1
|
Bonchuk AN, Georgiev PG. C2H2 proteins: Evolutionary aspects of domain architecture and diversification. Bioessays 2024; 46:e2400052. [PMID: 38873893 DOI: 10.1002/bies.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The largest group of transcription factors in higher eukaryotes are C2H2 proteins, which contain C2H2-type zinc finger domains that specifically bind to DNA. Few well-studied C2H2 proteins, however, demonstrate their key role in the control of gene expression and chromosome architecture. Here we review the features of the domain architecture of C2H2 proteins and the likely origin of C2H2 zinc fingers. A comprehensive investigation of proteomes for the presence of proteins with multiple clustered C2H2 domains has revealed a key difference between groups of organisms. Unlike plants, transcription factors in metazoans contain clusters of C2H2 domains typically separated by a linker with the TGEKP consensus sequence. The average size of C2H2 clusters varies substantially, even between genomes of higher metazoans, and with a tendency to increase in combination with SCAN, and especially KRAB domains, reflecting the increasing complexity of gene regulatory networks.
Collapse
Affiliation(s)
- Artem N Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel G Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Crewe M, Segev A, Rueda R, Madabhushi R. Atypical Modes of CTCF Binding Facilitate Tissue-Specific and Neuronal Activity-Dependent Gene Expression States. Mol Neurobiol 2024; 61:3240-3257. [PMID: 37979036 DOI: 10.1007/s12035-023-03762-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Multivalent binding of CTCF to variable DNA sequences is thought to underlie its ability to mediate diverse cellular functions. CTCF typically binds a 20 base-pair consensus DNA sequence, but the full diversity of CTCF binding sites (CBS) within the genome has not been interrogated. We assessed CTCF occupancy in cultured cortical neurons and observed surprisingly that ~ 22% of CBS lack the consensus CTCF motif. We report here that sequence diversity at most of these atypical CBS involves degeneracy at specific nucleotide positions within the consensus CTCF motif, which likely affect the binding of CTCF zinc fingers 6 and 7. This mode of atypical CTCF binding defines most CBS at gene promoters, as well as CBS that are dynamically altered during neural differentiation and following neuronal stimulation, revealing how atypical CTCF binding could influence gene activity. Dynamic CBS are distributed both within and outside loop anchors and TAD boundaries, suggesting both looping-dependent and independent roles for CTCF. Finally, we describe a second mode of atypical CTCF binding to DNA sequences that are completely unrelated to the consensus CTCF motif, which are enriched within the bodies of tissue-specific genes. These tissue-specific atypical CBS are also enriched in H3K27ac, which marks cis-regulatory elements within chromatin, including enhancers. Overall, these results indicate how atypical CBS could dynamically regulate gene activity patterns during differentiation, development, and in response to environmental cues.
Collapse
Affiliation(s)
- Morgan Crewe
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amir Segev
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard Rueda
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Bose S, Saha S, Goswami H, Shanmugam G, Sarkar K. Involvement of CCCTC-binding factor in epigenetic regulation of cancer. Mol Biol Rep 2023; 50:10383-10398. [PMID: 37840067 DOI: 10.1007/s11033-023-08879-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
A major global health burden continues to be borne by the complex and multifaceted disease of cancer. Epigenetic changes, which are essential for the emergence and spread of cancer, have drawn a huge amount of attention recently. The CCCTC-binding factor (CTCF), which takes part in a wide range of cellular processes including genomic imprinting, X chromosome inactivation, 3D chromatin architecture, local modifications of histone, and RNA polymerase II-mediated gene transcription, stands out among the diverse array of epigenetic regulators. CTCF not only functions as an architectural protein but also modulates DNA methylation and histone modifications. Epigenetic regulation of cancer has already been the focus of plenty of studies. Understanding the role of CTCF in the cancer epigenetic landscape may lead to the development of novel targeted therapeutic strategies for cancer. CTCF has already earned its status as a tumor suppressor gene by acting like a homeostatic regulator of genome integrity and function. Moreover, CTCF has a direct effect on many important transcriptional regulators that control the cell cycle, apoptosis, senescence, and differentiation. As we learn more about CTCF-mediated epigenetic modifications and transcriptional regulations, the possibility of utilizing CTCF as a diagnostic marker and therapeutic target for cancer will also increase. Thus, the current review intends to promote personalized and precision-based therapeutics for cancer patients by shedding light on the complex interplay between CTCF and epigenetic processes.
Collapse
Affiliation(s)
- Sayani Bose
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Srawsta Saha
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Harsita Goswami
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Hewitt SC, Gruzdev A, Willson CJ, Wu SP, Lydon JP, Galjart N, DeMayo FJ. Chromatin architectural factor CTCF is essential for progesterone-dependent uterine maturation. FASEB J 2023; 37:e23103. [PMID: 37489832 PMCID: PMC10372848 DOI: 10.1096/fj.202300862r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
Receptors for estrogen and progesterone frequently interact, via Cohesin/CTCF loop extrusion, at enhancers distal from regulated genes. Loss-of-function CTCF mutation in >20% of human endometrial tumors indicates its importance in uterine homeostasis. To better understand how CTCF-mediated enhancer-gene interactions impact endometrial development and function, the Ctcf gene was selectively deleted in female reproductive tissues of mice. Prepubertal Ctcfd/d uterine tissue exhibited a marked reduction in the number of uterine glands compared to those without Ctcf deletion (Ctcff/f mice). Post-pubertal Ctcfd/d uteri were hypoplastic with significant reduction in both the amount of the endometrial stroma and number of glands. Transcriptional profiling revealed increased expression of stem cell molecules Lif, EOMES, and Lgr5, and enhanced inflammation pathways following Ctcf deletion. Analysis of the response of the uterus to steroid hormone stimulation showed that CTCF deletion affects a subset of progesterone-responsive genes. This finding indicates (1) Progesterone-mediated signaling remains functional following Ctcf deletion and (2) certain progesterone-regulated genes are sensitive to Ctcf deletion, suggesting they depend on gene-enhancer interactions that require CTCF. The progesterone-responsive genes altered by CTCF ablation included Ihh, Fst, and Errfi1. CTCF-dependent progesterone-responsive uterine genes enhance critical processes including anti-tumorigenesis, which is relevant to the known effectiveness of progesterone in inhibiting progression of early-stage endometrial tumors. Overall, our findings reveal that uterine Ctcf plays a key role in progesterone-dependent expression of uterine genes underlying optimal post-pubertal uterine development.
Collapse
Affiliation(s)
| | | | | | - San-Pin Wu
- Pregnancy & Female Reproduction, DIR RDBL, NIEHS RTP, NC
| | | | - Niels Galjart
- Dept. of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
5
|
Patel PJ, Ren Y, Yan Z. Epigenomic analysis of Alzheimer's disease brains reveals diminished CTCF binding on genes involved in synaptic organization. Neurobiol Dis 2023; 184:106192. [PMID: 37302762 PMCID: PMC10519202 DOI: 10.1016/j.nbd.2023.106192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023] Open
Abstract
Epigenetic aberrations are suggested to play an important role in transcriptional alterations in Alzheimer's disease (AD). One of the key mechanisms of epigenetic regulation of gene expression is through the dynamic organization of chromatin structure via the master genome architecture protein, CCCTC-binding factor (CTCF). By forming chromatin loops, CTCF can influence gene transcription in a complex manner. To find out whether genome-wide DNA binding sites for CTCF are altered in AD, we compared CTCF chromatin immunoprecipitation sequencing (ChIP-Seq) data from frontal cortex of human AD patients and normal controls (n = 9 pairs, all females). We have revealed that CTCF-binding affinity on many genes is significantly reduced in AD patients, and these genes are enriched in synaptic organization, cell adhesion, and actin cytoskeleton, including synaptic scaffolding molecules and receptors, such as SHANK2, HOMER1, NRXN1, CNTNAP2 and GRIN2A, and protocadherin (PCDH) and cadherin (CDH) family members. By comparing transcriptomic data from AD patients, we have discovered that many of the synaptic and adhesion genes with reduced CTCF binding in AD are significantly reduced in their mRNA expression. Moreover, a significant overlap of genes with the diminished CTCF binding and the reduced H3K27ac is identified in AD, with the common genes enriched in synaptic organization. These data suggest that the CTCF-controlled 3D chromatin organization is perturbed in AD, which may be linked to the diminished expression of target genes, probably through changes in histone modification.
Collapse
Affiliation(s)
- Prachetas J Patel
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Yong Ren
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
6
|
Villaman C, Pollastri G, Saez M, Martin AJ. Benefiting from the intrinsic role of epigenetics to predict patterns of CTCF binding. Comput Struct Biotechnol J 2023; 21:3024-3031. [PMID: 37266407 PMCID: PMC10229758 DOI: 10.1016/j.csbj.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
Motivation One of the most relevant mechanisms involved in the determination of chromatin structure is the formation of structural loops that are also related with the conservation of chromatin states. Many of these loops are stabilized by CCCTC-binding factor (CTCF) proteins at their base. Despite the relevance of chromatin structure and the key role of CTCF, the role of the epigenetic factors that are involved in the regulation of CTCF binding, and thus, in the formation of structural loops in the chromatin, is not thoroughly understood. Results Here we describe a CTCF binding predictor based on Random Forest that employs different epigenetic data and genomic features. Importantly, given the ability of Random Forests to determine the relevance of features for the prediction, our approach also shows how the different types of descriptors impact the binding of CTCF, confirming previous knowledge on the relevance of chromatin accessibility and DNA methylation, but demonstrating the effect of epigenetic modifications on the activity of CTCF. We compared our approach against other predictors and found improved performance in terms of areas under PR and ROC curves (PRAUC-ROCAUC), outperforming current state-of-the-art methods.
