoca G, Everall IP, Görlitz T, Grootens KP, Gutwinski S, Hallikainen T, Jeger-Land E, de Koning M, Lähteenvuo M, Legge SE, Leucht S, Morgenroth C, Müderrisoğlu A, Narang A, Pantelis C, Pardiñas AF, Oviedo-Salcedo T, Schneider-Thoma J, Schreiter S, Repo-Tiihonen E, Tuppurainen H, Veereschild M, Veerman S, de Vos M, Wagner E, Cohen D, Bogers JPAM, Walters JTR, Yağcıoğlu AEA, Tiihonen J, Hasan A, Luykx JJ. Genome-wide association analyses of symptom severity among clozapine-treated patients with schizophrenia spectrum disorders. Transl Psychiatry 2022; 12:145. [PMID: 35393395 PMCID: PMC8989876 DOI: 10.1038/s41398-022-01884-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
Clozapine is the most effective antipsychotic for patients with treatment-resistant schizophrenia. However, response is highly variable and possible genetic underpinnings of this variability remain unknown. Here, we performed polygenic risk score (PRS) analyses to estimate the amount of variance in symptom severity among clozapine-treated patients explained by PRSs (R2) and examined the association between symptom severity and genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activity. Genome-wide association (GWA) analyses were performed to explore loci associated with symptom severity. A multicenter cohort of 804 patients (after quality control N = 684) with schizophrenia spectrum disorder treated with clozapine were cross-sectionally assessed using the Positive and Negative Syndrome Scale and/or the Clinical Global Impression-Severity (CGI-S) scale. GWA and PRS regression analyses were conducted. Genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activities were calculated. Schizophrenia-PRS was most significantly and positively associated with low symptom severity (p = 1.03 × 10-3; R2 = 1.85). Cross-disorder-PRS was also positively associated with lower CGI-S score (p = 0.01; R2 = 0.81). Compared to the lowest tertile, patients in the highest schizophrenia-PRS tertile had 1.94 times (p = 6.84×10-4) increased probability of low symptom severity. Higher genotype-predicted CYP2C19 enzyme activity was independently associated with lower symptom severity (p = 8.44×10-3). While no locus surpassed the genome-wide significance threshold, rs1923778 within NFIB showed a suggestive association (p = 3.78×10-7) with symptom severity. We show that high schizophrenia-PRS and genotype-predicted CYP2C19 enzyme activity are independently associated with lower symptom severity among individuals treated with clozapine. Our findings open avenues for future pharmacogenomic projects investigating the potential of PRS and genotype-predicted CYP-activity in schizophrenia.
Collapse
Affiliation(s)
- C Okhuijsen-Pfeifer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
| | - M Z van der Horst
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- GGNet Mental Health, Warnsveld, The Netherlands
| | - C A Bousman
- Department of Medical Genetics, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Melbourne, Melbourne Neuropsychiatry Centre, Melbourne, Australia
| | - B Lin
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
| | - K R van Eijk
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
| | - S Ripke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Y Ayhan
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - M O Babaoglu
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - M Bak
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Mondriaan, Mental Health Institute, Maastricht, The Netherlands
| | - W Alink
- Multicomplexe Zorg, Pro Persona, Wolfheze, The Netherlands
| | - H van Beek
- Clinical Recovery Clinic, Mental Health Services Rivierduinen, Leiden, The Netherlands
| | - E Beld
- Mental Health Organization North-Holland North location Den Helder, Den Helder, The Netherlands
| | - A Bouhuis
- Program for early psychosis & severe mental illness, Pro Persona Mental Healthcare, Wolfheze, The Netherlands
| | - M Edlinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division for Psychiatry I, Medical University Innsbruck, Innsbruck, Austria
| | - I M Erdogan
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - A Ertuğrul
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - G Yoca
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Şarkışla State Hospital, Ministry of Health, Sivas, Turkey
| | - I P Everall
- Department of Psychiatry, University of Melbourne, Melbourne Neuropsychiatry Centre, Melbourne, Australia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - T Görlitz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty University Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - K P Grootens
- Reinier van Arkel, s-Hertogenbosch, The Netherlands
- Unit for Clinical Psychopharmacology and Neuropsychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - S Gutwinski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - T Hallikainen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | - E Jeger-Land
- Arkin, Institute for Mental Health, Amsterdam, The Netherlands
| | - M de Koning
- Arkin, Institute for Mental Health, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands
| | - M Lähteenvuo
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | - S E Legge
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - S Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - C Morgenroth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - A Müderrisoğlu
- Department of Pharmacology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - A Narang
- Department of Medical Genetics, University of Calgary, Calgary, Canada
| | - C Pantelis
- Department of Psychiatry, University of Melbourne, Melbourne Neuropsychiatry Centre, Melbourne, Australia
| | - A F Pardiñas
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - T Oviedo-Salcedo
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - J Schneider-Thoma
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - S Schreiter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
- Berlin Institute of Health (BIH), BIH Biomedical Innovation Academy, Berlin, Germany
| | - E Repo-Tiihonen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | - H Tuppurainen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | | | - S Veerman
- Mental Health Organization North-Holland North location Alkmaar, Alkmaar, The Netherlands
| | - M de Vos
- GGNet Mental Health, Warnsveld, The Netherlands
| | - E Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - D Cohen
- Mental Health Organization North-Holland North location Heerhugowaard, Heerhugowaard, The Netherlands
| | - J P A M Bogers
- High Care Clinics, Mental Health Services Rivierduinen, Leiden, The Netherlands
| | - J T R Walters
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - A E Anil Yağcıoğlu
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - J Tiihonen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
- Center for Psychiatric Research, Stockholm City Council, Stockholm, Sweden
| | - A Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty University Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - J J Luykx
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands.
