1
|
Kelly RG. Molecular Pathways and Animal Models of Tetralogy of Fallot and Double Outlet Right Ventricle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:645-659. [PMID: 38884739 DOI: 10.1007/978-3-031-44087-8_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Tetralogy of Fallot and double-outlet right ventricle are outflow tract (OFT) alignment defects situated on a continuous disease spectrum. A myriad of upstream causes can impact on ventriculoarterial alignment that can be summarized as defects in either i) OFT elongation during looping morphogenesis or ii) OFT remodeling during cardiac septation. Embryological processes underlying these two developmental steps include deployment of second heart field cardiac progenitor cells, establishment and transmission of embryonic left/right information driving OFT rotation and OFT cushion and valve morphogenesis. The formation and remodeling of pulmonary trunk infundibular myocardium is a critical component of both steps. Defects in myocardial, endocardial, or neural crest cell lineages can result in alignment defects, reflecting the complex intercellular signaling events that coordinate arterial pole development. Importantly, however, OFT alignment is mechanistically distinct from neural crest-driven OFT septation, although neural crest cells impact indirectly on alignment through their role in modulating signaling during SHF development. As yet poorly understood nongenetic causes of alignment defects that impact the above processes include hemodynamic changes, maternal exposure to environmental teratogens, and stochastic events. The heterogeneity of causes converging on alignment defects characterizes the OFT as a hotspot of congenital heart defects.
Collapse
Affiliation(s)
- Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
2
|
Maduro C, Castro LFD, Moleiro ML, Guedes-Martins L. Pregestational Diabetes and Congenital Heart Defects. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRICIA : REVISTA DA FEDERACAO BRASILEIRA DAS SOCIEDADES DE GINECOLOGIA E OBSTETRICIA 2022; 44:953-961. [PMID: 36446562 PMCID: PMC9708403 DOI: 10.1055/s-0042-1755458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Studies have consistently shown a significant increase in the risk of congenital heart defects in the offspring of diabetic mothers compared with those of nondiabetic pregnancies. Evidence points that all types of pregestational diabetes have the capacity of generating cardiac malformations in a more accentuated manner than in gestational diabetes, and there seems to be an increased risk for all congenital heart defects phenotypes in the presence of maternal diabetes. Currently, the application of some therapies is under study in an attempt to reduce the risks inherent to diabetic pregnancies; however, it has not yet been possible to fully prove their effectiveness. The present review aims to better understand the mechanisms that govern the association between pregestational diabetes and congenital heart defects and how maternal diabetes interferes with fetal cardiac development, as there is still a long way to go in the investigation of this complex process.
Collapse
Affiliation(s)
- Catarina Maduro
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal,Address for correspondence Catarina Maduro, MSc Rua Jorge de Viterbo Ferreira 228, 4050-313, PortoPortugal
| | - Luís Ferreira de Castro
- Departamento da Mulher e da Medicina Reprodutiva, Centro Hospitalar do Porto EPE, Centro Materno Infantil do Norte, Largo Prof. Abel Salazar, Porto, Portugal
| | - Maria Lúcia Moleiro
- Departamento da Mulher e da Medicina Reprodutiva, Centro Hospitalar do Porto EPE, Centro Materno Infantil do Norte, Largo Prof. Abel Salazar, Porto, Portugal
| | - Luís Guedes-Martins
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal,Departamento da Mulher e da Medicina Reprodutiva, Centro Hospitalar do Porto EPE, Centro Materno Infantil do Norte, Largo Prof. Abel Salazar, Porto, Portugal,Unidade de Investigação e Formação, Centro Materno Infantil do Norte, Porto, Portugal,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Sankar S, Jayabalan M, Venkatesh S, Ibrahim M. Effect of hyperglycemia on tbx5a and nppa gene expression and its correlation to structural and functional changes in developing zebrafish heart. Cell Biol Int 2022; 46:2173-2184. [PMID: 36069519 DOI: 10.1002/cbin.11901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
The objective of the current study is to analyze the effects of gestational diabetes on structural and functional changes in correlation with these two essential regulators of developing hearts in vivo using zebrafish embryos. We employed fertilized zebrafish embryos exposed to a hyperglycemic condition of 25 mM glucose for 96 h postfertilization. The embryos were subjected to various structural and functional analyses in a time-course manner. The data showed that exposure to high glucose significantly affected the embryo's size, heart length, heart rate, and looping of the heart compared to the control. Further, we observed an increased incidence of ventricular standstill and valvular regurgitation with a marked reduction of peripheral blood flow in the high glucose-exposed group compared to the control. In addition, the histological data showed that the high-glucose exposure markedly reduced the thickness of the wall and the number of cardiomyocytes in both atrium and ventricles. We also observed striking alterations in the pericardium like edema, increase in diameter with thinning of the wall compared to the control group. Interestingly, the expression of tbx5a and nppa was increased in the early development and found to be repressed in the later stage of development in the hyperglycemic group compared to the control. In conclusion, the developing heart is more susceptible to hyperglycemia in the womb, thereby showing various developmental defects possibly by altering the expression of crucial gene regulators such as tbx5a and nppa.
Collapse
Affiliation(s)
- Suruthi Sankar
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Monisha Jayabalan
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Sundararajan Venkatesh
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Muhammed Ibrahim
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Impellizzeri P, Nascimben F, Di Fabrizio D, Antonuccio P, Antonelli E, Peri FM, Calabrese U, Arena S, Romeo C. Pathogenesis of Congenital Malformations: Possible Role of Oxidative Stress. Am J Perinatol 2022; 39:816-823. [PMID: 33167041 DOI: 10.1055/s-0040-1721081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Congenital anomalies are important causes of morbidity and mortality in children. Oxidative stress (OS) is involved in the physiopathology of pregnancy-related congenital malformations. This review summarizes the role of OS in the pathogenesis of congenital malformations; in particular, its purpose is to describe how OS influences the development of heart congenital malformations, oesophageal atresia, biliary atresia, diaphragmatic hernia, and autosomal dominant polycystic kidney disease. STUDY DESIGN Systematic review of previous studies about the role of OS in pregnancy and its possible effects in developing of congenital malformations. One electronic database (PubMed) was searched and reference lists were checked. RESULTS An imbalance between the production of reactive oxygen species (ROS) and antioxidant defense can occur early in pregnancy and continue in the postnatal life, producing OS. It may destroy the signaling pathways needed for a correct embryogenesis leading to birth defects. In fact, cell functions, especially during embryogenesis, needs specific signaling pathways to regulate the development. These pathways are sensitive to both endogenous and exogenous factors; therefore, they can produce structural alterations of the developing fetus. CONCLUSION Because OS plays a significant role in pathogenesis of congenital malformations, studies should be developed in order to better define their OS mechanisms and the beneficial effects of supplemental therapeutic strategies. KEY POINTS · Oxidative stress is involved in the pathogenesis of congenital malformations.. · Heart malformations, oesophageal atresia, biliary atresia, diaphragmatic hernia, and autosomal dominant polycystic kidney are analyzed.. · A knowledge of pathomechanism of OS-related congenital malformations could be useful to prevent them..
Collapse
Affiliation(s)
- Pietro Impellizzeri
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Francesca Nascimben
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Donatella Di Fabrizio
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Pietro Antonuccio
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Enrica Antonelli
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Flora Maria Peri
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Ugo Calabrese
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Salvatore Arena
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Carmelo Romeo
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
5
|
Monda E, Verrillo F, Altobelli I, Lioncino M, Caiazza M, Rubino M, Cirillo A, Fusco A, Esposito A, Di Fraia F, Pacileo R, Gragnano F, Passariello A, Calabrò P, Russo MG, Limongelli G. Natural history of left ventricular hypertrophy in infants of diabetic mothers. Int J Cardiol 2021; 350:77-82. [PMID: 34968628 DOI: 10.1016/j.ijcard.2021.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND This study sought to describe the characteristics and the natural course of left ventricular hypertrophy (LVH) in a well-characterized consecutive cohort of infants of diabetic mothers (IDMs). METHODS Sixty consecutive IDMs with LVH have been retrospectively identified and enrolled in the study. All IDMs were evaluated at baseline and every 6 months until LV wall thickness regression, defined as the decrease of wall thickness measurement into the normal reference range for cardiac parameters (z-score > -2 and < 2). A comprehensive assessment was performed in those patients with diagnostic markers suggestive of a different cause and/or without significant reduction of the LVH during follow-up. RESULTS At 1-year follow-up, all IDMs showed a significant reduction of maximal wall thickness MWT (6.00 mm [IQR 5.00-712] vs. 5.50 mm [IQR 5.00-6.00], p-value <0.001; MWT-z-score: 4.86 [IQR 3.93-7.61] vs. 1.72 [IQR 1.08-2.85], p-value <0.001) compared to baseline, and all patients showed LV wall thickness regression or residual mild or moderate LVH (57%, 28%, and 12%, respectively), except 2 patients with persistent severe LVH, that after a comprehensive clinical-genetic assessment were diagnosed as Noonan syndrome with multiple lentigines. At multivariate analysis, MWT was negatively associated with LV wall thickness regression at 1-year follow-up (MWT-mm: OR 0.48[0.29-0.79], p-value = 0.004; MWT-z-score: OR 0.71[0.56-0.90], p-value = 0.004). CONCLUSIONS LVH in IDMs represents a benign condition with complete regression during the first years of life. In those patients without LV wall thickness regression, combined with clinical markers suggesting a specific disease, a complete work-up is required for a definite diagnosis.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Federica Verrillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Ippolita Altobelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Marta Rubino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Annapaola Cirillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Adelaide Fusco
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Augusto Esposito
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Francesco Di Fraia
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Roberta Pacileo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Felice Gragnano
- Division of Cardiology, Department of Translational Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Annalisa Passariello
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Paolo Calabrò
- Division of Cardiology, Department of Translational Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Giovanna Russo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy.
| |
Collapse
|
6
|
Pozzer D, Invernizzi RW, Blaauw B, Cantoni O, Zito E. Ascorbic Acid Route to the Endoplasmic Reticulum: Function and Role in Disease. Antioxid Redox Signal 2021; 34:845-855. [PMID: 31867990 DOI: 10.1089/ars.2019.7912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Humans cannot synthesize ascorbic acid (AscH2) (vitamin C), so deficiencies in dietary AscH2 cause the life-threatening disease of scurvy and many other diseases. After oral ingestion, plasma AscH2 concentrations are strictly controlled by transporters, which are required for entry into the cell and into intracellular organelles. Recent Advances: Besides its general antioxidant function, AscH2 is a cofactor for endoplasmic reticulum (ER)-localized collagen hydroxylases. Its important role in ER homeostasis is also highlighted by the fact that AscH2 deficiency in auxotrophic species triggers ER stress. Critical Issues: Characterizations of the molecular basis of diseases suggest that intracellular AscH2 deficiency is due not only to limited dietary access but also to its limited intracellular transport and net loss under conditions of intracellular hyperoxidation in the ER. This essay will offer an overview of the different transporters of vitamin C regulating its intracellular concentration, its function inside the ER, and the phenotypes of the diseases that can be triggered by increased depletion of this vitamin in the ER. Future Directions: When considering the benefits of increasing dietary AscH2, it is important to consider pharmacokinetic differences in the bioavailability between orally and intravenously administered AscH2: the latter bypasses intestinal absorption and is, therefore, the only route that can lead to the high plasma concentrations that may provide some health effects, and it is this route that needs to be chosen in clinical trials for those diseases associated with a deficiency of AscH2. Antioxid. Redox Signal. 34, 845-855.
