1
|
Ståhl S, Lindberg H, Hjelm LC, Löfblom J, Dahlsson Leitao C. Engineering of Affibody Molecules. Cold Spring Harb Protoc 2024; 2024:pdb.top107760. [PMID: 37491082 DOI: 10.1101/pdb.top107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Affibody molecules are small, robust, and versatile affinity proteins currently being explored for therapeutic, diagnostic, and biotechnological applications. Surface-exposed residues on the affibody scaffold are randomized to create large affibody libraries from which novel binding specificities to virtually any protein target can be generated using combinatorial protein engineering. Affibody molecules have the potential to complement-or even surpass-current antibody-based technologies, exhibiting multiple desirable properties, such as high stability, affinity, and specificity, efficient tissue penetration, and straightforward modular extension of functional domains. It has been shown in both preclinical and clinical studies that affibody molecules are safe, efficacious, and valuable alternatives to antibodies for specific targeting in the context of in vivo diagnostics and therapy. Here, we provide a general background of affibody molecules, give examples of reported applications, and briefly summarize the methodology for affibody generation.
Collapse
Affiliation(s)
- Stefan Ståhl
- Department of Protein Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Hanna Lindberg
- Department of Protein Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Linnea Charlotta Hjelm
- Department of Protein Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | | |
Collapse
|
2
|
Dahlsson Leitao C, Ståhl S, Löfblom J. Surface-engineered bacteria in drug development. Microb Biotechnol 2024; 17:e70033. [PMID: 39403960 PMCID: PMC11474283 DOI: 10.1111/1751-7915.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Bacterial surface display in combination with fluorescence-activated cell sorting is a versatile and robust system and an interesting alternative approach to phage display for the generation of therapeutic affinity proteins. The system enables real-time monitoring and sorting of cell populations, which presents unique possibilities for drug development. It has been used to develop several affibody molecules currently being evaluated preclinically for the treatment and diagnosis of, for example, cancer and neurodegenerative diseases. Additionally, it can be implemented in other areas of drug design, such as for mapping epitopes and evolving enzyme specificities.
Collapse
Affiliation(s)
| | - Stefan Ståhl
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - John Löfblom
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| |
Collapse
|
3
|
Wu J, Chu T, Hao J, Lin L. SpSrtA-Catalyzed Isopeptide Ligation on Lysine Residues. Microorganisms 2024; 12:179. [PMID: 38258005 PMCID: PMC10818881 DOI: 10.3390/microorganisms12010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Sortase-mediated ligation (SML) is widely used for protein bioconjugation. However, the sortase used in this strategy typically recognizes only the N-terminal oligoglycine, which is absent in most natural proteins. To broaden the spectrum of substrates compatible with SML, we focus on a novel sortase, sortase A from Streptococcus pneumoniae (SpSrtA), known for its expanded substrate specificity (N-terminal glycine, alanine, and serine). We present the first evidence showing that the reported SpSrtA mutant (SpSrtA*) can modify lysine residues in itself and other proteins. The modification sites of SpSrtA* were identified through LC-MS/MS analysis. Moreover, we discovered an optimal lysine-containing peptide tag by fusing it onto sfGFP, resulting in a labeling efficiency of 57%. Inspired by this, we applied the method to modify proteins on microorganism surfaces up to 13.5-fold. To enhance labeling efficiency, we fused the SpSrtA* onto a surface protein and achieved a 2.64-fold improvement. We further developed a high-throughput yeast display screening method for the directed evolution of SpSrtA*, achieving a 10-fold improvement in the labeling efficiency of this surface protein. Our study provides a novel strategy for modifying the lysine residues that will be a powerful addition to the protein bioconjugation toolbox.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Chemistry, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tianyu Chu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Hao
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Liang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Cerdán L, Álvarez B, Fernández LÁ. Massive integration of large gene libraries in the chromosome of Escherichia coli. Microb Biotechnol 2024; 17:e14367. [PMID: 37971317 PMCID: PMC10832519 DOI: 10.1111/1751-7915.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Large gene libraries are frequently created in Escherichia coli plasmids, which can induce cell toxicity and expression instability due to the high gene dosage. To address these limitations, gene libraries can be integrated in a single copy into the bacterial chromosome. Here, we describe an efficient system for the massive integration (MAIN) of large gene libraries in the E. coli chromosome that generates in-frame gene fusions that are expressed stably. MAIN uses a thermosensitive integrative plasmid that is linearized in vivo to promote extensive integration of the gene library via homologous recombination. Positive and negative selections efficiently remove bacteria lacking gene integration in the target site. We tested MAIN with a library of 107 VHH genes that encode nanobodies (Nbs). The integration of VHH genes into a custom target locus of the E. coli chromosome enabled stable expression and surface display of the Nbs. Next-generation DNA sequencing confirmed that MAIN preserved the diversity of the gene library after integration. Finally, we screened the integrated library to select Nbs that bind a specific antigen using magnetic and fluorescence-activated cell sorting. This allowed us to identify Nbs binding the epidermal growth factor receptor that were not previously isolated in a similar screening of a multicopy plasmid library. Our results demonstrate that MAIN enables large gene library integration into the E. coli chromosome, creating stably expressed in-frame fusions for functional screening.
Collapse
Affiliation(s)
- Lidia Cerdán
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Beatriz Álvarez
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Luis Ángel Fernández
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
5
|
Wang Y, Zhang K, Zhao Y, Li Y, Su W, Li S. Construction and Applications of Mammalian Cell-Based DNA-Encoded Peptide/Protein Libraries. ACS Synth Biol 2023; 12:1874-1888. [PMID: 37315219 DOI: 10.1021/acssynbio.3c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA-encoded peptide/protein libraries are the starting point for protein evolutionary modification and functional peptide/antibody selection. Different display technologies, protein directed evolution, and deep mutational scanning (DMS) experiments employ DNA-encoded libraries to provide sequence variations for downstream affinity- or function-based selections. Mammalian cells promise the inherent post-translational modification and near-to-natural conformation of exogenously expressed mammalian proteins and thus are the best platform for studying transmembrane proteins or human disease-related proteins. However, due to the current technical bottlenecks of constructing mammalian cell-based large size DNA-encoded libraries, the advantages of mammalian cells as screening platforms have not been fully exploited. In this review, we summarize the current efforts in constructing DNA-encoded libraries in mammalian cells and the existing applications of these libraries in different fields.
Collapse
Affiliation(s)
- Yi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Kaili Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanjie Zhao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
6
|
Mestre Borras A, Dahlsson Leitao C, Ståhl S, Löfblom J. Generation of an anti-idiotypic affibody-based masking domain for conditional activation of EGFR-targeting. N Biotechnol 2023; 73:9-18. [PMID: 36526248 DOI: 10.1016/j.nbt.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Conditional activation of engineered affinity proteins by proteolytic processing is an interesting approach for a wide range of applications. We have generated an anti-idiotypic masking domain with specificity for the binding surface of an EGFR-targeting affibody molecule using an in-house developed staphylococcal display method. The masking domain could specifically abrogate EGFR-binding on cancer cells when fused to the EGFR-targeting affibody molecule via a linker comprising a protease cleavage site. EGFR-binding was restored by proteolytic cleavage of the linker region resulting in release of the masking domain. A saturation mutagenesis study provided detailed information on the interaction between the EGFR-targeting affibody molecule and the masking domain. Introducing an anti-idiotypic masking affibody domain is a viable approach for blocking EGFR-binding and allows for conditional activation by proteolytic processing. The results warrant further studies evaluating the therapeutic and diagnostic applicability both in vitro and in vivo.
