1
|
Marvi PK, Ahmed SR, Das P, Ghosh R, Srinivasan S, Rajabzadeh AR. Prunella vulgaris-phytosynthesized platinum nanoparticles: Insights into nanozymatic activity for H 2O 2 and glutamate detection and antioxidant capacity. Talanta 2024; 274:125998. [PMID: 38574541 DOI: 10.1016/j.talanta.2024.125998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Artificial nanozymes (enzyme-mimics), specifically metallic nanomaterials, have garnered significant attention recently due to their reduced preparation cost and enhanced stability in a wide range of environments. The present investigation highlights, for the first time, a straightforward green synthesis of biogenic platinum nanoparticles (PtNPs) from a natural resource, namely Prunella vulgaris (Pr). To demonstrate the effectiveness of the phytochemical extract as an effective reducing agent, the PtNPs were characterized by various techniques such as UV-vis spectroscopy, High-resolution Transmission electron microscopy (HR-TEM), zeta-potential analysis, Fourier-transform infrared spectroscopy (FTIR), and Energy dispersive spectroscopy (EDS). The formation of PtNPs with narrow size distribution was verified. Surface decoration of PtNPs was demonstrated with multitudinous functional groups springing from the herbal extract. To demonstrate their use as viable nanozymes, the peroxidase-like activity of Pr/PtNPs was evaluated through a colorimetric assay. Highly sensitive visual detection of H2O2 with discrete linear ranges and a low detection limit of 3.43 μM was demonstrated. Additionally, peroxidase-like catalytic activity was leveraged to develop a colorimetric platform to quantify glutamate biomarker levels with a high degree of selectivity, the limit of detection (LOD) being 7.00 μM. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test was used to explore the scavenging nature of the PtNPs via the degradation of DPPH. Overall, the colorimetric assay developed using the Pr/PtNP nanozymes in this work could be used in a broad spectrum of applications, ranging from biomedicine and food science to environmental monitoring.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Syed Rahin Ahmed
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Raja Ghosh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| |
Collapse
|
2
|
Dang KPT, Nguyen TTG, Cao TD, Le VD, Dang CH, Duy NPH, Phuong PTT, Huy DM, Kim Chi TT, Nguyen TD. Biogenic fabrication of a gold nanoparticle sensor for detection of Fe 3+ ions using a smartphone and machine learning. RSC Adv 2024; 14:20466-20478. [PMID: 38946772 PMCID: PMC11208897 DOI: 10.1039/d4ra03265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
In recent years, smartphones have been integrated into rapid colorimetric sensors for heavy metal ions, but challenges persist in accuracy and efficiency. Our study introduces a novel approach to utilize biogenic gold nanoparticle (AuNP) sensors in conjunction with designing a lightbox with a color reference and machine learning for detection of Fe3+ ions in water. AuNPs were synthesized using the aqueous extract of Eleutherine bulbosa leaf as reductants and stabilizing agents. Physicochemical analyses revealed diverse AuNP shapes and sizes with an average size of 19.8 nm, with a crystalline structure confirmed via SAED and XRD techniques. AuNPs exhibited high sensitivity and selectivity in detection of Fe3+ ions through UV-vis spectroscopy and smartphones, relying on nanoparticle aggregation. To enhance image quality, we developed a lightbox and implemented a reference color value for standardization, significantly improving performance of machine learning algorithms. Our method achieved approximately 6.7% higher evaluation metrics (R 2 = 0.8780) compared to non-normalized approaches (R 2 = 0.8207). This work presented a promising tool for quantitative Fe3+ ion analysis in water.
Collapse
Affiliation(s)
- Kim-Phuong T Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - T Thanh-Giang Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Tien-Dung Cao
- School of Information Technology, Tan Tao University Long An Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Nguyen Phuc Hoang Duy
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Pham Thi Thuy Phuong
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Do Manh Huy
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| |
Collapse
|
3
|
Liang D, Yang XY, Li Q, Chang H, Liu X. A highly sensitive and selective colorimetric aptasensor for detecting sulfadiazine in river waters based on gold nanoparticles synthesized from discarded Longan seed extract. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:257. [PMID: 38884845 DOI: 10.1007/s10653-024-02018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Gold nanoparticles (AuNPs) were extensively employed for in-situ detection sulfadiazine (SDZ) residues, yet current synthesis methods suffer from complex procedures, reagent pollution of the environment, and low particle quality. This study presents a novel synthesis method using discarded longan seed extract as a reducing agent to synthesized high-quality AuNPs, and then can be used for in-situ SDZ detection. Response surface methodology (RSM) was employed to optimize synthesis parameters, which resulted in five optimal combinations that enhanced the flexibility of synthesis. These AuNPs, ranging in size from 18.26 nm to 33.8 nm with zeta potentials from - 29.5 mV to - 14.3 mV, were successfully loaded with functional groups from longan seed extract. In the detection of SDZ, the colorimetric aptasensor demonstrated excellent sensitivity and selectivity over other antibiotics with a limit of detection and quantification at 70.98 ng·mL-1 and 236.59 ng·mL-1 in the concentration range of 200-800 ng·mL-1. Recoveries of spiked SDZ samples ranged from 97.90% to 106.7%, with RSD values below 9.25%. Meanwhile, the aptasensor exhibited exceptional diagnostic efficacy (AUC: 0.976) compared to UV absorption methods in the ROC evaluation. In conclusion, this study highlights the potential of using AuNPs synthesized from longan seed extract coupled with aptamer technology as a straightforward detection method for SDZ in river water, offering promising applications in environmental monitoring.
Collapse
Grants
- 2018SZ0306 Sichuan Province Science and Technology Support Program
- 2018SZ0306 Sichuan Province Science and Technology Support Program
- 2018SZ0306 Sichuan Province Science and Technology Support Program
- 2018SZ0306 Sichuan Province Science and Technology Support Program
- 2018SZ0306 Sichuan Province Science and Technology Support Program
- 202213705020 Undergraduate Innovation and Entrepreneurship Training Program, China
- 202213705020 Undergraduate Innovation and Entrepreneurship Training Program, China
- 202213705020 Undergraduate Innovation and Entrepreneurship Training Program, China
- 202213705020 Undergraduate Innovation and Entrepreneurship Training Program, China
- 202213705020 Undergraduate Innovation and Entrepreneurship Training Program, China
- YCX2023-01-47 Graduate Innovation and Entrepreneurship Training Program of Chengdu medical college, China
- YCX2023-01-47 Graduate Innovation and Entrepreneurship Training Program of Chengdu medical college, China
- YCX2023-01-47 Graduate Innovation and Entrepreneurship Training Program of Chengdu medical college, China
- YCX2023-01-47 Graduate Innovation and Entrepreneurship Training Program of Chengdu medical college, China
- YCX2023-01-47 Graduate Innovation and Entrepreneurship Training Program of Chengdu medical college, China
Collapse
Affiliation(s)
- Dong Liang
- College of Public Health, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xing-Yi Yang
- College of Public Health, Chengdu Medical College, Chengdu, People's Republic of China
| | - Qiang Li
- College of Public Health, Chengdu Medical College, Chengdu, People's Republic of China
| | - Huan Chang
- College of Public Health, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xin Liu
- College of Public Health, Chengdu Medical College, Chengdu, People's Republic of China.
| |
Collapse
|
4
|
Ariski RT, Lee KK, Kim Y, Lee CS. The impact of pH and temperature on the green gold nanoparticles preparation using Jeju Hallabong peel extract for biomedical applications. RSC Adv 2024; 14:14582-14592. [PMID: 38708107 PMCID: PMC11066618 DOI: 10.1039/d4ra00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The utilization of gold nanoparticles (AuNPs) has garnered significant attention in recent times, particularly in the field of biomedical research. The utilization of AuNPs in chemical synthesis procedures raises apprehensions regarding their potential toxicity in living organisms, which is inconsistent with their purported eco-friendly and cost-effective aspects. In this investigation, AuNPs were synthesized via the green synthesis approach utilizing Jeju Hallabong peel extract (HPE), a typical fruit variety indigenous to South Korea. The visible-range absorption spectrum of gold nanoparticles from green synthesis (HAuNPs) that are red wine in color occurs at a wavelength of λ = 517 nm. The morphology and particle size distribution were analysed using transmission electron microscopy (TEM) and ImageJ software. The TEM images reveal that the HAuNPs exhibit a high degree of dispersion and uniformity in their spherical shape, with an average size of approximately 7 nm. Moreover, elevating the initial pH level of the mixed solution has an impact on the decrease in particle dimensions, as evidenced by the blue shift observed in the UV-visible spectroscopy absorbance peak. Elevating the reaction temperature may accelerate the synthesis duration. However, it does not exert a substantial impact on the particle dimensions. The outcomes of an avidin-biocytin colorimetric assay provide preliminary analyses of possible sensor tunability using HAuNPs. The cytotoxicity of HAuNPs was evaluated through in vitro studies using the MTT assay on RAW 264.7 cell lines. The results indicated that the HAuNPs exhibited lower cytotoxicity compared to both chemically reduced gold nanoparticles (CAuNPs).