Collapse
Affiliation(s)
- Diego Pozzer
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | | | - Bert Blaauw
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
7
|
The Clinical Spectrum of Kommerell's Diverticulum in Adults with a Right-Sided Aortic Arch: A Case Series and Literature Overview. J Cardiovasc Dev Dis 2021; 8:jcdd8030025. [PMID: 33652796 PMCID: PMC7996811 DOI: 10.3390/jcdd8030025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Kommerell's diverticulum is a rare vascular anomaly characterized as an outpouch at the onset of an aberrant subclavian artery. In the variant of a right-sided aortic arch, the trachea and esophagus are enclosed dorsally by the arch. In the configuration of an aberrant left subclavian artery, a Kommerell's diverticulum and persisting ductus arteriosus or ductal ligament enclose the lateral side, forming a vascular ring which may result in (symptomatic) esophageal or tracheal compression. Spontaneous rupture of an aneurysmatic Kommerell's diverticulum has also been reported. Due to the rarity of this condition and underreporting in the literature, the clinical implications of a Kommerell's diverticulum are not well defined. CASE SUMMARY We describe seven consecutive adult patients with a right-sided aortic arch and an aberrant course of the left subclavian artery (arteria lusoria), and a Kommerell's diverticulum, diagnosed in our tertiary hospital. One patient had severe symptoms related to the Kommerell's diverticulum and underwent surgical repair. In total, two of the patients experienced mild non-limiting dyspnea complaints and in four patients the Kommerell's diverticulum was incidentally documented on a computed tomography (CT) scan acquired for a different indication. The size of the Kommerell's diverticulum ranged from 19 × 21 mm to 30 × 29 mm. In the six patients that did not undergo surgery, a strategy of periodic follow-up with structural imaging was pursued. No significant growth of the Kommerell's diverticulum was observed and none of the patients experienced an acute aortic syndrome to date. DISCUSSION Kommerell's diverticulum in the setting of a right-sided aortic arch with an aberrant left subclavian artery is frequently associated with tracheal and esophageal compression and this may result in a varying range of symptoms. Guidelines on management of Kommerell's diverticulum are currently lacking. This case series and literature overview suggests that serial follow-up is warranted in adult patients with a Kommerell's diverticulum with small dimensions and no symptoms, however, that surgical intervention should be considered when patients become symptomatic or when the diameter exceeds 30 mm in the absence of symptoms.
Collapse
|
8
|
Johnson AL, Schneider JE, Mohun TJ, Williams T, Bhattacharya S, Henderson DJ, Phillips HM, Bamforth SD. Early Embryonic Expression of AP-2α Is Critical for Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7030027. [PMID: 32717817 PMCID: PMC7570199 DOI: 10.3390/jcdd7030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital cardiovascular malformation is a common birth defect incorporating abnormalities of the outflow tract and aortic arch arteries, and mice deficient in the transcription factor AP-2α (Tcfap2a) present with complex defects affecting these structures. AP-2α is expressed in the pharyngeal surface ectoderm and neural crest at mid-embryogenesis in the mouse, but the precise tissue compartment in which AP-2α is required for cardiovascular development has not been identified. In this study we describe the fully penetrant AP-2α deficient cardiovascular phenotype on a C57Bl/6J genetic background and show that this is associated with increased apoptosis in the pharyngeal ectoderm. Neural crest cell migration into the pharyngeal arches was not affected. Cre-expressing transgenic mice were used in conjunction with an AP-2α conditional allele to examine the effect of deleting AP-2α from the pharyngeal surface ectoderm and the neural crest, either individually or in combination, as well as the second heart field. This, surprisingly, was unable to fully recapitulate the global AP-2α deficient cardiovascular phenotype. The outflow tract and arch artery phenotype was, however, recapitulated through early embryonic Cre-mediated recombination. These findings indicate that AP-2α has a complex influence on cardiovascular development either being required very early in embryogenesis and/or having a redundant function in many tissue layers.
Collapse
Affiliation(s)
- Amy-Leigh Johnson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | | | | | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anshutz Medical Campus, Aurora, CO 80045, USA;
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK;
| | - Deborah J. Henderson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | - Helen M. Phillips
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | - Simon D. Bamforth
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
- Correspondence: ; Tel.: +44-191-241-8764
| |
Collapse
|
9
|
Pulmonary ductal coarctation and left pulmonary artery interruption; pathology and role of neural crest and second heart field during development. PLoS One 2020; 15:e0228478. [PMID: 32413023 PMCID: PMC7228067 DOI: 10.1371/journal.pone.0228478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022] Open
Abstract
Objectives In congenital heart malformations with pulmonary stenosis to atresia an abnormal lateral ductus arteriosus to left pulmonary artery connection can lead to a localised narrowing (pulmonary ductal coarctation) or even interruption We investigated embryonic remodelling and pathogenesis of this area. Material and methods Normal development was studied in WntCre reporter mice (E10.0–12.5) for neural crest cells and Nkx2.5 immunostaining for second heart field cells. Data were compared to stage matched human embryos and a VEGF120/120 mutant mouse strain developing pulmonary atresia. Results Normal mouse and human embryos showed that the mid-pharyngeal endothelial plexus, connected side-ways to the 6th pharyngeal arch artery. The ventral segment formed the proximal pulmonary artery. The dorsal segment (future DA) was solely surrounded by neural crest cells. The ventral segment had a dual outer lining with neural crest and second heart field cells, while the distal pulmonary artery was covered by none of these cells. The asymmetric contribution of second heart field to the future pulmonary trunk on the left side of the aortic sac (so-called pulmonary push) was evident. The ventral segment became incorporated into the pulmonary trunk leading to a separate connection of the left and right pulmonary arteries. The VEGF120/120 embryos showed a stunted pulmonary push and a variety of vascular anomalies. Summary Side-way connection of the DA to the left pulmonary artery is a congenital anomaly. The primary problem is a stunted development of the pulmonary push leading to pulmonary stenosis/atresia and a subsequent lack of proper incorporation of the ventral segment into the aortic sac. Clinically, the aberrant smooth muscle tissue of the ductus arteriosus should be addressed to prohibit development of severe pulmonary ductal coarctation or even interruption of the left pulmonary artery.
Collapse
|
10
|
Engineer A, Saiyin T, Greco ER, Feng Q. Say NO to ROS: Their Roles in Embryonic Heart Development and Pathogenesis of Congenital Heart Defects in Maternal Diabetes. Antioxidants (Basel) 2019; 8:antiox8100436. [PMID: 31581464 PMCID: PMC6826639 DOI: 10.3390/antiox8100436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart defects (CHDs) are the most prevalent and serious birth defect, occurring in 1% of all live births. Pregestational maternal diabetes is a known risk factor for the development of CHDs, elevating the risk in the child by more than four-fold. As the prevalence of diabetes rapidly rises among women of childbearing age, there is a need to investigate the mechanisms and potential preventative strategies for these defects. In experimental animal models of pregestational diabetes induced-CHDs, upwards of 50% of offspring display congenital malformations of the heart, including septal, valvular, and outflow tract defects. Specifically, the imbalance of nitric oxide (NO) and reactive oxygen species (ROS) signaling is a major driver of the development of CHDs in offspring of mice with pregestational diabetes. NO from endothelial nitric oxide synthase (eNOS) is crucial to cardiogenesis, regulating various cellular and molecular processes. In fact, deficiency in eNOS results in CHDs and coronary artery malformation. Embryonic hearts from diabetic dams exhibit eNOS uncoupling and oxidative stress. Maternal treatment with sapropterin, a cofactor of eNOS, and antioxidants such as N-acetylcysteine, vitamin E, and glutathione as well as maternal exercise have been shown to improve eNOS function, reduce oxidative stress, and lower the incidence CHDs in the offspring of mice with pregestational diabetes. This review summarizes recent data on pregestational diabetes-induced CHDs, and offers insights into the important roles of NO and ROS in embryonic heart development and pathogenesis of CHDs in maternal diabetes.
Collapse
Affiliation(s)
- Anish Engineer
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Tana Saiyin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Elizabeth R Greco
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| |
Collapse
|
11
|
Laforgia N, Di Mauro A, Favia Guarnieri G, Varvara D, De Cosmo L, Panza R, Capozza M, Baldassarre ME, Resta N. The Role of Oxidative Stress in the Pathomechanism of Congenital Malformations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7404082. [PMID: 30693064 PMCID: PMC6332879 DOI: 10.1155/2018/7404082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Congenital anomalies are significant causes of mortality and morbidity in infancy and childhood. Embryogenesis requires specific signaling pathways to regulate cell proliferation and differentiation. These signaling pathways are sensitive to endogenous and exogenous agents able to produce several structural changes of the developing fetus. Oxidative stress, due to an imbalance between the production of reactive oxygen species and antioxidant defenses, disrupts signaling pathways with a causative role in birth defects. This review provides a basis for understanding the role of oxidative stress in the pathomechanism of congenital malformations, discussing the mechanisms related to some congenital malformations. New insights in the knowledge of pathomechanism of oxidative stress-related congenital malformations, according to experimental and human studies, represent the basis of possible clinical applications in screening, prevention, and therapies.
Collapse
Affiliation(s)
- Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Di Mauro
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Giovanna Favia Guarnieri
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Dora Varvara
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Lucrezia De Cosmo
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Maria Elisabetta Baldassarre
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Nicoletta Resta
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
12
|
Engineer A, Saiyin T, Lu X, Kucey AS, Urquhart BL, Drysdale TA, Norozi K, Feng Q. Sapropterin Treatment Prevents Congenital Heart Defects Induced by Pregestational Diabetes Mellitus in Mice. J Am Heart Assoc 2018; 7:e009624. [PMID: 30608180 PMCID: PMC6404194 DOI: 10.1161/jaha.118.009624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/17/2018] [Indexed: 01/05/2023]
Abstract
Background Tetrahydrobiopterin is a cofactor of endothelial NO synthase ( eNOS ), which is critical to embryonic heart development. We aimed to study the effects of sapropterin (Kuvan), an orally active synthetic form of tetrahydrobiopterin on eNOS uncoupling and congenital heart defects ( CHD s) induced by pregestational diabetes mellitus in mice. Methods and Results Adult female mice were induced to pregestational diabetes mellitus by streptozotocin and bred with normal male mice to produce offspring. Pregnant mice were treated with sapropterin or vehicle during gestation. CHD s were identified by histological analysis. Cell proliferation, eNOS dimerization, and reactive oxygen species production were assessed in the fetal heart. Pregestational diabetes mellitus results in a spectrum of CHD s in their offspring. Oral treatment with sapropterin in the diabetic dams significantly decreased the incidence of CHD s from 59% to 27%, and major abnormalities, such as atrioventricular septal defect and double-outlet right ventricle, were absent in the sapropterin-treated group. Lineage tracing reveals that pregestational diabetes mellitus results in decreased commitment of second heart field progenitors to the outflow tract, endocardial cushions, and ventricular myocardium of the fetal heart. Notably, decreased cell proliferation and cardiac transcription factor expression induced by maternal diabetes mellitus were normalized with sapropterin treatment. Furthermore, sapropterin administration in the diabetic dams increased eNOS dimerization and lowered reactive oxygen species levels in the fetal heart. Conclusions Sapropterin treatment in the diabetic mothers improves eNOS coupling, increases cell proliferation, and prevents the development of CHD s in the offspring. Thus, sapropterin may have therapeutic potential in preventing CHD s in pregestational diabetes mellitus.