Collapse
Affiliation(s)
- Camilo Villaman
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | | | - Mauricio Saez
- Centro de Oncología de Precisión, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Chile
| | - Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
7
|
Hyle J, Djekidel MN, Williams J, Wright S, Shao Y, Xu B, Li C. Auxin-inducible degron 2 system deciphers functions of CTCF domains in transcriptional regulation. Genome Biol 2023; 24:14. [PMID: 36698211 PMCID: PMC9878928 DOI: 10.1186/s13059-022-02843-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND CTCF is a well-established chromatin architectural protein that also plays various roles in transcriptional regulation. While CTCF biology has been extensively studied, how the domains of CTCF function to regulate transcription remains unknown. Additionally, the original auxin-inducible degron 1 (AID1) system has limitations in investigating the function of CTCF. RESULTS We employ an improved auxin-inducible degron technology, AID2, to facilitate the study of acute depletion of CTCF while overcoming the limitations of the previous AID system. As previously observed through the AID1 system and steady-state RNA analysis, the new AID2 system combined with SLAM-seq confirms that CTCF depletion leads to modest nascent and steady-state transcript changes. A CTCF domain sgRNA library screening identifies the zinc finger (ZF) domain as the region within CTCF with the most functional relevance, including ZFs 1 and 10. Removal of ZFs 1 and 10 reveals genomic regions that independently require these ZFs for DNA binding and transcriptional regulation. Notably, loci regulated by either ZF1 or ZF10 exhibit unique CTCF binding motifs specific to each ZF. CONCLUSIONS By extensively comparing the AID1 and AID2 systems for CTCF degradation in SEM cells, we confirm that AID2 degradation is superior for achieving miniAID-tagged protein degradation without the limitations of the AID1 system. The model we create that combines AID2 depletion of CTCF with exogenous overexpression of CTCF mutants allows us to demonstrate how peripheral ZFs intricately orchestrate transcriptional regulation in a cellular context for the first time.
Collapse
Affiliation(s)
- Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Justin Williams
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
8
|
Dozmorov MG, Mu W, Davis ES, Lee S, Triche TJ, Phanstiel DH, Love MI. CTCF: an R/bioconductor data package of human and mouse CTCF binding sites. BIOINFORMATICS ADVANCES 2022; 2:vbac097. [PMID: 36699364 PMCID: PMC9793704 DOI: 10.1093/bioadv/vbac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Summary CTCF (CCCTC-binding factor) is an 11-zinc-finger DNA binding protein which regulates much of the eukaryotic genome's 3D structure and function. The diversity of CTCF binding motifs has led to a fragmented landscape of CTCF binding data. We collected position weight matrices of CTCF binding motifs and defined strand-oriented CTCF binding sites in the human and mouse genomes, including the recent Telomere to Telomere and mm39 assemblies. We included selected experimentally determined and predicted CTCF binding sites, such as CTCF-bound cis-regulatory elements from SCREEN ENCODE. We recommend filtering strategies for CTCF binding motifs and demonstrate that liftOver is a viable alternative to convert CTCF coordinates between assemblies. Our comprehensive data resource and usage recommendations can serve to harmonize and strengthen the reproducibility of genomic studies utilizing CTCF binding data. Availability and implementation https://bioconductor.org/packages/CTCF. Companion website: https://dozmorovlab.github.io/CTCF/; Code to reproduce the analyses: https://github.com/dozmorovlab/CTCF.dev. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | - Wancen Mu
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stuart Lee
- Department of Econometrics and Business Statistics, Monash University, Clayton, NC 3168, Australia,Molecular Medicine Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Timothy J Triche
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA,Department of Pediatrics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Douglas H Phanstiel
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
9
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
10
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
11
|
Chachoua I, Tzelepis I, Dai H, Lim JP, Lewandowska-Ronnegren A, Casagrande FB, Wu S, Vestlund J, Mallet de Lima CD, Bhartiya D, Scholz BA, Martino M, Mehmood R, Göndör A. Canonical WNT signaling-dependent gating of MYC requires a noncanonical CTCF function at a distal binding site. Nat Commun 2022; 13:204. [PMID: 35017527 PMCID: PMC8752836 DOI: 10.1038/s41467-021-27868-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/19/2021] [Indexed: 01/21/2023] Open
Abstract
Abnormal WNT signaling increases MYC expression in colon cancer cells in part via oncogenic super-enhancer-(OSE)-mediated gating of the active MYC to the nuclear pore in a poorly understood process. We show here that the principal tenet of the WNT-regulated MYC gating, facilitating nuclear export of the MYC mRNA, is regulated by a CTCF binding site (CTCFBS) within the OSE to confer growth advantage in HCT-116 cells. To achieve this, the CTCFBS directs the WNT-dependent trafficking of the OSE to the nuclear pore from intra-nucleoplasmic positions in a stepwise manner. Once the OSE reaches a peripheral position, which is triggered by a CTCFBS-mediated CCAT1 eRNA activation, its final stretch (≤0.7 μm) to the nuclear pore requires the recruitment of AHCTF1, a key nucleoporin, to the CTCFBS. Thus, a WNT/ß-catenin-AHCTF1-CTCF-eRNA circuit enables the OSE to promote pathological cell growth by coordinating the trafficking of the active MYC gene within the 3D nuclear architecture. Gene-gating of a MYC oncogenic super-enhancer (OSE) increases its expression in colon cancer cells in a poorly understood process. Here the authors show that MYC gating requires a CTCF binding site (CTCFBS) within the OSE that directs the stepwise trafficking of the OSE to the nuclear pore to facilitate increased nuclear export of MYC mRNA, which results in a growth advantage.
Collapse
Affiliation(s)
- Ilyas Chachoua
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Ilias Tzelepis
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Hao Dai
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden.,Department of Breast Disease, Henan Breast Cancer Center, The affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jia Pei Lim
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lewandowska-Ronnegren
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Felipe Beccaria Casagrande
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Shuangyang Wu
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Vestlund
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Diettrich Mallet de Lima
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Deeksha Bhartiya
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Barbara A Scholz
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Mirco Martino
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Rashid Mehmood
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Anita Göndör
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Li Z, Zhou X, Cai S, Fan J, Wei Z, Chen Y, Cao G. Key roles of CCCTC-binding factor in cancer evolution and development. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The processes of cancer and embryonic development have a partially overlapping effect. Several transcription factor families, which are highly conserved in the evolutionary history of biology, play a key role in the development of cancer and are often responsible for the pivotal developmental processes such as cell survival, expansion, senescence, and differentiation. As an evolutionary conserved and ubiquitously expression protein, CCCTC-binding factor (CTCF) has diverse regulatory functions, including gene regulation, imprinting, insulation, X chromosome inactivation, and the establishment of three-dimensional (3D) chromatin structure during human embryogenesis. In various cancers, CTCF is considered as a tumor suppressor gene and plays homeostatic roles in maintaining genome function and integrity. However, the mechanisms of CTCF in tumor development have not been fully elucidated. Here, this review will focus on the key roles of CTCF in cancer evolution and development (Cancer Evo-Dev) and embryogenesis.
Collapse
Affiliation(s)
- Zishuai Li
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Xinyu Zhou
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Shiliang Cai
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Junyan Fan
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Zhimin Wei
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yifan Chen
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Department of Epidemiology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
13
|
Dauba A, Khamlichi AA. Long-Range Control of Class Switch Recombination by Transcriptional Regulatory Elements. Front Immunol 2021; 12:738216. [PMID: 34594340 PMCID: PMC8477019 DOI: 10.3389/fimmu.2021.738216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Immunoglobulin class switch recombination (CSR) plays a crucial role in adaptive immune responses through a change of the effector functions of antibodies and is triggered by T-cell-dependent as well as T-cell-independent antigens. Signals generated following encounter with each type of antigen direct CSR to different isotypes. At the genomic level, CSR occurs between highly repetitive switch sequences located upstream of the constant gene exons of the immunoglobulin heavy chain locus. Transcription of switch sequences is mandatory for CSR and is induced in a stimulation-dependent manner. Switch transcription takes place within dynamic chromatin domains and is regulated by long-range regulatory elements which promote alignment of partner switch regions in CSR centers. Here, we review recent work and models that account for the function of long-range transcriptional regulatory elements and the chromatin-based mechanisms involved in the control of CSR.