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands.
- GGNet Mental Health, Warnsveld, The Netherlands.
| |
Collapse
|
27
|
Akingbuwa WA, Hammerschlag AR, Bartels M, Middeldorp CM. Systematic Review: Molecular Studies of Common Genetic Variation in Child and Adolescent Psychiatric Disorders. J Am Acad Child Adolesc Psychiatry 2022; 61:227-242. [PMID: 33932494 DOI: 10.1016/j.jaac.2021.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE A systematic review of studies using molecular genetics and statistical approaches to investigate the role of common genetic variation in the development, persistence, and comorbidity of childhood psychiatric traits was conducted. METHOD A literature review was performed using the PubMed database, following PRISMA guidelines. There were 131 studies meeting inclusion criteria, having investigated at least one type of childhood-onset or childhood-measured psychiatric disorder or trait with the aim of identifying trait-associated common genetic variants, estimating the contribution of single nucleotide polymorphisms (SNPs) to the amount of variance explained (SNP-based heritability), investigating genetic overlap between psychiatric traits, or investigating whether the stability in traits or the association with adult traits is explained by genetic factors. RESULTS The first robustly associated genetic variants have started to be identified for childhood psychiatric traits. There were substantial contributions of common genetic variants to many traits, with variation in single nucleotide polymorphism heritability estimates depending on age and raters. Moreover, genetic variants also appeared to explain comorbidity as well as stability across a range of psychiatric traits in childhood and across the life span. CONCLUSION Common genetic variation plays a substantial role in childhood psychiatric traits. Increased sample sizes will lead to increased power to identify genetic variants and to understand genetic architecture, which will ultimately be beneficial to targeted and prevention strategies. This can be achieved by harmonizing phenotype measurements, as is already proposed by large international consortia and by including the collection of genetic material in every study.
Collapse
Affiliation(s)
- Wonuola A Akingbuwa
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| | - Anke R Hammerschlag
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands; Dr. Hammerschlag and Prof. Middeldorp are also with the Child Health Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Meike Bartels
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Ms. Akingbuwa, Dr. Hammerschlag, and Prof. Bartels are also with Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Christel M Middeldorp
- Ms. Akingbuwa, Dr. Hammerschlag, and Profs. Bartels and Middeldorp are with Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Dr. Hammerschlag and Prof. Middeldorp are also with the Child Health Research Centre, the University of Queensland, Brisbane, Queensland, Australia; Prof. Middeldorp is also with the Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Services, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
29
|
Cornejo F, Cortés BI, Findlay GM, Cancino GI. LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain. Front Cell Dev Biol 2021; 9:659951. [PMID: 34966732 PMCID: PMC8711739 DOI: 10.3389/fcell.2021.659951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I Cortés
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Greg M Findlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
30
|
Fagan RR, Kearney PJ, Luethi D, Bolden NC, Sitte HH, Emery P, Melikian HE. Dopaminergic Ric GTPase activity impacts amphetamine sensitivity and sleep quality in a dopamine transporter-dependent manner in Drosophila melanogaster. Mol Psychiatry 2021; 26:7793-7802. [PMID: 34471250 PMCID: PMC8881384 DOI: 10.1038/s41380-021-01275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Dopamine (DA) is required for movement, sleep, and reward, and DA signaling is tightly controlled by the presynaptic DA transporter (DAT). Therapeutic and addictive psychostimulants, including methylphenidate (Ritalin; MPH), cocaine, and amphetamine (AMPH), markedly elevate extracellular DA via their actions as competitive DAT inhibitors (MPH, cocaine) and substrates (AMPH). DAT silencing in mice and invertebrates results in hyperactivity, reduced sleep, and blunted psychostimulant responses, highlighting DAT's essential role in DA-dependent behaviors. DAT surface expression is not static; rather it is dynamically regulated by endocytic trafficking. PKC-stimulated DAT endocytosis requires the neuronal GTPase, Rit2, and Rit2 silencing in mouse DA neurons impacts psychostimulant sensitivity. However, it is unknown whether or not Rit2-mediated changes in psychostimulant sensitivity are DAT-dependent. Here, we leveraged Drosophila melanogaster to test whether the Drosophila Rit2 ortholog, Ric, impacts dDAT function, trafficking, and DA-dependent behaviors. Orthologous to hDAT and Rit2, dDAT and Ric directly interact, and the constitutively active Ric mutant Q117L increased dDAT surface levels and function in cell lines and ex vivo Drosophila brains. Moreover, DAergic RicQ117L expression caused sleep fragmentation in a DAT-dependent manner but had no effect on total sleep and daily locomotor activity. Importantly, we found that Rit2 is required for AMPH-stimulated DAT internalization in mouse striatum, and that DAergic RicQ117L expression significantly increased Drosophila AMPH sensitivity in a DAT-dependent manner, suggesting a conserved impact of Ric-dependent DAT trafficking on AMPH sensitivity. These studies support that the DAT/Rit2 interaction impacts both baseline behaviors and AMPH sensitivity, potentially by regulating DAT trafficking.