Collapse
Affiliation(s)
- Anish Engineer
- Department of Physiology and PharmacologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Tana Saiyin
- Department of Physiology and PharmacologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Xiangru Lu
- Department of Physiology and PharmacologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Andrew S. Kucey
- Department of Physiology and PharmacologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Brad L. Urquhart
- Department of Physiology and PharmacologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Thomas A. Drysdale
- Department of Physiology and PharmacologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of PediatricsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| | - Kambiz Norozi
- Department of PediatricsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
- Department of Paediatric Cardiology and Intensive Care MedicineHannover Medical SchoolHannoverGermany
- Department of Paediatric Cardiology and Intensive Care MedicineUniversity of GöttingenGermany
| | - Qingping Feng
- Department of Physiology and PharmacologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of MedicineSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| |
Collapse
|
13
|
Lawson TB, Scott-Drechsel DE, Chivukula VK, Rugonyi S, Thornburg KL, Hinds MT. Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart. J Cardiovasc Dev Dis 2018; 5:jcdd5010013. [PMID: 29439517 PMCID: PMC5872361 DOI: 10.3390/jcdd5010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
Congenital heart defects (CHDs) represent the most common form of human birth defects; approximately one-third of heart defects involve malformations of the outflow tract (OFT). Maternal diabetes increases the risk of CHD by 3-5 fold. During heart organogenesis, little is known about the effects of hyperglycemia on hemodynamics, which are critical to normal heart development. Heart development prior to septation in the chick embryo was studied under hyperglycemic conditions. Sustained hyperglycemic conditions were induced, raising the average plasma glucose concentration from 70 mg/dL to 180 mg/dL, akin to the fasting plasma glucose of a patient with diabetes. The OFTs were assessed for structural and hemodynamic alterations using optical coherence tomography (OCT), confocal microscopy, and microcomputed tomography. In hyperglycemic embryos, the endocardial cushions of the proximal OFT were asymmetric, and the OFTs curvature and torsion were significantly altered. The blood flow velocity through the OFT of hyperglycemic embryos was significantly decreased, including flow reversal in 30% of the cardiac cycle. Thus, hyperglycemia at the onset of gestation results in asymmetric proximal endocardial cushions, abnormal OFT curvature, and altered hemodynamics in the developing heart. If present in humans, these results may identify early developmental alterations that contribute to the increased risk for cardiac malformations in babies from diabetic mothers.
Collapse
Affiliation(s)
- Taylor B Lawson
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Devon E Scott-Drechsel
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Venkat Keshav Chivukula
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Kent L Thornburg
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Monica T Hinds
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
14
|
Lin N, Cai Y, Zhang L, Chen Y. Identification of key genes associated with congenital heart defects in embryos of diabetic mice. Mol Med Rep 2017; 17:3697-3707. [PMID: 29286097 PMCID: PMC5802176 DOI: 10.3892/mmr.2017.8330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
Maternal diabetes has been reported to be a critical factor for congenital heart defects (CHD) in offspring. The present study aimed to screen the key genes that may be involved in CHD in offspring of diabetic mothers. The present study obtained the gene expression profile of GSE32078, including three embryonic heart tissue samples at embryonic day 13.5 (E13.5), three embryonic heart tissue samples at embryonic day 15.5 (E15.5) from diabetic mice and their respective controls from normal mice. The cut-off criterion of P<0.08 was set to screen differentially expressed genes (DEGs). Their enrichment functions were predicted by Gene Ontology. The enriched pathways were forecasted by Kyoto Encyclopedia of Genes and Genomes and Reactome analysis. Protein-protein interaction (PPI) networks for DEGs were constructed using Cytoscape. The present study identified 869 and 802 DEGs in E13.5 group and E15.5 group, respectively and 182 DEGs were shared by the two developmental stages. The pathway enrichment analysis results revealed that DEGs including intercellular adhesion molecule 1 (Icam1) and H2-M9 were enriched in cell adhesion molecules; DEGs including bone morphogenetic protein receptor type 1A, transforming growth factor β receptor 1 and SMAD specific E3 ubiquitin protein ligase 1 were enriched in the tumor growth factor-β signaling pathway. In addition, DEGs including Icam1, C1s and Fc fragment of IgG receptor IIb were enriched in Staphylococcus aureus infection. Furthermore, the shared DEGs including Icam1, nuclear receptor corepressor 1 (Ncor1) and AKT serine/threonine kinase 3 (Akt3) had high connectivity degrees in the PPI network. The shared DEGs including Icam1, Ncor1 and Akt3 may be important in the cardiogenesis of embryos. These genes may be involved in the development of CHD in the offspring of diabetic mothers.
Collapse
Affiliation(s)
- Nan Lin
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Cai
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Linlin Zhang
- Gastroenterology Department, Harbin The First Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Yahang Chen
- Department of Obstetrics and Gynecology, The Hospital of Heilongjiang, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
15
|
Higa R, Roberti SL, Capobianco E, Fornes D, White V, Jawerbaum A. Pro-oxidant/pro-inflammatory alterations in the offspring´s heart of mild diabetic rats are regulated by maternal treatments with a mitochondrial antioxidant. Reprod Toxicol 2017. [DOI: 10.1016/j.reprotox.2017.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
16
|
Mohammed OJ, Latif ML, Pratten MK. Diabetes-induced effects on cardiomyocytes in chick embryonic heart micromass and mouse embryonic D3 differentiated stem cells. Reprod Toxicol 2017; 69:242-253. [PMID: 28286266 DOI: 10.1016/j.reprotox.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus during pregnancy is a considerable medical challenge, since it is related to augmented morbidity and mortality concerns for both the fetus and the pregnant woman. Records show that the etiology of diabetic embryopathy is complicated, as many teratological factors might be involved in the mechanisms of diabetes mellitus-induced congenital malformation. In this study, the potential cardiotoxic effect of hyperglycemia with hyperketonemia was investigated by using two in vitro models; primary chick embryonic cardiomyocytes and stem cell derived cardiomyocytes, where adverse effects were recorded in both systems. The cells were evaluated by changes in beating activity, cell activity, protein content, ROS production, DNA damage and differentiating stem cell migration. The diabetic formulae used produced an increase in DNA damage and a decline in cell migration in mouse embryonic stem cells. These results provide an additional insight into adverse effects during gestational diabetes mellitus and a recommendation for expectant mothers and maternity staff to monitor glycaemic levels months ahead of conception. This study also supports the recommendation of using antioxidants during pregnancy to prevent DNA damage by the production of ROS, which might result in heart defects as well as other developmental anomalies.
Collapse
Affiliation(s)
- Omar J Mohammed
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Muhammad Liaque Latif
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Margaret K Pratten
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
17
|
Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis. Am J Obstet Gynecol 2016; 215:366.e1-366.e10. [PMID: 27038779 DOI: 10.1016/j.ajog.2016.03.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. OBJECTIVE We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. STUDY DESIGN A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. RESULTS Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene expression; and XBP1 messenger RNA splicing, as well as increased cleaved caspase 3 and 8 in embryonic hearts. Furthermore, maternal type 2 diabetes mellitus triggered excessive apoptosis in ventricular myocardium, endocardial cushion, and outflow tract of the embryonic heart. CONCLUSION Similar to those observations in type 1 diabetic embryopathy, maternal type 2 diabetes mellitus causes heart defects in the developing embryo manifested with oxidative stress, endoplasmic reticulum stress, and excessive apoptosis in heart cells.
Collapse
|
18
|
Assessment of the Protective Role of Prenatal Zinc versus Insulin Supplementation on Fetal Cardiac Damage Induced by Maternal Diabetes in Rat Using Caspase-3 and KI67 Immunohistochemical Stains. Cardiol Res Pract 2016; 2016:7469549. [PMID: 26925289 PMCID: PMC4748104 DOI: 10.1155/2016/7469549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/03/2022] Open
Abstract
Maternal diabetes mellitus (DM) affects early organogenesis. Metabolic disorders of DM are associated with a depleted zinc status. This study evaluated the effect of maternal DM on cardiac development of rat fetuses and protective roles of prenatal zinc versus insulin supplementation. Pregnant rats were divided into 4 groups ((I) control, (II) STZ-induced DM, (III) STZ-induced DM treated with Zn, and (IV) STZ induced DM treated with insulin), all sacrificed on GD 20. Fetal heart weight of diabetic rats showed significant decrease compared to controls (P < 0.05). H&E stained section of controls had normal appearance of the myocardium, compared to diabetics that showed myocardial disarray with characteristic degenerative changes. Sections of zinc treated group showed restored architecture of normal myofibrils with minimal degenerative changes, while those of insulin treated group show partial restoration of the normal architecture of cardiomyocytes with focal improvement of cardiac tissue. Caspase-3 immunostained slides showed positive cytoplasmic immunoreactivity in diabetic group. But KI67 immunostained slides revealed negative nuclear immunoreaction in diabetics. We observed that gestational diabetes was associated with increased risk of fetal myocardial damage that might be caused by increased apoptotic level. Treating diabetic pregnant subjects with zinc and insulin was associated with improvement in myocardial integrity.
Collapse
|
19
|
Elmekkawi SF, Mansour GM, Elsafty MSE, Hassanin AS, Laban M, Elsayed HM. Prediction of Fetal Hypertrophic Cardiomyopathy in Diabetic Pregnancies Compared with Postnatal Outcome. CLINICAL MEDICINE INSIGHTS. WOMEN'S HEALTH 2015; 8:39-43. [PMID: 26664250 PMCID: PMC4667560 DOI: 10.4137/cmwh.s32825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The aim of this study was to estimate the accuracy of prenatal assessment of interventricular septum (IVS) thickness, right myocardial wall thickness (RMWT), and left myocardial wall thickness (LMWT) by two-dimensional (2D) ultrasound for the prediction of perinatal mortality and postnatal diagnosis of hypertrophic cardiomyopathy (HCM) among diabetic pregnant women. SUBJECTS AND METHODS A total of 120 diabetic pregnant women at 35 weeks or more were enrolled in this study from January 1, 2012, to June 30, 2014, at Ain Shams Maternity Hospital, Cairo, Egypt. The 2D ultrasound was done once for all the participants at the time of recruitment; IVS thickness, RMWT, and LMWT were measured. The glycosylated hemoglobin (HbA1c) levels of the participants were recorded. Neonatal assessment including postnatal echocardiography was done after 48 hours. Postnatal results were compared with the prenatal predictive results. RESULTS Higher thickness values for IVS, RMW, and LMW were obtained in the uncontrolled diabetic cases (HbA1c > 6.5%) than in the controlled diabetic cases (HbA1c < 6.5%; P < 0.01). Of the included 120 neonates, 10 (8.3%) were stillborn, 99 (82.5%) had a five-minute Apgar score ≥7, and 4 (3.3%) had a five-minute Apgar score ≤3. The four neonates with severe neonatal distress died after admission to neonatal intensive care unit within one week after delivery. Out of 110 live-born neonates, 4 (3.6%) neonates had a low ejection fraction (EF) (<50%) due to HCM; of them 2 (1.8%) died within one week after delivery, while 2 (1.8%) survived. Another two (1.8%) neonates died from severe respiratory distress syndrome. A cutoff value of ≥4.5 mm for prenatal IVS thickness was predictive of neonatal distress due to HCM with a sensitivity of 82%, specificity of 68%, and diagnostic accuracy of 72%. A cutoff value of <1.18 for the ratio of IVS thickness to LMWT had a sensitivity of 82%, specificity of 72%, and diagnostic accuracy of 74% for the prediction of neonatal distress due to HCM. In this study, 8 of the 10 fetuses with intrauterine demise and the 2 neonates who died within one week after delivery due to heart failure had a prenatal IVS thickness of ≥4.5 mm, while 7 of the 10 fetuses with intrauterine demise and the 2 neonates who died postnatal from heart failure had a prenatal IVS thickness to LMWT ratio of ≤1.18. CONCLUSION A prenatal IVS thickness of ≥4.5 mm or an IVS/LMWT ratio of ≤1.18 seems to be predictive of HCM and is associated with almost twofold higher risk of intrauterine fetal death and almost threefold higher risk of possibly relevant perinatal mortality.