Collapse
Affiliation(s)
- Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
14
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
15
|
Reyes-Ramos CA, Gaxiola-Robles R, Vázquez-Medina JP, Ramírez-Jirano LJ, Bitzer-Quintero OK, Zenteno-Savín T. In silico Characterization of the Heme Oxygenase 1 From Bottlenose Dolphin ( Tursiops truncatus): Evidence of Changes in the Active Site and Purifying Selection. Front Physiol 2021; 12:711645. [PMID: 34456750 PMCID: PMC8388933 DOI: 10.3389/fphys.2021.711645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cetacea is a clade well-adapted to the aquatic lifestyle, with diverse adaptations and physiological responses, as well as a robust antioxidant defense system. Serious injuries caused by boats and fishing nets are common in bottlenose dolphins (Tursiops truncatus); however, these animals do not show signs of serious infections. Evidence suggests an adaptive response to tissue damage and associated infections in cetaceans. Heme oxygenase (HO) is a cytoprotective protein that participates in the anti-inflammatory response. HO catalyzes the first step in the oxidative degradation of the heme group. Various stimuli, including inflammatory mediators, regulate the inducible HO-1 isoform. This study aims to characterize HO-1 of the bottlenose dolphin in silico and compare its structure to the terrestrial mammal protein. Upstream HO-1 sequence of the bottlenose dolphin was obtained from NCBI and Ensemble databases, and the gene structure was determined using bioinformatics tools. Five exons and four introns were identified, and proximal regulatory elements were detected in the upstream region. The presence of 10 α-helices, three 310 helices, the heme group lodged between the proximal and distal helices, and a histidine-25 in the proximal helix serving as a ligand to the heme group were inferred for T. truncatus. Amino acid sequence alignment suggests HO-1 is a conserved protein. The HO-1 "fingerprint" and histidine-25 appear to be fully conserved among all species analyzed. Evidence of positive selection within an α-helix configuration without changes in protein configuration and evidence of purifying selection were found, indicating evolutionary conservation of the coding sequence structure.
Collapse
Affiliation(s)
- Carlos A. Reyes-Ramos
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, La Paz, Mexico
| | - Ramón Gaxiola-Robles
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, La Paz, Mexico
- Hospital General de Zona No. 1, Instituto Mexicano del Seguro Social, La Paz, Mexico
| | | | - Luis Javier Ramírez-Jirano
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Oscar Kurt Bitzer-Quintero
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, La Paz, Mexico
| |
Collapse
|
16
|
Kang MA, Lee JS. A Newly Assigned Role of CTCF in Cellular Response to Broken DNAs. Biomolecules 2021; 11:363. [PMID: 33673494 PMCID: PMC7997455 DOI: 10.3390/biom11030363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Best known as a transcriptional factor, CCCTC-binding factor (CTCF) is a highly conserved multifunctional DNA-binding protein with 11 zinc fingers. It functions in diverse genomic processes, including transcriptional activation/repression, insulation, genome imprinting and three-dimensional genome organization. A big surprise has recently emerged with the identification of CTCF engaging in the repair of DNA double-strand breaks (DSBs) and in the maintenance of genome fidelity. This discovery now adds a new dimension to the multifaceted attributes of this protein. CTCF facilitates the most accurate DSB repair via homologous recombination (HR) that occurs through an elaborate pathway, which entails a chain of timely assembly/disassembly of various HR-repair complexes and chromatin modifications and coordinates multistep HR processes to faithfully restore the original DNA sequences of broken DNA sites. Understanding the functional crosstalks between CTCF and other HR factors will illuminate the molecular basis of various human diseases that range from developmental disorders to cancer and arise from impaired repair. Such knowledge will also help understand the molecular mechanisms underlying the diverse functions of CTCF in genome biology. In this review, we discuss the recent advances regarding this newly assigned versatile role of CTCF and the mechanism whereby CTCF functions in DSB repair.
Collapse
Affiliation(s)
| | - Jong-Soo Lee
- Department of Life Sciences, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
17
|
Arega Y, Jiang H, Wang S, Zhang J, Niu X, Li G. ChIAMM: A Mixture Model for Statistical Analysis of Long-Range Chromatin Interactions From ChIA-PET Experiments. Front Genet 2021; 11:616160. [PMID: 33381154 PMCID: PMC7767989 DOI: 10.3389/fgene.2020.616160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is an important experimental method for detecting specific protein-mediated chromatin loops genome-wide at high resolution. Here, we proposed a new statistical approach with a mixture model, chromatin interaction analysis using mixture model (ChIAMM), to detect significant chromatin interactions from ChIA-PET data. The statistical model is cast into a Bayesian framework to consider more systematic biases: the genomic distance, local enrichment, mappability, and GC content. Using different ChIA-PET datasets, we evaluated the performance of ChIAMM and compared it with the existing methods, including ChIA-PET Tool, ChiaSig, Mango, ChIA-PET2, and ChIAPoP. The result showed that the new approach performed better than most top existing methods in detecting significant chromatin interactions in ChIA-PET experiments.
Collapse
Affiliation(s)
- Yibeltal Arega
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hao Jiang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Shuangqi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jingwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaohui Niu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Jia L, Wang Y, Wang C, Du Z, Zhang S, Wen X, Zhou L, Li H, Chen H, Li D, Zhang S, Li W, Xu W, Hoffman AR, Cui J, Hu JF. Oplr16 serves as a novel chromatin factor to control stem cell fate by modulating pluripotency-specific chromosomal looping and TET2-mediated DNA demethylation. Nucleic Acids Res 2020; 48:3935-3948. [PMID: 32055844 PMCID: PMC7144914 DOI: 10.1093/nar/gkaa097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023] Open
Abstract
Formation of a pluripotency-specific chromatin network is a critical event in reprogramming somatic cells into pluripotent status. To characterize the regulatory components in this process, we used ‘chromatin RNA in situ reverse transcription sequencing’ (CRIST-seq) to profile RNA components that interact with the pluripotency master gene Oct4. Using this approach, we identified a novel nuclear lncRNA Oplr16 that was closely involved in the initiation of reprogramming. Oplr16 not only interacted with the Oct4 promoter and regulated its activity, but it was also specifically activated during reprogramming to pluripotency. Active expression of Oplr16 was required for optimal maintenance of pluripotency in embryonic stem cells. Oplr16 was also able to enhance reprogramming of fibroblasts into pluripotent cells. RNA reverse transcription-associated trap sequencing (RAT-seq) indicated that Oplr16 interacted with multiple target genes related to stem cell self-renewal. Of note, Oplr16 utilized its 3′-fragment to recruit the chromatin factor SMC1 to orchestrate pluripotency-specific intrachromosomal looping. After binding to the Oct4 promoter, Oplr16 recruited TET2 to induce DNA demethylation and activate Oct4 in fibroblasts, leading to enhanced reprogramming. These data suggest that Oplr16 may act as a pivotal chromatin factor to control stem cell fate by modulating chromatin architecture and DNA demethylation.
Collapse
Affiliation(s)
- Lin Jia
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Yichen Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Cong Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Zhonghua Du
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Shilin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Xue Wen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Lei Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Hui Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Huiling Chen
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.,Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Dan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Songling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Wei Xu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
19
|
Scholz BA, Sumida N, de Lima CDM, Chachoua I, Martino M, Tzelepis I, Nikoshkov A, Zhao H, Mehmood R, Sifakis EG, Bhartiya D, Göndör A, Ohlsson R. WNT signaling and AHCTF1 promote oncogenic MYC expression through super-enhancer-mediated gene gating. Nat Genet 2019; 51:1723-1731. [DOI: 10.1038/s41588-019-0535-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
|
20
|
Cohen-Armon M, Yeheskel A, Pascal JM. Signal-induced PARP1-Erk synergism mediates IEG expression. Signal Transduct Target Ther 2019; 4:8. [PMID: 30993015 PMCID: PMC6459926 DOI: 10.1038/s41392-019-0042-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
A recently disclosed Erk-induced PARP1 activation mechanism mediates the expression of immediate early genes (IEGs) in response to a variety of extra- and intracellular signals implicated in memory acquisition, development and proliferation. Here, we review this mechanism, which is initiated by stimulation-induced binding of PARP1 to phosphorylated Erk translocated into the nucleus. This binding maintains long-lasting synergistic activity of these proteins, which offers a new pattern for targeted therapy.
Collapse
Affiliation(s)
- Malka Cohen-Armon
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Adva Yeheskel
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, University of Montreal, Québec, Canada
| |
Collapse
|
21
|
Chen S, Zhu Q, Sun H, Zhang Y, Tighe S, Xu L, Zhu Y. Advances in culture, expansion and mechanistic studies of corneal endothelial cells: a systematic review. J Biomed Sci 2019; 26:2. [PMID: 30609919 PMCID: PMC6320592 DOI: 10.1186/s12929-018-0492-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells are notorious for their restricted proliferative ability in vivo and in vitro. Hence, injury or dysfunction of these cells may easily result in blindness. Currently, the only treatment is to transplant a donor cornea that contains a healthy corneal endothelium. However there is a severe global shortage of donor corneas and there remains an unmet clinical need to engineer human corneal grafts with healthy corneal endothelium. In this review, we present current advances in the culture, expansion, and molecular understandings of corneal endothelial cells in vitro in order to help establish methods of engineering human corneal endothelial grafts.