Collapse
Affiliation(s)
- Anna Mestre Borras
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
7
|
Dahlsson Leitao C, Mestre Borras A, Jonsson A, Malm M, Kronqvist N, Fleetwood F, Sandersjöö L, Uhlén M, Löfblom J, Ståhl S, Lindberg H. Display of a naïve affibody library on staphylococci for selection of binders by means of flow cytometry sorting. Biochem Biophys Res Commun 2023; 655:75-81. [PMID: 36933310 DOI: 10.1016/j.bbrc.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Within the field of combinatorial protein engineering there is a great demand for robust high-throughput selection platforms that allow for unbiased protein library display, affinity-based screening, and amplification of selected clones. We have previously described the development of a staphylococcal display system used for displaying both alternative-scaffolds and antibody-derived proteins. In this study, the objective was to generate an improved expression vector for displaying and screening a high-complexity naïve affibody library, and to facilitate downstream validation of isolated clones. A high-affinity normalization tag, consisting of two ABD-moieties, was introduced to simplify off-rate screening procedures. In addition, the vector was furnished with a TEV protease substrate recognition sequence upstream of the protein library which enables proteolytic processing of the displayed construct for improved binding signal. In the library design, 13 of the 58 surface-exposed amino acid positions were selected for full randomization (except proline and cysteine) using trinucleotide technology. The genetic library was successfully transformed to Staphylococcus carnosus cells, generating a protein library exceeding 109 members. De novo selections against three target proteins (CD14, MAPK9 and the affibody ZEGFR:2377) were successfully performed using magnetic bead-based capture followed by flow-cytometric sorting, yielding affibody molecules binding their respective target with nanomolar affinity. Taken together, the results demonstrate the feasibility of the staphylococcal display system and the proposed selection procedure to generate new affibody molecules with high affinity.
Collapse
Affiliation(s)
- Charles Dahlsson Leitao
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Anna Mestre Borras
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Andreas Jonsson
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Magdalena Malm
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Nina Kronqvist
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Filippa Fleetwood
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Lisa Sandersjöö
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Mathias Uhlén
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Hanna Lindberg
- Department of Protein Science, KTH - Royal Institute of Technology, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
8
|
Waduge P, Tian H, Webster KA, Li W. Profiling disease-selective drug targets: From proteomics to ligandomics. Drug Discov Today 2023; 28:103430. [PMID: 36343915 PMCID: PMC9974940 DOI: 10.1016/j.drudis.2022.103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Despite advancements in omics technologies, including proteomics and transcriptomics, identification of therapeutic targets remains challenging. Ligandomics recently emerged as a unique technology of functional proteomics for global profiling of cell-binding protein ligands. When applied to diseased versus healthy vasculatures, comparative ligandomics systematically maps novel disease-restricted ligands that allow selective targeting of pathological but not physiological pathways, providing high efficacy with intrinsic safety. In this review, we discuss the potential of cellular ligands as therapeutic targets and summarize the development of ligandomics. We further compare the advantages and limitations of different omics technologies for drug target discovery and discuss target selection criteria to improve drug R&D success rates.
Collapse
Affiliation(s)
- Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Tian
- LigandomicsRx, LLC, Houston, TX 77098, USA; Everglades Biopharma, LLC, Houston, TX 77098, USA
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; Vascular Biology Institute, Department of Pharmacology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Zhang Y, Guo J, Cheng J, Zhang Z, Kang F, Wu X, Chu Q. High-Throughput Screening of Stapled Helical Peptides in Drug Discovery. J Med Chem 2023; 66:95-106. [PMID: 36580278 DOI: 10.1021/acs.jmedchem.2c01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic peptides have revolutionized treatment for a number of human diseases. In particular, the past two decades have witnessed rapid progress of stapled helical peptides in drug discovery. Stapled helical peptides are chemically modified and constrained in their bioactive α-helical conformation. Compared to unstabilized linear peptides, stapled helical peptides exhibit superior binding affinity and selectivity, enhanced membrane permeability, and improved metabolic stability, presenting exciting promise for targeting otherwise challenging protein-protein interfaces. In this Perspective, we summarize recent applications of high-throughput screening technologies for identification of potent stapled helical peptides with optimized binding properties. We expect to provide a broad reference to accelerate the development of stapled helical peptides as the next generation of therapeutic peptides for various human diseases.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabei Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhenghua Zhang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Fenghua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Dahlsson Leitao C, Ståhl S, Löfblom J. Bacterial Cell Display for Selection of Affibody Molecules. Methods Mol Biol 2023; 2681:99-112. [PMID: 37405645 DOI: 10.1007/978-1-0716-3279-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
This review describes the principles for generation of affibody molecules using bacterial display on the Gram-negative Escherichia coli and the Gram-positive Staphylococcus carnosus, respectively. Affibody molecules are small and robust alternative scaffold proteins that have been explored for therapeutic, diagnostic, and biotechnological applications. They typically exhibit high-stability, affinity, and specificity with high modularity of functional domains. Due to the small size of the scaffold, affibody molecules are rapidly excreted through renal filtration and can efficiently extravasate from blood and penetrate tissues. Preclinical and clinical studies have demonstrated that affibody molecules are promising and safe complements to antibodies for in vivo diagnostic imaging and therapy. Sorting of affibody libraries displayed on bacteria using fluorescence-activated cell sorting is an effective and straightforward methodology and has been used successfully to generate novel affibody molecules with high affinity for a diverse range of molecular targets.
Collapse
Affiliation(s)
| | - Stefan Ståhl
- Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
11
|
Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, Tohidkia MR, Mokhtarzadeh A, Muyldermans S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol 2022; 208:421-442. [PMID: 35339499 DOI: 10.1016/j.ijbiomac.2022.03.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods. The display of antibodies on phages is probably the most widespread of these methods, although surface display on bacteria or yeast have been employed successfully, as well. These methods using various sizes of combinatorial antibody libraries and different selection strategies possessing benefits in screening potency, generating, and isolation of high affinity antibodies with low risk of immunogenicity. Knowing the basics of each method assists in the design and retrieval process of antibodies suitable for different diseases, including cancer. In this review, we aim to outline the basics of each library construction and its display method, screening and selection steps. The advantages and disadvantages in comparison to alternative methods, and their applications in antibody engineering will be explained. Finally, we will review approved or non-approved therapeutic antibodies developed by employing these methods, which may serve as therapeutic antibodies in cancer therapy.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Hejazi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China..
| |
Collapse
|
12
|
Liu B, Yang D. Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools. Int J Mol Sci 2022; 23:ijms23031482. [PMID: 35163405 PMCID: PMC8835997 DOI: 10.3390/ijms23031482] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Nanobodies, or VHHs, refer to the antigen-binding domain of heavy-chain antibodies (HCAbs) from camelids. They have been widely used as research tools for protein purification and structure determination due to their small size, high specificity, and high stability, overcoming limitations with conventional antibody fragments. However, animal immunization and subsequent retrieval of antigen-specific nanobodies are expensive and complicated. Construction of synthetic nanobody libraries using DNA oligonucleotides is a cost-effective alternative for immunization libraries and shows great potential in identifying antigen-specific or even conformation-specific nanobodies. This review summarizes and analyses synthetic nanobody libraries in the current literature, including library design and biopanning methods, and further discusses applications of antigen-specific nanobodies obtained from synthetic libraries to research.