Collapse
Affiliation(s)
- Sherif F Elmekkawi
- Department of Obstetrics and Gynecology, Ain Shams University, Cairo, Egypt
| | - Ghada M Mansour
- Department of Obstetrics and Gynecology, Ain Shams University, Cairo, Egypt
| | | | - Alaa S Hassanin
- Department of Obstetrics and Gynecology, Ain Shams University, Cairo, Egypt
| | - Mohamed Laban
- Department of Obstetrics and Gynecology, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
20
|
Wang F, Wu Y, Quon MJ, Li X, Yang P. ASK1 mediates the teratogenicity of diabetes in the developing heart by inducing ER stress and inhibiting critical factors essential for cardiac development. Am J Physiol Endocrinol Metab 2015; 309:E487-99. [PMID: 26173459 PMCID: PMC4556884 DOI: 10.1152/ajpendo.00121.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022]
Abstract
Maternal diabetes in mice induces heart defects similar to those observed in human diabetic pregnancies. Diabetes enhances apoptosis and suppresses cell proliferation in the developing heart, yet the underlying mechanism remains elusive. Apoptosis signal-regulating kinase 1 (ASK1) activates the proapoptotic c-Jun NH2-terminal kinase 1/2 (JNK1/2) leading to apoptosis, suggesting a possible role of ASK1 in diabetes-induced heart defects. We aimed to investigate whether ASK1 is activated in the heart and whether deleting the Ask1 gene blocks diabetes-induced adverse events and heart defect formation. The ASK1-JNK1/2 pathway was activated by diabetes. Deleting Ask1 gene significantly reduced the rate of heart defects, including ventricular septal defects (VSDs) and persistent truncus arteriosus (PTA). Additionally, Ask1 deletion diminished diabetes-induced JNK1/2 phosphorylation and its downstream transcription factors and endoplasmic reticulum (ER) stress markers. Consistent with this, caspase activation and apoptosis were blunted. Ask1 deletion blocked the increase in cell cycle inhibitors (p21 and p27) and the decrease in cyclin D1 and D3 and reversed diabetes-repressed cell proliferation. Ask1 deletion also restored the expression of BMP4, NKX2.5, and GATA5, Smad1/5/8 phosphorylation, whose mutations or deletion result in reduced cell proliferation, VSD, and PTA formation. We conclude that ASK1 may mediate the teratogenicity of diabetes through activating the JNK1/2-ER stress pathway and inhibiting cell cycle progression, thereby impeding the cardiogenesis pathways essential for ventricular septation and outflow tract development.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Bone Morphogenetic Protein 4/metabolism
- Cell Proliferation
- Cyclin D1/metabolism
- Cyclin D3/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Endoplasmic Reticulum Stress/genetics
- Female
- GATA5 Transcription Factor/metabolism
- Heart/embryology
- Heart Defects, Congenital/etiology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Septal Defects, Ventricular/etiology
- Heart Septal Defects, Ventricular/genetics
- Heart Septal Defects, Ventricular/metabolism
- Homeobox Protein Nkx-2.5
- Homeodomain Proteins/metabolism
- MAP Kinase Kinase Kinase 5/genetics
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 8/metabolism
- Mitogen-Activated Protein Kinase 9/metabolism
- Phosphorylation
- Pregnancy
- Pregnancy in Diabetics/genetics
- Pregnancy in Diabetics/metabolism
- Signal Transduction
- Smad1 Protein/metabolism
- Smad5 Protein/metabolism
- Smad8 Protein/metabolism
- Teratogenesis/genetics
- Transcription Factors/metabolism
- Truncus Arteriosus, Persistent/etiology
- Truncus Arteriosus, Persistent/genetics
- Truncus Arteriosus, Persistent/metabolism
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Yanqing Wu
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | | - Xuezheng Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Wang F, Fisher SA, Zhong J, Wu Y, Yang P. Superoxide Dismutase 1 In Vivo Ameliorates Maternal Diabetes Mellitus-Induced Apoptosis and Heart Defects Through Restoration of Impaired Wnt Signaling. ACTA ACUST UNITED AC 2015; 8:665-76. [PMID: 26232087 DOI: 10.1161/circgenetics.115.001138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/21/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oxidative stress is manifested in embryos exposed to maternal diabetes mellitus, yet specific mechanisms for diabetes mellitus-induced heart defects are not defined. Gene deletion of intermediates of Wingless-related integration (Wnt) signaling causes heart defects similar to those observed in embryos from diabetic pregnancies. We tested the hypothesis that diabetes mellitus-induced oxidative stress impairs Wnt signaling, thereby causing heart defects, and that these defects can be rescued by transgenic overexpression of the reactive oxygen species scavenger superoxide dismutase 1 (SOD1). METHODS AND RESULTS Wild-type (WT) and SOD1-overexpressing embryos from nondiabetic WT control dams and nondiabetic/diabetic WT female mice mated with SOD1 transgenic male mice were analyzed. No heart defects were observed in WT and SOD1 embryos under nondiabetic conditions. WT embryos of diabetic dams had a 26% incidence of cardiac outlet defects that were suppressed by SOD1 overexpression. Insulin treatment reduced blood glucose levels and heart defects. Diabetes mellitus increased superoxide production, canonical Wnt antagonist expression, caspase activation, and apoptosis and suppressed cell proliferation. Diabetes mellitus suppressed Wnt signaling intermediates and Wnt target gene expression in the embryonic heart, each of which were reversed by SOD1 overexpression. Hydrogen peroxide and peroxynitrite mimicked the inhibitory effect of high glucose on Wnt signaling, which was abolished by the SOD1 mimetic, tempol. CONCLUSIONS The oxidative stress of diabetes mellitus impairs Wnt signaling and causes cardiac outlet defects that are rescued by SOD1 overexpression. This suggests that targeting of components of the Wnt5a signaling pathway may be a viable strategy for suppression of congenital heart defects in fetuses of diabetic pregnancies.
Collapse
Affiliation(s)
- Fang Wang
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (F.W., J.Z., Y.W., P.Y.), Medicine (S.A.F.), and Biochemistry and Molecular Biology (P.Y.), School of Medicine, University of Maryland, Baltimore
| | - Steven A Fisher
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (F.W., J.Z., Y.W., P.Y.), Medicine (S.A.F.), and Biochemistry and Molecular Biology (P.Y.), School of Medicine, University of Maryland, Baltimore
| | - Jianxiang Zhong
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (F.W., J.Z., Y.W., P.Y.), Medicine (S.A.F.), and Biochemistry and Molecular Biology (P.Y.), School of Medicine, University of Maryland, Baltimore
| | - Yanqing Wu
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (F.W., J.Z., Y.W., P.Y.), Medicine (S.A.F.), and Biochemistry and Molecular Biology (P.Y.), School of Medicine, University of Maryland, Baltimore
| | - Peixin Yang
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (F.W., J.Z., Y.W., P.Y.), Medicine (S.A.F.), and Biochemistry and Molecular Biology (P.Y.), School of Medicine, University of Maryland, Baltimore.
| |
Collapse
|
22
|
Moazzen H, Lu X, Liu M, Feng Q. Pregestational diabetes induces fetal coronary artery malformation via reactive oxygen species signaling. Diabetes 2015; 64:1431-43. [PMID: 25422104 DOI: 10.2337/db14-0190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hypoplastic coronary artery disease is a congenital coronary artery malformation associated with a high risk of sudden cardiac death. However, the etiology and pathogenesis of hypoplastic coronary artery disease remain undefined. Pregestational diabetes increases reactive oxygen species (ROS) levels and the risk of congenital heart defects. We show that pregestational diabetes in mice induced by streptozotocin significantly increased 4-hydroxynonenal production and decreased coronary artery volume in fetal hearts. Pregestational diabetes also impaired epicardial epithelial-to-mesenchymal transition (EMT) as shown by analyses of the epicardium, epicardial-derived cells, and fate mapping. Additionally, the expression of hypoxia-inducible factor 1α (Hif-1α), Snail1, Slug, basic fibroblast growth factor (bFgf), and retinaldehyde dehydrogenase (Aldh1a2) was decreased and E-cadherin expression was increased in the hearts of fetuses of diabetic mothers. Of note, these abnormalities were all rescued by treatment with N-acetylcysteine (NAC) in diabetic females during gestation. Ex vivo analysis showed that high glucose levels inhibited epicardial EMT, which was reversed by NAC treatment. We conclude that pregestational diabetes in mice can cause coronary artery malformation through ROS signaling. This study may provide a rationale for further clinical studies to investigate whether pregestational diabetes could cause hypoplastic coronary artery disease in humans.
Collapse
Affiliation(s)
- Hoda Moazzen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Xiangru Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Murong Liu
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Qingping Feng
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Salazar García M, Reyes Maldonado E, Revilla Monsalve MC, Villavicencio Guzmán L, Reyes López A, Sánchez-Gómez C. Importance of maternal diabetes on the chronological deregulation of the intrauterine development: an experimental study in rat. J Diabetes Res 2015; 2015:354265. [PMID: 25756053 PMCID: PMC4337320 DOI: 10.1155/2015/354265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
Abstract
We investigated whether maternal diabetes induced in rats using streptozotocin (STZ) on Day 5 of pregnancy affects the intrauterine developmental timeline. A total of 30 pregnant Sprague-Dawley diabetic rats (DRs) and 20 control rats (CRs) were used to obtain 21-day fetuses (F21) and newborn (NB) pups. Gestational age, weight, and body size were recorded as were the maxillofacial morphometry and morphohistological characteristics of the limbs. In DRs, pregnancy continued for ∼1.7 days, and delivery occurred 23 days postcoitus (DPC). In this group, the number of pups was lower, and 13% had maxillofacial defects. F21 in the DR group had lower weights and were smaller; moreover, the morphological characteristics of the maxillofacial structures, derived from the neural crest, were discordant with their chronological gestational age, resembling 18- to 19-day-old fetuses. These deficiencies were counterbalanced in NB pups. We conclude that hyperglycemia, which results from maternal diabetes and precedes embryo implantation, deregulates the intrauterine developmental timeline, restricts embryo-fetal growth, and primarily delays the remodeling and maturation of the structures derived from neural crest cells.