Collapse
Affiliation(s)
- Shuangling Chen
- Tissue Tech, Inc., 7235 Corporate Center Drive, Suite B, Miami, Florida, 33126, USA
| | - Qin Zhu
- Department of Ophthalmology, Fourth Affiliated Hospital of Kunming Medical University (the Second People's Hospital of Yunnan Province), Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Provincial Innovation Team for Cataract and Ocular Fundus Disease, The Second People's Hospital of Yunnan Province, Expert Workstation of Yao Ke, Yunnan Eye Institute, Kunming, 650021, China
| | - Hong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuan Zhang
- Tissue Tech, Inc., 7235 Corporate Center Drive, Suite B, Miami, Florida, 33126, USA
| | - Sean Tighe
- Tissue Tech, Inc., 7235 Corporate Center Drive, Suite B, Miami, Florida, 33126, USA
| | - Li Xu
- The Department of Ophthalmology, The Affiliated Hospital of Inner Mongolia Medical University, Tongdao North Rd, Hohhot, Inner Mongolia, China
| | - Yingting Zhu
- Tissue Tech, Inc., 7235 Corporate Center Drive, Suite B, Miami, Florida, 33126, USA.
| |
Collapse
|
22
|
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int 2018; 18:154. [PMID: 30323717 PMCID: PMC6173857 DOI: 10.1186/s12935-018-0650-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increasing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling proteins to induce tumorigenesis is discussed.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1793 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
23
|
Pavlaki I, Docquier F, Chernukhin I, Kita G, Gretton S, Clarkson CT, Teif VB, Klenova E. Poly(ADP-ribosyl)ation associated changes in CTCF-chromatin binding and gene expression in breast cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:718-730. [PMID: 29981477 PMCID: PMC6074063 DOI: 10.1016/j.bbagrm.2018.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
CTCF is an evolutionarily conserved and ubiquitously expressed architectural protein regulating a plethora of cellular functions via different molecular mechanisms. CTCF can undergo a number of post-translational modifications which change its properties and functions. One such modifications linked to cancer is poly(ADP-ribosyl)ation (PARylation). The highly PARylated CTCF form has an apparent molecular mass of 180 kDa (referred to as CTCF180), which can be distinguished from hypo- and non-PARylated CTCF with the apparent molecular mass of 130 kDa (referred to as CTCF130). The existing data accumulated so far have been mainly related to CTCF130. However, the properties of CTCF180 are not well understood despite its abundance in a number of primary tissues. In this study we performed ChIP-seq and RNA-seq analyses in human breast cells 226LDM, which display predominantly CTCF130 when proliferating, but CTCF180 upon cell cycle arrest. We observed that in the arrested cells the majority of sites lost CTCF, whereas fewer sites gained CTCF or remain bound (i.e. common sites). The classical CTCF binding motif was found in the lost and common, but not in the gained sites. The changes in CTCF occupancies in the lost and common sites were associated with increased chromatin densities and altered expression from the neighboring genes. Based on these results we propose a model integrating the CTCF130/180 transition with CTCF-DNA binding and gene expression changes. This study also issues an important cautionary note concerning the design and interpretation of any experiments using cells and tissues where CTCF180 may be present.
Collapse
Affiliation(s)
- Ioanna Pavlaki
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - France Docquier
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Igor Chernukhin
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Georgia Kita
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Svetlana Gretton
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Christopher T Clarkson
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Vladimir B Teif
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | - Elena Klenova
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| |
Collapse
|
24
|
Abstract
Transcriptional enhancers constitute a subclass of regulatory elements that facilitate transcription. Such regions are generally organized by short stretches of DNA enriched in transcription factor-binding sites but also can include very large regions containing clusters of enhancers, termed super-enhancers. These regions increase the probability or the rate (or both) of transcription generally in
cis and sometimes over very long distances by altering chromatin states and the activity of Pol II machinery at promoters. Although enhancers were discovered almost four decades ago, their inner workings remain enigmatic. One important opening into the underlying principle has been provided by observations that enhancers make physical contacts with their target promoters to facilitate the loading of the RNA polymerase complex. However, very little is known about how such chromatin loops are regulated and how they govern transcription in the three-dimensional context of the nuclear architecture. Here, we present current themes of how enhancers may boost gene expression in three dimensions and we identify currently unresolved key questions.
Collapse
Affiliation(s)
- Anita Göndör
- Department of Oncology and Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rolf Ohlsson
- Department of Oncology and Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Guo J, Cao B, Xu X, Wu F, Zhu B. Novel CTCF mutations in Chinese patients with ovarian endometriosis. Mol Med Rep 2018; 18:1031-1036. [PMID: 29845264 DOI: 10.3892/mmr.2018.9049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 11/06/2022] Open
Abstract
Endometriosis is a common gynecological disease characterized by the outgrowth of the endometrium, however, the detailed molecular etiology remains largely uncharacterized. Recent studies have implicated that endometriosis is potentially a precancerous lesion, and that CCCTC‑binding factor (CTCF) mutations may be involved in the pathogenesis of this disorder. However, the detailed CTCF mutation spectrum in Chinese patients with ovarian endometriosis remains largely unknown. In the present study, a cohort of 92 patients with ovarian endometriosis were analyzed for the presence of CTCF mutations by sequencing the entire coding regions. In addition, 67 healthy eutopic endometrial tissues and 46 healthy ovarian tissues from control samples (without endometriosis) were also analyzed. In total, two CTCF missense mutations, p.K206E (c.616A>G) and p.H373L (c.1118A>T), were identified in 2/92 (2.2%) endometriotic lesions. The patient with the p.K206E mutation was 26 years old and diagnosed with primary infertility, whereas the patient with the p.H373L mutation was 37 years old and concurrently diagnosed with uterine leiomyoma. The p.H373L mutation was previously identified in endometrial cancer samples with low frequency, while the p.K206E mutation was novel. In addition, no CTCF mutations were detected in the 67 healthy eutopic endometrial and 46 healthy ovarian tissue samples. In silico prediction and evolutionary conservation analysis suggested that these CTCF mutations may be pathogenic. In summary, the present study identified 2 potential pathogenic CTCF mutations in endometriotic lesions from 2/92 patients with ovarian endometriosis. These results, together with a prior exome‑sequencing based study, suggest that CTCF mutations may be involved in the development of ovarian endometriosis.
Collapse
Affiliation(s)
- Jiubai Guo
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Bianna Cao
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoyun Xu
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Fei Wu
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Zhu
- Gongqing College of Nanchang University, Gongqingcheng, Jiangxi 332020, P.R. China
| |
Collapse
|
26
|
Baxley RM, Bullard JD, Klein MW, Fell AG, Morales-Rosado JA, Duan T, Geyer PK. Deciphering the DNA code for the function of the Drosophila polydactyl zinc finger protein Suppressor of Hairy-wing. Nucleic Acids Res 2017; 45:4463-4478. [PMID: 28158673 PMCID: PMC5416891 DOI: 10.1093/nar/gkx040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022] Open
Abstract
Polydactyl zinc finger (ZF) proteins have prominent roles in gene regulation and often execute multiple regulatory functions. To understand how these proteins perform varied regulation, we studiedDrosophila Suppressor of Hairy-wing [Su(Hw)], an exemplar multifunctional polydactyl ZF protein. We identified separation-of-function (SOF) alleles that encode proteins disrupted in a single ZF that retain one of the Su(Hw) regulatory activities. Through extended in vitro analyses of the Su(Hw) ZF domain, we show that clusters of ZFs bind individual modules within a compound DNA consensus sequence. Through in vivo analysis of SOF mutants, we find that Su(Hw) genomic sites separate into sequence subclasses comprised of combinations of modules, with subclasses enriched for different chromatin features. These data suggest a Su(Hw) code, wherein DNA binding dictates its cofactor recruitment and regulatory output. We propose that similar DNA codes might be used to confer multiple regulatory functions of other polydactyl ZF proteins.
Collapse
Affiliation(s)
- Ryan M Baxley
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - James D Bullard
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Michael W Klein
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Ashley G Fell
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA.,Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Senescence Mediated by p16 INK4a Impedes Reprogramming of Human Corneal Endothelial Cells into Neural Crest Progenitors. Sci Rep 2016; 6:35166. [PMID: 27739458 PMCID: PMC5064359 DOI: 10.1038/srep35166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells (HCECs) have limited proliferative capacity due to “contact-inhibition” at G1 phase. Such contact-inhibition can be delayed from Day 21 to Day 42 by switching EGF-containing SHEM to LIF/bFGF-containing MESCM through transient activation of LIF-JAK1-STAT3 signaling that delays eventual nuclear translocation of p16INK4a. Using the latter system, we have reported a novel tissue engineering technique by implementing 5 weekly knockdowns with p120 catenin (p120) and Kaiso siRNAs since Day 7 to achieve effective expansion of HCEC monolayers to a transplantable size with a normal HCEC density, through reprogramming of HCECs into neural crest progenitors by activating p120-Kaiso-RhoA-ROCK-canonical BMP signaling. Herein, we noted that a single knockdown with p120-Kaiso siRNAs at Day 42 failed to achieve such reprogramming when contact inhibition transitioned to senescence with nuclear translocation of p16INK4a. In contrast, 5 weekly knockdowns with p120-Kaiso siRNAs since Day 7 precluded senescence mediated by p16INK4a by inducing nuclear translocation of Bmi1 because of sustained activation of JAK2-STAT3 signaling downstream of p120-Kaiso-RhoA-ROCK signaling. STAT3 or Bmi1 siRNA impeded nuclear exclusion of p16INK4a and suppressed the reprogramming induced by p120-Kaiso siRNAs, suggesting that another important engineering strategy of HCEC lies in prevention of senescence mediated by nuclear translocation of p16INK4a.