Collapse
Affiliation(s)
- Ridhola Tri Ariski
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
- Department of Biotechnology, University of Science & Technology (UST) Daejeon 34113 Republic of Korea
| | - Kyung Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC) Gwangju 62407 Republic of Korea
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
- Department of Biotechnology, University of Science & Technology (UST) Daejeon 34113 Republic of Korea
| |
Collapse
|
5
|
Elattar KM, Al-Otibi FO, El-Hersh MS, Attia AA, Eldadamony NM, Elsayed A, Menaa F, Saber WI. Multifaceted chemical and bioactive features of Ag@TiO 2 and Ag@SeO 2 core/shell nanoparticles biosynthesized using Beta vulgaris L. extract. Heliyon 2024; 10:e28359. [PMID: 38560145 PMCID: PMC10979172 DOI: 10.1016/j.heliyon.2024.e28359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Due to increasing concerns about environmental impact and toxicity, developing green and sustainable methods for nanoparticle synthesis is attracting significant interest. This work reports the successful green synthesis of silver (Ag), silver-titanium dioxide (Ag@TiO2), and silver-selenium dioxide (Ag@SeO2) nanoparticles (NPs) using Beta vulgaris L. extract. Characterization by XRD, SEM, TEM, and EDX confirmed the successful formation of uniformly distributed spherical NPs with controlled size (25 ± 4.9 nm) and desired elemental composition. All synthesized NPs and the B. vulgaris extract exhibited potent free radical scavenging activity, indicating significant antioxidant potential. However, Ag@SeO2 displayed lower hemocompatibility compared to other NPs, while Ag@SeO2 and the extract demonstrated reduced inflammation in a carrageenan-induced paw edema animal model. Interestingly, Ag@TiO2 and Ag@SeO2 exhibited strong antifungal activity against Rhizoctonia solani and Sclerotia sclerotium, as evidenced by TEM and FTIR analyses. Generally, the findings suggest that B. vulgaris-derived NPs possess diverse biological activities with potential applications in various fields such as medicine and agriculture. Ag@TiO2 and Ag@SeO2, in particular, warrant further investigation for their potential as novel bioactive agents.
Collapse
Affiliation(s)
- Khaled M. Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Fatimah O. Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed S. El-Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Attia A. Attia
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Noha M. Eldadamony
- Seed Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt
| | - Farid Menaa
- Department of Biomedical and Environmental Engineering (BEE), Fluorotronics, Inc. California Innovation Corporation, San Diego, CA 92037, USA
| | - WesamEldin I.A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| |
Collapse
|
6
|
Singh A, Kumar S, Acharya TK, Kumar S, Chawla S, Goswami C, Goswami L. Modulation of calcium-influx by carboxymethyl tamarind‑gold nanoparticles promotes biomineralization for tissue regeneration. Int J Biol Macromol 2024; 264:130605. [PMID: 38447827 DOI: 10.1016/j.ijbiomac.2024.130605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Gold nanoparticles (AuNPs) have been reported to modulate bone tissue regeneration and are being extensively utilized in biomedical implementations attributable to their low cytotoxicity, biocompatibility and simplicity of functionalization. Lately, biologically synthesized nanoparticles have acquired popularity because of their environmentally acceptable alternatives for diverse applications. Here we report the green synthesis of AuNPs by taking the biopolymer Carboxymethyl Tamarind (CMT) as a unique reducing as well as a stabilizing agent. The synthesized CMT-AuNPs were analyzed by UV-vis spectrophotometer, DLS, FTIR, XRD, TGA, SEM and TEM. These results suggest that CMT-AuNPs possess an average size of 19.93 ± 8.52 nm and have long-term stability. Further, these CMT-AuNPs promote the proliferation together with the differentiation and mineralization of osteoblast cells in a "dose-dependent" manner. Additionally, CMT-AuNPs are non-toxic to SD rats when applied externally. We suggest that the CMT-AuNPs have the potential to be a suitable and non-toxic agent for differentiation and mineralization of osteoblast cells in vitro and this can be tested in vivo as well.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Satish Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Tusar Kanta Acharya
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Shamit Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Luna Goswami
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India; School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India.
| |
Collapse
|
7
|
Thirupathi B, Pongen YL, Kaveriyappan GR, Dara PK, Rathinasamy S, Vinayagam S, Sundaram T, Hyun BK, Durairaj T, Sekar SKR. Padina boergesenii mediated synthesis of Se-ZnO bimetallic nanoparticles for effective anticancer activity. Front Microbiol 2024; 15:1358467. [PMID: 38468852 PMCID: PMC10925794 DOI: 10.3389/fmicb.2024.1358467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Evaluating the anticancer property of Padina boergesenii mediated bimetallic nanoparticles. Methods The present study focuses on synthesizing Se-ZnO bimetallic nanoparticles from an aqueous algal extract of brown algae Padina boergesenii.Synthesized Se-ZnO NPs were characterized by UV, FTIR, SEM-EDS and HRTEM for confirmation along with the anticancer activity by MTT assay. Results The UV gave an absorbance peak at 342 and 370 nm, and the FTIR showed functional groups involved in synthesizing Se-ZnO NPs. The TEM micrographs indicated the crystalline nature and confirmed the size of the Se-ZnO NPs to be at an average size of 26.14 nm. Anticancer efficacy against the MCF-7 breast and HepG2 (hepatoblastoma) cell lines were also demonstrated, attaining an IC50 value of 67.9 µg and 74.9 µg/ml respectively, which caused 50% cell death. Discussion This work aims to highlight an effective method for delivering bioactive compounds extracted from brown algae and emphasize its future therapeutic prospects. The potential of Selenium-Zinc oxide nanoparticles is of great interest due to the biocompatibility and low toxicity aspects of selenium combined with the cost-effectiveness and sustainability of zinc metal. The presence of bioactive compounds contributed to the stability of the nanoparticles and acted as capping properties.
Collapse
Affiliation(s)
- Balaji Thirupathi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Yimtar Lanutoshi Pongen
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Pavan Kumar Dara
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Suresh Rathinasamy
- Research and Development Centre, Greensmed Labs, Thoraipakkam, Chennai, Tamil Nadu, India
| | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Baek Kwang Hyun
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Thirumurugan Durairaj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | | |
Collapse
|
8
|
Almutleb ES, Ramachandran S, Khan AA, El-Hiti GA, Alanazi SA. Synergistic Effect of Nilavembu Choornam-Gold Nanoparticles on Antibiotic-Resistant Bacterial Susceptibility and Contact Lens Contamination-Associated Infectious Pathogenicity. Int J Mol Sci 2024; 25:2115. [PMID: 38396792 PMCID: PMC10889799 DOI: 10.3390/ijms25042115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Antibiotic-resistant bacterial colonies mitigate rapid biofilm formation and have complex cell wall fabrications, making it challenging to penetrate drugs across their biofilm barriers. The objective of this study was to investigate the antibacterial susceptibility of antibiotic-resistant bacteria and contact lens barrenness. Nilavembu Choornam-Gold Nanoparticles (NC-GNPs) were synthesized using NC polyherbal extract and characterized by UV-visible spectrophotometer, SEM-EDX, XRD, Zeta sizer, FTIR, and TEM analysis. Contact lenses with overnight cultures of antibiotic-resistant bacteria K. pneumoniae and S. aureus showed significant differences in growth, biofilm formation, and infection pathogenicity. The NC-GNPs were observed in terms of size (average size is 57.6 nm) and surface chemistry. A zone of inhibition was calculated for K. pneumoniae 18.8 ± 1.06, S. aureus 23.6 ± 1.15, P. aeruginosa 24.16 ± 0.87, and E. faecalis 24.5 ± 1.54 mm at 24 h of NC-GNPs alone treatment. In electron microscopy studies, NC-GNP-treated groups showed nuclear shrinkage, nuclear disintegration, degeneration of cell walls, and inhibited chromosomal division. In contrast, normal bacterial colonies had a higher number of cell divisions and routinely migrated toward cell multiplications. NC-GNPs exhibited antibacterial efficacy against antibiotic-resistant bacteria when compared to NC extract alone. We suggest that NC-GNPs are highly valuable to the population of hospitalized patients and other people to reduce the primary complications of contact lens contamination-oriented microbial infection and the therapeutic efficiency of antibiotic-resistant bacterial pathogenicity.
Collapse
Affiliation(s)
| | - Samivel Ramachandran
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (E.S.A.); (A.A.K.); (G.A.E.-H.); (S.A.A.)
| | | | | | | |
Collapse
|
9
|
Christina B, Thanigaimani K, Sudhakaran R, Mohan S, Arumugam N, Almansour AI, Mahalingam SM. Pyto-Architechture of Ag, Au and Ag-Au bi-metallic nanoparticles using waste orange peel extract for enable carcinogenic Congo red dye degradation. ENVIRONMENTAL RESEARCH 2024; 242:117625. [PMID: 38007079 DOI: 10.1016/j.envres.2023.117625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Ecologically inspired to develop silver, gold and silver/gold bimetallic nanoparticles from discarded orange peel extract. The plant-derived compounds included in discarded orange peel extract have been accountable for the development of Ag, Au and Ag-Au bimetallic nanoparticles, that might be used in the biosynthetic process. The qualitative assessment of developed silver, gold and silver/gold bimetallic nanoparticles has been performed by UV-visible, XRD pattern, FT IR analysis, TEM/HRTEM, EDX and BET isotherm analysis. In this investigation, the photocatalytic effect of developed silver, gold and silver/gold bimetallic nanoparticles on Congo red dye breakdown efficiency was achieved at 96%, 94%, and 99.2%, respectively. Due to prolonged electron-hole recombination process was investigated using UV irradiation and reused for up to 5 consecutive runs without significant loss of photocatalytic activity. Moreover, silver, gold, and silver/gold bimetallic nanoparticles manufactured in an environmentally benign manner could potentially contribute to the ecological cleanup.