Collapse
|
13
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
14
|
Davydova EK. Protein Engineering: Advances in Phage Display for Basic Science and Medical Research. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S146-S110. [PMID: 35501993 PMCID: PMC8802281 DOI: 10.1134/s0006297922140127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022]
Abstract
Functional Protein Engineering became the hallmark in biomolecule manipulation in the new millennium, building on and surpassing the underlying structural DNA manipulation and recombination techniques developed and employed in the last decades of 20th century. Because of their prominence in almost all biological processes, proteins represent extremely important targets for engineering enhanced or altered properties that can lead to improvements exploitable in healthcare, medicine, research, biotechnology, and industry. Synthetic protein structures and functions can now be designed on a computer and/or evolved using molecular display or directed evolution methods in the laboratory. This review will focus on the recent trends in protein engineering and the impact of this technology on recent progress in science, cancer- and immunotherapies, with the emphasis on the current achievements in basic protein research using synthetic antibody (sABs) produced by phage display pipeline in the Kossiakoff laboratory at the University of Chicago (KossLab). Finally, engineering of the highly specific binding modules, such as variants of Streptococcal protein G with ultra-high orthogonal affinity for natural and engineered antibody scaffolds, and their possible applications as a plug-and-play platform for research and immunotherapy will be described.
Collapse
Affiliation(s)
- Elena K Davydova
- The University of Chicago, Department of Biochemistry and Molecular Biology, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Somasundaram S, Jeong J, Kumaravel A, Hong SH. Whole-Cell display of Pyrococcus horikoshii glutamate decarboxylase in Escherichia coli for high-titer extracellular gamma-aminobutyric acid production. J Ind Microbiol Biotechnol 2021; 48:6310578. [PMID: 34180519 PMCID: PMC8788790 DOI: 10.1093/jimb/kuab039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/25/2021] [Indexed: 11/12/2022]
Abstract
We investigated the effect of cell-surface display of glutamate decarboxylase (GadB) on gamma-aminobutyric acid (GABA) production in recombinant Escherichia coli. We integrated GadB from the hyperthermophilic, anaerobic archaeon Pyrococcus horikoshii to the C-terminus of the E. coli outer membrane protein C (OmpC). After 12 hr of culturing GadB-displaying cells, the GABA concentration in the extracellular medium increased to 3.2 g/l, which is eight times that obtained with cells expressing GadB in the cytosol. To further enhance GABA production, we increased the temperatures of the culture. At 60°C, the obtained GABA concentration was 4.62 g/l after 12 hr of culture, and 5.35 g/l after 24 hr, which corresponds to a yield of 87.7%.
Collapse
Affiliation(s)
- Sivachandiran Somasundaram
- Department of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Jaehoon Jeong
- Department of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Ashokkumar Kumaravel
- Department of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Soon Ho Hong
- Department of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
16
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:E430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
17
|
Abstract
Ever since the discovery of antibodies, they have been generated by complicated multi-step procedures. Typically, these involve sequencing, cloning, and screening after expression of the antibodies in a suitable organism and format. Here, a staphylococcal nanobody display is described that omits many the abovementioned intermediate steps and allows for simultaneous screening of multiple targets without prior knowledge nor expression of the binders. This paper reports a detailed, general step-by-step protocol to achieve nanobodies of high affinity. Apart from its focus on radioactive and fluorescent targets, it gives options for various other target formats and additional applications for the staphylococcal library; including flow cytometry and immunoprecipitation. This provides a system for antibody engineers that can be easily adopted to their specific needs.
Collapse
Affiliation(s)
- Marco Cavallari
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Wang J, Tripathy N, Chung EJ. Targeting and therapeutic peptide-based strategies for polycystic kidney disease. Adv Drug Deliv Rev 2020; 161-162:176-189. [PMID: 32866560 PMCID: PMC7736157 DOI: 10.1016/j.addr.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Polycystic kidney disease (PKD) is characterized by progressive cyst growth and is a leading cause of renal failure worldwide. Currently, there are limited therapeutic options available to PKD patients, and only one drug, tolvaptan, has been FDA-approved to slow cyst progression. Similar to other small molecule drugs, however, tolvaptan is costly, only moderately effective, and causes adverse events leading to high patient dropout rates. Peptides may mitigate many drawbacks of small molecule drugs, as they can be highly tissue-specific, biocompatible, and economically scaled-up. Peptides can function as targeting ligands that direct therapies to diseased renal tissue, or be potent as therapeutic agents themselves. This review discusses various aberrant signaling pathways in PKD and renal receptors that can be potential targets of peptide-mediated strategies. Additionally, peptides utilized in other kidney applications, but may prove useful in the context of PKD, are highlighted. Insights into novel peptide-based solutions that have potential to improve clinical management of PKD are provided.
Collapse
Affiliation(s)
- Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nirmalya Tripathy
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Zhang C, Ötjengerdes RM, Roewe J, Mejias R, Marschall ALJ. Applying Antibodies Inside Cells: Principles and Recent Advances in Neurobiology, Virology and Oncology. BioDrugs 2020; 34:435-462. [PMID: 32301049 PMCID: PMC7391400 DOI: 10.1007/s40259-020-00419-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To interfere with cell function, many scientists rely on methods that target DNA or RNA due to the ease with which they can be applied. Proteins are usually the final executors of function but are targeted only indirectly by these methods. Recent advances in targeted degradation of proteins based on proteolysis-targeting chimaeras (PROTACs), ubiquibodies, deGradFP (degrade Green Fluorescent Protein) and other approaches have demonstrated the potential of interfering directly at the protein level for research and therapy. Proteins can be targeted directly and very specifically by antibodies, but using antibodies inside cells has so far been considered to be challenging. However, it is possible to deliver antibodies or other proteins into the cytosol using standard laboratory equipment. Physical methods such as electroporation have been demonstrated to be efficient and validated thoroughly over time. The expression of intracellular antibodies (intrabodies) inside cells is another way to interfere with intracellular targets at the protein level. Methodological strategies to target the inside of cells with antibodies, including delivered antibodies and expressed antibodies, as well as applications in the research areas of neurobiology, viral infections and oncology, are reviewed here. Antibodies have already been used to interfere with a wide range of intracellular targets. Disease-related targets included proteins associated with neurodegenerative diseases such as Parkinson's disease (α-synuclein), Alzheimer's disease (amyloid-β) or Huntington's disease (mutant huntingtin [mHtt]). The applications of intrabodies in the context of viral infections include targeting proteins associated with HIV (e.g. HIV1-TAT, Rev, Vif, gp41, gp120, gp160) and different oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV) and Epstein-Barr virus, and they have been used to interfere with various targets related to different processes in cancer, including oncogenic pathways, proliferation, cell cycle, apoptosis, metastasis, angiogenesis or neo-antigens (e.g. p53, human epidermal growth factor receptor-2 [HER2], signal transducer and activator of transcription 3 [STAT3], RAS-related RHO-GTPase B (RHOB), cortactin, vascular endothelial growth factor receptor 2 [VEGFR2], Ras, Bcr-Abl). Interfering at the protein level allows questions to be addressed that may remain unanswered using alternative methods. This review addresses why direct targeting of proteins allows unique insights, what is currently feasible in vitro, and how this relates to potential therapeutic applications.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rina M Ötjengerdes
- Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Julian Roewe
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain TumorImmunology (D170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebeca Mejias
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea L J Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Brunswick, Germany.
| |
Collapse
|
20
|
Luo R, Zhao Y, Fan Y, An L, Jiang T, Ma S, Hang H. High efficiency CHO cell display-based antibody maturation. Sci Rep 2020; 10:8102. [PMID: 32415149 PMCID: PMC7229201 DOI: 10.1038/s41598-020-65044-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
Previously, we developed a CHO cell display-based antibody maturation procedure in which an antibody (or other protein) gene of interest was induced to mutate by activation-induced cytidine deaminase (AID) and then form a library by simply proliferating the CHO cells in culture. In this study, we further improved the efficiency of this maturation system by reengineering AID, and optimizing the nucleic acid sequence of the target antibody gene and AID gene as well as the protocol for AID gene transfection. These changes have increased both the mutation rate and the number of mutation type of antibody genes by more than 10 fold, and greatly improved the maturation efficiency of antibody/other proteins.