Collapse
Affiliation(s)
- Rita R. Fagan
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Patrick J. Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Dino Luethi
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090
| | - Nicholas C. Bolden
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Harald H. Sitte
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090
| | - Patrick Emery
- Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Haley E. Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA,Address correspondence to: Haley Melikian, Ph.D., Department of Neurobiology, UMASS Medical School, LRB 726, 364 Plantation St., Worcester, MA 01605, 774-455-4308 (phone), 508-856-6266 (fax),
| |
Collapse
|
31
|
Wang DO. Epitranscriptomic regulation of cognitive development and decline. Semin Cell Dev Biol 2021; 129:3-13. [PMID: 34857470 DOI: 10.1016/j.semcdb.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Functional genomics and systems biology have opened new doors to previously inaccessible genomic information and holistic approaches to study complex networks of genes and proteins in the central nervous system. The advances are revolutionizing our understanding of the genetic underpinning of cognitive development and decline by facilitating identifications of novel molecular regulators and physiological pathways underlying brain function, and by associating polymorphism and mutations to cognitive dysfunction and neurological diseases. However, our current understanding of these complex gene regulatory mechanisms has yet lacked sufficient mechanistic resolution for further translational breakthroughs. Here we review recent findings from the burgeoning field of epitranscriptomics in association of cognitive functions with a special focus on the epitranscritomic regulation in subcellular locations such as chromosome, synapse, and mitochondria. Although there are important gaps in knowledge, current evidence is suggesting that this layer of RNA regulation may be of particular interest for the spatiotemporally coordinated regulation of gene networks in developing and maintaining brain function that underlie cognitive changes.
Collapse
Affiliation(s)
- Dan Ohtan Wang
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto 606-8501, Japan.
| |
Collapse
|
32
|
Yuan J, Liu Y, Zhou L, Xue Y, Lu Z, Gan J. YTHDC2-Mediated circYTHDC2 N6-Methyladenosine Modification Promotes Vascular Smooth Muscle Cells Dysfunction Through Inhibiting Ten-Eleven Translocation 2. Front Cardiovasc Med 2021; 8:686293. [PMID: 34660707 PMCID: PMC8517116 DOI: 10.3389/fcvm.2021.686293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
Type 2 diabetes condition mediated vascular smooth muscle cell (VSMCs) dysfunction. However, the mechanism of VSMCs dysfunction in diabetic patients needs further elucidation. VSMCs are an important component of the vascular wall, participate in the process of vascular remodeling, and play a vital role in the vascular complications of diabetes. Studies have found that circular RNAs (circRNAs) play a key regulatory role in the occurrence and development of VSMCs dysfunction. In this study, we stimulated VSMCs with high glucose and identified a new circular RNA, circYTHDC2, using circRNA chip analysis. circYTHDC2 was highly expressed in VSMCs treated with high glucose. Knockout of circYTHDC2 significantly inhibited the proliferation and migration of VSMCs. Metformin treatment significantly inhibited the expression of YTHDC2 and circYTHDC2. The upstream mechanism analysis revealed that the stability of circYTHDC2 was regulated by YTHDC2-mediated m6A modification. Furthermore, circYTHDC2 negatively regulates the expression of Ten-Eleven Translocation 2 (TET2) by targeting the unstable motif of TET2 3'UTR, thereby promoting dedifferentiated "synthetic type" transformation of VSMC. Taken together, these results suggest that the YTHDC2/circYTHDC2/TET2 pathway is an important target of metformin in preventing the progression of VSMCs dysfunction under high glucose.
Collapse
Affiliation(s)
- Jun Yuan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lizhen Zhou
- Health Management Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yan Xue
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhengde Lu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianting Gan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
33
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
34
|
Tsai CK, Liang CS, Lin GY, Tsai CL, Lee JT, Sung YF, Lin YK, Hung KS, Chen WL, Yang FC. Identifying genetic variants for age of migraine onset in a Han Chinese population in Taiwan. J Headache Pain 2021; 22:89. [PMID: 34380431 PMCID: PMC8356430 DOI: 10.1186/s10194-021-01301-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background Considering the involvement of genetics in migraine pathogenesis in diverse ethnic populations, genome-wide association studies (GWAS) are being conducted to identify migraine-susceptibility genes. However, limited surveys have focused on the onset age of migraine (AoM) in Asians. Therefore, in this study, we aimed to identify the susceptibility loci of migraine considering the AoM in an Asian population. Methods We conducted a GWAS in 715 patients with migraine of Han Chinese ethnicity, residing in Taiwan, to identify the susceptibility genes associated with AoM. Based on our standard demographic questionnaire, the population was grouped into different subsets. Single-nucleotide polymorphism (SNP) associations were examined using PLINK in different AoM onset groups. Results We discovered eight novel susceptibility loci correlated with AoM that reached the GWAS significance level in the Han Chinese population. First, rs146094041 in ESRRG was associated with AoM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\le$$\end{document}≤ 12 years. The other SNPs including rs77630941 in CUX1, rs146778855 in CDH18, rs117608715 in NOL3, rs150592309 in PRAP1, and rs181024055 in NRAP were associated with the later AoM. Conclusions To our knowledge, this is the first GWAS to investigate the AoM in an Asian Han Chinese population. Our newly discovered susceptibility genes may have prospective associations with migraine pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01301-y.