Collapse
Affiliation(s)
- B Christina
- PG & Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, 620 022, Tamilnadu, India
| | - K Thanigaimani
- PG & Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, 620 022, Tamilnadu, India.
| | - R Sudhakaran
- PG & Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, 620 022, Tamilnadu, India
| | - S Mohan
- PG & Research Department of Chemistry, Vivekananda College of Arts and Sciences for Women (Autonomous), Elayampalaym, Tiruchengode, 637205, Namakkal-DT, Tamilnadu, India.
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
10
|
Bansal S, Singh A, Poddar D, Thakur S, Jain P. A review on green approaches utilizing phytochemicals in the synthesis of vanadium nano particles and their applications. Prep Biochem Biotechnol 2024; 54:127-149. [PMID: 37530797 DOI: 10.1080/10826068.2023.2214916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In the modern era, inorganic nanoparticles have received profound attention as they possess boundless applications in various fields. Among these, vanadium-based nanoparticles (VNPs) are highly remarkable due to their inherent physiological and biological properties with many therapeutic and other applications, such as drug delivery systems for diseases like cancer, environmental remediation, energy storage, energy conversion, and photocatalysis. Moreover, physically, and chemically synthesized VNPs are very versatile, however, these synthesis routes cause concern to health and the environment due to the highly savage reaction conditions, using highly toxic and harsh chemicals, which compel the researchers to develop an eco-friendly, greener, and sustainable route for synthesis. In this outlook, to avoid the innumerable limitations, a bio approach is used over chemical and physical methods. This present review emphasis on the role of various biological components in the synthesis, especially Phyto-molecules that acts as capping and reducing agent, and solvent system for the nanoparticles synthesis. Furthermore, the influence of various factors on the biogenic synthesized nanoparticles has also been discussed. Finally, potential applications of as-synthesized VNPs, principally as an antimicrobial agent and their role as a nanomedicine, energy applications as a supercapacitor, and photocatalytic agents, have been discussed.
Collapse
Affiliation(s)
- Smriti Bansal
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Ankita Singh
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Deepak Poddar
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Sanjeeve Thakur
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| |
Collapse
|
11
|
Wang F, Feng X, Gao Y, Ding X, Wang W, Zhang J. Green Synthesis of PtPdNiFeCu High-Entropy Alloy Nanoparticles for Glucose Detection. ACS OMEGA 2023; 8:47773-47780. [PMID: 38144105 PMCID: PMC10733955 DOI: 10.1021/acsomega.3c06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
High-entropy alloys have long been used as a new type of alloy material and have attracted widespread concern because of their excellent performance, including their stable microstructure and particular catalytic properties. To design a safer preparation method, we report a novel approach targeting green synthesis, using tea polyphenols to prepare PtPdNiFeCu high-entropy alloy nanoparticles for glucose detection. The fabricated sensors were characterized by transmission electron microscopy and electrochemical experiments. Physical characterization showed that the nanoparticle has better dispersibility, and the average particle size is 7.5 nm. The electrochemical results showed that Tp-PtPdNiFeCu HEA-NPs had a high sensitivity of 1.264 μA mM-1 cm-2, a low detection limit of 4.503 μM, and a wide detection range of 0 - 10 mM. In addition, the sensor has better stability and selectivity for glucose detection.
Collapse
Affiliation(s)
- Fengxia Wang
- College
of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Xin Feng
- College
of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yanting Gao
- College
of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Xu Ding
- College
of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Wei Wang
- School
of Chemistry and Chemical Engineering, Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Ji Zhang
- Bioactive
Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
12
|
Naseer N, Mustafa MM, Latief N, Fazal N, Tariq M, Afreen A, Yaqub F, Riazuddin S. Sarcococca saligna fabricated gold nanoparticles alleviated in vitro oxidative stress and inflammation in human adipose-derived stem cells. J Biomed Mater Res B Appl Biomater 2023; 111:2032-2043. [PMID: 37560935 DOI: 10.1002/jbm.b.35303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023]
Abstract
Oxidative stress is a destructive phenomenon that affects various cell structures including membranes, proteins, lipoproteins, lipids, and DNA. Oxidative stress and inflammation owing to lifestyle changes may lead to serious diseases such as Cancers, Gout, and Arthritis etc. These disorders can be prevented using different therapeutic strategies including nanomedicine. Biosynthesized gold nanoparticles (GNPs) because of their anti-inflammatory and antioxidant bioactivities can be key player in reversal of these ailments. This study was carried out to evaluate the anti-inflammatory and antioxidant potential of bio fabricated GNPs with Sarcococca saligna (S. saligna) extract on injured human adipose-derived Mesenchymal stem cells (hADMSCs). GNPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Scanning Electron Microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and energy dispersive x-ray (EDS). Phytochemical screening of biosynthesized GNPs exhibited a significant release of polyphenols, that is, total phenolic content (TPC) and total flavonoid content (TFC). GNPs priming amended the in vitro injury caused by Monosodium Iodoacetate (MIA) as exhibited by improved cell viability, wound closure response and superoxide dismutase activity (SOD). The anti-inflammatory conduct assessed through NF-κB pathway and other associated inflammatory markers reported down-regulation of TNF-α (0.644 ± 0.045), IL-1β (0.694 ± 0.147) and IL-6 (0.622 ± 0.112), apoptosis causing genes like Caspase-3 (0.734 ± 0.13) and BAX (0.830 ± 0.12), NF-κB pathway, p65 (0.672 ± 0.084) and p105 (0.539 ± 0.083) associated genes. High SOD activity (95 ± 5.25%) revealed by treated hADMSCs with GNPs also supported the antioxidant role of GNPs in vitro model. This study concludes that S. saligna bio fabricated GNPs priming may improve the therapeutic potential of hADMSCs against chronic inflammatory problems by regulating NF-κB pathway.
Collapse
Affiliation(s)
- Nadia Naseer
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Munam Mustafa
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Noreen Latief
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Numan Fazal
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Faiza Yaqub
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College (AIMC), Lahore, Punjab, Pakistan
| |
Collapse
|
13
|
Sarkar J, Mridha D, Davoodbasha MA, Banerjee J, Chanda S, Ray K, Roychowdhury T, Acharya K, Sarkar J. A State-of-the-Art Systemic Review on Selenium Nanoparticles: Mechanisms and Factors Influencing Biogenesis and Its Potential Applications. Biol Trace Elem Res 2023; 201:5000-5036. [PMID: 36633786 DOI: 10.1007/s12011-022-03549-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Selenium is a trace element required for the active function of numerous enzymes and various physiological processes. In recent years, selenium nanoparticles draw the attention of scientists and researchers because of its multifaceted uses. The process involved in chemically synthesized SeNPs has been found to be hazardous in nature, which has paved the way for safe and ecofriendly SeNPs to be developed in order to achieve sustainability. In comparison to chemical synthesis, SeNPs can be synthesized more safely and with greater flexibility utilizing bacteria, fungi, and plants. This review focused on the synthesis of SeNPs utilizing bacteria, fungi, and plants; the mechanisms involved in SeNP synthesis; and the effect of various abiotic factors on SeNP synthesis and morphological characteristics. This article discusses the synergies of SeNP synthesis via biological routes, which can help future researchers to synthesize SeNPs with more precision and employ them in desired fields.
Collapse
Affiliation(s)
- Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, PIN-700019, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, PIN-700032, India
| | - Mubarak Ali Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, PIN-600048, India
| | - Jishnu Banerjee
- Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal, PIN-700118, India
| | - Sumeddha Chanda
- Department of Botany, Scottish Church College, Kolkata, PIN-700006, India
| | - Kasturi Ray
- Department of Botany, North Campus, University of Delhi, University Road, Delhi, PIN-110007, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, PIN-700032, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, PIN-700019, India.
| | - Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Kolkata, PIN-700084, India.