Collapse
Affiliation(s)
- Marcela Salazar García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, 06720 Colonia Doctores, DF, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, 11340 Colonia Santo Tomas, DF, Mexico
| | - Elba Reyes Maldonado
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, 11340 Colonia Santo Tomas, DF, Mexico
| | - María Cristina Revilla Monsalve
- Unidad de Investigación Médica en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, 06725 Colonia Doctores, DF, Mexico
| | - Laura Villavicencio Guzmán
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, 06720 Colonia Doctores, DF, Mexico
| | - Alfonso Reyes López
- Dirección de Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, 06720 Colonia Doctores, DF, Mexico
| | - Concepción Sánchez-Gómez
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, 06720 Colonia Doctores, DF, Mexico
- *Concepción Sánchez-Gómez:
| |
Collapse
|
24
|
Gittenberger-de Groot AC, Calkoen EE, Poelmann RE, Bartelings MM, Jongbloed MRM. Morphogenesis and molecular considerations on congenital cardiac septal defects. Ann Med 2014; 46:640-52. [PMID: 25307363 DOI: 10.3109/07853890.2014.959557] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The primary unseptated heart tube undergoes extensive remodeling including septation at the atrial, atrioventricular, ventricular, and ventriculo-arterial level. Alignment and fusion of the septal components is required to ensure full septation of the heart. Deficiencies lead to septal defects at various levels. Addition of myocardium and mesenchymal tissues from the second heart field (SHF) to the primary heart tube, as well as a population of neural crest cells, provides the necessary cellular players. Surprisingly, the study of the molecular background of these defects does not show a great diversity of responsible transcription factors and downstream gene pathways. Epigenetic modulation and mutations high up in several transcription factor pathways (e.g. NODAL and GATA4) may lead to defects at all levels. Disturbance of modulating pathways, involving primarily the SHF-derived cell populations and the genes expressed therein, results at the arterial pole (e.g. TBX1) in a spectrum of ventricular septal defects located at the level of the outflow tract. At the venous pole (e.g. TBX5), it can explain a variety of atrial septal defects. The various defects can occur as isolated anomalies or within families. In this review developmental, morphological, genetic, as well as epigenetic aspects of septal defects are discussed.
Collapse
|
25
|
Kurtz M, Capobianco E, Martinez N, Roberti SL, Arany E, Jawerbaum A. PPAR ligands improve impaired metabolic pathways in fetal hearts of diabetic rats. J Mol Endocrinol 2014; 53:237-46. [PMID: 25122159 DOI: 10.1530/jme-14-0063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In maternal diabetes, the fetal heart can be structurally and functionally affected. Maternal diets enriched in certain unsaturated fatty acids can activate the nuclear receptors peroxisome proliferator-activated receptors (PPARs) and regulate metabolic and anti-inflammatory pathways during development. Our aim was to investigate whether PPARα expression, lipid metabolism, lipoperoxidation, and nitric oxide (NO) production are altered in the fetal hearts of diabetic rats, and to analyze the putative effects of in vivo PPAR activation on these parameters. We found decreased PPARα expression in the hearts of male but not female fetuses of diabetic rats when compared with controls. Fetal treatments with the PPARα ligand leukotriene B4 upregulated the expression of PPARα and target genes involved in fatty acid oxidation in the fetal hearts. Increased concentrations of triglycerides, cholesterol, and phospholipids were found in the hearts of fetuses of diabetic rats. Maternal treatments with diets supplemented with 6% olive oil or 6% safflower oil, enriched in unsaturated fatty acids that can activate PPARs, led to few changes in lipid concentrations, but up-regulated PPARα expression in fetal hearts. NO production, which was increased in the hearts of male and female fetuses in the diabetic group, and lipoperoxidation, which was increased in the hearts of male fetuses in the diabetic group, was reduced by the maternal treatments supplemented with safflower oil. In conclusion, impaired PPARα expression, altered lipid metabolism, and increased oxidative and nitridergic pathways were evidenced in hearts of fetuses of diabetic rats and were regulated in a gender-dependent manner by treatments enriched with PPAR ligands.
Collapse
Affiliation(s)
- Melisa Kurtz
- Laboratory of Reproduction and Metabolism CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155, 17th Floor, 1121 Buenos Aires, Argentina Department of Pathology Schullich School of Medicine and Dentistry, Lawson Health Research Institute, St Joseph's Health Care, University of Western Ontario, London, Ontario, Canada
| | - Evangelina Capobianco
- Laboratory of Reproduction and Metabolism CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155, 17th Floor, 1121 Buenos Aires, Argentina Department of Pathology Schullich School of Medicine and Dentistry, Lawson Health Research Institute, St Joseph's Health Care, University of Western Ontario, London, Ontario, Canada
| | - Nora Martinez
- Laboratory of Reproduction and Metabolism CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155, 17th Floor, 1121 Buenos Aires, Argentina Department of Pathology Schullich School of Medicine and Dentistry, Lawson Health Research Institute, St Joseph's Health Care, University of Western Ontario, London, Ontario, Canada
| | - Sabrina Lorena Roberti
- Laboratory of Reproduction and Metabolism CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155, 17th Floor, 1121 Buenos Aires, Argentina Department of Pathology Schullich School of Medicine and Dentistry, Lawson Health Research Institute, St Joseph's Health Care, University of Western Ontario, London, Ontario, Canada
| | - Edith Arany
- Laboratory of Reproduction and Metabolism CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155, 17th Floor, 1121 Buenos Aires, Argentina Department of Pathology Schullich School of Medicine and Dentistry, Lawson Health Research Institute, St Joseph's Health Care, University of Western Ontario, London, Ontario, Canada
| | - Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism CEFyBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155, 17th Floor, 1121 Buenos Aires, Argentina Department of Pathology Schullich School of Medicine and Dentistry, Lawson Health Research Institute, St Joseph's Health Care, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
26
|
Zhao Z. TGFβ and Wnt in cardiac outflow tract defects in offspring of diabetic pregnancies. ACTA ACUST UNITED AC 2014; 101:364-70. [PMID: 25231192 DOI: 10.1002/bdrb.21120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Diabetes mellitus in pregnancy causes defects in infant heart, including the outflow tracts (OFTs). Development of the aorta and pulmonary artery, which are derived from the common OFT in the embryo, is regulated by the transforming growth factor β (TGFβ) and Wnt families, and can be perturbed by hyperglycemia-generated intracellular stress conditions. However, the underlying cellular and molecular mechanisms remain to be delineated. METHODS Female mice were induced diabetic with streptozotocin. Embryonic and fetal OFTs were examined morphologically and histologically. Cell proliferation was assessed using 5'-bromo-2'-deoxyuridine incorporation assay. Oxidative and endoplasmic reticulum (ER) stress markers and TGFβ factors were detected using immunohistochemistry. The expression of genes in the Wnt-signaling system was assessed using real-time reverse transcription polymerase chain reaction array. The role of activin-A in cell proliferation was addressed by treating embryos cultured in high glucose with activin-A. RESULTS Maternal diabetes caused complex abnormalities in the OFTs, including aortic and pulmonary stenosis and persistent truncus arteriosus. The development of the endocardial cushions was suppressed, manifested with insufficient cellularization of the tissues. Cell proliferation was significantly decreased under oxidative and ER stress conditions. The expression of genes in the Wnt signaling was significantly altered. Activin-A and Smad3 were found to be expressed in the OFT. Treatment with activin-A rescued cell proliferation in the endocardial cushions. CONCLUSIONS Maternal diabetes generates oxidative and ER stress conditions, suppresses TGFβ and Wnt signaling, inhibits cell proliferation and cellularization of the endocardial cushions, leading to OFT septal defects. Activin-A plays a role in hyperglycemia-suppressed proliferation of the endocardial cells.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Dowling D, Corrigan N, Horgan S, Watson CJ, Baugh J, Downey P, McAuliffe FM. Cardiomyopathy in offspring of pregestational diabetic mouse pregnancy. J Diabetes Res 2014; 2014:624939. [PMID: 25054159 PMCID: PMC4098888 DOI: 10.1155/2014/624939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/17/2014] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To investigate cardiomyopathy in offspring in a mouse model of pregestational type 1 diabetic pregnancy. METHODS Pregestational diabetes was induced with STZ administration in female C57BL6/J mice that were subsequently mated with healthy C57BL6/J males. Offspring were sacrificed at embryonic day 18.5 and 6-week adolescent and 12-week adult stages. The size and number of cardiomyocyte nuclei and also the extent of collagen deposition within the hearts of diabetic and control offspring were assessed following cardiac tissue staining with either haematoxylin and eosin or Picrosirius red and subsequently quantified using automated digital image analysis. RESULTS Offspring from diabetic mice at embryonic day 18.5 had a significantly higher number of cardiomyocyte nuclei present compared to controls. These nuclei were also significantly smaller than controls. Collagen deposition was shown to be significantly increased in the hearts of diabetic offspring at the same age. No significant differences were found between the groups at 6 and 12 weeks. CONCLUSIONS Our results from offspring of type 1 diabetic mice show increased myocardial collagen deposition in late gestation and have increased myocardial nuclear counts (hyperplasia) as opposed to increased myocardial nuclear size (hypertrophy) in late gestation. These changes normalize postpartum after removal from the maternal intrauterine environment.
Collapse
Affiliation(s)
- Daniel Dowling
- UCD Obstetrics & Gynaecology, School of Medicine and Medical Science, National Maternity Hospital, University College Dublin, Dublin 2, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niamh Corrigan
- UCD Obstetrics & Gynaecology, School of Medicine and Medical Science, National Maternity Hospital, University College Dublin, Dublin 2, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen Horgan
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chris J. Watson
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - John Baugh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul Downey
- Pathology, National Maternity Hospital, Dublin 2, Ireland
| | - Fionnuala M. McAuliffe
- UCD Obstetrics & Gynaecology, School of Medicine and Medical Science, National Maternity Hospital, University College Dublin, Dublin 2, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- *Fionnuala M. McAuliffe:
| |
Collapse
|
28
|
Bohuslavova R, Skvorova L, Sedmera D, Semenza GL, Pavlinkova G. Increased susceptibility of HIF-1α heterozygous-null mice to cardiovascular malformations associated with maternal diabetes. J Mol Cell Cardiol 2013; 60:129-41. [PMID: 23619295 DOI: 10.1016/j.yjmcc.2013.04.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 01/27/2023]
Abstract
Cardiovascular malformations are the most common manifestation of diabetic embryopathy. The molecular mechanisms underlying the teratogenic effect of maternal diabetes have not been fully elucidated. Using genome-wide expression profiling, we previously demonstrated that exposure to maternal diabetes resulted in dysregulation of the hypoxia-inducible factor 1 (HIF-1) pathway in the developing embryo. We thus considered a possible link between HIF-1-regulated pathways and the development of congenital malformations. HIF-1α heterozygous-null (Hif1a(+/-)) and wild type (Wt) littermate embryos were exposed to the intrauterine environment of a diabetic mother to analyze the frequency and morphology of congenital defects, and assess gene expression changes in Wt and Hif1a(+/-) embryos. We observed a decreased number of embryos per litter and an increased incidence of heart malformations, including atrioventricular septal defects and reduced myocardial mass, in diabetes-exposed Hif1a(+/-) embryos as compared to Wt embryos. We also detected significant differences in the expression of key cardiac transcription factors, including Nkx2.5, Tbx5, and Mef2C, in diabetes-exposed Hif1a(+/-) embryonic hearts compared to Wt littermates. Thus, partial global HIF-1α deficiency alters gene expression in the developing heart and increases susceptibility to congenital defects in a mouse model of diabetic pregnancy.