Collapse
Affiliation(s)
- Ruiqi Luo
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingjun Fan
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lili An
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Jiang
- University of Chinese Academy of Sciences, Beijing, 100039, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaohua Ma
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Surface Display Technology for Biosensor Applications: A Review. SENSORS 2020; 20:s20102775. [PMID: 32414189 PMCID: PMC7294428 DOI: 10.3390/s20102775] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Surface display is a recombinant technology that expresses target proteins on cell membranes and can be applied to almost all types of biological entities from viruses to mammalian cells. This technique has been used for various biotechnical and biomedical applications such as drug screening, biocatalysts, library screening, quantitative assays, and biosensors. In this review, the use of surface display technology in biosensor applications is discussed. In detail, phage display, bacterial surface display of Gram-negative and Gram-positive bacteria, and eukaryotic yeast cell surface display systems are presented. The review describes the advantages of surface display systems for biosensor applications and summarizes the applications of surface displays to biosensors.
Collapse
|
22
|
Bosma T, Rink R, Moosmeier MA, Moll GN. Genetically Encoded Libraries of Constrained Peptides. Chembiochem 2019; 20:1754-1758. [PMID: 30794341 DOI: 10.1002/cbic.201900031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 02/01/2023]
Abstract
Many therapeutic peptides can still be improved with respect to target specificity, target affinity, resistance to peptidases/proteases, physical stability, and capacity to pass through membranes required for oral delivery. Several modifications can improve the peptides' properties, in particular those that impose (a) conformational constraint(s). Screening of constrained peptides and the identification of hits is greatly facilitated by the generation of genetically encoded libraries. Recent breakthrough bacterial, phage, and yeast display screening systems of ribosomally synthesized post-translationally constrained peptides, particularly those of lanthipeptides, are earning special attention. Here we provide an overview of display systems for constrained, genetically encoded peptides and indicate prospects of constrained peptide-displaying phage and bacterial systems as such in vivo.
Collapse
Affiliation(s)
- Tjibbe Bosma
- Lanthio Pharma, a MorphoSys AG Company, Rozenburglaan 13B, 9727 DL, Groningen, The Netherlands
| | - Rick Rink
- Lanthio Pharma, a MorphoSys AG Company, Rozenburglaan 13B, 9727 DL, Groningen, The Netherlands
| | | | - Gert N Moll
- Lanthio Pharma, a MorphoSys AG Company, Rozenburglaan 13B, 9727 DL, Groningen, The Netherlands.,Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
23
|
Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S. A systematic reconsideration on proteases. Int J Biol Macromol 2019; 128:254-267. [PMID: 30664968 DOI: 10.1016/j.ijbiomac.2019.01.081] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
Proteases are a group of large complex enzyme molecules that perform highly focused proteolysis functions. A vast quantity of the protease enzymes is predominantly sourced from microbial fermentation process, although proteases tend to natively present in plant, animals and humans. Proteases possess a pervasive importance in medical and pharmaceutical sector, because of its enriched specificity towards biomolecules. They are also actively encompassed in regulating certain physiological pathways. A distinct territory of human disorders is treated by substrate specific proteases. Enormous numbers of catalytic activities in habitual metabolism process of a living organism are protease dependent. Pilot scale researches and product development in industrial biotechnology sectors are wholly based on any one of the protease enzymes. The applications of the protease enzymes and its economic benefits of being an eco-friendly material are far-reaching. This review presents a brief overview on the classification and sources of various types of proteases. We describe the essential evidences of role of protease in different sectors. The proteases could be a potential relieves to harmful synthetic chemicals in distinctive industrial processes and thus gains global perception.
Collapse
Affiliation(s)
- Poorani Gurumallesh
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Kamalini Alagu
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Baskar Ramakrishnan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India.
| | | |
Collapse
|
24
|
Enhancers Improve the AID-Induced Hypermutation in Episomal Vector for Antibody Affinity Maturation in Mammalian Cell Display. Antibodies (Basel) 2018; 7:antib7040042. [PMID: 31544892 PMCID: PMC6698961 DOI: 10.3390/antib7040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/03/2022] Open
Abstract
The induction of somatic hypermutation (SHM) in various cell lines by activation-induced cytidine deaminase (AID) has been used in protein-directed selection, especially in antibody affinity maturation. Several antibody affinity maturation systems based on mammalian cells have been developed in recent years, i.e., 293T, H1299, Raji and CHO cells. However, the efficiency of in vitro AID-induced hypermutation is low, restricting the application of such systems. In this study, we examined the role of Ig and Ek enhancers in enhancing SHM in the episomal vector pCEP4 that expresses an anti-high mobility group box 1 (HMGB1) full-length antibody. The plasmid containing the two enhancers exhibited two-fold improvement of mutation rate over pCEP4 in an AID expression H1299 cell line (H1299-AID). With the engineered episomal vector, we improved the affinity of this antibody in H1299-AID cells by 20-fold.
Collapse
|
25
|
Nakatani H, Kanie J, Hori K. On‐fiber display of a functional peptide at sites distant from the cell surface using a long bacterionanofiber of a trimeric autotransporter adhesin. Biotechnol Bioeng 2018; 116:239-249. [DOI: 10.1002/bit.26857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/20/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Hajime Nakatani
- Department of Biomolecular EngineeringGraduate School of Engineering, Nagoya University, Furo‐cho, Chikusa‐kuNagoya Japan
| | - Junichi Kanie
- Department of Biomolecular EngineeringGraduate School of Engineering, Nagoya University, Furo‐cho, Chikusa‐kuNagoya Japan
| | - Katsutoshi Hori
- Department of Biomolecular EngineeringGraduate School of Engineering, Nagoya University, Furo‐cho, Chikusa‐kuNagoya Japan
| |
Collapse
|
26
|
Andersson KG, Persson J, Ståhl S, Löfblom J. Autotransporter-Mediated Display of a Naïve Affibody Library on the Outer Membrane of Escherichia coli. Biotechnol J 2018; 14:e1800359. [PMID: 30179307 DOI: 10.1002/biot.201800359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Indexed: 12/14/2022]
Abstract
Development of new affinity proteins using combinatorial protein engineering is today established for generation of monoclonal antibodies and also essential for discovery of binders that are based on non-immunoglobulin proteins. Phage display is most frequently used, but yeast display is becoming increasingly popular, partly due to the option of utilizing fluorescence-activated cell sorting (FACS) for isolation of new candidates. Escherichia coli has several valuable properties for library applications and in particular the high transformation efficiency. The use of various autotransporters and intimins for secretion and anchoring on the outer membrane have shown promising results and particularly for directed evolution of different enzymes. Here, the authors report on display of a large naïve affibody library on the outer membrane of E. coli using the autotransporter Adhesin Involved in Diffuse Adherence (AIDA-I). The expression cassette is first engineered by removing non-essential sequences, followed by introduction of an affibody library, comprising more than 109 variants, into the new display vector. The quality of the library and general performance of the method is assessed by FACS against five different targets, which resulted in a panel of binders with down to nanomolar affinities, suggesting that the method has potential as a complement to phage display for generation of affibody molecules.