| |
Collapse
|
14
|
Kesharwani P, Ma R, Sang L, Fatima M, Sheikh A, Abourehab MAS, Gupta N, Chen ZS, Zhou Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol Cancer 2023; 22:98. [PMID: 37344887 DOI: 10.1186/s12943-023-01798-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is a grievous disease whose treatment requires a more efficient, non-invasive therapy, associated with minimal side effects. Gold nanoparticles possessing greatly impressive optical properties have been a forerunner in bioengineered cancer therapy. This theranostic system has gained immense popularity and finds its application in the field of molecular detection, biological imaging, cancer cell targeting, etc. The photothermal property of nanoparticles, especially of gold nanorods, causes absorption of the light incident by the light source, and transforms it into heat, resulting in tumor cell destruction. This review describes the different optical features of gold nanoparticles and summarizes the advance research done for the application of gold nanoparticles and precisely gold nanorods for combating various cancers including breast, lung, colon, oral, prostate, and pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York City, NY, 11439, USA
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Baumgarten LG, Freitas AA, Santana ER, Winiarski JP, Dreyer JP, Vieira IC. Graphene and gold nanoparticle-based bionanocomposite for the voltammetric determination of bisphenol A in (micro)plastics. CHEMOSPHERE 2023; 334:139016. [PMID: 37224974 DOI: 10.1016/j.chemosphere.2023.139016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The monitoring of endocrine disruptors in the environment is one of the main strategies in the investigation of potential risks associated with exposure to these chemicals. Bisphenol A is one of the most prevalent endocrine-disrupting compounds and is prone to leaching out from polycarbonate plastic in both freshwater and marine environments. Additionally, microplastics also can leach out bisphenol A during their fragmentation in the water environment. In the quest for a highly sensitive sensor to determine bisphenol A in different matrices, an innovative bionanocomposite material has been achieved. This material is composed of gold nanoparticles and graphene, and was synthesized using a green approach that utilized guava (Psidium guajava) extract for reduction, stabilization, and dispersion purposes. Transmission electron microscopy images revealed well-spread gold nanoparticles with an average diameter of 31 nm on laminated graphene sheets in the composite material. An electrochemical sensor was developed by depositing the bionanocomposite onto a glassy carbon surface, which displayed remarkable responsiveness towards bisphenol A. Experimental conditions such as the amount of graphene, extract: water ratio of bionanocomposite and pH of the supporting electrolyte were optimized to improve the electrochemical performance. The modified electrode displayed a marked improvement in current responses for the oxidation of bisphenol A as compared to the uncovered glassy carbon electrode. A calibration plot was established for bisphenol A in 0.1 mol L-1 Britton-Robinson buffer (pH 4.0), and the detection limit was determined to equal to 15.0 nmol L-1. Recovery data from 92 to 109% were obtained in (micro)plastics samples using the electrochemical sensor and were compared with UV-vis spectrometry, demonstrating its successful application with accurate responses.
Collapse
Affiliation(s)
- Luan Gabriel Baumgarten
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Aline Alves Freitas
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Edson Roberto Santana
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil.
| | - João Paulo Winiarski
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Juliana Priscila Dreyer
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Iolanda Cruz Vieira
- Laboratory of Biosensors, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
16
|
Zuhrotun A, Oktaviani DJ, Hasanah AN. Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compounds. Molecules 2023; 28:molecules28073240. [PMID: 37050004 PMCID: PMC10096681 DOI: 10.3390/molecules28073240] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Gold and silver nanoparticles are nanoparticles that have been widely used in various fields and have shown good benefits. The method of nanoparticle biosynthesis utilizing plant extracts, also known as green synthesis, has become a promising method considering the advantages it has compared to other synthesis methods. This review aims to give an overview of the phytochemical compounds in plants used in the synthesis of gold and silver nanoparticles, the nanoparticle properties produced using plant extracts based on the concentration and structure of phytochemical compounds, and their applications. Phytochemical compounds play an important role as reducing agents and stabilizers in the stages of the synthesis of nanoparticles. Polyphenol compounds, reducing sugars, and proteins are the main phytochemical compounds that are responsible for the synthesis of gold and silver nanoparticles. The concentration of phytochemical compounds affects the physical properties, stability, and activity of nanoparticles. This is important to know to be able to overcome limitations in controlling the physical properties of the nanoparticles produced. Based on structure, the phytochemical compounds that have ortho-substituted hydroxyl result in a smaller size and well-defined shape, which can lead to greater activity and stability. Furthermore, the optimal condition of the biosynthesis process is required to gain a successful reaction that includes setting the metal ion concentration, temperature, reaction time, and pH.
Collapse
Affiliation(s)
- Ade Zuhrotun
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| | - Dede Jihan Oktaviani
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| |
Collapse
|
17
|
Vera J, Herrera W, Hermosilla E, Díaz M, Parada J, Seabra AB, Tortella G, Pesenti H, Ciudad G, Rubilar O. Antioxidant Activity as an Indicator of the Efficiency of Plant Extract-Mediated Synthesis of Zinc Oxide Nanoparticles. Antioxidants (Basel) 2023; 12:784. [PMID: 37107159 PMCID: PMC10135172 DOI: 10.3390/antiox12040784] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/29/2023] Open
Abstract
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using a diverse range of plant species has been extensively reported. Despite the success achieved by biogenic synthesis, there are problems with the control and prediction of the properties of ZnO NPs, due to phytochemical diversity between plant species. In this sense, the main objective of our work was to investigate the effect of the antioxidant activity (AA) of plant extracts on the physicochemical characteristics of ZnO NPs (production yield, chemical composition, polydispersity index (PDI), surface charge (ζ-potential) and average particle size). In order to accomplish this objective, four plant extract with different antioxidant activities were used: Galega officinalis, Buddleja globosa, Eucalyptus globulus, and Aristotelia chilensis. Phytochemical screening, quantitative analysis of phenolic compounds and antioxidant activity determination of the different extracts were carried out. Chemical species such as catechin, malvidin, quercetin, caffeic acid, and ellagic acid were the dominant components, found in the extracts studied. The A. chilensis extract showed the highest value of total phenolic compounds (TPC) and AA, followed by E. globulus, B. globosa and G. officinalis. Zetasizer, Fourier-transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) data show that plant extracts with lower AA leads to a decrease in the yield of ZnO NPs and an increase in the amount of residual organic extract that remains on the particles. The latter caused an increase in the average particle size, PDI and ζ-potential as a consequence of agglomeration and particle coarsening. Our result suggest that it is possible to use the AA as an indicator of the potential reducing capacity of plant extracts. In this way it is possible to guarantee the reproducibility of the synthesis process as well as ensure the formation of ZnO NPs with desired characteristics.
Collapse
Affiliation(s)
- Joelis Vera
- Doctorate in Sciences Engineering with Specialization in Bioprocess, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Wence Herrera
- Doctoral Program in Sciences of Natural Resources, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Edward Hermosilla
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile; (E.H.); (M.D.); (J.P.); (G.T.)
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Marcela Díaz
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile; (E.H.); (M.D.); (J.P.); (G.T.)
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Javiera Parada
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile; (E.H.); (M.D.); (J.P.); (G.T.)
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil;
| | - Gonzalo Tortella
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile; (E.H.); (M.D.); (J.P.); (G.T.)
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Héctor Pesenti
- Núcleo de Investigación en Bioprocesos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4810302, Chile;
| | - Gustavo Ciudad
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile;
- Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile; (E.H.); (M.D.); (J.P.); (G.T.)
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile;
| |
Collapse
|
18
|
Liu B, Li C, Han J, Chen Y, Zhao Z, Lu H. Biosynthesized gold nanoparticles using leaf extract of Citrus medica inhibit hepatocellular carcinoma through regulation of the Wnt/β-catenin signaling pathway. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
19
|
Rajput A, Sharma P, Kumar N, Kaur S, Arora S. Neuroprotective activity of novel phenanthrene derivative from Grewia tiliaefolia by in vitro and in silico studies. Sci Rep 2023; 13:2444. [PMID: 36765125 PMCID: PMC9918530 DOI: 10.1038/s41598-023-29446-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Medicinal plants possess range of phytochemicals accountable for their diverse biological activities. Presently, such compounds have been isolated from medicinal plants, characterized and evaluated for their pharmacological potential. In the present study, the efforts have been made to isolate the compound(s) from Grewia tiliaefolia Vahl., plant known for its ameliorative effect on brain related diseases such as anxiety, depression, cognitive disorders and Parkinson's disease. Plant extract was subjected to isolation of compound(s) using column chromatography and isolated compound was characterized by NMR FTIR and LCMS. The isolated compound was novel with the IUPAC name of the compound is propyl 3-hydroxy-10,13-dimethyl-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthrene-17-carboxylate, designated as A-1 and has not been reported before. A-1 was further evaluated for its antioxidant potential using in vitro antioxidant assays (2,2-diphenyl-1-picryl-hydrazyl-hydrate, DPPH assay and reducing power assay, RPA). Also, Acetylcholinesterase (AChE) inhibitory potential of A-1 and extract was analysed. Results showed that A-1 exhibited significantly higher antioxidant activity in both DPPH and RPA assay as compared to plant extract. In case of AChE inhibitory activity again, A-1 has shown significantly higher activity as compared to plant extract. In silico study was conducted to predict its action on proteins playing crucial role in neurological and neurodegenerative disorders such as gamma amino butyric acid (GABA) receptor and glutamate α amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (Glu AMPA) receptor in epilepsy and AChE enzyme in Alzheimer's diseases. The compound has shown interaction in following order: AChE > GABA receptor > Glu AMPA receptor. Further, molecular dynamic simulations and ADME studies of A-1 and AChE enzyme revealed that A-1 yielded good results in all parameters and hence can relieve Alzheimer's like symptoms.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
20
|
Rónavári A, Balázs M, Szilágyi Á, Molnár C, Kotormán M, Ilisz I, Kiricsi M, Kónya Z. Multi-round recycling of green waste for the production of iron nanoparticles: synthesis, characterization, and prospects in remediation. NANOSCALE RESEARCH LETTERS 2023; 18:8. [PMID: 36757485 PMCID: PMC9911567 DOI: 10.1186/s11671-023-03784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Due to the widespread applications of metal nanoparticles (NPs), green synthesis strategies have recently advanced, e.g., methods that utilize extracts made from different plant wastes. A particularly innovative approach to reducing large amounts of available household/agricultural green wastes is their application in nanoparticle generation. Regarding this, the aim of our work was to examine the possibility of upgrading green nanoparticle syntheses from an innovative economic and environmental point of view, namely by investigating the multiple recyclabilities of green tea (GT), coffee arabica (CA), and Virginia creeper (Parthenocissus quinquefolia) (VC) waste residues for iron nanoparticle (FeNPs) synthesis. The plant extracts obtained by each extraction round were analyzed individually to determine the amount of main components anticipated to be involved in NPs synthesis. The synthesized FeNPs were characterized by X-ray powder diffraction and transmission electron microscopy. The activity of the generated FeNPs in degrading chlorinated volatile organic compounds (VOC) and thus their future applicability for remediation purposes were also assessed. We have found that VC and especially GT residues could be reutilized in multiple extraction rounds; however, only the first extract of CA was suitable for FeNPs' generation. All of the obtained FeNPs could degrade VOC with efficiencies GT1-Fe 91.0%, GT2-Fe 83.2%, GT3-Fe 68.5%; CA1-Fe 76.2%; VC1-Fe 88.2%, VC2-Fe 79.7%, respectively, where the number (as in GT3) marked the extraction round. These results indicate that the adequately selected green waste material can be reutilized in multiple rounds for nanoparticle synthesis, thus offering a clean, sustainable, straightforward alternative to chemical methods.