Collapse
Affiliation(s)
- Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.,Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Geriatric Medicine, Department of Family and Community Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
35
|
Biological implications of genetic variations in autism spectrum disorders from genomics studies. Biosci Rep 2021; 41:229227. [PMID: 34240107 PMCID: PMC8298259 DOI: 10.1042/bsr20210593] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental condition characterized by atypical social interaction and communication together with repetitive behaviors and restricted interests. The prevalence of ASD has been increased these years. Compelling evidence has shown that genetic factors contribute largely to the development of ASD. However, knowledge about its genetic etiology and pathogenesis is limited. Broad applications of genomics studies have revealed the importance of gene mutations at protein-coding regions as well as the interrupted non-coding regions in the development of ASD. In this review, we summarize the current evidence for the known molecular genetic basis and possible pathological mechanisms as well as the risk genes and loci of ASD. Functional studies for the underlying mechanisms are also implicated. The understanding of the genetics and genomics of ASD is important for the genetic diagnosis and intervention for this condition.
Collapse
|
36
|
The emerging roles of absent in melanoma 2 (AIM2) inflammasome in central nervous system disorders. Neurochem Int 2021; 149:105122. [PMID: 34284076 DOI: 10.1016/j.neuint.2021.105122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
As a double-stranded DNA (dsDNA) sensor, the PYHIN family member absent in melanoma 2 (AIM2) is an essential component of the inflammasome families. Activation of AIM2 by dsDNA leads to the assembly of cytosolic multimolecular complexes termed the AIM2 inflammasome, resulting in activation of caspase-1, the maturation and secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-18, and pyroptosis. Multiple central nervous system (CNS) diseases are accompanied by immune responses and inflammatory cascade. As the resident macrophage cells, microglia cells act as the first and main form of active immune defense in the CNS. AIM2 is highly expressed in microglia as well as astrocytes and neurons and is essential in neurodevelopment. In this review, we highlight the recent progress on the role of AIM2 inflammasome in CNS disorders, including cerebral stroke, brain injury, neuropsychiatric disease, neurodegenerative diseases, and glioblastoma.
Collapse
|
37
|
Genetic risk factors for autism-spectrum disorders: a systematic review based on systematic reviews and meta-analysis. J Neural Transm (Vienna) 2021; 128:717-734. [PMID: 34115189 DOI: 10.1007/s00702-021-02360-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Based on recent evidence, more than 200 susceptibility genes have been identified to be associated with autism until now. Correspondingly, cytogenetic abnormalities have been reported for almost every chromosome. While the results of multiple genes associated with risk factors for autism are still incomplete, this paper systematically reviews published meta-analyses and systematic reviews of evidence related to autism occurrence. METHOD Literature search was conducted in the PubMed system, and the publication dates were limited between January 2000 and July 2020. We included a meta-analysis and systematic review that assessed the impact of related gene variants on the development of autism. After screening, this comprehensive literature search identified 31 meta-analyses and ten systematic reviews. We arranged the genes related to autism in the published studies according to the order of the chromosomes, and based on the results of a meta-analysis and systematic review, we selected 6 candidate genes related to ASD, namely MTHFR C677T, SLC25A12, OXTR, RELN, 5-HTTLPR, SHANK, including basic features and functions. In addition to these typical genes, we have also listed candidate genes that may exist on almost every chromosome that are related to autism. RESULTS We found that the results of several literature reviews included in this study showed that the MTHFR C667T variant was a risk factor for the occurrence of ASD, and the results were consistent. The results of studies on SLC25A12 variation (rs2056202 and rs2292813) and ASD risk were inconsistent but statistically significant. No association of 5-HTTLPR was found with autism, but when subgroup analysis was performed according to ethnicity, the association was statistically significant. RELN variants (rs362691 and rs736707) were consistent with ASD risk studies, but some of the results were not statistically significant. CONCLUSION This review summarized the well-known ASD candidate genes and listed some new genes that need further study in larger sample sets to improve our understanding of the genetic basis of ASD, but sample size and heterogeneity remain major limiting factors in some genome-wide association studies. We also found that common genetic variants in some genes may be co-risk factors for autism or other neuropsychiatric disorders when we collated these results. It is worth considering screening for these mutations in clinical applications.