Collapse
|
28
|
Nagy G, Czipa E, Steiner L, Nagy T, Pongor S, Nagy L, Barta E. Motif oriented high-resolution analysis of ChIP-seq data reveals the topological order of CTCF and cohesin proteins on DNA. BMC Genomics 2016; 17:637. [PMID: 27526722 PMCID: PMC4986361 DOI: 10.1186/s12864-016-2940-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND ChIP-seq provides a wealth of information on the approximate location of DNA-binding proteins genome-wide. It is known that the targeted motifs in most cases can be found at the peak centers. A high resolution mapping of ChIP-seq peaks could in principle allow the fine mapping of the protein constituents within protein complexes, but the current ChIP-seq analysis pipelines do not target the basepair resolution strand specific mapping of peak summits. RESULTS The approach proposed here is based on i) locating regions that are bound by a sufficient number of proteins constituting a complex; ii) determining the position of the underlying motif using either a direct or a de novo motif search approach; and iii) determining the exact location of the peak summits with respect to the binding motif in a strand specific manner. We applied this method for analyzing the CTCF/cohesin complex, which holds together DNA loops. The relative positions of the constituents of the complex were determined with one-basepair estimated accuracy. Mapping the positions on a 3D model of DNA made it possible to deduce the approximate local topology of the complex that allowed us to predict how the CTCF/cohesin complex locks the DNA loops. As the positioning of the proteins was not compatible with previous models of loop closure, we proposed a plausible "double embrace" model in which the DNA loop is held together by two adjacent cohesin rings in such a way that the ring anchored by CTCF to one DNA duplex encircles the other DNA double helix and vice versa. CONCLUSIONS A motif-centered, strand specific analysis of ChIP-seq data improves the accuracy of determining peak positions. If a genome contains a large number of binding sites for a given protein complex, such as transcription factor heterodimers or transcription factor/cofactor complexes, the relative position of the constituent proteins on the DNA can be established with an accuracy that allow one to deduce the local topology of the protein complex. The proposed high resolution mapping approach of ChIP-seq data is applicable for detecting the contact topology of DNA-binding protein complexes.
Collapse
Affiliation(s)
- Gergely Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032 Hungary
- MTA-DE Lendület Immunogenomics Research Group, University of Debrecen, Debrecen, H-4032 Hungary
| | - Erik Czipa
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032 Hungary
| | - László Steiner
- UD-GenoMed Medical Genomic Technologies Research & Development Services Ltd., Nagyerdei krt. 98., Debrecen, H-4032 Hungary
| | - Tibor Nagy
- Agricultural Genomics and Bioinformatics Group, Agricultural Biotechnology Institute, NARIC, Gödöllő, H-2100 Hungary
- Present address: Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Sándor Pongor
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University Budapest H-1083, Gödöllő, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032 Hungary
- MTA-DE Lendület Immunogenomics Research Group, University of Debrecen, Debrecen, H-4032 Hungary
| | - Endre Barta
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032 Hungary
- Agricultural Genomics and Bioinformatics Group, Agricultural Biotechnology Institute, NARIC, Gödöllő, H-2100 Hungary
| |
Collapse
|
29
|
Kyrchanova O, Mogila V, Wolle D, Deshpande G, Parshikov A, Cléard F, Karch F, Schedl P, Georgiev P. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex. PLoS Genet 2016; 12:e1006188. [PMID: 27428541 PMCID: PMC4948906 DOI: 10.1371/journal.pgen.1006188] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/22/2016] [Indexed: 12/16/2022] Open
Abstract
Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors. Boundary elements in the Bithorax complex have two seemingly contradictory activities. They must block crosstalk between neighboring regulatory domains, but at the same time be permissive (insulator bypass) for regulatory interactions between the domains and the BX-C homeotic genes. We have used a replacement strategy to investigate how they carry out these two functions. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site is sufficient to fully rescue a Fab-7 boundary deletion. It blocks crosstalk and supports bypass. As has been observed in transgene assays, blocking activity requires the Fab-8 dCTCF sites, while full bypass activity requires the dCTCF sites plus a small part of PTS. In transgene assays, bypass activity typically depends on the orientation of the two insulators relative to each other. A similar orientation dependence is observed for the Fab-8 replacement in BX-C. When the orientation of the Fab-8 boundary is reversed, bypass activity is lost, while blocking is unaffected. Interestingly, unlike what has been observed in mammals, reversing the orientation of only the Fab-8 dCTCF sites does not affect boundary function. This finding indicates that other Fab-8 factors must play a critical role in determining orientation. Taken together, our findings argue that carrying out the paradoxical functions of the BX-C boundaries does not require any unusual or special properties; rather BX-C boundaries utilize generic blocking and insulator bypass activities that are appropriately adapted to their regulatory context. Thus making them a good model for studying the functional properties of boundaries/insulators in their native setting.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| | - Vladic Mogila
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alexander Parshikov
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Fabienne Cléard
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Francois Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Paul Schedl
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Pavel Georgiev
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| |
Collapse
|
30
|
A PARP1-ERK2 synergism is required for the induction of LTP. Sci Rep 2016; 6:24950. [PMID: 27121568 PMCID: PMC4848477 DOI: 10.1038/srep24950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response to single-strand DNA damage, was also required for long-term memory acquisition in a variety of learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent mechanism required for LTP generation, which may be implicated in long-term memory acquisition and in its deterioration in senescence.
Collapse
|
31
|
Cohen-Armon M. A PARP1-Erk2 synergism is required for stimulation-induced expression of immediate early genes. GENE & TRANSLATIONAL BIOINFORMATICS 2016; 2:e1367. [PMID: 27857998 PMCID: PMC5110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A PARP1-Erk2 synergism was required to generate synaptic long-term potentiation in the CA3-CA1 hippocampal connections. This molecular mechanism was associated with the recently identified pivotal role of polyADP-ribosylation in learning. High frequency electrical stimulation of cortical and hippocampal neurons induced binding of phosphorylated Erk2 (transported into the nucleus) to the nuclear protein PARP1. PARP1-Erk2 binding induced PARP1 activation and polyADP-ribosylation of its prominent substrate, linker histone H1. A facilitated access of PARP1-bound phosphorylated Erk2 to its substrates, transcription factors Elk1 and CREB was attributed to the release of polyADP-ribosylated H1 from the DNA, causing local DNA relaxation. Erk-induced phosphorylation of transcription factors activating the HAT activity of CBP (CREB binding protein), recruited acetylated histone H4 to the promoters of immediate early genes (IEG) cfos, zif268 and arc, which are implicated in synaptic plasticity. In accordance, their induced expression was suppressed after PARP1 genetic deletion in PARP1-KO mice, or after PARP1 inhibition or silencing. Moreover, under these conditions, long-term synaptic potentiation (LTP) (indicating synaptic plasticity) was not generation in the hippocampal CA3-CA1 connections, and learning abilities were impaired. Furthermore, both IEG expression and LTP generation failed when cerebral neurons accumulated single strand DNA breaks, due to a predominant binding of PARP1 to nicked DNA, occluding its Erk binding sites. Thus, a declined synaptic plasticity is anticipated when aged cerebral neurons accumulate DNA single-strand breaks during life span.
Collapse
Affiliation(s)
- M. Cohen-Armon
- Department of Physiology and Pharmacology, Sackler School of Medicine, and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
32
|
Carvunis AR, Wang T, Skola D, Yu A, Chen J, Kreisberg JF, Ideker T. Evidence for a common evolutionary rate in metazoan transcriptional networks. eLife 2015; 4. [PMID: 26682651 PMCID: PMC4764585 DOI: 10.7554/elife.11615] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Genome sequences diverge more rapidly in mammals than in other animal lineages, such as birds or insects. However, the effect of this rapid divergence on transcriptional evolution remains unclear. Recent reports have indicated a faster divergence of transcription factor binding in mammals than in insects, but others found the reverse for mRNA expression. Here, we show that these conflicting interpretations resulted from differing methodologies. We performed an integrated analysis of transcriptional network evolution by examining mRNA expression, transcription factor binding and cis-regulatory motifs across >25 animal species, including mammals, birds and insects. Strikingly, we found that transcriptional networks evolve at a common rate across the three animal lineages. Furthermore, differences in rates of genome divergence were greatly reduced when restricting comparisons to chromatin-accessible sequences. The evolution of transcription is thus decoupled from the global rate of genome sequence evolution, suggesting that a small fraction of the genome regulates transcription. DOI:http://dx.doi.org/10.7554/eLife.11615.001 The genetic information that makes each individual unique is encoded in DNA molecules. Cells read this molecular instruction manual by a process called transcription, in which proteins called transcription factors bind to DNA in specific places and regulate which sections of the DNA will be expressed. These 'transcripts' are active molecules that determine the cell’s – and ultimately the individual’s – characteristics. However, it is not well understood how alterations in the DNA of different individuals or species can lead to changes in where the transcription factors bind, and in which transcripts are expressed. Carvunis, Wang, Skola et al. set out to determine if there is a relationship between how often DNA changes and how often transcription changes during the evolution of animals. The experiments examined the abundance of transcripts in the cells of a variety of animal species with close or distant evolutionary relationships. For example, the house mouse was compared to a close relative called the Algerian mouse, to another species of rodent (rat) and to humans. The experiments show that the changes in transcript abundances are happening at similar rates in mammals, birds and insects, even though DNA changes at very different rates in these groups of animals. This similarity was also observed for other aspects of transcription, such as in changes to where transcription factors bind to DNA. The next challenges are to find out what makes transcription evolve at such similar rates in these groups of animals, and whether these findings extend to other species and to other processes in cells. DOI:http://dx.doi.org/10.7554/eLife.11615.002
Collapse
Affiliation(s)
| | - Tina Wang
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Dylan Skola
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Alice Yu
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Jonathan Chen
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Jason F Kreisberg
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, United States
| |
Collapse
|
33
|
Xu C, Corces VG. Towards a predictive model of chromatin 3D organization. Semin Cell Dev Biol 2015; 57:24-30. [PMID: 26658098 DOI: 10.1016/j.semcdb.2015.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 01/19/2023]
Abstract
Architectural proteins mediate interactions between distant regions in the genome to bring together different regulatory elements while establishing a specific three-dimensional organization of the genetic material. Depletion of specific architectural proteins leads to miss regulation of gene expression and alterations in nuclear organization. The specificity of interactions mediated by architectural proteins depends on the nature, number, and orientation of their binding site at individual genomic locations. Knowledge of the mechanisms and rules governing interactions among architectural proteins may provide a code to predict the 3D organization of the genome.