Collapse
Affiliation(s)
- Ken G Andersson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Jonas Persson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| |
Collapse
|
27
|
Shingarova LN, Petrovskaya LE, Zlobinov AV, Gapizov SS, Kryukova EA, Birikh KR, Boldyreva EF, Yakimov SA, Dolgikh DA, Kirpichnikov MP. Construction of Artificial TNF-Binding Proteins Based on the 10th Human Fibronectin Type III Domain Using Bacterial Display. BIOCHEMISTRY (MOSCOW) 2018; 83:708-716. [PMID: 30195327 DOI: 10.1134/s0006297918060081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Construction of antibody mimetics on the base of alternative scaffold proteins is a promising strategy for obtaining new products for medicine and biotechnology. The aim of our work was to optimize the cell display system for the 10th human fibronectin type III domain (10Fn3) scaffold protein based on the AT877 autotransporter from Psychrobacter cryohalolentis K5T and to construct new artificial TNF-binding proteins. We obtained a 10Fn3 gene combinatorial library and screened it using the bacterial display method. After expression of the selected 10Fn3 variants in Escherichia coli cells and analysis of their TNF-binding activity, we identified proteins that display high affinity for TNF and characterized their properties.
Collapse
Affiliation(s)
- L N Shingarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - L E Petrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - A V Zlobinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S Sh Gapizov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - E A Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - K R Birikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - E F Boldyreva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S A Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - D A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - M P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| |
Collapse
|
28
|
Kim D, Ku S. Bacillus Cellulase Molecular Cloning, Expression, and Surface Display on the Outer Membrane of Escherichia coli. Molecules 2018; 23:E503. [PMID: 29495265 PMCID: PMC6017809 DOI: 10.3390/molecules23020503] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/18/2022] Open
Abstract
One of the main challenges of using recombinant enzymes is that they are derived from genetically-modified microorganisms commonly located in the intracellular region. The use of these recombinant enzymes for commercial purposes requires the additional processes of cell disruption and purification, which may result in enzyme loss, denaturation, and increased total production cost. In this study, the cellulase gene of Bacillus licheniformis ATCC 14580 was cloned, over-expressed, and surface displayed in recombinant Escherichia coli using an ice-nucleation protein (INP). INP, an outer membrane-bound protein from Pseudomonas syringae, was utilized as an anchor linker, which was cloned with a foreign cellulase gene into the pET21a vector to develop a surface display system on the outer membrane of E. coli. The resulting strain successfully revealed cellulase on the host cell surface. The over-expressed INP-cellulase fusion protein was confirmed via staining assay for determining the extracellular cellulase and Western blotting method for the molecular weight (MW) of cellulase, which was estimated to be around 61.7 kDa. Cell fractionation and localization tests demonstrated that the INP-cellulase fusion protein was mostly present in the supernatant (47.5%) and outer membrane (19.4%), while the wild-type strain intracellularly retained enzymes within cytosol (>61%), indicating that the INP gene directed the cellulase expression on the bacteria cell surface. Further studies of the optimal enzyme activity were observed at 60 °C and pH 7.0, and at least 75% of maximal enzyme activity was preserved at 70 °C.
Collapse
Affiliation(s)
- Daehwan Kim
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Seockmo Ku
- Fermentation Science Program, School of Agribusiness and Agriscience, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| |
Collapse
|
29
|
Andreu C, Del Olmo ML. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Appl Microbiol Biotechnol 2018; 102:2543-2561. [PMID: 29435617 DOI: 10.1007/s00253-018-8827-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés s/n. 46100 Burjassot, València, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, E-46100 Burjassot, València, Spain.
| |
Collapse
|
30
|
Fusion with the cold-active esterase facilitates autotransporter-based surface display of the 10th human fibronectin domain in Escherichia coli. Extremophiles 2017; 22:141-150. [PMID: 29256084 DOI: 10.1007/s00792-017-0990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/08/2017] [Indexed: 10/24/2022]
Abstract
Cell surface display is a popular approach for the construction of whole-cell biocatalysts, live vaccines, and screening of combinatorial libraries. To develop a novel surface display system for the popular scaffold protein 10th human fibronectin type III domain (10Fn3) in Escherichia coli cells, we have used an α-helical linker and a C-terminal translocator domain from previously characterized autotransporter from Psychrobacter cryohalolentis K5T. The level of 10Fn3 passenger exposure at the cell surface provided by the hybrid autotransporter Fn877 and its C-terminal variants was low. To improve it, the fusion proteins containing 10Fn3 and the native autotransporter passenger Est877 or the cold-active esterase EstPc in different orientations were constructed and expressed as passenger domains. Using the whole-cell ELISA and activity assays, we have demonstrated that N-terminal position of EstPc in the passenger significantly improves the efficiency of the surface display of 10Fn3 in E. coli cells.
Collapse
|
31
|
Mathematical determination of kinetic parameters for assessing the effect of the organic solvent on the selectivity of peptide synthesis with immobilized α-chymotrypsin. J Biosci Bioeng 2017; 124:618-622. [DOI: 10.1016/j.jbiosc.2017.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 11/29/2022]
|
32
|
Löfblom J, Rosenstein R, Nguyen MT, Ståhl S, Götz F. Staphylococcus carnosus: from starter culture to protein engineering platform. Appl Microbiol Biotechnol 2017; 101:8293-8307. [PMID: 28971248 PMCID: PMC5694512 DOI: 10.1007/s00253-017-8528-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/04/2023]
Abstract
Since the 1950s, Staphylococcus carnosus is used as a starter culture for sausage fermentation where it contributes to food safety, flavor, and a controlled fermentation process. The long experience with S. carnosus has shown that it is a harmless and "food grade" species. This was confirmed by the genome sequence of S. carnosus TM300 that lacks genes involved in pathogenicity. Since the development of a cloning system in TM300, numerous genes have been cloned, expressed, and characterized and in particular, virulence genes that could be functionally validated in this non-pathogenic strain. A secretion system was developed for production and secretion of industrially important proteins and later modified to also enable display of heterologous proteins on the surface. The display system has been employed for various purposes, such as development of live bacterial delivery vehicles as well as microbial biocatalysts or bioadsorbents for potential environmental or biosensor applications. Recently, this surface display system has been utilized for display of peptide and protein libraries for profiling of protease substrates and for generation of various affinity proteins, e.g., Affibody molecules and scFv antibodies. In addition, by display of fragmented antigen-encoding genes, the surface expression system has been successfully used for epitope mapping of antibodies. Reviews on specific applications of S. carnosus have been published earlier, but here we provide a more extensive overview, covering a broad range of areas from food fermentation to sophisticated methods for protein-based drug discovery, which are all based on S. carnosus.
Collapse
Affiliation(s)
- John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, 106 91, Stockholm, Sweden
| | - Ralf Rosenstein
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, 106 91, Stockholm, Sweden.