Collapse
|
38
|
Yen YP, Chen JA. The m 6A epitranscriptome on neural development and degeneration. J Biomed Sci 2021; 28:40. [PMID: 34039354 PMCID: PMC8157406 DOI: 10.1186/s12929-021-00734-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent, conserved, and abundant RNA modification of the mRNAs of most eukaryotes, including mammals. Similar to epigenetic DNA modifications, m6A has been proposed to function as a critical regulator for gene expression. This modification is installed by m6A methylation "writers" (Mettl3/Mettl14 methyltransferase complex), and it can be reversed by demethylase "erasers" (Fto and Alkbh5). Furthermore, m6A can be recognized by "readers" (Ythdf and Ythdc families), which may be interpreted to affect mRNA splicing, stability, translation or localization. Levels of m6A methylation appear to be highest in the brain, where it plays important functions during embryonic stem cell differentiation, brain development, and neurodevelopmental disorders. Depletion of the m6A methylation writer Mettl14 from mouse embryonic nervous systems prolongs cell cycle progression of radial glia and extends cortical neurogenesis into postnatal stages. Recent studies further imply that dysregulated m6A methylation may be significantly correlated with neurodegenerative diseases. In this review, we give an overview of m6A modifications during neural development and associated disorders, and provide perspectives for studying m6A methylation.
Collapse
Affiliation(s)
- Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
39
|
Allelic and phenotypic heterogeneity in Junctophillin-3 related neurodevelopmental and movement disorders. Eur J Hum Genet 2021; 29:1027-1031. [PMID: 33824468 PMCID: PMC8187377 DOI: 10.1038/s41431-021-00866-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
Junctophilin-3 belongs to a triprotein junctional complex implicated in the regulation of neuronal excitability and involved in the formation of junctional membrane structures between voltage-gated ion channels and endoplasmic (ryanodine) reticular receptors. A monoallelic trinucleotide repeat expansion located within the junctophilin-3 gene (JPH3) has been implicated in a rare autosomal dominant (AD) late-onset (and progressive) disorder clinically resembling Huntington disease (HD), and known as HD-like 2 (HDL2; MIM# 606438). Although the exact molecular mechanisms underlying HDL2 has not yet been fully elucidated, toxic gain-of-function of the aberrant transcript (containing the trinucleotide repeat) and loss of expression of (full-length) junctophilin-3 have both been implicated in HDL2 pathophysiology. In this study, we identified by whole exome sequencing (WES) a JPH3 homozygous truncating variant [NM_020655.4: c.17405dup; p.(Val581Argfs*137)]. in a female individual affected with genetically undetermined neurodevelopmental anomalies (including delayed motor milestones, abnormal social communication, language difficulties and borderline cognitive impairment) and paroxysmal attacks of dystonia since her early infancy. Our study expands the JPH3-associated mutational spectrum and clinical phenotypes, implicating the loss of Junctophilin-3 in heterogeneous neurodevelopmental phenotypes and early-onset paroxysmal movement disorders.
Collapse
|
40
|
Thyroid hormone insufficiency alters the expression of psychiatric disorder-related molecules in the hypothyroid mouse brain during the early postnatal period. Sci Rep 2021; 11:6723. [PMID: 33762687 PMCID: PMC7990947 DOI: 10.1038/s41598-021-86237-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
The functional role of thyroid hormone (TH) in the cortex and hippocampus of mouse during neuronal development was investigated in this study. TH insufficiency showed a decrease in the expression of parvalbumin (PV) in the cortex and hippocampus of pups at postnatal day (PD) 14, while treatment with thyroxine from PD 0 to PD 14 ameliorated the PV loss. On the other hand, treatment with antithyroid agents in adulthood did not result in a decrease in the expression of PV in these areas. These results indicate the existence of a critical period of TH action during the early postnatal period. A decrease in MeCP2-positive neuronal nuclei was also observed in the cortical layers II–IV of the cerebral cortex. The brains were then stained with CUX1, a marker for cortical layers II–IV. In comparison with normal mice, CUX1 signals were decreased in the somatosensory cortex of the hypothyroid mice, and the total thickness of cortical layers II–IV of the mice was lower than that of normal mice. These results suggest that TH insufficiency during the perinatal period strongly and broadly affects neuronal development.
Collapse
|
41
|
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 2021; 6:74. [PMID: 33611339 PMCID: PMC7897327 DOI: 10.1038/s41392-020-00450-x] [Citation(s) in RCA: 1165] [Impact Index Per Article: 291.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as "readers". Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.