Collapse
Affiliation(s)
- Chenhuan Xu
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Nielsen HM, How-Kit A, Guerin C, Castinetti F, Vollan HKM, De Micco C, Daunay A, Taieb D, Van Loo P, Besse C, Kristensen VN, Hansen LL, Barlier A, Sebag F, Tost J. Copy number variations alter methylation and parallel IGF2 overexpression in adrenal tumors. Endocr Relat Cancer 2015; 22:953-67. [PMID: 26400872 PMCID: PMC4621769 DOI: 10.1530/erc-15-0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Overexpression of insulin growth factor 2 (IGF2) is a hallmark of adrenocortical carcinomas and pheochromocytomas. Previous studies investigating the IGF2/H19 locus have mainly focused on a single molecular level such as genomic alterations or altered DNA methylation levels and the causal changes underlying IGF2 overexpression are still not fully established. In the current study, we analyzed 62 tumors of the adrenal gland from patients with Conn's adenoma (CA, n=12), pheochromocytomas (PCC, n=10), adrenocortical benign tumors (ACBT, n=20), and adrenocortical carcinomas (ACC, n=20). Gene expression, somatic copy number variation of chr11p15.5, and DNA methylation status of three differential methylated regions of the IGF2/H19 locus including the H19 imprinting control region were integratively analyzed. IGF2 overexpression was found in 85% of the ACCs and 100% of the PCCs compared to 23% observed in CAs and ACBTs. Copy number aberrations of chr11p15.5 were abundant in both PCCs and ACCs but while PCCs retained a diploid state, ACCs were frequently tetraploid (7/19). Loss of either a single allele or loss of two alleles of the same parental origin in tetraploid samples resulted in a uniparental disomy-like genotype. These copy number changes correlated with hypermethylation of the H19 ICR suggesting that the lost alleles were the unmethylated maternal alleles. Our data provide conclusive evidence that loss of the maternal allele correlates with IGF2 overexpression in adrenal tumors and that hypermethylation of the H19 ICR is a consequence thereof.
Collapse
Affiliation(s)
- Helene Myrtue Nielsen
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Alexandre How-Kit
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Carole Guerin
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Frederic Castinetti
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Hans Kristian Moen Vollan
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Catherine De Micco
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Antoine Daunay
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - David Taieb
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Peter Van Loo
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Celine Besse
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Vessela N Kristensen
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty
| | - Lise Lotte Hansen
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Anne Barlier
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Frederic Sebag
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Jörg Tost
- Laboratory for Functional GenomicsFondation Jean Dausset - Centre d'Etude du Polymorphisme Humain (CEPH), Paris, FranceInstitute of BiomedicineAarhus University, Aarhus, DenmarkEndocrine and Metabolic Surgery DepartmentAP-HM La Conception, Marseille, FranceDepartment of EndocrinologyAP-HM La Timone, Marseille, FranceDepartment of GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, NorwayDivision of SurgeryTransplantation and Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, NorwayThe K G Jebsen Center for Breast Cancer ResearchInstitute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, NorwayPathology DepartmentAP-HM La Timone, Marseille, FranceNuclear Endocrine Imaging and Treatment DepartmentAP-HM La Timone, Marseille, FranceCancer Research UKLondon Research Institute, London, UKDepartment of Human GeneticsUniversity of Leuven, Leuven, BelgiumGenotyping FacilitiesCentre National de Génotypage, CEA-Institut de Génomique, Evry, FranceDepartment of Clinical Molecular Biology (EpiGen)University of Oslo, Ahus, Lokerod, NorwayLaboratory of Molecular BiologyAP-HM La Conception and CRN2M, Aix-Marseille University, Marseille, FranceLaboratory for Epigenetics and EnvironmentCentre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
35
|
Laitem C, Zaborowska J, Tellier M, Yamaguchi Y, Cao Q, Egloff S, Handa H, Murphy S. CTCF regulates NELF, DSIF and P-TEFb recruitment during transcription. Transcription 2015; 6:79-90. [PMID: 26399478 PMCID: PMC4802788 DOI: 10.1080/21541264.2015.1095269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CTCF is a versatile transcription factor with well-established roles in chromatin organization and insulator function. Recent findings also implicate CTCF in the control of elongation by RNA polymerase (RNAP) II. Here we show that CTCF knockdown abrogates RNAP II pausing at the early elongation checkpoint of c-myc by affecting recruitment of DRB-sensitivity-inducing factor (DSIF). CTCF knockdown also causes a termination defect on the U2 snRNA genes (U2), by affecting recruitment of negative elongation factor (NELF). In addition, CTCF is required for recruitment of positive elongation factor b (P-TEFb), which phosphorylates NELF, DSIF, and Ser2 of the RNAP II CTD to activate elongation of transcription of c-myc and recognition of the snRNA gene-specific 3' box RNA processing signal. These findings implicate CTCF in a complex network of protein:protein/protein:DNA interactions and assign a key role to CTCF in controlling RNAP II transcription through the elongation checkpoint of the protein-coding c-myc and the termination site of the non-coding U2, by regulating the recruitment and/or activity of key players in these processes.
Collapse
Affiliation(s)
- Clélia Laitem
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK.,e Current address: Immunocore Limited; Milton Park , Abingdon , Oxon , UK
| | - Justyna Zaborowska
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| | - Michael Tellier
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| | - Yuki Yamaguchi
- b Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology ; Yokohama , Japan
| | - Qingfu Cao
- b Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology ; Yokohama , Japan
| | - Sylvain Egloff
- c Université de Toulouse; UPS; Laboratoire de Biologie Moléculaire Eucaryote ; Toulouse , France
| | - Hiroshi Handa
- d Department of Nanoparticle Translational Research ; Tokyo Medical University ; Tokyo , Japan
| | - Shona Murphy
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| |
Collapse
|
36
|
Zhao H, Sifakis E, Sumida N, Millán-Ariño L, Scholz B, Svensson J, Chen X, Ronnegren A, Mallet de Lima C, Varnoosfaderani F, Shi C, Loseva O, Yammine S, Israelsson M, Rathje LS, Németi B, Fredlund E, Helleday T, Imreh M, Göndör A. PARP1- and CTCF-Mediated Interactions between Active and Repressed Chromatin at the Lamina Promote Oscillating Transcription. Mol Cell 2015; 59:984-97. [DOI: 10.1016/j.molcel.2015.07.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/20/2015] [Accepted: 07/21/2015] [Indexed: 11/28/2022]
|
37
|
Pugacheva EM, Rivero-Hinojosa S, Espinoza CA, Méndez-Catalá CF, Kang S, Suzuki T, Kosaka-Suzuki N, Robinson S, Nagarajan V, Ye Z, Boukaba A, Rasko JEJ, Strunnikov AV, Loukinov D, Ren B, Lobanenkov VV. Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions. Genome Biol 2015; 16:161. [PMID: 26268681 PMCID: PMC4562119 DOI: 10.1186/s13059-015-0736-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
Background CTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation. Results Here we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells. Conclusions We discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0736-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Samuel Rivero-Hinojosa
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Celso A Espinoza
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, San Diego School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Claudia Fabiola Méndez-Catalá
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Sungyun Kang
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Teruhiko Suzuki
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.,Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Natsuki Kosaka-Suzuki
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Susan Robinson
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Vijayaraj Nagarajan
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Abdelhalim Boukaba
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China
| | - John E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China
| | - Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, San Diego School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
38
|
Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biol 2015; 13:63. [PMID: 26248466 PMCID: PMC4528719 DOI: 10.1186/s12915-015-0168-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background Insulators play a central role in gene regulation, chromosomal architecture and genome function in higher eukaryotes. To learn more about how insulators carry out their diverse functions, we have begun an analysis of the Drosophila CTCF (dCTCF). CTCF is one of the few insulator proteins known to be conserved from flies to man. Results In the studies reported here we have focused on the identification and characterization of two dCTCF protein interaction modules. The first mediates dCTCF multimerization, while the second mediates dCTCF–CP190 interactions. The multimerization domain maps in the N-terminus of the dCTCF protein and likely mediates the formation of tetrameric complexes. The CP190 interaction module encompasses a sequence ~200 amino acids long that spans the C-terminal and mediates interactions with the N-terminal BTB domain of the CP190 protein. Transgene rescue experiments showed that a dCTCF protein lacking sequences critical for CP190 interactions was almost as effective as wild type in rescuing the phenotypic effects of a dCTCF null allele. The mutation did, however, affect CP190 recruitment to specific Drosophila insulator elements and had a modest effect on dCTCF chromatin association. A protein lacking the N-terminal dCTCF multimerization domain incompletely rescued the zygotic and maternal effect lethality of the null and did not rescue the defects in Abd-B regulation evident in surviving adult dCTCF mutant flies. Finally, we show that elimination of maternally contributed dCTCF at the onset of embryogenesis has quite different effects on development and Abd-B regulation than is observed when the homozygous mutant animals develop in the presence of maternally derived dCTCF activity. Conclusions Our results indicate that dCTCF–CP190 interactions are less critical for the in vivo functions of the dCTCF protein than the N-terminal dCTCF–dCTCF interaction domain. We also show that the phenotypic consequences of dCTCF mutations differ depending upon when and how dCTCF activity is lost. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0168-7) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Maurano MT, Wang H, John S, Shafer A, Canfield T, Lee K, Stamatoyannopoulos JA. Role of DNA Methylation in Modulating Transcription Factor Occupancy. Cell Rep 2015; 12:1184-95. [PMID: 26257180 DOI: 10.1016/j.celrep.2015.07.024] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/14/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023] Open
Abstract
Although DNA methylation is commonly invoked as a mechanism for transcriptional repression, the extent to which it actively silences transcription factor (TF) occupancy sites in vivo is unknown. To study the role of DNA methylation in the active modulation of TF binding, we quantified the effect of DNA methylation depletion on the genomic occupancy patterns of CTCF, an abundant TF with known methylation sensitivity that is capable of autonomous binding to its target sites in chromatin. Here, we show that the vast majority (>98.5%) of the tens of thousands of unoccupied, methylated CTCF recognition sequences remain unbound upon abrogation of DNA methylation. The small fraction of sites that show methylation-dependent binding in vivo are in turn characterized by highly variable CTCF occupancy across cell types. Our results suggest that DNA methylation is not a primary groundskeeper of genomic TF landscapes, but rather a specialized mechanism for stabilizing intrinsically labile sites.