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
33
|
Fagerland J, Pappalardo D, Schmidt B, Syrén PO, Finne-Wistrand A. Template-Assisted Enzymatic Synthesis of Oligopeptides from a Polylactide Chain. Biomacromolecules 2017; 18:4271-4280. [PMID: 29131581 DOI: 10.1021/acs.biomac.7b01315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptides are often attached to polymer materials, as bioactive components, for the control of interactions between the material and its surrounding proteins and cells. However, synthesizing peptides and attaching them to polymers can be challenging and laborious. Herein, we describe the grafting of oligopeptides to an aliphatic polyester, using a one-step chemo-enzymatic synthesis with papain as the biocatalyst. To enable enzyme-mediated functionalization of the polyester, ethyl hept-6-enoylalaninate (grafter) was synthesized and attached to polylactide chains using thiol-ene click reactions. The oligopeptides were grafted onto the polylactide chains using two different synthetic routes: the grafting from strategy, in which the grafter was attached to the polyester prior to oligopeptide synthesis, or the grafting to strategy, in which oligopeptides were synthesized on the grafter first, then attached to the polymer chain. The final products were analyzed and their structures were confirmed using nuclear magnetic resonance (NMR). The peptide attachment was evaluated using size exclusion chromatography (SEC), contact angle measurement and energy-dispersive X-ray spectroscopy-scanning electron microscopy (EDS-SEM). Furthermore, the mechanistic aspects of the synthesis of the oligopeptides on the grafter were studied using molecular dynamics (MD) simulations. The simulation revealed that hydrogen bonding (between the P1 amide nitrogen of the grafter backbone and the carbonyl oxygen of D158 in the papain) maintain the grafter in a productive conformation to stabilize the transition state of nitrogen inversion, a key step of the biocatalytic mechanism. Apart from being biologically relevant, both experimental and computational results suggest that the designed grafter is a good template for initiating chemo-enzymatic synthesis. The results also showed that the grafting to strategy was more successful compared to the grafting from strategy. Overall, a successful synthesis of predefined peptide functionalized polylactide was prepared, where the oligopeptides were grafted in an easy, time efficient, and environmentally friendly way.
Collapse
Affiliation(s)
- Jenny Fagerland
- KTH Royal Institute of Technology , Department of Fibre and Polymer Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Daniela Pappalardo
- KTH Royal Institute of Technology , Department of Fibre and Polymer Technology, Teknikringen 56, 100 44 Stockholm, Sweden.,Department of Science and Technology, University of Sannio , via dei Mulini 59/A, 82100 Benevento, Italy
| | - Björn Schmidt
- KTH Royal Institute of Technology , School of Chemical Science and Engineering, Protein Engineering of Enzymes, Box 1031, 171 21 Solna, Sweden
| | - Per-Olof Syrén
- KTH Royal Institute of Technology , School of Chemical Science and Engineering, Protein Engineering of Enzymes, Box 1031, 171 21 Solna, Sweden
| | - Anna Finne-Wistrand
- KTH Royal Institute of Technology , Department of Fibre and Polymer Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| |
Collapse
|
34
|
Cavallari M. Rapid and Direct VHH and Target Identification by Staphylococcal Surface Display Libraries. Int J Mol Sci 2017; 18:ijms18071507. [PMID: 28704956 PMCID: PMC5535997 DOI: 10.3390/ijms18071507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/01/2023] Open
Abstract
Unbiased and simultaneous identification of a specific antibody and its target antigen has been difficult without prior knowledge of at least one interaction partner. Immunization with complex mixtures of antigens such as whole organisms and tissue extracts including tumoral ones evokes a highly diverse immune response. During such a response, antibodies are generated against a variety of epitopes in the mixture. Here, we propose a surface display design that is suited to simultaneously identify camelid single domain antibodies and their targets. Immune libraries of single-domain antigen recognition fragments from camelid heavy chain-only antibodies (VHH) were attached to the peptidoglycan of Gram-positive Staphylococcus aureus employing its endogenous housekeeping sortase enzyme. The sortase transpeptidation reaction covalently attached the VHH to the bacterial peptidoglycan. The reversible nature of the reaction allowed the recovery of the VHH from the bacterial surface and the use of the VHH in downstream applications. These staphylococcal surface display libraries were used to rapidly identify VHH as well as their targets by immunoprecipitation (IP). Our novel bacterial surface display platform was stable under harsh screening conditions, allowed fast target identification, and readily permitted the recovery of the displayed VHH for downstream analysis.
Collapse
Affiliation(s)
- Marco Cavallari
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzlestrasse 18, 79104 Freiburg, Germany.
| |
Collapse
|
35
|
Ståhl S, Gräslund T, Eriksson Karlström A, Frejd FY, Nygren PÅ, Löfblom J. Affibody Molecules in Biotechnological and Medical Applications. Trends Biotechnol 2017; 35:691-712. [PMID: 28514998 DOI: 10.1016/j.tibtech.2017.04.007] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023]
Abstract
Affibody molecules are small (6.5-kDa) affinity proteins based on a three-helix bundle domain framework. Since their introduction 20 years ago as an alternative to antibodies for biotechnological applications, the first therapeutic affibody molecules have now entered clinical development and more than 400 studies have been published in which affibody molecules have been developed and used in a variety of contexts. In this review, we focus primarily on efforts over the past 5 years to explore the potential of affibody molecules for medical applications in oncology, neurodegenerative, and inflammation disorders, including molecular imaging, receptor signal blocking, and delivery of toxic payloads. In addition, we describe recent examples of biotechnological applications, in which affibody molecules have been exploited as modular affinity fusion partners.
Collapse
Affiliation(s)
- Stefan Ståhl
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden.
| | - Torbjörn Gräslund
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | | | - Fredrik Y Frejd
- Unit of Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala, Sweden; Affibody AB, Gunnar Asplunds Allé 24, SE-171 69 Solna, Sweden
| | - Per-Åke Nygren
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| |
Collapse
|
36
|
Bruce VJ, McNaughton BR. Evaluation of Nanobody Conjugates and Protein Fusions as Bioanalytical Reagents. Anal Chem 2017; 89:3819-3823. [PMID: 28316235 DOI: 10.1021/acs.analchem.7b00470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzyme-linked immunosorbent assay (ELISA), flow cytometry, and Western blot are common bioanalytical techniques. Successful execution traditionally requires the use of one or more commercially available antibody-small-molecule dyes or antibody-reporter protein conjugates that recognize relatively short peptide tags (<15 amino acids). However, the size of antibodies and their molecular complexity (by virtue of post-translational disulfide formation and glycosylation) typically require either expression in mammalian cells or purification from immunized mammals. The preparation and purification of chemical dye- or reporter protein-antibody conjugates is often complicated and expensive and not commonplace in academic laboratories. In response, researchers have developed comparatively simpler protein scaffolds for macromolecular recognition, which can be expressed with relative ease in E. coli and can be evolved to bind virtually any target. Nanobodies, a minimalist scaffold generated from camelid-derived heavy-chain IgGs, are one such example. A multitude of nanobodies have been evolved to recognize a diverse array of targets, including a short peptide. Here, this peptide tag (termed BC2T) and BC2 nanobody-dye conjugates or reporter protein fusions are evaluated in ELISA, flow cytometry, and Western blot experiments and compared to analogous experiments using commercially available antibody-conjugate/peptide tag pairs. Collectively, the utility and practicality of nanobody-based reagents in bioanalytical chemistry is demonstrated.