Collapse
Affiliation(s)
- Andrea Rónavári
- grid.9008.10000 0001 1016 9625Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Margit Balázs
- Division for Biotechnology, Bay Zoltan Nonprofit Ltd. for Applied Research, Szeged, Hungary
| | - Árpád Szilágyi
- grid.9008.10000 0001 1016 9625Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, Szeged, 6726 Hungary
| | - Csaba Molnár
- grid.516087.dKoch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Márta Kotormán
- grid.9008.10000 0001 1016 9625Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, Szeged, 6726 Hungary
| | - István Ilisz
- grid.9008.10000 0001 1016 9625Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| | - Zoltán Kónya
- grid.9008.10000 0001 1016 9625Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary ,ELKH-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
21
|
Asl SS, Tafvizi F, Noorbazargan H. Biogenic synthesis of gold nanoparticles using Satureja rechingeri Jamzad: a potential anticancer agent against cisplatin-resistant A2780CP ovarian cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20168-20184. [PMID: 36251187 DOI: 10.1007/s11356-022-23507-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drug resistance of cancer cells is a major issue in cancer treatment. Plant-mediated nanoparticle synthesis has been applied in recent years to overcome this problem. In this study, the biogenic synthesis of AuNPs was explored using Satureja rechingeri Jamzad aqueous leaf extract, and their anticancer effects were evaluated in cisplatin-resistant A2780CP ovarian cancer cells. The chemical composition of S. rechingeri Jamzad was analyzed using gas chromatography-mass spectrometry. The characteristics of green-synthesized AuNPs were confirmed using XRD, FTIR, UV-visible spectroscopy, TEM, SEM, EDX, DLS, and zeta potential. The cytotoxic effects of AuNPs and S. rechingeri Jamzad aqueous extract on cisplatin-resistant A2780CP ovarian cancer cells were evaluated by MTT assay and flow cytometry. Real-time PCR analyzed gene expression. The chemical composition revealed that carvacrol (89%) was the main component of the S. rechingeri Jamzad extract. The average size of the spherical biosynthesized AuNPs was 15.1 ± 3.7 nm. The AuNPs and plant extract inhibited the growth of cisplatin-resistant ovarian cancer cells in a time- and dose-dependent manner. The apoptotic cell death was confirmed by flow cytometry and DAPI staining. The proapoptotic genes were upregulated, while anti-apoptotic and metastatic genes were downregulated. According to the cell cycle analysis, cancer cells were arrested in the G0/G1 phase. Considering the anticancer activity of the synthesized AuNPs using S. rechingeri Jamzad and the low side effects of AuNPs on normal cells, these AuNPs showed strong potential for use as biological agents in drug-resistant cancer cells treatment.
Collapse
Affiliation(s)
- Sahar Sadeghi Asl
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
23
|
Narayanan M, Devarajan N, Salmen SH, Alharbi SA, Lavarti R, Lan Chi NT, Brindhadevi K. Characterization of NiONPs synthesized by aqueous extract of orange fruit waste and assessed their antimicrobial and antioxidant potential. ENVIRONMENTAL RESEARCH 2023; 216:114734. [PMID: 36343715 DOI: 10.1016/j.envres.2022.114734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
This research was performed to evaluate the nickel oxide nanoparticles (NiONPs) fabricating potential of orange fruit waste (OFW) aqueous extract. Moreover characterize the synthesized OFW-NiONPs through standard techniques such as UV-vis. spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and Scanning Electron Microscope (SEM) analyses. Furthermore, the antimicrobial and antioxidant potential of OFW-NiONPs were studied against most common microbial pathogens (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Aspergillus niger) and free radicals (2,2-diphenyl-1-picrylhydrazyl (DPPH), H2O2, OH, and FRAP). A sharp absorbance peak was obtained at 324 nm under UV-vis spectrum analysis that confirmed that the synthesis of OFW-NiONPs and it has been capped and stabilized by numbers of active functional groups studied through FTIR analysis. SEM and DLS analyses revealed that the cubic and triangle shaped OFW-NiONPs with the size intensity distribution was ranging from 21 nm to 130 nm. Interestingly, the OFW-NiONPs showed remarkable antimicrobial activity against the common microbial pathogens in the order of E. coli > A. niger > K. pneumoniae > B. subtilis > S. aureus at increased concentration of 200 μg mL-1. Similarly, the synthesized OFW-NiONPs also possess significant free radicals scavenging activity against DPPH, OH, and FRAP. These results conclude that this OFW-NiONPs can be considered for some biomedical applications after the investigations of some in-vivo research.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India
| | | | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Rupa Lavarti
- Pharmacology and Toxicology Department, Augusta University, USA
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
24
|
Bernardo LR, Braga ARC. Sakuranetin State of the Art: Physical Properties, Biological Effects, and Biotechnological Trends. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| |
Collapse
|
25
|
Xulu JH, Ndongwe T, Ezealisiji KM, Tembu VJ, Mncwangi NP, Witika BA, Siwe-Noundou X. The Use of Medicinal Plant-Derived Metallic Nanoparticles in Theranostics. Pharmaceutics 2022; 14:2437. [PMID: 36365255 PMCID: PMC9698412 DOI: 10.3390/pharmaceutics14112437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 08/20/2023] Open
Abstract
In the quest to effectively diagnose and treat the diseases that afflict mankind, the development of a tool capable of simultaneous detection and treatment would provide a significant cornerstone for the survival and control of these diseases. Theranostics denotes a portmanteau of therapeutics and diagnostics which simultaneously detect and treat ailments. Research advances have initiated the advent of theranostics in modern medicine. Overall, theranostics are drug delivery systems with molecular or targeted imaging agents integrated into their structure. The application of theranostics is rising exponentially due to the urgent need for treatments that can be utilized for diagnostic imaging as an aid in precision and personalised medicine. Subsequently, the emergence of nanobiotechnology and the green synthesis of metallic nanoparticles (MNPs) has provided one such avenue for nanoscale development and research. Of interest is the drastic rise in the use of medicinal plants in the synthesis of MNPs which have been reported to be potentially effective in the diagnosis and treatment of diseases. At present, medicinal plant-derived MNPs have been cited to have broad pharmacological applications and have been studied for their potential use in the treatment and management of cancer, malaria, microbial and cardiovascular diseases. The subject of this article regards the role of medicinal plants in the synthesis of MNPs and the potential role of MNPs in the field of theranostics.
Collapse
Affiliation(s)
- Jabulile Happiness Xulu
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Kenneth M. Ezealisiji
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Port Harcourt, PMB 5323 Choba, Rivers State, Nigeria
| | - Vuyelwa J. Tembu
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Nontobeko P. Mncwangi
- Department of Pharmacy Practice, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, Pretoria 0204, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| |
Collapse
|
26
|
Salih AM, Al-Qurainy F, Khan S, Nadeem M, Tarroum M, Shaikhaldein HO. Biogenic silver nanoparticles improve bioactive compounds in medicinal plant Juniperus procera in vitro. FRONTIERS IN PLANT SCIENCE 2022; 13:962112. [PMID: 36226285 PMCID: PMC9549325 DOI: 10.3389/fpls.2022.962112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/19/2022] [Indexed: 05/27/2023]
Abstract
Bioactive compounds of medicinal plants present as natural ingredients provide health benefits beyond the basic nutritional value of these products. However, the availability of bioactive compounds in the current natural sources is limited. Hence, the induction of bioactive compound production from medicinal plants through nanoparticles (NPs) might play a vital role in industrially important medicinal compounds. Therefore, this study aimed to synthesize silver nanoparticles (AgNPs) biologically and to investigate their effect on phytochemical compound production from the callus of Juniperus procera. AgNPs were synthesized biologically using aqueous leaf extract of Phoenix dactylifera, which acted as a reducing and capping agent, and silver nitrate solution. The formation of AgNPs has been confirmed through different analytical techniques such as UV-Visible spectroscopy (UV), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and scanning electron microscope (SEM). The impact of different concentrations (0.0, 5, 20, and 50 mg/L) of AgNPs on enzymatic and non-enzymatic antioxidants of the callus of J. procera was investigated. The obtained results showed a significant effect of AgNPs on biomass accumulation and non-enzymatic antioxidants (phenol, tannin, and flavonoid content). Additionally, total protein content and superoxide dismutase (SOD) activity were increased in response to AgNPs. Furthermore, bioactive compounds like gallic acid, tannic acid, coumarin, hesperidin, rutin, quercetin, and ferruginol were chromatographically separated and quantified using high-performance liquid chromatography (HPLC) with reference standards. These compounds were increased significantly in response to AgNPs treatments. We concluded that AgNPs could be a promising elicitor for improving the production of phytochemical compounds in medicinal plants. This work can serve asa good model for improving the production of bioactive compounds from medicinal plants in vitro. This molecular investigation should be done to understand better the metabolic mechanism leading to bioactive compound production scaling.