Collapse
Affiliation(s)
- Matthew T Maurano
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Hao Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sam John
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anthony Shafer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Theresa Canfield
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kristen Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - John A Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Boulos RE, Drillon G, Argoul F, Arneodo A, Audit B. Structural organization of human replication timing domains. FEBS Lett 2015; 589:2944-57. [PMID: 25912651 DOI: 10.1016/j.febslet.2015.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Recent analysis of genome-wide epigenetic modification data, mean replication timing (MRT) profiles and chromosome conformation data in mammals have provided increasing evidence that flexibility in replication origin usage is regulated locally by the epigenetic landscape and over larger genomic distances by the 3D chromatin architecture. Here, we review the recent results establishing some link between replication domains and chromatin structural domains in pluripotent and various differentiated cell types in human. We reconcile the originally proposed dichotomic picture of early and late constant timing regions that replicate by multiple rather synchronous origins in separated nuclear compartments of open and closed chromatins, with the U-shaped MRT domains bordered by "master" replication origins specified by a localized (∼200-300 kb) zone of open and transcriptionally active chromatin from which a replication wave likely initiates and propagates toward the domain center via a cascade of origin firing. We discuss the relationships between these MRT domains, topologically associated domains and lamina-associated domains. This review sheds a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and the determination of differentiation properties.
Collapse
Affiliation(s)
- Rasha E Boulos
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Guénola Drillon
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Françoise Argoul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Alain Arneodo
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Benjamin Audit
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.
| |
Collapse
|
41
|
Ignatieva EV, Podkolodnaya OA, Orlov YL, Vasiliev GV, Kolchanov NA. Regulatory genomics: Combined experimental and computational approaches. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415040067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Embryonic stem cell specific "master" replication origins at the heart of the loss of pluripotency. PLoS Comput Biol 2015; 11:e1003969. [PMID: 25658386 PMCID: PMC4319821 DOI: 10.1371/journal.pcbi.1003969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022] Open
Abstract
Epigenetic regulation of the replication program during mammalian cell differentiation remains poorly understood. We performed an integrative analysis of eleven genome-wide epigenetic profiles at 100 kb resolution of Mean Replication Timing (MRT) data in six human cell lines. Compared to the organization in four chromatin states shared by the five somatic cell lines, embryonic stem cell (ESC) line H1 displays (i) a gene-poor but highly dynamic chromatin state (EC4) associated to histone variant H2AZ rather than a HP1-associated heterochromatin state (C4) and (ii) a mid-S accessible chromatin state with bivalent gene marks instead of a polycomb-repressed heterochromatin state. Plastic MRT regions (≲ 20% of the genome) are predominantly localized at the borders of U-shaped timing domains. Whereas somatic-specific U-domain borders are gene-dense GC-rich regions, 31.6% of H1-specific U-domain borders are early EC4 regions enriched in pluripotency transcription factors NANOG and OCT4 despite being GC poor and gene deserts. Silencing of these ESC-specific “master” replication initiation zones during differentiation corresponds to a loss of H2AZ and an enrichment in H3K9me3 mark characteristic of late replicating C4 heterochromatin. These results shed a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and lineage commitment. During development, embryonic stem cell (ESC) enter a program of cell differentiation eventually leading to all the necessary differentiated cell types. Understanding the mechanisms responsible for the underlying modifications of the gene expression program is of fundamental importance, as it will likely have strong impact on the development of regenerative medicine. We show that besides some epigenetic regulation, ubiquitous master replication origins at replication timing U-domain borders shared by 6 human cell types are transcriptionally active open chromatin regions specified by a local enrichment in nucleosome free regions encoded in the DNA sequence suggesting that they have been selected during evolution. In contrast, ESC specific master replication origins bear a unique epigenetic signature (enrichment in CTCF, H2AZ, NANOG, OCT4, …) likely contributing to maintain ESC chromatin in a highly dynamic and accessible state that is refractory to polycomb and HP1 heterochromatin spreading. These ESC specific master origins thus appear as key genomic regions where epigenetic control of chromatin organization is at play to maintain pluripotency of stem cell lineages and to guide lineage commitment to somatic cell types.
Collapse
|
43
|
Kung JT, Kesner B, An JY, Ahn JY, Cifuentes-Rojas C, Colognori D, Jeon Y, Szanto A, del Rosario BC, Pinter SF, Erwin JA, Lee JT. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol Cell 2015; 57:361-75. [PMID: 25578877 PMCID: PMC4316200 DOI: 10.1016/j.molcel.2014.12.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/28/2014] [Accepted: 11/25/2014] [Indexed: 12/27/2022]
Abstract
CTCF is a master regulator that plays important roles in genome architecture and gene expression. How CTCF is recruited in a locus-specific manner is not fully understood. Evidence from epigenetic processes, such as X chromosome inactivation (XCI), indicates that CTCF associates functionally with RNA. Using genome-wide approaches to investigate the relationship between its RNA interactome and epigenomic landscape, here we report that CTCF binds thousands of transcripts in mouse embryonic stem cells, many in close proximity to CTCF's genomic binding sites. CTCF is a specific and high-affinity RNA-binding protein (Kd < 1 nM). During XCI, CTCF differentially binds the active and inactive X chromosomes and interacts directly with Tsix, Xite, and Xist RNAs. Tsix and Xite RNAs target CTCF to the X inactivation center, thereby inducing homologous X chromosome pairing. Our work elucidates one mechanism by which CTCF is recruited in a locus-specific manner and implicates CTCF-RNA interactions in long-range chromosomal interactions.
Collapse
Affiliation(s)
- Johnny T Kung
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Barry Kesner
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Jee Young An
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Janice Y Ahn
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Catherine Cifuentes-Rojas
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - David Colognori
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Yesu Jeon
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Attila Szanto
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Brian C del Rosario
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Stefan F Pinter
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Jennifer A Erwin
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Genetics, Harvard Medical School, Boston, MA 02115 USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114 USA.
| |
Collapse
|
44
|
González-Buendía E, Pérez-Molina R, Ayala-Ortega E, Guerrero G, Recillas-Targa F. Experimental strategies to manipulate the cellular levels of the multifunctional factor CTCF. Methods Mol Biol 2014; 1165:53-69. [PMID: 24839018 DOI: 10.1007/978-1-4939-0856-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular homeostasis is the result of an intricate and coordinated combinatorial of biochemical and molecular processes. Among them is the control of gene expression in the context of the chromatin structure which is central for cell survival. Interdependent action of transcription factors, cofactors, chromatin remodeling activities, and three-dimensional organization of the genome are responsible to reach exquisite levels of gene expression. Among such transcription factors there is a subset of highly specialized nuclear factors with features resembling master regulators with a large variety of functions. This is turning to be the case of the multifunctional nuclear factor CCCTC-binding protein (CTCF) which is involved in gene regulation, chromatin organization, and three-dimensional conformation of the genome inside the cell nucleus. Technically its study has turned to be challenging, in particular its posttranscriptional interference by small interference RNAs. Here we describe three main strategies to downregulate the overall abundance of CTCF in culture cell lines.
Collapse
Affiliation(s)
- Edgar González-Buendía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, DF, 04510, México
| | | | | | | | | |
Collapse
|
45
|
Schubert V, Rudnik R, Schubert I. Chromatin associations in Arabidopsis interphase nuclei. Front Genet 2014; 5:389. [PMID: 25431580 PMCID: PMC4230181 DOI: 10.3389/fgene.2014.00389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/23/2014] [Indexed: 11/30/2022] Open
Abstract
The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analyzed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fiber movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns. Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its 10 centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben Stadt Seeland, Germany
| | - Radoslaw Rudnik
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben Stadt Seeland, Germany ; Faculty of Science and Central European Institute of Technology, Masaryk University Brno, Czech Republic
| |
Collapse
|
46
|
Soltanian S, Dehghani H, Matin MM, Bahrami AR. Expression analysis of BORIS during pluripotent, differentiated, cancerous, and non-cancerous cell states. Acta Biochim Biophys Sin (Shanghai) 2014; 46:647-58. [PMID: 24928684 DOI: 10.1093/abbs/gmu045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BORIS/CTCFL is an 11 zinc finger protein, which is the paralog of CTCF, a ubiquitously expressed protein with diverse roles in gene expression and chromatin organization. Several studies have shown that the expression of BORIS is restricted to normal adult testis, pluripotent cells, and diverse cancer cell lines. Thus, it is known as a cancer-testis (CT) gene that has been hypothesized to exhibit oncogenic properties and to be involved in cancer cell proliferation. On the contrary, other reports have shown that its expression is more widespread and can be detected in differentiated and normal somatic cells; hence, it might have roles in general cellular functions. The present study was aimed to analyze the expression of BORIS in different cell states of pluripotent, differentiated, cancerous and non-cancerous.We found that the two cell states of pluripotency and differentiation are not accompanied with significant variations of BORIS expression. Furthermore, Boris transcripts were detected at approximately the same level in cancer and non-cancer cell lines. These findings suggest that, in contrast to some previous reports, the expression of mouse BORIS is not limited to only cancerous cells or pluripotent cell states.