Collapse
|
29
|
Scott-Drechsel DE, Rugonyi S, Marks DL, Thornburg KL, Hinds MT. Hyperglycemia slows embryonic growth and suppresses cell cycle via cyclin D1 and p21. Diabetes 2013; 62. [PMID: 23193186 PMCID: PMC3526024 DOI: 10.2337/db12-0161] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In pregnant women, the diabetic condition results in a three- to fivefold increased risk for fetal cardiac malformations as a result of elevated glucose concentrations and the resultant osmotic stress in the developing embryo and fetus. Heart development before septation in the chick embryo was studied under two hyperglycemic conditions. Pulsed hyperglycemia induced by daily administration of glucose during 3 days of development caused daily spikes in plasma glucose concentration. In a second model, sustained hyperglycemia was induced with a single injection of glucose into the yolk on day 0. The sustained model raised the average plasma glucose concentration from 70 mg/dL to 180 mg/dL and led to decreased gene expression of glucose transporter GLUT1. Both models of hyperglycemia reduced embryo size, increased mortality, and delayed development. Within the heart outflow tract, reduced proliferation of myocardial and endocardial cells resulted from the sustained hyperglycemia and hyperosmolarity. The cell cycle inhibitor p21 was significantly increased, whereas cyclin D1, a cell cycle promoter, decreased in sustained hyperglycemia compared with controls. The evidence suggests that hyperglycemia-induced developmental delays are associated with slowed cell cycle progression, leading to reduced cellular proliferation. The suppression of critical developmental steps may underlie the cardiac defects observed during late gestation under hyperglycemic conditions.
Collapse
Affiliation(s)
| | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon
| | - Kent L. Thornburg
- Heart Research Center, Oregon Health & Science University, Portland, Oregon
| | - Monica T. Hinds
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon
- Corresponding author: Monica T. Hinds,
| |
Collapse
|
30
|
Vijaya M, Manikandan J, Parakalan R, Dheen ST, Kumar SD, Tay SSW. Differential gene expression profiles during embryonic heart development in diabetic mice pregnancy. Gene 2012; 516:218-27. [PMID: 23287646 DOI: 10.1016/j.gene.2012.12.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 11/19/2022]
Abstract
Congenital heart defects (CHD) are one of the most common defects in offspring of diabetic mothers. There is a clear association between maternal diabetes and CHD; however the underlying molecular mechanism remains unknown. We hypothesized that maternal diabetes affects with the expression of early developmental genes that regulate the essential developmental processes of the heart, thereby resulting in the pathogenesis of CHD. We analyzed genome-wide expression profiling in the developing heart of embryos from diabetic and control mice by using the oligonucleotide microarray. Microarray analysis revealed that a total of 878 genes exhibited more than 1.5 fold changes in expression level in the hearts of experimental embryos in either E13.5 or E15.5 compared with their respective controls. Expression pattern of genes that is differentially expressed in the developing heart was further examined by the real-time reverse transcriptase-polymerase chain reaction. Several genes involved in a number of molecular signaling pathways such as apoptosis, proliferation, migration and differentiation in the developing heart were differentially expressed in embryos of diabetic pregnancy. It is concluded that altered expression of several genes involved in heart development may contribute to CHD in offspring of diabetic mothers.
Collapse
Affiliation(s)
- Murugaiyan Vijaya
- Department of Anatomy, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | | | |
Collapse
|
31
|
Kumar SD, Vijaya M, Samy RP, Dheen ST, Ren M, Watt F, Kang YJ, Bay BH, Tay SSW. Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radic Biol Med 2012; 53:1595-606. [PMID: 22819979 DOI: 10.1016/j.freeradbiomed.2012.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 07/02/2012] [Accepted: 07/08/2012] [Indexed: 12/14/2022]
Abstract
Oxidative stress induced by maternal diabetes plays an important role in the development of cardiac malformations. Zinc (Zn) supplementation of animals and humans has been shown to ameliorate oxidative stress induced by diabetic cardiomyopathy. However, the role of Zn in the prevention of oxidative stress induced by diabetic cardiac embryopathy remains unknown. We analyzed the preventive role of Zn in diabetic cardiac embryopathy by both in vivo and in vitro studies. In vivo study revealed a significant decrease in lipid peroxidation, superoxide ions, and oxidized glutathione and an increase in reduced glutathione, nitric oxide, and superoxide dismutase in the developing heart at embryonic days (E) 13.5 and 15.5 in the Zn-supplemented diabetic group when compared to the diabetic group. In addition, significantly down-regulated protein and mRNA expression of metallothionein (MT) in the developing heart of embryos from diabetic group was rescued by Zn supplement. Further, the nuclear microscopy results showed that trace elements such as phosphorus, calcium, and Zn levels were significantly increased (P<0.001), whereas the iron level was significantly decreased (P<0.05) in the developing heart of embryos from the Zn-supplemented diabetic group. In vitro study showed a significant increase in cellular apoptosis and the generation of reactive oxygen species (ROS) in H9c2 (rat embryonic cardiomyoblast) cells exposed to high glucose concentrations. Supplementation with Zn significantly decreased apoptosis and reduced the levels of ROS. In summary, oxidative stress induced by maternal diabetes could play a role in the development and progression of cardiac embryopathy, and Zn supplementation could be a potential therapy for diabetic cardiac embryopathy.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blood Glucose/metabolism
- Blotting, Western
- Cells, Cultured
- Diabetes Complications/etiology
- Diabetes Complications/pathology
- Diabetes Complications/prevention & control
- Diabetes Mellitus, Experimental/physiopathology
- Dietary Supplements
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- Female
- Glutathione/genetics
- Glutathione/metabolism
- Heart Defects, Congenital/etiology
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/prevention & control
- Immunoenzyme Techniques
- Lipid Peroxidation/drug effects
- Metallothionein/genetics
- Metallothionein/metabolism
- Mice
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Nuclear Microscopy
- Oxidative Stress
- RNA, Messenger/genetics
- Rats
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Zinc/administration & dosage
Collapse
Affiliation(s)
- Srinivasan Dinesh Kumar
- Department of Anatomy, National University Health System, National University of Singapore, Singapore 117597.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Scherptong RWC, Jongbloed MRM, Wisse LJ, Vicente-Steijn R, Bartelings MM, Poelmann RE, Schalij MJ, Gittenberger-De Groot AC. Morphogenesis of outflow tract rotation during cardiac development: the pulmonary push concept. Dev Dyn 2012; 241:1413-22. [PMID: 22826212 DOI: 10.1002/dvdy.23833] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Understanding of cardiac outflow tract (OFT) remodeling is essential to explain repositioning of the aorta and pulmonary orifice. In wild type embryos (E9.5-14.5), second heart field contribution (SHF) to the OFT was studied using expression patterns of Islet 1, Nkx2.5, MLC-2a, WT-1, and 3D-reconstructions. Abnormal remodeling was studied in VEGF120/120 embryos. RESULTS In wild type, Islet 1 and Nkx2.5 positive myocardial precursors formed an asymmetric elongated column almost exclusively at the pulmonary side of the OFT up to the pulmonary orifice. In VEGF120/120 embryos, the Nkx2.5-positive mesenchymal population was disorganized with a short extension along the pulmonary OFT. CONCLUSIONS We postulate that normally the pulmonary trunk and orifice are pushed in a higher and more frontal position relative to the aortic orifice by asymmetric addition of SHF-myocardium. Deficient or disorganized right ventricular OFT expansion might explain cardiac malformations with abnormal position of the great arteries, such as double outlet right ventricle.
Collapse
|
33
|
van den Akker NMS, Caolo V, Molin DGM. Cellular decisions in cardiac outflow tract and coronary development: an act by VEGF and NOTCH. Differentiation 2012; 84:62-78. [PMID: 22683047 DOI: 10.1016/j.diff.2012.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/28/2012] [Accepted: 04/10/2012] [Indexed: 01/09/2023]
Abstract
Congenital cardiac abnormalities are, due to their relatively high frequency and severe impact on quality of life, an important focus in cardiovascular research. Recently, various human studies have revealed a high coincidence of VEGF and NOTCH polymorphisms with cardiovascular outflow tract anomalies, such as bicuspid aortic valves and Tetralogy of Fallot, next to predisposition for cardiovascular pathologies, including atherosclerosis and aortic valve calcification. This genetic association between VEGF/NOTCH mutations and congenital cardiovascular defects in humans has been supported by substantial proof from animal models, revealing interaction of both pathways in cellular processes that are crucial for cardiac development. This review focuses on the role of VEGF and NOTCH signaling and their interplay in cardiogenesis with special interest to coronary and outflow tract development. An overview of the association between congenital malformations and VEGF/NOTCH polymorphisms in humans will be discussed along with their potential mechanisms and processes as revealed by transgenic mouse models. The molecular and cellular interaction of VEGF and subsequent Notch-signaling in these processes will be highlighted.
Collapse
Affiliation(s)
- Nynke M S van den Akker
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | |
Collapse
|
34
|
El-Ganzoury MM, El-Masry SA, El-Farrash RA, Anwar M, Abd Ellatife RZ. Infants of diabetic mothers: echocardiographic measurements and cord blood IGF-I and IGFBP-1. Pediatr Diabetes 2012; 13:189-96. [PMID: 21933314 DOI: 10.1111/j.1399-5448.2011.00811.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cardiac malformations in infants of diabetic mothers (IDMs) are five times higher than in normal pregnancies. Insulin-like growth factor-I (IGF-I) is the most important growth factor in utero and is predominantly bound by IGF binding protein-1 (IGFBP-1). OBJECTIVE To examine the echocardiographic findings of neonates of diabetic mothers and the relationship with cord blood IGF-I and IGBP-1. SUBJECTS AND METHODS This study was conducted on 69 neonates born to diabetic mothers who were admitted to the neonatal intensive care unit, Ain Shams University Hospitals between August 2007 and February 2008. They were classified into three groups: 20 small for gestational age, 25 appropriate for gestational age, and 24 large for gestational age. Neonates were subjected to thorough clinical examination and echocardiographic evaluation. Maternal hemoglobin A1c (HbA1c) and cord blood IGF-I and IGBP-1 were assessed. RESULTS Thirty neonates (43.5%) had hypertrophic cardiomyopathy (HCM); all of them were infants of suboptimally controlled diabetic mothers (HbA1c ≥ 7) with positive correlation between HbA1c and interventricular septal (IVS) thickness. Impaired left ventricular contractility was recorded in 52 IDMs (75.4%). The echocardiographic and laboratory measurements showed significant difference between the three studied groups. Cardiac morphological data were negatively correlated to IGFBP-1 and positively correlated to IGF-I and birth weight. CONCLUSIONS The opposing relationships between cord blood IGF-I and IGFBP-1 on the cardiac morphological measurements supporting their putative opposing roles in HCM seen in IDMs. Birth weight is the best predictor of hypertrophied IVS especially in infants born to suboptimally controlled diabetic mothers.