Collapse
Affiliation(s)
- Abdalrhaman M. Salih
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
27
|
Catechol Mediated Synthesis of Monometallic and Bimetallic Nanoparticles and Catalytic Efficiency of Monometallic Nanoparticles. Catal Letters 2022. [DOI: 10.1007/s10562-022-04095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Patil T, Gambhir R, Vibhute A, Tiwari AP. Gold Nanoparticles: Synthesis Methods, Functionalization and Biological Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02287-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Biogenic synthesis of gold nanoparticles mediated by Spondias dulcis (Anacardiaceae) peel extract and its cytotoxic activity in human breast cancer cell. Toxicol Rep 2022; 9:1092-1098. [DOI: 10.1016/j.toxrep.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
|
30
|
Thermal-assisted synthesis of gold nanoparticles using aqueous extract of Helicteres isora L. fruit: characterization and antioxidant activity. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Ahmad Kuthi N, Chandren S, Basar N, Jamil MSS. Biosynthesis of Gold Nanoisotrops Using Carallia brachiata Leaf Extract and Their Catalytic Application in the Reduction of 4-Nitrophenol. Front Chem 2022; 9:800145. [PMID: 35127648 PMCID: PMC8814362 DOI: 10.3389/fchem.2021.800145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The past decade has observed a significant surge in efforts to discover biological systems for the fabrication of metal nanoparticles. Among these methods, plant-mediated synthesis has garnered sizeable attention due to its rapid, cost-effective, environmentally benign single-step procedure. This study explores a step-wise, room-temperature protocol for the synthesis of gold nanoparticles (AuNPs) using Carallia brachiata, a mangrove species from the west coast of Peninsular Malaysia. The effects of various reaction parameters, such as incubation time, metal ion concentration, amount of extract and pH, on the formation of stable colloids were monitored using UV-visible (UV-Vis) absorption spectrophotometry. Our findings revealed that the physicochemical properties of the AuNPs were significantly dependent on the pH. Changing the pH of the plant extract from acidic to basic appears to have resulted in a blue-shift in the main characteristic feature of the surface plasmon resonance (SPR) band, from 535 to 511 nm. The high-resolution-transmission electron microscopy (HR-TEM) and field emission scanning electron microscopy (FESEM) images revealed the morphologies of the AuNPs synthesized at the inherent pH, varying from isodiametric spheres to exotic polygons and prisms, with sizes ranging from 10 to 120 nm. Contrarily, an optimum pH of 10 generated primarily spherical-shaped AuNPs with narrower size distribution (8-13 nm). The X-ray diffraction (XRD) analysis verified the formation of AuNPs as the diffraction patterns matched well with the standard value of a face-centered cubic (FCC) Au lattice structure. The Fourier-transform infrared (FTIR) spectra suggested that different functional groups are involved in the biosynthetic process, while the phytochemical test revealed a clear role of the phenolic compounds. The reduction of 4-nitrophenol (4-NP) was selected as the model reaction for evaluating the catalytic performance of the green-synthesized AuNPs. The catalytic activity of the small, isotropic AuNPs prepared using basic aqueous extract was more effective than the nanoanisotrops, with more than 90% of 4-NP conversion achieved in under an hour with just 3 mg of the nanocatalyst.
Collapse
Affiliation(s)
- Najwa Ahmad Kuthi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Sheela Chandren
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Norazah Basar
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | | |
Collapse
|
32
|
Hosny M, Fawzy M, El-Badry YA, Hussein EE, Eltaweil AS. Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Synthesis of Aloe vera-conjugated silver nanoparticles for use against multidrug-resistant microorganisms. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
34
|
Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021; 12:70. [PMID: 34940549 PMCID: PMC8708476 DOI: 10.3390/jfb12040070] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of biomedical problems. The gold nanoparticles production by biological method ("green synthesis") is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts. This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms (bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis and the influence of size, shapes, and capping agents on the functionalities are described. The proposed action mechanisms on target cells are highlighted. The biological activities of "green" AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical application are also discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
35
|
Aboyewa JA, Sibuyi NRS, Meyer M, Oguntibeju OO. Green Synthesis of Metallic Nanoparticles Using Some Selected Medicinal Plants from Southern Africa and Their Biological Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1929. [PMID: 34579460 PMCID: PMC8472917 DOI: 10.3390/plants10091929] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023]
Abstract
The application of metallic nanoparticles (MNPs), especially that of silver, gold, cobalt, and zinc as antimicrobial, anticancer, drug delivery, contrast, and bioimaging agents has transformed the field of medicine. Their functions, which are attributed to their physicochemical properties, have gained prominence in various technological fields. Although MNPs can be produced via rigorous physical and chemical techniques, in recent years, a biological approach utilizing natural materials has been developed. With the increasing enthusiasm for safe and efficient nanomaterials, the biological method incorporating microorganisms and plants is preferred over physical and chemical methods of nanoparticle synthesis. Of these bio-entities, plants have received great attention owing to their capability to reduce and stabilize MNPs in a single one-pot protocol. South Africa is home to ~10% of the world's plant species, making it a major contributor to the world's ecological scenery. Despite the documented contribution of South African plants, particularly in herbal medicine, very few of these plants have been explored for the synthesis of the noble MNPs. This paper provides a review of some important South African medicinal plants that have been utilized for the synthesis of MNPs. The enhanced biological properties of the biogenic MNPs attest to their relevance in medicine. In this endeavour, more of the African plant biodiversity must be explored for the synthesis of MNPs and be validated for their potential to be translated into future nanomedicine.
Collapse
Affiliation(s)
- Jumoke A. Aboyewa
- Oxidative Stress Research Centre, Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa;
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa;
| | - Oluwafemi O. Oguntibeju
- Oxidative Stress Research Centre, Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| |
Collapse
|
36
|
Shkryl Y, Rusapetova T, Yugay Y, Egorova A, Silant’ev V, Grigorchuk V, Karabtsov A, Timofeeva Y, Vasyutkina E, Kudinova O, Ivanov V, Kumeiko V, Bulgakov V. Biosynthesis and Cytotoxic Properties of Ag, Au, and Bimetallic Nanoparticles Synthesized Using Lithospermum erythrorhizon Callus Culture Extract. Int J Mol Sci 2021; 22:9305. [PMID: 34502210 PMCID: PMC8431615 DOI: 10.3390/ijms22179305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
The present study reports a green chemistry approach for the rapid and easy biological synthesis of silver (Ag), gold (Au), and bimetallic Ag/Au nanoparticles using the callus extract of Lithospermum erythrorhizon as a reducing and capping agent. The biosynthesized nanoparticles were characterized with ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD) analysis, and transmission electron microscopy (TEM). Our results showed the formation of crystalline metal nanostructures of both spherical and non-spherical shape. Energy dispersive X-ray (EDX) spectroscopy showed the characteristic peaks in the silver and gold regions, confirming the presence of the corresponding elements in the monometallic particles and both elements in the bimetallic particles. Fourier-transform infrared (FTIR) spectroscopy affirmed the role of polysaccharides and polyphenols of the L. erythrorhizon extract as the major reducing and capping agents for metal ions. In addition, our results showed that the polysaccharide sample and the fraction containing secondary metabolites isolated from L. erythrorhizon were both able to produce large amounts of metallic nanoparticles. The biosynthesized nanoparticles demonstrated cytotoxicity against mouse neuroblastoma and embryonic fibroblast cells, which was considerably higher for Ag nanoparticles and for bimetallic Ag/Au nanoparticles containing a higher molar ratio of silver. However, fibroblast migration was not significantly affected by any of the nanoparticles tested. The obtained results provide a new example of the safe biological production of metallic nanoparticles, but further study is required to uncover the mechanism of their toxicity so that the biomedical potency can be assessed.