Collapse
|
47
|
Zampieri M, Ciccarone F, Palermo R, Cialfi S, Passananti C, Chiaretti S, Nocchia D, Talora C, Screpanti I, Caiafa P. The epigenetic factor BORIS/CTCFL regulates the NOTCH3 gene expression in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:813-25. [PMID: 24984200 DOI: 10.1016/j.bbagrm.2014.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/29/2022]
Abstract
Aberrant upregulation of NOTCH3 gene plays a critical role in cancer pathogenesis. However, the underlying mechanisms are still unknown. We tested here the hypothesis that aberrant epigenetic modifications in the NOTCH3 promoter region might account for its upregulation in cancer cells. We compared DNA and histone methylation status of NOTCH3 promoter region in human normal blood cells and T cell acute lymphoblastic leukemia (T-ALL) cell lines, differentially expressing NOTCH3. We found that histone methylation, rather than DNA hypomethylation, contributes towards establishing an active chromatin status of NOTCH3 promoter in NOTCH3 overexpressing cancer cells. We discovered that the chromatin regulator protein BORIS/CTCFL plays an important role in regulating NOTCH3 gene expression. We observed that BORIS is present in T-ALL cell lines as well as in cell lines derived from several solid tumors overexpressing NOTCH3. Moreover, BORIS targets NOTCH3 promoter in cancer cells and it is able to induce and to maintain a permissive/active chromatin conformation. Importantly, the association between NOTCH3 overexpression and BORIS presence was confirmed in primary T-ALL samples from patients at the onset of the disease. Overall, our results provide novel insights into the determinants of NOTCH3 overexpression in cancer cells, by revealing a key role for BORIS as the main mediator of transcriptional deregulation of NOTCH3.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Fabio Ciccarone
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Samantha Cialfi
- Department of Molecular Medicine, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Passananti
- Institute of Molecular Biology & Pathology CNR, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabina Chiaretti
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Nocchia
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy
| | - Isabella Screpanti
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy; Department of Molecular Medicine, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy.
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy & Medicine, Sapienza University of Rome, Rome, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
48
|
Stong N, Deng Z, Gupta R, Hu S, Paul S, Weiner AK, Eichler EE, Graves T, Fronick CC, Courtney L, Wilson RK, Lieberman PM, Davuluri RV, Riethman H. Subtelomeric CTCF and cohesin binding site organization using improved subtelomere assemblies and a novel annotation pipeline. Genome Res 2014; 24:1039-50. [PMID: 24676094 PMCID: PMC4032850 DOI: 10.1101/gr.166983.113] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/26/2014] [Indexed: 12/25/2022]
Abstract
Mapping genome-wide data to human subtelomeres has been problematic due to the incomplete assembly and challenges of low-copy repetitive DNA elements. Here, we provide updated human subtelomere sequence assemblies that were extended by filling telomere-adjacent gaps using clone-based resources. A bioinformatic pipeline incorporating multiread mapping for annotation of the updated assemblies using short-read data sets was developed and implemented. Annotation of subtelomeric sequence features as well as mapping of CTCF and cohesin binding sites using ChIP-seq data sets from multiple human cell types confirmed that CTCF and cohesin bind within 3 kb of the start of terminal repeat tracts at many, but not all, subtelomeres. CTCF and cohesin co-occupancy were also enriched near internal telomere-like sequence (ITS) islands and the nonterminal boundaries of subtelomere repeat elements (SREs) in transformed lymphoblastoid cell lines (LCLs) and human embryonic stem cell (ES) lines, but were not significantly enriched in the primary fibroblast IMR90 cell line. Subtelomeric CTCF and cohesin sites predicted by ChIP-seq using our bioinformatics pipeline (but not predicted when only uniquely mapping reads were considered) were consistently validated by ChIP-qPCR. The colocalized CTCF and cohesin sites in SRE regions are candidates for mediating long-range chromatin interactions in the transcript-rich SRE region. A public browser for the integrated display of short-read sequence-based annotations relative to key subtelomere features such as the start of each terminal repeat tract, SRE identity and organization, and subtelomeric gene models was established.
Collapse
Affiliation(s)
- Nicholas Stong
- Graduate Group in Genomics and Computational Biology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Zhong Deng
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Ravi Gupta
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Sufen Hu
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Shiela Paul
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Tina Graves
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Catrina C. Fronick
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Laura Courtney
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Richard K. Wilson
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | | | | |
Collapse
|
49
|
Gushchanskaya ES, Artemov AV, Ulyanov SV, Logacheva MD, Penin AA, Kotova ES, Akopov SB, Nikolaev LG, Iarovaia OV, Sverdlov ED, Gavrilov AA, Razin SV. The clustering of CpG islands may constitute an important determinant of the 3D organization of interphase chromosomes. Epigenetics 2014; 9:951-63. [PMID: 24736527 DOI: 10.4161/epi.28794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We used the 4C-Seq technique to characterize the genome-wide patterns of spatial contacts of several CpG islands located on chromosome 14 in cultured chicken lymphoid and erythroid cells. We observed a clear tendency for the spatial clustering of CpG islands present on the same and different chromosomes, regardless of the presence or absence of promoters within these CpG islands. Accordingly, we observed preferential spatial contacts between Sp1 binding motifs and other GC-rich genomic elements, including the DNA sequence motifs capable of forming G-quadruplexes. However, an anchor placed in a gene/CpG island-poor area formed spatial contacts with other gene/CpG island-poor areas on chromosome 14 and other chromosomes. These results corroborate the two-compartment model of the spatial organization of interphase chromosomes and suggest that the clustering of CpG islands constitutes an important determinant of the 3D organization of the eukaryotic genome in the cell nucleus. Using the ChIP-Seq technique, we mapped the genome-wide CTCF deposition sites in the chicken lymphoid and erythroid cells that were used for the 4C analysis. We observed a good correlation between the density of CTCF deposition sites and the level of 4C signals for the anchors located in CpG islands but not for an anchor located in a gene desert. It is thus possible that CTCF contributes to the clustering of CpG islands observed in our experiments.
Collapse
Affiliation(s)
- Ekaterina S Gushchanskaya
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia; Department of Molecular Biology; Lomonosov Moscow State University; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Villejuif, France and Moscow, Russia
| | - Artem V Artemov
- Faculty of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow, Russia; Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow, Russia
| | - Sergey V Ulyanov
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia
| | - Maria D Logacheva
- Laboratory of Evolutionary Genomics; Lomonosov Moscow State University; Moscow, Russia
| | - Aleksey A Penin
- Laboratory of Evolutionary Genomics; Lomonosov Moscow State University; Moscow, Russia
| | - Elena S Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow, Russia
| | - Sergey B Akopov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow, Russia
| | - Lev G Nikolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow, Russia
| | - Olga V Iarovaia
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Villejuif, France and Moscow, Russia
| | - Eugene D Sverdlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow, Russia
| | - Alexey A Gavrilov
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Villejuif, France and Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia; Department of Molecular Biology; Lomonosov Moscow State University; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Villejuif, France and Moscow, Russia
| |
Collapse
|
50
|
A novel mechanism for CTCF in the epigenetic regulation of Bax in breast cancer cells. Neoplasia 2014; 15:898-912. [PMID: 23908591 DOI: 10.1593/neo.121948] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/23/2013] [Accepted: 05/03/2013] [Indexed: 01/20/2023] Open
Abstract
We previously reported the association of elevated levels of the multifunctional transcription factor, CCCTC binding factor (CTCF), in breast cancer cells with the specific anti-apoptotic function of CTCF. To understand the molecular mechanisms of this phenomenon, we investigated regulation of the human Bax gene by CTCF in breast and non-breast cells. Two CTCF binding sites (CTSs) within the Bax promoter were identified. In all cells, breast and non-breast, active histone modifications were present at these CTSs, DNA harboring this region was unmethylated, and levels of Bax mRNA and protein were similar. Nevertheless, up-regulation of Bax mRNA and protein and apoptotic cell death were observed only in breast cancer cells depleted of CTCF. We proposed that increased CTCF binding to the Bax promoter in breast cancer cells, by comparison with non-breast cells, may be mechanistically linked to the specific apoptotic phenotype in CTCF-depleted breast cancer cells. In this study, we show that CTCF binding was enriched at the Bax CTSs in breast cancer cells and tumors; in contrast, binding of other transcription factors (SP1, WT1, EGR1, and c-Myc) was generally increased in non-breast cells and normal breast tissues. Our findings suggest a novel mechanism for CTCF in the epigenetic regulation of Bax in breast cancer cells, whereby elevated levels of CTCF support preferential binding of CTCF to the Bax CTSs. In this context, CTCF functions as a transcriptional repressor counteracting influences of positive regulatory factors; depletion of breast cancer cells from CTCF therefore results in the activation of Bax and apoptosis.
Collapse
|