Collapse
Affiliation(s)
- Mona M El-Ganzoury
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | | | | |
Collapse
|
35
|
Nordquist N, Luthman H, Pettersson U, Eriksson UJ. Linkage study of embryopathy-polygenic inheritance of diabetes-induced skeletal malformations in the rat. Reprod Toxicol 2012; 33:297-307. [PMID: 22227068 DOI: 10.1016/j.reprotox.2011.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 12/16/2022]
Abstract
We developed an inbred rat model of diabetic embryopathy, in which the offspring displays skeletal malformations (agnathia or micrognathia) when the mother is diabetic, and no malformations when she is not diabetic. Our aim was to find genes controlling the embryonic maldevelopment in a diabetic environment. We contrasted the fetal outcome in inbred Sprague-Dawley L rats (20% skeletal malformations in diabetic pregnancy) with that of inbred Wistar Furth rats (denotedW, no skeletal malformations in diabetic pregnancy). We used offspring from the backcross F(1)×L to probe for the genetic basis for malformation of the mandible in diabetic pregnancy. A set of 186 fetuses (93 affected, 93 unaffected) was subjected to a whole genome scan with 160 micro satellites. Analysis of genotype distribution indicated 7 loci on chromosome 4, 10 (3 loci), 14, 18, and 19 in the teratogenic process (and 14 other loci on 12 chromosomes with less strong association to the malformations), several of which contained genes implicated in other experimental studies of diabetic embryopathy. These candidate genes will be scrutinized in further experimentation. We conclude that the genetic involvement in rodent diabetic embryopathy is polygenic and predisposing for congenital malformations.
Collapse
|
36
|
Cardiac function in 7-8-year-old offspring of women with type 1 diabetes. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:564316. [PMID: 22144987 PMCID: PMC3227501 DOI: 10.1155/2011/564316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 08/17/2011] [Accepted: 08/29/2011] [Indexed: 11/17/2022]
Abstract
Offspring of type 1 diabetic mothers (ODMs) are at risk of short-term and long-term complications, such as neonatal macrosomia (birth weight >90th percentile), hypertrophic cardiomyopathy, and cardiovascular morbidity in later life. However, no studies have been performed regarding cardiac outcome. In this study, we investigated cardiac dimensions and function in 30 ODMs at 7-8 years of age in relation to neonatal macrosomia and maternal glycemic control during pregnancy and compared these with those in a control group of 30 children of nondiabetic women. We found that cardiac dimensions and systolic and diastolic function parameters in ODMs were comparable with those in controls. Neonatal macrosomia and poorer maternal glycemic control during pregnancy were not related to worse cardiac outcome in ODM. We conclude that cardiac function at 7-8 years of age in offspring of women with type 1 diabetes is reassuring and comparable with that in controls.
Collapse
|
37
|
Wentzel P, Eriksson UJ. Altered gene expression in rat cranial neural crest cells exposed to a teratogenic glucose concentration in vitro: paradoxical downregulation of antioxidative defense genes. ACTA ACUST UNITED AC 2011; 92:487-97. [PMID: 21818840 DOI: 10.1002/bdrb.20321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/06/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND Diabetic pregnancy is associated with increased risk of malformation in the infant. Diabetes-induced anomalies of the face and heart are strongly correlated with neural crest cell (NCC) maldevelopment. We aimed to study glucose-induced alterations of mRNA levels in cranial and trunk NCCs isolated from rat embryos with increased risk of developing mandibular and cardiac malformations in diabetic pregnancy. METHODS Inbred Sprague-Dawley rat embryos were used for NCC isolation from neural tube explants. The migrating cells were exposed to 5.5 or 30 mmol/l glucose concentration for 48 hr, harvested, and prepared for gene expression measurement by RT-PCR or immunostaining with either distal-less (Dlx) or AP-2-α antibodies. RESULTS Evaluation of the immunostained slides showed that approximately 75% of the cells were of NCC origin. Exposure to 30 mM glucose decreased mRNA levels of Copper-Zinc superoxide dismutase, manganese superoxide dismutase, extracellular superoxide dismutase, Catalase, Gpx-1, Nrf2, poly-ADP ribose polymerase, B-cell leukemia/lymphoma protein 2, and β-Catenin genes in cranial neural crest explant cultures. In addition, Pax-3, Pax-6, Wnt3a, and Apc mRNA levels were decreased by high glucose exposure in both cranial and trunk neural crest explant cultures. CONCLUSION Cranial NCCs diminish their mRNA levels of antioxidative enzymes and the Nrf2 response factor, as well as the antiapoptotic B-cell leukemia/lymphoma protein 2 gene, in response to increased ambient glucose concentration. Furthermore, both cranial and trunk NCC decrease the mRNA levels of the transcription factors Pax-3 and Pax-6, as well as key components of the Wnt pathway. These patterns of glucose-altered gene expression in a developmentally important cell population may be of etiological importance for NCC-associated malformations in diabetic pregnancy.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, Sweden.
| | | |
Collapse
|
38
|
Ejdesjö A, Wentzel P, Eriksson UJ. Genetic and environmental influence on diabetic rat embryopathy. Am J Physiol Endocrinol Metab 2011; 300:E454-67. [PMID: 21119026 DOI: 10.1152/ajpendo.00543.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We assessed genetic and environmental influence on fetal outcome in diabetic rat pregnancy. Crossing normal (N) and manifestly diabetic (MD) Wistar Furth (W) and Sprague-Dawley (L) females with W or L males yielded four different fetal genotypes (WW, LL, WL, and LW) in N or MD rat pregnancies for studies. We also evaluated fetal outcome in litters with enhanced or diminished severity of maternal MD state, denoted MD(+)WL and MD(-)LW. The MDWW litters had less malformations and resorptions (0 and 19%) than the MDLL litters (17 and 30%). The MDWL litters (0 and 8%) were less maldeveloped than the MDLW litters (9 and 22%), whereas the MD(+)WL (3 and 23%) and MD(-)LW (1 and 17%) litters showed increased and decreased dysmorphogenesis (compared with MDWL and MDLW litters). The pregnant MDW rats had lower serum levels of glucose, fructosamine, and branched-chain amino acids than the pregnant MDL rats, whereas the pregnant MD(+)W and MD(-)L rats had levels comparable with those of the MDL and MDW rats, respectively. The 8-iso-PGF2α levels of the malformed MDLW offspring were increased compared with the nonmalformed MDLW offspring. Diabetes decreased fetal heart Ret and increased Bmp-4 gene expression in the MDLW offspring and caused decreased GDNF and Shh expression in the malformed fetal mandible of the MDLW offspring. We conclude that the fetal genome controls the embryonic dysmorphogenesis in diabetic pregnancy by instigating a threshold level for the teratological insult and that the maternal genome controls the teratogenic insult by (dys)regulating the maternal metabolism.
Collapse
Affiliation(s)
- A Ejdesjö
- Dept. of Medical Cell Biology, Biomedical Centre, Uppsala, Sweden.
| | | | | |
Collapse
|
39
|
Normal and abnormal development of pulmonary veins: State of the art and correlation with clinical entities. Int J Cardiol 2011; 147:13-24. [DOI: 10.1016/j.ijcard.2010.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/17/2010] [Accepted: 07/04/2010] [Indexed: 11/19/2022]
|
40
|
Abstract
The worldwide increase in the incidence of diabetes, the increase in type 2 diabetes in women at reproductive ages, and the cross-generation of the intrauterine programming of type 2 diabetes are the bases for the growing interest in the use of experimental diabetic models in order to gain insight into the mechanisms of induction of developmental alterations in maternal diabetes. In this scenario, experimental models that present the most common features of diabetes in pregnancy are highly required. Several important aspects of human diabetic pregnancies such as the increased rates of spontaneous abortions, malformations, fetoplacental impairments, and offspring diseases in later life can be approached by using the appropriate animal models. The purpose of this review is to give a practical and critical guide into the most frequently used experimental models in diabetes and pregnancy, discuss their advantages and limitations, and describe the aspects of diabetes and pregnancy for which these models are thought to be adequate. This review provides a comprehensive view and an extensive analysis of the different models and phenotypes addressed in diabetic animals throughout pregnancy. The review includes an analysis of the surgical, chemical-induced, and genetic experimental models of diabetes and an evaluation of their use to analyze early pregnancy defects, induction of congenital malformations, placental and fetal alterations, and the intrauterine programming of metabolic diseases in the offspring's later life.
Collapse
Affiliation(s)
- Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas-School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
41
|
Cardiac malformations and alteration of TGFbeta signaling system in diabetic embryopathy. ACTA ACUST UNITED AC 2010; 89:97-105. [PMID: 20127828 DOI: 10.1002/bdrb.20225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cardiovascular defects are the most common anomalies in diabetic embryopathy. The mechanisms underlying the manifestation of the defects remain to be addressed. METHODS Female mice were administered streptozotocin to induce diabetes. Embryos from euglycemic (control) and hyperglycemic groups were examined for morphological and histological evaluation of malformations. Cell proliferation and programmed cell death (apoptosis) were assessed using mitotic markers (BrdU and Ki67) and TUNEL assay, respectively. Expression of eight four genes in the TGFbeta signaling system was analyzed using real-time RT-PCR. RESULTS Structural abnormalities were observed in the heart and neural tube in diabetic groups, with significantly higher malformation rates than in control groups. Moreover, malformation rates in the heart were higher than those in the neural tube. Cardiac abnormalities including dilated heart tube, smaller ventricles, conotruncal stenosis, and abnormal heart looping were seen during early morphogenesis prior to cardiac septation [embryonic day (E) 9.5-11.5]. Histological examinations showed hypoplastic myocardium and endocardial cushions. After cardiac septation (E15.5), ventricular septal defects were observed, which were manifested in the non-muscular portion of the septum. Significant decreases in cell proliferation with no differences in apoptosis were observed in the myocardium and endocardial cushions in diabetic compared to control groups. Factors in the TGFbeta signaling that regulate heart development were downregulated by maternal diabetes. CONCLUSIONS Maternal diabetes causes malformations in the heart of the embryo. The heart is more susceptible to maternal diabetic insults than the neural tube. Malformations in the heart prior to septation are associated with decreased cell proliferation, but not increased apoptosis. The TGFbeta signaling is involved in cardiac malformations in diabetic embryopathy.
Collapse
|
42
|
Glucose transporter 10 and arterial tortuosity syndrome: The vitamin C connection. FEBS Lett 2010; 584:2990-4. [DOI: 10.1016/j.febslet.2010.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/01/2010] [Accepted: 06/08/2010] [Indexed: 02/03/2023]
|
43
|
Liang J, Gui Y, Wang W, Gao S, Li J, Song H. Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos. ACTA ACUST UNITED AC 2010; 88:480-6. [DOI: 10.1002/bdra.20654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Abstract
Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy.