Collapse
Affiliation(s)
- Yury Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.R.); (Y.Y.); (V.G.); (Y.T.); (E.V.); (O.K.); (V.B.)
| | - Tatiana Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.R.); (Y.Y.); (V.G.); (Y.T.); (E.V.); (O.K.); (V.B.)
| | - Yulia Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.R.); (Y.Y.); (V.G.); (Y.T.); (E.V.); (O.K.); (V.B.)
| | - Anna Egorova
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia;
| | - Vladimir Silant’ev
- Department of Biomedical Chemistry, Far Eastern Federal University, 690950 Vladivostok, Russia;
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Valeria Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.R.); (Y.Y.); (V.G.); (Y.T.); (E.V.); (O.K.); (V.B.)
| | - Aleksandr Karabtsov
- Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (V.I.)
| | - Yana Timofeeva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.R.); (Y.Y.); (V.G.); (Y.T.); (E.V.); (O.K.); (V.B.)
| | - Elena Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.R.); (Y.Y.); (V.G.); (Y.T.); (E.V.); (O.K.); (V.B.)
| | - Olesya Kudinova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.R.); (Y.Y.); (V.G.); (Y.T.); (E.V.); (O.K.); (V.B.)
| | - Vladimir Ivanov
- Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.K.); (V.I.)
| | - Vadim Kumeiko
- Department of Medical Biology and Biotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia;
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Victor Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (T.R.); (Y.Y.); (V.G.); (Y.T.); (E.V.); (O.K.); (V.B.)
| |
Collapse
|
37
|
Cassani L, Marcovich NE, Gomez-Zavaglia A. Seaweed bioactive compounds: Promising and safe inputs for the green synthesis of metal nanoparticles in the food industry. Crit Rev Food Sci Nutr 2021; 63:1527-1550. [PMID: 34407716 DOI: 10.1080/10408398.2021.1965537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Scientific research on developing and characterizing eco-friendly metal nanoparticles (NPs) is an active area experiencing currently a systematic and continuous growth. A variety of physical, chemical and more recently biological methods can be used for the synthesis of metal nanoparticles. Among them, reports supporting the potential use of algae in the NPs green synthesis, contribute with only a minor proportion, although seaweed was demonstrated to perform as a successful reducing and stabilizing agent. Thus, the first part of the present review depicts the up-to-date information on the use of algae extracts for the synthesis of metal nanoparticles, including a deep discussion of the certain advantages as well as some limitations of this synthesis route. In the second part, the available characterization techniques to unravel their inherent properties such as specific size, shape, composition, morphology and dispersibility are comprehensively described, to finally focus on the factors affecting their applications, bioactivity, potential toxic impact on living organisms and incorporation into food matrices or food packaging, as well as future prospects. The present article identifies the key knowledge gap in a systematic way highlighting the critical next steps in the green synthesis of metal NPs mediated by algae.
Collapse
Affiliation(s)
- Lucía Cassani
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA, CCT-CONICET), Mar del Plata, Argentina.,Departamento de Ingeniería Química y en Alimentos - Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Norma E Marcovich
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA, CCT-CONICET), Mar del Plata, Argentina.,Departamento de Ingeniería Química y en Alimentos - Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
38
|
Martínez-Higuera A, Rodríguez-Beas C, Villalobos-Noriega JMA, Arizmendi-Grijalva A, Ochoa-Sánchez C, Larios-Rodríguez E, Martínez-Soto JM, Rodríguez-León E, Ibarra-Zazueta C, Mora-Monroy R, Borbón-Nuñez HA, García-Galaz A, Candia-Plata MDC, López-Soto LF, Iñiguez-Palomares R. Hydrogel with silver nanoparticles synthesized by Mimosa tenuiflora for second-degree burns treatment. Sci Rep 2021; 11:11312. [PMID: 34050228 PMCID: PMC8163746 DOI: 10.1038/s41598-021-90763-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
In this work we use Mimosa tenuiflora (MtE) extracts as reducing agents to synthesize silver nanoparticles (AgMt NPs) which were characterized by DPPH and Total Polyphenols Assays, UV-visible, X-ray diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). AgMt NPs possess average sizes of 21 nm and fcc crystalline structure, it was also confirmed that the MtE is present in the AgMt NPs even after the cleaning protocol applied. Subsequently, carbopol hydrogels were made and the MtE and the synthesized AgMt NPs were dispersed in different gels (MtE-G and AgMt NPs-G, respectively) at 100 µg/g concentration. The gels were characterized by UV-Vis, IR, and rheology. Antimicrobial tests were performed using Staphylococcus aureus and Escherichia coli. Burn wound healing was evaluated in a second-degree burn injury on a Wistar rats model for 14 days and additional skin biopsies were examined with histopathological analysis. Gel with commercial silver nanoparticles (Ag NPs) was prepared and employed as a control on the biological assays. Hydrogel system containing silver nanoparticles synthesized with Mimosa tenuiflora (AgMt NPs-G) is a promising therapeutic strategy for burn wound healing, this due to bactericidal and anti-inflammatory effects, which promotes a more effective recovery (in percentage terms) by damaged area.
Collapse
Affiliation(s)
- Aaron Martínez-Higuera
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - César Rodríguez-Beas
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | | | - Abraham Arizmendi-Grijalva
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Carlos Ochoa-Sánchez
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Eduardo Larios-Rodríguez
- Department of Chemical and Metallurgical Engineering, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Juan Manuel Martínez-Soto
- Department of Medicine and Health Science, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Ericka Rodríguez-León
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Cristina Ibarra-Zazueta
- Department of Agriculture and Livestock, University of Sonora, Road to Kino Bay km 20.5, Hermosillo, Sonora, Mexico
| | - Roberto Mora-Monroy
- Department of Physic Researching, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Hugo Alejandro Borbón-Nuñez
- CONACYT-Centro de Nanociencias Y Nanotecnología, UNAM, Km 107 Carretera Tijuana-Ensenada s/n, 22800, Ensenada, B.C. C.P, Mexico
| | - Alfonso García-Galaz
- Food Science Coordination, Research Center in Food & Development (CIAD), Road Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - María Del Carmen Candia-Plata
- Department of Medicine and Health Science, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Luis Fernando López-Soto
- Department of Medicine and Health Science, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Ramón Iñiguez-Palomares
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
39
|
Kongpreecha P, Siri S. Simple colorimetric screening of paraquat residue in vegetables evaluated by localized surface plasmon resonance of gold nanoparticles. Biotechnol Appl Biochem 2021; 69:1148-1158. [PMID: 33998051 DOI: 10.1002/bab.2191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/09/2021] [Indexed: 11/08/2022]
Abstract
The contamination of paraquat in vegetables is widely connected with human health risks, leading to the research interest in developing a paraquat sensing system. This work reports a simple detection method of paraquat based on the electrostatic interaction of paraquat and the negatively charged gold nanoparticles (AuNPs), resulting in the changes of colors from red to blue and the shifting of localized surface plasmon resonance (LSPR) peaks of AuNPs. The limit of detection concentration (CLOD ) of this system was 100 μM paraquat. Moreover, among eight cationic salts tested, NaCl was selective to enhance the detection sensitivity of the system, resulting in the reduction of CLOD to 0.10 μM. This system selectively detected paraquat, but not other tested herbicides (ametryn, atrazine, glyphosate, and 2,4-D-dimethyl ammonium). The paraquat-spiking experiment in kale demonstrated the significant recovery rate of paraquat at 96.0-103.0%, and the relative standard deviations were less than 4%. The developed system was efficient for screening contaminated paraquat in vegetables under unwashed and washed conditions. Three out of five unwashed vegetables had a significant level of paraquat as determined by LSPR values. These results suggested the potential application of this system for a simple screening of contaminated paraquat in vegetables. Simple paraquat-screening system was developed based on the negatively charged gold nanoparticles. The limit of paraquat detection of this system was 0.10 μM. This system was potentially used for a simple screening of contaminated paraquat in vegetables.
Collapse
Affiliation(s)
- Pakawat Kongpreecha
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sineenat Siri
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
40
|
Eze FN, Jayeoye TJ, Tola AJ. Fabrication of label-free and eco-friendly ROS optical sensor with potent antioxidant properties for sensitive hydrogen peroxide detection in human plasma. Colloids Surf B Biointerfaces 2021; 204:111798. [PMID: 33964531 DOI: 10.1016/j.colsurfb.2021.111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/01/2023]
Abstract
Herein, biogenic silver nanoparticles, Cafi-AgNPs was produced based on Cassia fistula-phenolic-rich extract (Cafi) only, without any toxic chemical reagent or organic solvent. Cafi bioactives were characterized using UHPLC-ESI-QTOF-MS/MS analysis. The as-synthesized nanoparticles were characterized using physico-chemical techniques including UV-vis, TEM, SEM, EDX, FTIR, DLS, Zeta potential, XRD, TGA and DGA. In addition, their antioxidant properties and cytocompatibility on erythrocytes and HEK-293 cells were examined. Results show that Cafi mediated the successful synthesis of stable well-dispersed AgNPs. Cafi-AgNPs demonstrated potent reducing and radical scavenging activities against ABTS˙+, DPPH˙ and NO˙. Furthermore, Cafi-AgNPs was compatible with human erythrocytes and HEK-293 cells. Based on the superior surface plasmonic and biological attributes of Cafi-AgNPs, its potential in H2O2 sensing was evaluated. The proposed sensor demonstrated satisfactory analytical performances with linearity of 10-200 μM, detection limit of 3.0 μM for H2O2, and was successfully applied in the detection of H2O2 in human plasma.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery Systems Excellence Center, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Faculty of Pharmaceutical Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria.
| | - Adesola Julius Tola
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, Québec, G9A, 5H7, Canada.
| |
Collapse
|
41
|
Irfan M, Moniruzzaman M, Ahmad T, Samsudin MFR, Bashir F, Butt MT, Ashraf H. Identifying the role of process conditions for synthesis of stable gold nanoparticles and insight detail of reaction mechanism. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1897614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Muhammad Irfan
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Lahore, Pakistan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
- Centre of Researches in Ionic liquids, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Tausif Ahmad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | | | - Farzana Bashir
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Lahore, Pakistan
| | - Muhammad Tahir Butt
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Lahore, Pakistan
| | - Hafsa Ashraf
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, Pakistan
| |
Collapse
|
42
|
Quantitative Estimation of Biocapped Surface Chemistry Driven Interparticle Interactions and Growth Kinetics of Gold Nanoparticles. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-01999-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Adewale OB, Anadozie SO, Potts-Johnson SS, Onwuelu JO, Obafemi TO, Osukoya OA, Fadaka AO, Davids H, Roux S. Investigation of bioactive compounds in Crassocephalum rubens leaf and in vitro anticancer activity of its biosynthesized gold nanoparticles. ACTA ACUST UNITED AC 2020; 28:e00560. [PMID: 33299809 PMCID: PMC7704417 DOI: 10.1016/j.btre.2020.e00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/29/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022]
Abstract
GC–MS analysis of Crassocephalum rubens extracts were investigated. Gold nanoparticles (AuNPs) were synthesized using aqueous extract of Crassocephalum rubens (AECR). DPPH radical scavenging activity of AECR was similar to that of AECR-AuNPs. AECR-AuNPs are potential anticancer agents against MCF-7 and Caco-2 cell lines.