Collapse
Affiliation(s)
- Virginia J Bruce
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Brian R McNaughton
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
37
|
Lindberg H, Sandersjöö L, Meister SW, Uhlén M, Löfblom J, Ståhl S. Flow-cytometric screening of aggregation-inhibitors using a fluorescence-assisted intracellular method. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/20/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Hanna Lindberg
- Division of Protein Technology, School of Biotechnology; KTH - Royal Institute of Technology; Stockholm Sweden
| | - Lisa Sandersjöö
- Division of Protein Technology, School of Biotechnology; KTH - Royal Institute of Technology; Stockholm Sweden
| | - Sebastian W. Meister
- Division of Protein Technology, School of Biotechnology; KTH - Royal Institute of Technology; Stockholm Sweden
| | - Mathias Uhlén
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, School of Biotechnology; KTH - Royal Institute of Technology; Solna Sweden
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology; KTH - Royal Institute of Technology; Stockholm Sweden
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology; KTH - Royal Institute of Technology; Stockholm Sweden
| |
Collapse
|
38
|
Sandersjöö L, Jonsson A, Löfblom J. Protease substrate profiling using bacterial display of self-blocking affinity proteins and flow-cytometric sorting. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Lisa Sandersjöö
- Division of Protein Technology, School of Biotechnology, KTH - Royal Institute of Technology; AlbaNova University Center; Stockholm Sweden
| | - Andreas Jonsson
- Division of Protein Technology, School of Biotechnology, KTH - Royal Institute of Technology; AlbaNova University Center; Stockholm Sweden
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH - Royal Institute of Technology; AlbaNova University Center; Stockholm Sweden
| |
Collapse
|
39
|
Patrucco L, Peano C, Chiesa A, Guida F, Luisi I, Boria I, Mignone F, De Bellis G, Zucchelli S, Gustincich S, Santoro C, Sblattero D, Cotella D. Identification of novel proteins binding the AU-rich element of α-prothymosin mRNA through the selection of open reading frames (RIDome). RNA Biol 2016; 12:1289-300. [PMID: 26512911 DOI: 10.1080/15476286.2015.1107702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We describe here a platform for high-throughput protein expression and interaction analysis aimed at identifying the RNA-interacting domainome. This approach combines the selection of a phage library displaying "filtered" open reading frames with next-generation DNA sequencing. The method was validated using an RNA bait corresponding to the AU-rich element of α-prothymosin, an RNA motif that promotes mRNA stability and translation through its interaction with the RNA-binding protein ELAVL1. With this strategy, we not only confirmed known RNA-binding proteins that specifically interact with the target RNA (such as ELAVL1/HuR and RBM38) but also identified proteins not previously known to be ARE-binding (R3HDM2 and RALY). We propose this technology as a novel approach for studying the RNA-binding proteome.
Collapse
Affiliation(s)
- Laura Patrucco
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy
| | - Clelia Peano
- b Institute of Biomedical Technologies; National Research Council (ITB CNR) ; Milan , Italy
| | - Andrea Chiesa
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy
| | - Filomena Guida
- c Department of Life Sciences ; University of Trieste ; Italy
| | - Imma Luisi
- c Department of Life Sciences ; University of Trieste ; Italy
| | - Ilenia Boria
- d Department of Chemistry ; University of Milan ; Italy
| | - Flavio Mignone
- e Department of Sciences and Innovation ; Università del Piemonte Orientale ; Alessandria , Italy
| | - Gianluca De Bellis
- b Institute of Biomedical Technologies; National Research Council (ITB CNR) ; Milan , Italy
| | - Silvia Zucchelli
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy.,f Area of Neuroscience; SISSA ; Trieste , Italy
| | | | - Claudio Santoro
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy
| | - Daniele Sblattero
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy.,c Department of Life Sciences ; University of Trieste ; Italy
| | - Diego Cotella
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy
| |
Collapse
|
40
|
Combinatorial library strategy for strong overexpression of the lipase from Geobacillus thermocatenulatus on the cell surface of yeast Pichia pastoris. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Wronska MA, O'Connor IB, Tilbury MA, Srivastava A, Wall JG. Adding Functions to Biomaterial Surfaces through Protein Incorporation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5485-5508. [PMID: 27164952 DOI: 10.1002/adma.201504310] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The concept of biomaterials has evolved from one of inert mechanical supports with a long-term, biologically inactive role in the body into complex matrices that exhibit selective cell binding, promote proliferation and matrix production, and may ultimately become replaced by newly generated tissues in vivo. Functionalization of material surfaces with biomolecules is critical to their ability to evade immunorecognition, interact productively with surrounding tissues and extracellular matrix, and avoid bacterial colonization. Antibody molecules and their derived fragments are commonly immobilized on materials to mediate coating with specific cell types in fields such as stent endothelialization and drug delivery. The incorporation of growth factors into biomaterials has found application in promoting and accelerating bone formation in osteogenerative and related applications. Peptides and extracellular matrix proteins can impart biomolecule- and cell-specificities to materials while antimicrobial peptides have found roles in preventing biofilm formation on devices and implants. In this progress report, we detail developments in the use of diverse proteins and peptides to modify the surfaces of hard biomaterials in vivo and in vitro. Chemical approaches to immobilizing active biomolecules are presented, as well as platform technologies for isolation or generation of natural or synthetic molecules suitable for biomaterial functionalization.
Collapse
Affiliation(s)
- Małgorzata A Wronska
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Iain B O'Connor
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Maura A Tilbury
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Akshay Srivastava
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - J Gerard Wall
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| |
Collapse
|
42
|
Antibody affinity maturation through combining display of two-chain paired antibody and precision flow cytometric sorting. Appl Microbiol Biotechnol 2016; 100:5977-88. [DOI: 10.1007/s00253-016-7472-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 01/09/2023]
|
43
|
Ma Y, Li Z, Numata K. Synthetic Short Peptides for Rapid Fabrication of Monolayer Cell Sheets. ACS Biomater Sci Eng 2016; 2:697-706. [DOI: 10.1021/acsbiomaterials.6b00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yinan Ma
- Laboratory
of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Enzyme
Research Team, Biomass Engineering Program Cooperation Division, Center
for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Zhibo Li
- Laboratory
of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Keiji Numata
- Enzyme
Research Team, Biomass Engineering Program Cooperation Division, Center
for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
44
|
Åstrand M, Nilvebrant J, Björnmalm M, Lindbo S, Hober S, Löfblom J. Investigating affinity-maturation strategies and reproducibility of fluorescence-activated cell sorting using a recombinant ADAPT library displayed on staphylococci. Protein Eng Des Sel 2016; 29:187-95. [DOI: 10.1093/protein/gzw006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/12/2016] [Indexed: 12/12/2022] Open
|
45
|
Nilvebrant J, Tessier PM, Sidhu SS. Engineered Autonomous Human Variable Domains. Curr Pharm Des 2016; 22:6527-6537. [PMID: 27655414 PMCID: PMC5326600 DOI: 10.2174/1381612822666160921143011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The complex multi-chain architecture of antibodies has spurred interest in smaller derivatives that retain specificity but can be more easily produced in bacteria. Domain antibodies consisting of single variable domains are the smallest antibody fragments and have been shown to possess enhanced ability to target epitopes that are difficult to access using multidomain antibodies. However, in contrast to natural camelid antibody domains, human variable domains typically suffer from low stability and high propensity to aggregate. METHODS This review summarizes strategies to improve the biophysical properties of heavy chain variable domains from human antibodies with an emphasis on aggregation resistance. Several protein engineering approaches have targeted antibody frameworks and complementarity determining regions to stabilize the native state and prevent aggregation of the denatured state. CONCLUSION Recent findings enable the construction of highly diverse libraries enriched in aggregation-resistant variants that are expected to provide binders to diverse antigens. Engineered domain antibodies possess unique advantages in expression, epitope preference and flexibility of formatting over conventional immunoreagents and are a promising class of antibody fragments for biomedical development.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Peter M. Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| |
Collapse
|
46
|
Lombana TN, Dillon M, Bevers J, Spiess C. Optimizing antibody expression by using the naturally occurring framework diversity in a live bacterial antibody display system. Sci Rep 2015; 5:17488. [PMID: 26631978 PMCID: PMC4668361 DOI: 10.1038/srep17488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/23/2015] [Indexed: 11/09/2022] Open
Abstract
Rapid identification of residues that influence antibody expression and thermostability is often needed to move promising therapeutics into the clinic. To establish a method that can assess small expression differences, we developed a Bacterial Antibody Display (BAD) system that overcomes previous limitations, enabling the use of full-length formats for antibody and antigen in a live cell setting. We designed a unique library of individual framework variants using natural diversity introduced by somatic hypermutation, and screened half-antibodies for increased expression using BAD. We successfully identify variants that dramatically improve expression yields and in vitro thermostability of two therapeutically relevant antibodies in E. coli and mammalian cells. While we study antibody expression, bacterial display can now be expanded to examine the processes of protein folding and translocation. Additionally, our natural library design strategy could be applied during antibody humanization and library design for in vitro display methods to maintain expression and formulation stability.