Collapse
Affiliation(s)
- James H. Chappell
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Xiao Dan Wang
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Mary R. Loeken
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
45
|
Corrigan N, Brazil DP, McAuliffe F. Fetal cardiac effects of maternal hyperglycemia during pregnancy. ACTA ACUST UNITED AC 2009; 85:523-30. [PMID: 19180650 DOI: 10.1002/bdra.20567] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Maternal diabetes mellitus is associated with increased teratogenesis, which can occur in pregestational type 1 and type 2 diabetes. Cardiac defects and with neural tube defects are the most common malformations observed in fetuses of pregestational diabetic mothers. The exact mechanism by which diabetes exerts its teratogenic effects and induces embryonic malformations is unclear. Whereas the sequelae of maternal pregestational diabetes, such as modulating insulin levels, altered fat levels, and increased reactive oxygen species, may play a role in fetal damage during diabetic pregnancy, hyperglycemia is thought to be the primary teratogen, causing particularly adverse effects on cardiovascular development. Fetal cardiac defects are associated with raised maternal glycosylated hemoglobin levels and are up to five times more likely in infants of mothers with pregestational diabetes compared with those without diabetes. The resulting anomalies are varied and include transposition of the great arteries, mitral and pulmonary atresia, double outlet of the right ventricle, tetralogy of Fallot, and fetal cardiomyopathy.A wide variety of rodent models have been used to study diabetic teratogenesis. Both genetic and chemically induced models of type 1 and 2 diabetes have been used to examine the effects of hyperglycemia on fetal development. Factors such as genetic background as well as confounding variables such as obesity appear to influence the severity of fetal abnormalities in mice. In this review, we will summarize recent data on fetal cardiac effects from human pregestational diabetic mothers, as well as the most relevant findings in rodent models of diabetic cardiac teratogenesis.
Collapse
Affiliation(s)
- Niamh Corrigan
- UCD School of Medicine and Medical Science, University College, Dublin 2, Ireland
| | | | | |
Collapse
|
46
|
Roest PA, Molin DG, Schalkwijk CG, van Iperen L, Wentzel P, Eriksson UJ, Gittenberger-de Groot AC. Specific local cardiovascular changes of Nepsilon-(carboxymethyl)lysine, vascular endothelial growth factor, and Smad2 in the developing embryos coincide with maternal diabetes-induced congenital heart defects. Diabetes 2009; 58:1222-8. [PMID: 19188426 PMCID: PMC2671058 DOI: 10.2337/db07-1016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Embryos exposed to a diabetic environment in utero have an increased risk to develop congenital heart malformations. The mechanism behind the teratogenicity of diabetes still remains enigmatic. Detrimental effects of glycation products in diabetic patients have been well documented. We therefore studied a possible link between glycation products and the development of congenital cardiovascular malformations. Furthermore, we investigated other possible mechanisms involved in this pathogenesis: alterations in the levels of vascular endothelial growth factor (VEGF) or phosphorylated Smad2 (the latter can be induced by both glycation products and VEGF). RESEARCH DESIGN AND METHODS We examined the temporal spatial patterning of the glycation products Nepsilon(carboxymethyl)lysine (CML) and methylglyoxal (MG) adducts, VEGF expression, and phosphorylated Smad2 during cardiovascular development in embryos from normal and diabetic rats. RESULTS Maternal diabetes increased the CML accumulation in the areas susceptible to diabetes-induced congenital heart disease, including the outflow tract of the heart and the aortic arch. No MG adducts could be detected, suggesting that CML is more likely to be indicative for increased oxidative stress than for glycation. An increase of CML in the outflow tract of the heart was accompanied by an increase in phosphorylated Smad2, unrelated to VEGF. VEGF showed a time-specific decrease in the outflow tract of embryos from diabetic dams. CONCLUSIONS From our results, we can conclude that maternal diabetes results in transient and localized alterations in CML, VEGF expression, and Smad2 phosphorylation overlapping with those regions of the developing heart that are most sensitive to diabetes-induced congenital heart disease.
Collapse
Affiliation(s)
- Pauline A.M. Roest
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Daniël G.M. Molin
- Department of Vascular Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands; and
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Parri Wentzel
- Department of Medical Cell Biology, Uppsala University Biomedical Centre, Uppsala, Sweden
| | - Ulf J. Eriksson
- Department of Medical Cell Biology, Uppsala University Biomedical Centre, Uppsala, Sweden
| | - Adriana C. Gittenberger-de Groot
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
- Corresponding author: Adriana C. Gittenberger-de Groot,
| |
Collapse
|
47
|
Sugimura Y, Murase T, Kobayashi K, Oyama K, Hayasaka S, Kanou Y, Oiso Y, Murata Y. Alpha-lipoic acid reduces congenital malformations in the offspring of diabetic mice. Diabetes Metab Res Rev 2009; 25:287-94. [PMID: 19242917 DOI: 10.1002/dmrr.947] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The mechanism of diabetes-induced congenital malformation remains to be elucidated. It has been reported that alpha-lipoic acid (LA) prevents neural tube defects (NTDs) in offsprings of rats with streptozotocin-induced diabetes. Here, we evaluate the protective effect of LA against diabetic embryopathy, including NTDs, cardiovascular malformations (CVMs), and skeletal malformations, in mice. METHODS Female mice were rendered hyperglycemic using streptozotocin and then mated with normal male mouse. Pregnant diabetic or non-diabetic mice were treated daily with either LA (100 mg/kg body weight) or saline between gestational days 0 and 18. On day 18, fetuses were examined for congenital malformations. RESULTS Plasma glucose levels on day 18 were not affected by LA treatment. No congenital malformations were observed either in the saline-treated or LA-treated non-diabetic group. In the saline-treated diabetic group, 39% of fetuses had external malformations and 30% had NTDs. In the LA-treated diabetic group, the corresponding proportions were 11 and 8%, respectively. LA treatment also decreased the incidence of CVMs from 30-3% and of skeletal malformations from 29-6%. CONCLUSIONS We conclude that LA can reduce NTDs, CVMs and skeletal malformations in the offspring of diabetic mice at term delivery.
Collapse
Affiliation(s)
- Y Sugimura
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kumar SD, Yong SK, Dheen ST, Bay BH, Tay SSW. Cardiac malformations are associated with altered expression of vascular endothelial growth factor and endothelial nitric oxide synthase genes in embryos of diabetic mice. Exp Biol Med (Maywood) 2008; 233:1421-32. [PMID: 18824721 DOI: 10.3181/0806-rm-186] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to investigate the role of nitric oxide (NO), and the expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) genes in developing hearts at embryonic day 13.5 of embryos from diabetic mice. The protein and mRNA expression levels of eNOS and VEGF were significantly altered in the developing hearts of embryos from diabetic mice. The NO level was significantly decreased, whereas the VEGF concentration was significantly increased in the developing hearts of the embryos from diabetic mice. In vitro study showed a significant reduction in eNOS expression and cell proliferation in cardiac myoblast cells exposed to high glucose concentrations. Further, high glucose induced apoptosis in myoblast cells. Ultrastructural changes characteristics of apoptosis, including cell blebbing, aggregation of ribosomes and vacuoles in the cytoplasm were also evident in myoblast cells exposed to high glucose. It is suggested that hyperglycemia alters the expression of eNOS and VEGF genes that are involved in the regulation of cell growth and vasculogenesis, thereby contributing to the cardiac malformations seen in embryos from diabetic mice.
Collapse
Affiliation(s)
- Srinivasan Dinesh Kumar
- Department of Anatomy, National University Health System, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | |
Collapse
|
49
|
Morgan SC, Relaix F, Sandell LL, Loeken MR. Oxidative stress during diabetic pregnancy disrupts cardiac neural crest migration and causes outflow tract defects. ACTA ACUST UNITED AC 2008; 82:453-63. [PMID: 18435457 DOI: 10.1002/bdra.20457] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Maternal diabetes increases risk for congenital malformations, particularly cardiac outflow tract defects. Maternal diabetes inhibits expression of Pax3 in neuroepithelium through hyperglycemia-induced oxidative stress. The neuroepithelium gives rise to the neural crest, and Pax3 expression in cardiac neural crest (CNC) is required for CNC migration to the heart and for outflow tract septation. Here we tested whether maternal diabetes, through hyperglycemia-induced oxidative stress, before the onset of CNC delamination, impairs CNC migration and cardiac outflow tract septation. METHODS CNC migration was mapped in mouse embryos whose mothers were diabetic, or transiently hyperglycemic, or in which oxidative stress was transiently induced, using reporters linked to Pax3 expression. CNC apoptosis was examined by TUNEL assay. Outflow tract septation was examined histologically and by gross inspection. RESULTS Few, if any, migrating CNC cells were observed in embryos of diabetic mice, and this was associated with increased apoptosis along the path of CNC migration. Outflow tract defects were significantly increased in fetuses of diabetic mice. Notably, induction of hyperglycemia or oxidative stress on the day prior to the onset of Pax3 expression and CNC migration also impaired CNC migration, increased apoptosis, and caused outflow tract defects. However, antioxidants administered on the day prior to the onset of Pax3 expression and CNC migration prevented these effects of hyperglycemia or oxidative stress. CONCLUSIONS In diabetic pregnancy, oxidative stress, which inhibits expression of genes required for CNC viability, causes subsequent CNC depletion by apoptosis during migration, which leads to outflow tract defects.
Collapse
Affiliation(s)
- Sarah C Morgan
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
50
|
Wentzel P, Eriksson UJ. Genetic influence on dysmorphogenesis in embryos from different rat strains exposed to ethanol in vivo and in vitro. Alcohol Clin Exp Res 2008; 32:874-87. [PMID: 18371156 DOI: 10.1111/j.1530-0277.2008.00647.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The aim was to investigate the susceptibility of embryos from 2 rat strains (U and H) to a 48 hours ethanol exposure in early pregnancy, both in vivo and in vitro. METHODS The embryos were studied on gestational days 9 to 11. We used 1 ethanol dose in vivo (6 g/kg x 2), 3 different ethanol concentrations in vitro (88 mM, 132 mM, 176 mM) and also attempted to diminish the teratogenic effect in vitro by supplying the antioxidant N-acetylcysteine (NAC, 0.5 mM) to the culture medium. RESULTS The U embryos were more damaged by ethanol than the H embryos, both in vivo and in vitro. NAC addition diminished, but failed to completely normalize, the embryonic maldevelopment. Ethanol increased the Bax/Bcl-2 ratio in the U embryos both in vivo and in vitro, but not in the H embryos. Furthermore, ethanol caused increased Caspase-3 immunostaining in U embryos, but not in H embryos. Ethanol exposure in vivo did not alter CuZnSOD and MnSOD mRNA levels in U and H embryos. In vitro, however, the ethanol-exposed U embryos increased their CuZnSOD and MnSOD mRNA levels, whereas the CuZnSOD mRNA was unchanged and MnSOD mRNA decreased in the H embryos, in neither strain did NAC exert any effect. The U embryos increased catalase gene expression in response to ethanol in vivo, but decreased catalase mRNA levels in vitro, changes normalized by NAC. The H embryos did not alter catalase mRNA levels in vivo, but increased gene expression in vitro, with no NAC effect. Ethanol affected the gene expression of the other ROS scavenging enzymes and the developmental genes studied - Bmp-4, Ret, Shh, Pax-6 - similarly in the 2 strains. CONCLUSIONS The findings support a role for genetic predisposition, oxidative stress, and apoptosis in ethanol teratogenicity, and suggest that the teratogenic predisposition of the more susceptible U rats may reside, at least in part, in the regulation of the ROS scavenging enzymes in the U embryos.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Biomedical Center, Uppsala Universitet, Uppsala, Sweden.
| | | |
Collapse
|