The development of cancer therapies has become difficult due to high metastasis, and lack of tissue selectivity, which in most cases affects normal cells. Demand for anticancer therapy is therefore increasing on daily basis. Gold nanoparticles (AuNPs) have many applications in biomedical field. Biological synthesis of AuNPs using aqueous extract of Crassocephalum rubens (AECR) was designed to investigate the in vitro anticancer potential. The synthesized AuNPs were characterized by UV–vis spectroscopy, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy. The characterization results showed the formation of green AuNPs of wavelength 538 nm, and mostly spherical AuNPs with 20 ± 5 nm size. Significant anticancer activity of the AECR-AuNPs on MCF-7 and Caco-2 cells was noted at higher concentrations (125 and 250 μg/mL) during 24 and at all concentrations tested during 48 h. It can therefore be concluded that AECR leaves can mediate stable AuNPs with anticancer properties.
Collapse
Affiliation(s)
- Olusola B Adewale
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria.,Department of Physiology, Nelson Mandela University, P. O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Scholastica O Anadozie
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria.,Department of Physiology, Nelson Mandela University, P. O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Sotonye S Potts-Johnson
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria
| | - Joan O Onwuelu
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria
| | - Tajudeen O Obafemi
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria
| | - Olukemi A Osukoya
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria
| | - Adewale O Fadaka
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Hajierah Davids
- Department of Physiology, Nelson Mandela University, P. O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Saartjie Roux
- Department of Physiology, Nelson Mandela University, P. O. Box 77000, Port Elizabeth, 6031, South Africa
| |
Collapse
|
44
|
Akintelu SA, Olugbeko SC, Folorunso AS. A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00317-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Nayem SMA, Sultana N, Haque MA, Miah B, Hasan MM, Islam T, Hasan MM, Awal A, Uddin J, Aziz MA, Ahammad AJS. Green Synthesis of Gold and Silver Nanoparticles by Using Amorphophallus paeoniifolius Tuber Extract and Evaluation of Their Antibacterial Activity. Molecules 2020; 25:molecules25204773. [PMID: 33080946 PMCID: PMC7587553 DOI: 10.3390/molecules25204773] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/25/2023] Open
Abstract
In this report, we discussed rapid, facile one-pot green synthesis of gold and silver nanoparticles (AuNPs and AgNPs) by using tuber extract of Amorphophallus paeoniifolius, and evaluated their antibacterial activity. AuNPs and AgNPs were synthesized by mixing their respective precursors (AgNO3 and HAuCl4) with tuber extract of Amorphophallus paeoniifolius as the bio-reducing agent. Characterization of AuNPs and AgNPs were confirmed by applying UV-vis spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDS). From UV-vis characterization, surface plasmon resonance spectra were found at 530 nm for AuNPs and 446 nm for AgNPs. XRD data confirmed that both synthesized nanoparticles were face-centered cubic in crystalline nature, and the average crystallite sizes for the assign peaks were 13.3 nm for AuNPs and 22.48 nm for AgNPs. FTIR data evaluated the characteristic peaks of different phytochemical components of tuber extract, which acted as the reducing agent, and possibly as stabilizing agents. The antibacterial activity of synthesized AuNPs and AgNPs were examined in Muller Hinton agar, against two Gram-positive and four Gram-negative bacteria through the disc diffusion method. AuNPs did not show any inhibitory effect, while AgNPs showed good inhibitory effect against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- S. M. Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Nasrin Sultana
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Md. Aminul Haque
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Billal Miah
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahmodul Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Tamanna Islam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahedi Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Abdul Awal
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, 2500 W. North Ave, Baltimore, MD 21216, USA
- Correspondence: (J.U.); (M.A.A.); (A.J.S.A.)
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Correspondence: (J.U.); (M.A.A.); (A.J.S.A.)
| | - A. J. Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (S.M.A.N.); (N.S.); (M.A.H.); (B.M.); (M.M.H.); (T.I.); (M.M.H.); (A.A.)
- Correspondence: (J.U.); (M.A.A.); (A.J.S.A.)
| |
Collapse
|
46
|
Synthesis of Au, Ag, and Au-Ag Bimetallic Nanoparticles Using Pulicaria undulata Extract and Their Catalytic Activity for the Reduction of 4-Nitrophenol. NANOMATERIALS 2020; 10:nano10091885. [PMID: 32962292 PMCID: PMC7559643 DOI: 10.3390/nano10091885] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Plant extract of Pulicaria undulata (L.) was used as both reducing agent and stabilizing ligand for the rapid and green synthesis of gold (Au), silver (Ag), and gold–silver (Au–Ag) bimetallic (phase segregated/alloy) nanoparticles (NPs). These nanoparticles with different morphologies were prepared in two hours by stirring corresponding metal precursors in the aqueous solution of the plant extracts at ambient temperature. To infer the role of concentration of plant extract on the composition and morphology of NPs, we designed two different sets of experiments, namely (i) low concentration (LC) and (ii) high concentration (HC) of plant extract. In the case of using low concentration of the plant extract, irregular shaped Au, Ag, or phase segregated Au–Ag bimetallic NPs were obtained, whereas the use of higher concentrations of the plant extract resulted in the formation of spherical Au, Ag, and Au–Ag alloy NPs. The as-prepared Au, Ag, and Au–Ag bimetallic NPs showed morphology and composition dependent catalytic activity for the reduction of 4-nitrophenol (4-NPh) to 4-aminophenol (4-APh) in the presence of NaBH4. The bimetallic Au–Ag alloy NPs showed the highest catalytic activity compared to all other NPs.
Collapse
|
47
|
Photocatalytic degradation and adsorption of phenol by solvent-controlled TiO2 nanosheets assisted with H2O2 and FeCl3: Kinetic, isotherm and thermodynamic analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112941] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Controllable phytosynthesis of gold nanoparticles and investigation of their size and morphology-dependent photocatalytic activity under visible light. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112429] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Rodríguez-León E, Rodríguez-Vázquez BE, Martínez-Higuera A, Rodríguez-Beas C, Larios-Rodríguez E, Navarro RE, López-Esparza R, Iñiguez-Palomares RA. Synthesis of Gold Nanoparticles Using Mimosa tenuiflora Extract, Assessments of Cytotoxicity, Cellular Uptake, and Catalysis. NANOSCALE RESEARCH LETTERS 2019; 14:334. [PMID: 31654146 PMCID: PMC6814701 DOI: 10.1186/s11671-019-3158-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/23/2019] [Indexed: 05/10/2023]
Abstract
Synthesis of gold nanoparticles (AuNPs) with plant extracts has gained great interest in the field of biomedicine due to its wide variety of health applications. In the present work, AuNPs were synthesized with Mimosa tenuiflora (Mt) bark extract at different metallic precursor concentrations. Mt extract was obtained by mixing the tree bark in ethanol-water. The antioxidant capacity of extract was evaluated using 2,2-diphenyl-1-picrylhydrazyl and total polyphenol assay. AuNPs were characterized by transmission electron microscopy, X-ray diffraction, UV-Vis and Fourier transform infrared spectroscopy, and X-ray photoelectron spectrometry for functional group determination onto their surface. AuMt (colloids formed by AuNPs and molecules of Mt) exhibit multiple shapes with sizes between 20 and 200 nm. AuMt were tested on methylene blue degradation in homogeneous catalysis adding sodium borohydride. The smallest NPs (AuMt1) have a degradation coefficient of 0.008/s and reach 50% degradation in 190s. Cell viability and cytotoxicity were evaluated in human umbilical vein endothelial cells (HUVEC), and a moderate cytotoxic effect at 24 and 48 h was found. However, toxicity does not behave in a dose-dependent manner. Cellular internalization of AuMt on HUVEC cells was analyzed by confocal laser scanning microscopy. For AuMt1, it can be observed that the material is dispersed into the cytoplasm, while in AuMt2, the material is concentrated in the nuclear periphery.
Collapse
Affiliation(s)
- Ericka Rodríguez-León
- Physics Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - Blanca E. Rodríguez-Vázquez
- Polymer and Material Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - Aarón Martínez-Higuera
- Physics Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - César Rodríguez-Beas
- Physics Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - Eduardo Larios-Rodríguez
- Chemical Engineering and Metallurgy Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - Rosa E. Navarro
- Polymer and Material Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - Ricardo López-Esparza
- Physics Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | | |
Collapse
|