Collapse
Affiliation(s)
- T Noelle Lombana
- Department of Antibody Engineering, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michael Dillon
- Department of Antibody Engineering, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jack Bevers
- Department of Antibody Engineering, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
47
|
Ma Y, Sato R, Li Z, Numata K. Chemoenzymatic Synthesis of Oligo(L-cysteine) for Use as a Thermostable Bio-Based Material. Macromol Biosci 2015; 16:151-9. [PMID: 26388290 DOI: 10.1002/mabi.201500255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/13/2015] [Indexed: 11/06/2022]
Abstract
Oligomerization of thiol-unprotected L-cysteine ethyl ester (Cys-OEt) catalyzed by proteinase K in aqueous solution has been used to synthesize oligo(L-cysteine) (OligoCys) with a well-defined chemical structure and relatively large degree of polymerization (DP) up to 16-17 (average 8.8). By using a high concentration of Cys-OEt, 78.0% free thiol content was achieved. The thermal properties of OligoCys are stable, with no glass transition until 200 °C, and the decomposition temperature could be increased by oxidation. Chemoenzymatically synthesized OligoCys has great potential for use as a thermostable bio-based material with resistance to oxidation.
Collapse
Affiliation(s)
- Yinan Ma
- Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ryota Sato
- Enzyme Research Team, Biomass Engineering Program Cooperation Division, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Zhibo Li
- Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Program Cooperation Division, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
48
|
Lindberg H, Härd T, Löfblom J, Ståhl S. A truncated and dimeric format of an Affibody library on bacteria enables FACS‐mediated isolation of amyloid‐beta aggregation inhibitors with subnanomolar affinity. Biotechnol J 2015; 10:1707-18. [DOI: 10.1002/biot.201500131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/29/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Hanna Lindberg
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm, Sweden
| | - Torleif Härd
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm, Sweden
| |
Collapse
|
49
|
Sun F, Pang X, Xie T, Zhai Y, Wang G, Sun F. BrkAutoDisplay: functional display of multiple exogenous proteins on the surface of Escherichia coli by using BrkA autotransporter. Microb Cell Fact 2015; 14:129. [PMID: 26337099 PMCID: PMC4558763 DOI: 10.1186/s12934-015-0316-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023] Open
Abstract
Background Bacterial surface display technique enables the exogenous proteins or polypeptides displayed on the bacterial surface, while maintaining their relatively independent spatial structures and biological activities. The technique makes recombinant bacteria possess the expectant functions, subsequently, directly used for many applications. Many proteins could be used to achieve bacterial surface display, among them, autotransporter, a member of the type V secretion system of gram-negative bacteria, has been extensively studied because of its modular structure and apparent simplicity. However, autotransporter has not been widely used at present due to lack of a convenient genetic vector system. With our recently characterized autotransporter BrkA (Bordetella serum-resistance killing protein A) from Bordetella pertussis, we are aiming to develop a new autotransporter-based surface display system for potential wide application. Results Here, we construct a bacterial surface display system named as BrkAutoDisplay, based on the structure of autotransporter BrkA. BrkAutoDisplay is a convenient system to host exogenous genes. In our test, this system is good to efficiently display various proteins on the outer membrane surface of Escherichia coli, including green fluorescent protein (GFP), various enzymes and single chain antibody. Moreover, the displayed GFP possesses green fluorescence, the enzymes CotA, EstPc and PalA exhibit catalytic activity 0.12, 6.88 and 0.32 mU (per 5.2 × 108 living bacteria cells) respectively, and the single chain antibody fragment (scFv) can bind with its antigen strongly. Finally, we showed that C41(DE3) is a good strain of E. coli for the successful functionality of BrkAutoDisplay. Conclusions We designed a new bacterial display system called as BrkAutoDisplay and displayed various exogenous proteins on E. coli surface. Our results indicate that BrkAutoDisplay system is worthy of further study for industrial applications.
Collapse
Affiliation(s)
- Fang Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoyun Pang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| | - Tian Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yujia Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| |
Collapse
|
50
|
Liu Q, Zhang C, Yu L, Shi Y, Zhang L, Peng J, Ji X, Hou M. Study of a humanized inhibitory anti-platelet glycoprotein VI phage antibody from a phage antibody library. ACTA ACUST UNITED AC 2015; 21:60-7. [PMID: 26330203 DOI: 10.1179/1607845415y.0000000047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Objective The aims of the study were to study the effect of anti-platelet glycoprotein (GP) VI auto-antibodies on platelet aggregation and use phage surface display technology to produce anti-platelet GPVI phage antibody fragment, which may be developed to inhibit platelet aggregation in the treatment of cardiovascular disease. Methods Plasma samples from patients with immune thrombocytopenia (ITP) were screened by monoclonal antibody immobilization of the platelet antigen assay and the platelet aggregation test for anti-platelet GPVI auto-antibody with an inhibitory effect. The humanized anti-platelet GPVI phage antibody was produced by phage surface display technology. The function of the phage antibody fragment against platelet aggregation was examined by the platelet aggregation test. Results Of 726 ITP patients, 2 (0.27%) patients' plasma significantly inhibited platelet aggregation induced by collagen-1. After five rounds of selection, enrichment, and purification, a soluble phage antibody fragment was produced, which can inhibit platelet aggregation induced by collagen-1. The results demonstrate that only a few of the screened anti-platelet GPVI auto-antibodies showed an inhibitory effect on platelet aggregation. Discussion A completely humanized anti-GPVI soluble phage antibody can be produced by phage surface display technology. The antibody was able to specifically block collagen-induced platelet aggregation without influencing the aggregation responses to other agonists. Conclusions Results of the present study suggest that very few anti-platelet GPVI auto-antibodies inhibit the aggregation function of platelet. The humanized anti-platelet GPVI produced by phage surface display technology is promising to be used to inhibit platelet aggregation in the treatment of cardiovascular disease.
Collapse
|