Collapse
Affiliation(s)
- Xiulin Jiang
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Baiyang Liu
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhi Nie
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China ,grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Lincan Duan
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Qiuxia Xiong
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Zhixian Jin
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Cuiping Yang
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China
| | - Yongbin Chen
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.9227.e0000000119573309Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, Yunnan China
| |
Collapse
|
42
|
García-Hernández JL, Corchete LA, Marcos-Alcalde Í, Gómez-Puertas P, Fons C, Lazo PA. Pathogenic convergence of CNVs in genes functionally associated to a severe neuromotor developmental delay syndrome. Hum Genomics 2021; 15:11. [PMID: 33557955 PMCID: PMC7871650 DOI: 10.1186/s40246-021-00309-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Complex developmental encephalopathy syndromes might be the consequence of unknown genetic alterations that are likely to contribute to the full neurological phenotype as a consequence of pathogenic gene combinations. METHODS To identify the additional genetic contribution to the neurological phenotype, we studied as a test case a boy, with a KCNQ2 exon-7 partial duplication, by single-nucleotide polymorphism (SNP) microarray to detect copy-number variations (CNVs). RESULTS The proband presented a cerebral palsy like syndrome with a severe motor and developmental encephalopathy. The SNP array analysis detected in the proband several de novo CNVs, nine partial gene losses (LRRC55, PCDH9, NALCN, RYR3, ELAVL2, CDH13, ATP1A2, SLC17A5, ANO3), and two partial gene duplications (PCDH19, EFNA5). The biological functions of these genes are associated with ion channels such as calcium, chloride, sodium, and potassium with several membrane proteins implicated in neural cell-cell interactions, synaptic transmission, and axon guidance. Pathogenically, these functions can be associated to cerebral palsy, seizures, dystonia, epileptic crisis, and motor neuron dysfunction, all present in the patient. CONCLUSIONS Severe motor and developmental encephalopathy syndromes of unknown origin can be the result of a phenotypic convergence by combination of several genetic alterations in genes whose physiological function contributes to the neurological pathogenic mechanism.
Collapse
Affiliation(s)
- Juan L García-Hernández
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Luis A Corchete
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Network Center for Biomedical Research in Cancer (CIBERONC), Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Carmen Fons
- Neurology Department, Hospital Sant Joan de Déu, Sant Joan de Déu Research Institute, Esplugues de Llobregat, Barcelona and CIBERER, Instituto de Salud Carlos III, Barcelona, Spain.
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Departamento de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
43
|
Burton CL, Lemire M, Xiao B, Corfield EC, Erdman L, Bralten J, Poelmans G, Yu D, Shaheen SM, Goodale T, Sinopoli VM, Soreni N, Hanna GL, Fitzgerald KD, Rosenberg D, Nestadt G, Paterson AD, Strug LJ, Schachar RJ, Crosbie J, Arnold PD. Genome-wide association study of pediatric obsessive-compulsive traits: shared genetic risk between traits and disorder. Transl Psychiatry 2021; 11:91. [PMID: 33531474 PMCID: PMC7870035 DOI: 10.1038/s41398-020-01121-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/02/2022] Open
Abstract
Using a novel trait-based measure, we examined genetic variants associated with obsessive-compulsive (OC) traits and tested whether OC traits and obsessive-compulsive disorder (OCD) shared genetic risk. We conducted a genome-wide association analysis (GWAS) of OC traits using the Toronto Obsessive-Compulsive Scale (TOCS) in 5018 unrelated Caucasian children and adolescents from the community (Spit for Science sample). We tested the hypothesis that genetic variants associated with OC traits from the community would be associated with clinical OCD using a meta-analysis of all currently available OCD cases. Shared genetic risk was examined between OC traits and OCD in the respective samples using polygenic risk score and genetic correlation analyses. A locus tagged by rs7856850 in an intron of PTPRD (protein tyrosine phosphatase δ) was significantly associated with OC traits at the genome-wide significance level (p = 2.48 × 10-8). rs7856850 was also associated with OCD in a meta-analysis of OCD case/control genome-wide datasets (p = 0.0069). The direction of effect was the same as in the community sample. Polygenic risk scores from OC traits were significantly associated with OCD in case/control datasets and vice versa (p's < 0.01). OC traits were highly, but not significantly, genetically correlated with OCD (rg = 0.71, p = 0.062). We report the first validated genome-wide significant variant for OC traits in PTPRD, downstream of the most significant locus in a previous OCD GWAS. OC traits measured in the community sample shared genetic risk with OCD case/control status. Our results demonstrate the feasibility and power of using trait-based approaches in community samples for genetic discovery.
Collapse
Affiliation(s)
| | | | - Bowei Xiao
- Genetics and Genome Biology Hospital for Sick Children, Toronto, Canada
| | | | - Lauren Erdman
- Genetics and Genome Biology Hospital for Sick Children, Toronto, Canada
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dongmei Yu
- The Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - S-M Shaheen
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Calgary, Canada
- Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Tara Goodale
- Neurosciences and Mental Health, Toronto, Canada
| | - Vanessa M Sinopoli
- Genetics and Genome Biology Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Noam Soreni
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Ontario, Canada
| | - Gregory L Hanna
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Kate D Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Rosenberg
- Department of Psychiatry and Behavioural Neurosciences, Wayne State University, Detroit, MI, USA
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Paterson
- Genetics and Genome Biology Hospital for Sick Children, Toronto, Canada
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
| | - Lisa J Strug
- Genetics and Genome Biology Hospital for Sick Children, Toronto, Canada
- Department of Statistical Sciences, Faculty of Arts and Science, Toronto, Canada
| | - Russell J Schachar
- Neurosciences and Mental Health, Toronto, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jennifer Crosbie
- Neurosciences and Mental Health, Toronto, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Paul D Arnold
- Genetics and Genome Biology Hospital for Sick Children, Toronto, Canada
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Calgary, Canada
- Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Tomita H, Cornejo F, Aranda-Pino B, Woodard CL, Rioseco CC, Neel BG, Alvarez AR, Kaplan DR, Miller FD, Cancino GI. The Protein Tyrosine Phosphatase Receptor Delta Regulates Developmental Neurogenesis. Cell Rep 2021; 30:215-228.e5. [PMID: 31914388 DOI: 10.1016/j.celrep.2019.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/10/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
PTPRD is a receptor protein tyrosine phosphatase that is genetically associated with neurodevelopmental disorders. Here, we asked whether Ptprd mutations cause aberrant neural development by perturbing neurogenesis in the murine cortex. We show that loss of Ptprd causes increases in neurogenic transit-amplifying intermediate progenitor cells and cortical neurons and perturbations in neuronal localization. These effects are intrinsic to neural precursor cells since acute Ptprd knockdown causes similar perturbations. PTPRD mediates these effects by dephosphorylating receptor tyrosine kinases, including TrkB and PDGFRβ, and loss of Ptprd causes the hyperactivation of TrkB and PDGFRβ and their downstream MEK-ERK signaling pathway in neural precursor cells. Moreover, inhibition of aberrant TrkB or MEK activation rescues the increased neurogenesis caused by knockdown or homozygous loss of Ptprd. These results suggest that PTPRD regulates receptor tyrosine kinases to ensure appropriate numbers of intermediate progenitor cells and neurons, suggesting a mechanism for its genetic association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hideaki Tomita
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Begoña Aranda-Pino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Cameron L Woodard
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Constanza C Rioseco
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Alejandra R Alvarez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Institute of Medical Science, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Institute of Medical Science, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Physiology, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Gonzalo I Cancino
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile.
| |
Collapse
|
45
|
Xie X, Li L, Wu H, Hou F, Chen Y, Xue Q, Zhou Y, Zhang J, Gong J, Song R. Comprehensive Integrative Analyses Identify TIGD5 rs75547282 as a Risk Variant for Autism Spectrum Disorder. Autism Res 2021; 14:631-644. [PMID: 33393181 DOI: 10.1002/aur.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Although recent genome-wide association studies have identified risk loci that strongly associates with autism spectrum disorder (ASD), how to pinpoint the causal genes remains a challenge. We aimed to pinpoint the potential causal genes and explore the possible susceptibility and mechanism. A convergent functional genomics (CFG) method was used to prioritize the candidate genes by combining lines of evidence, including Sherlock analysis, spatio-temporal expression patterns, expression analysis, protein-protein interactions, co-expression and association with brain structure. A higher score in the CFG approach suggested that more evidence supported this gene as an ASD risk gene. We screened genes with higher CFG scores for candidate functional single nucleotide polymorphisms (SNPs). A genotyping experiment (602 ASD children and 604 healthy sex-matched children) and the dual-luciferase reporter gene assay were followed to validate the effects of SNPs. We identified three genes (MAPT, ZNF285, and TIGD5) as candidate causal genes using the CFG approach. The genotyping experiment showed that TIGD5 rs75547282 was associated with an increased risk of ASD under the dominant model (OR = 1.37, 95% CI = 1.09-1.72, P = 0.006) though the statistical power was limited (5.2%). The T allele of rs75547282 activated the expression of TIGD5 compared with the C allele in the dual-luciferase reporter assay. Our study indicates that such comprehensive integrative analyses may be an effective way to explore promising ASD susceptibility variants and needs to be further investigated in future research. Genotyping experiments should, however, be based on a larger population sample to increase statistical power. LAY SUMMARY: We set out to pinpoint the potential causal genes of ASD and explore the possible susceptibility and mechanism by combining lines of evidence from different analyses. Our results show that TIGD5 rs75547282 is associated with the risk of ASD in the Han Chinese population. In addition, a similar framework to seek promising ASD risk variants could be further investigated in future research Autism Res 2021, 14: 631-644. © 2021 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Hao Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Hou
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Qi Xue
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic regulation by m 6A RNA methylation in brain development and diseases. J Cereb Blood Flow Metab 2020; 40:2331-2349. [PMID: 32967524 PMCID: PMC7820693 DOI: 10.1177/0271678x20960033] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Cellular RNAs are pervasively tagged with diverse chemical moieties, collectively called epitranscriptomic modifications. The methylation of adenosine at N6 position generates N6-methyladenosine (m6A), which is the most abundant and reversible epitranscriptomic modification in mammals. The m6A signaling is mediated by a dedicated set of proteins comprised of writers, erasers, and readers. Contrary to the activation-repression binary view of gene regulation, emerging evidence suggests that the m6A methylation controls multiple aspects of mRNA metabolism, such as splicing, export, stability, translation, and degradation, culminating in the fine-tuning of gene expression. Brain shows the highest abundance of m6A methylation in the body, which is developmentally altered. Within the brain, m6A methylation is biased toward neuronal transcripts and sensitive to neuronal activity. In a healthy brain, m6A maintains several developmental and physiological processes such as neurogenesis, axonal growth, synaptic plasticity, circadian rhythm, cognitive function, and stress response. The m6A imbalance contributes to the pathogenesis of acute and chronic CNS insults, brain cancer, and neuropsychiatric disorders. This review discussed the molecular mechanisms of m6A regulation and its implication in the developmental, physiological, and pathological processes of the brain.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA
| |
Collapse
|
47
|
Li Y, Zheng JN, Wang EH, Gong CJ, Lan KF, Ding X. The m6A reader protein YTHDC2 is a potential biomarker and associated with immune infiltration in head and neck squamous cell carcinoma. PeerJ 2020; 8:e10385. [PMID: 33304653 PMCID: PMC7700739 DOI: 10.7717/peerj.10385] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Increasing evidence has shown that N6-methyladenosine (m6A) RNA methylation regulators have important biological functions in human cancers. However, there are few studies on the value of m6A reader protein YTHDC2 in the diagnosis and tumor-infiltrating of head and neck squamous cell carcinoma (HNSCC). Therefore, it is important to understand the potential clinical value of YTHDC2 in the prognosis and immune infiltration of HNSCC. Methods In this study, gene expression profiles and the corresponding clinical information of 270 HNSCC patients were downloaded from the Gene Expression Omnibus (GEO) database. The gene co-expression network was established to verify whether YTHDC2 was related to the prognosis of HNSCC and verified again in the public database. The correlations between YTHDC2 and immune infiltration was investigated via Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA). Results The results showed that YTHDC2 appeared in the blue module related to survival time and survival state and had a close correlation with the prognosis and immune infiltration level of HNSCC in public database. Patients with low expression of YTHDC2 had poor overall survival (OS) and recurrence-free survival (RFS) than those with high expression. In addition, the expression of YTHDC2 was positively correlated with the level of CD4+ T cell subpopulations infiltration in HNSCC. Conclusions Through this study, we found that YTHDC2 is a tumor suppressor gene with high expression in normal tissues and low expression in tumor tissues. In addition, YTHDC2 is correlated with the immune infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, neutrophils, and dendritic cells in HNSCC, which may become a potential marker for prognosis and immune infiltration of HNSCC.
Collapse
Affiliation(s)
- Yang Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Ji-Na Zheng
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - En-Hao Wang
- Department of Otolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chan-Juan Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Keng-Fu Lan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - XiaoJun Ding
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
48
|
RNA methylations in human cancers. Semin Cancer Biol 2020; 75:97-115. [DOI: 10.1016/j.semcancer.2020.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022]
|
49
|
Integrative analysis of shared genetic pathogenesis by autism spectrum disorder and obsessive-compulsive disorder. Biosci Rep 2020; 39:221433. [PMID: 31808517 PMCID: PMC6928520 DOI: 10.1042/bsr20191942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
Many common pathological features have been observed for both autism spectrum disorders (ASDs) and obsessive-compulsive disorder (OCD). However, no systematic analysis of the common gene markers associated with both ASD and OCD has been conducted so far. Here, two batches of large-scale literature-based disease–gene relation data (updated in 2017 and 2019, respectively) and gene expression data were integrated to study the possible association between OCD and ASD at the genetic level. Genes linked to OCD and ASD present significant overlap (P-value <2.64e-39). A genetic network of over 20 genes was constructed, through which OCD and ASD may exert influence on each other. The 2017-based analysis suggested six potential common risk genes for OCD and ASD (CDH2, ADCY8, APOE, TSPO, TOR1A, and OLIG2), and the 2019-based study identified two more genes (DISP1 and SETD1A). Notably, the gene APOE identified by the 2017-based analysis has been implicated to have an association with ASD in a recent study (2018) with DNA methylation analysis. Our results support the possible complex genetic associations between OCD and ASD. Genes linked to one disease are worth further investigation as potential risk factors for the other.
Collapse
|
50
|
Dermentzaki G, Lotti F. New Insights on the Role of N 6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Front Mol Biosci 2020; 7:555372. [PMID: 32984403 PMCID: PMC7492240 DOI: 10.3389/fmolb.2020.555372] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
RNA modifications termed epitranscriptomics represent an additional layer of gene regulation similar to epigenetic mechanisms operating on DNA. The dynamic nature and the increasing number of RNA modifications offer new opportunities for a rapid fine-tuning of gene expression in response to specific environmental cues. In cooperation with a diverse and versatile set of effector proteins that "recognize" them, these RNA modifications have the ability to mediate and control diverse fundamental cellular functions, such as pre-mRNA splicing, nuclear export, stability, and translation. N 6-methyladenosine (m6A) is the most abundant of these RNA modifications, particularly in the nervous system, where recent studies have highlighted it as an important post-transcriptional regulator of physiological functions from development to synaptic plasticity, learning and memory. Here we review recent findings surrounding the role of m6A modification in regulating physiological responses of the mammalian nervous system and we discuss its emerging role in pathological conditions such as neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Georgia Dermentzaki
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
- Department of Neurology, Columbia University, New York City, NY, United States
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
- Department of Neurology, Columbia University, New York City, NY, United States
| |
Collapse
|