1
|
John Babu D, Balumahendra K, Venkateswarulu TC, Sathish T. Statistical optimization and sequential scale-up of α-galactosidase production by Actinoplanes utahensis B1 from shake flask to pilot scale. Prep Biochem Biotechnol 2024; 54:1216-1225. [PMID: 38713771 DOI: 10.1080/10826068.2024.2344500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
α-Galactosidase (α-GAL) is a class of hydrolase that releases galactose from galacto-oligosaccharides and synthetic substrates such as pNPG. In this study, the production of α-GAL by Actinoplanes utahensis B1 in submerged fermentation was enhanced by using statistical methods. The effects of temperature, pH, and inoculum percentage on enzyme secretion were optimized using BBD of RSM. The optimized process was scaled up from the shake flask to the laboratory scale (5 L) and to pilot scale (30 L) using KLa based scale-up strategy. By using BBD, a maximum yield of 62.5 U/mL was obtained at a temperature of 28 °C, a pH of 6.9, and an inoculum of 6.4%. Scale-up was performed successfully and achieved a yield of 74.4 U/mL and 76.8 U/mL in laboratory scale and pilot scale fermenters. The TOST was performed to validate the scale-up strategy and the results showed a confidence level of 95% for both scales indicating the perfect execution of scale-up procedure. Through the implementation of BBD and scale-up strategy, the overall enzyme yield has been significantly increased to 76%. This is the first article to explore the scale-up of α-GAL from the A. utahensis B1 strain and provide valuable insights for industrial applications.
Collapse
Affiliation(s)
- D John Babu
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, India
| | - K Balumahendra
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, India
| | - T C Venkateswarulu
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, India
| | - T Sathish
- Aurovaccines Private Limited, Hyderabad, India
| |
Collapse
|
2
|
Kumar V, Tolosa M, Ge X, Rao G. Reinventing shake flask fermentation: The breathable flask. Biotechnol Bioeng 2024; 121:2706-2715. [PMID: 38698719 DOI: 10.1002/bit.28734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Cultivating cells in shake flasks is a routine operation that is largely unchanged since its inception. A glass or plastic Erlenmeyer vessel with the primary gas exchange taking place across various porous plugs is used with media volumes typically ranging from 100 mL to 2 L. Oxygen limitation and carbon dioxide accumulation in the vessel is a major concern for studies involving shake flask cultures. In this study, we enhance mass transfer in a conventional shake flask by replacing the body wall with a permeable membrane. Naturally occurring concentration gradient across the permeable membrane walls facilitates the movement of oxygen and carbon dioxide between the flask and the external environment. The modified flask called the breathable flask, has shown a 40% improvement in mass transfer coefficient (kLa) determined using the static diffusion method. The prokaryotic cell culture studies performed with Escherichia coli showed an improvement of 28%-66% in biomass and 41%-56% in recombinant product yield. The eukaryotic cell culture study performed with Pichia pastoris expressing proinsulin exhibited a 40% improvement in biomass and 115% improvement in protein yield. The study demonstrates a novel approach to addressing the mass transfer limitations in conventional shake flask cultures. The proposed flask amplifies its value by providing a membrane-diffusion-based sensing platform for the integration of low-cost, noninvasive sensing capabilities for real-time monitoring of critical cell culture parameters like dissolved oxygen and dissolved carbon dioxide.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, USA
- Center for Advanced Sensor Technology, University of Maryland, Baltimore County, Baltimore, USA
| | - Michael Tolosa
- Center for Advanced Sensor Technology, University of Maryland, Baltimore County, Baltimore, USA
| | - Xudong Ge
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, USA
- Center for Advanced Sensor Technology, University of Maryland, Baltimore County, Baltimore, USA
| | - Govind Rao
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, USA
- Center for Advanced Sensor Technology, University of Maryland, Baltimore County, Baltimore, USA
| |
Collapse
|
3
|
Wu L, Wang R, Li M, Du Z, Jin Y, Shi Y, Jiang W, Chen J, Jiao Y, Hu B, Huang J. Functional analysis of a rice 12-oxo-phytodienoic acid reductase gene (OsOPR1) involved in Cd stress tolerance. Mol Biol Rep 2024; 51:198. [PMID: 38270739 DOI: 10.1007/s11033-023-09159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The accumulation of cadmium (Cd) in plants may compromise the growth and development of plants, thereby endangering human health through the food chain. Understanding how plants respond to Cd is important for breeding low-Cd rice cultivars. METHODS In this study, the functions of 12-oxo-phytodienoic acid reductase 1 (OsOPR1) were predicted through bioinformatics analysis. The expression levels of OsOPR1 under Cd stress were analyzed by using qRT-PCR. Then, the role that OsOPR1 gene plays in Cd tolerance was studied in Cd-sensitive yeast strain (ycf1), and the Cd concentration of transgenic yeast was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Bioinformatics analysis revealed that OsOPR1 was a protein with an Old yellow enzyme-like FMN (OYE_like_FMN) domain, and the cis-acting elements which regulate hormone synthesis or responding abiotic stress were abundant in the promoter region, which suggested that OsOPR1 may exhibit multifaceted biological functions. The expression pattern analysis showed that the expression levels of OsOPR1 were induced by Cd stress both in roots and roots of rice plants. However, the induced expression of OsOPR1 by Cd was more significant in the roots compared to that in roots. In addition, the overexpression of OsOPR1 improved the Cd tolerance of yeast cells by affecting the expression of antioxidant enzyme related genes and reducing Cd content in yeast cells. CONCLUSION Overall, these results suggested that OsOPR1 is a Cd-responsive gene and may has a potential for breeding low-Cd or Cd-tolerant rice cultivars and for phytoremediation of Cd-contaminated in farmland.
Collapse
Affiliation(s)
- Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ruolin Wang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yufan Jin
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China.
| | - Yuan Jiao
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Sichuan, 610066, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China.
| |
Collapse
|
4
|
Yan CX, Zhang Y, Yang WQ, Ma W, Sun XM, Huang H. Universal and unique strategies for the production of polyunsaturated fatty acids in industrial oleaginous microorganisms. Biotechnol Adv 2024; 70:108298. [PMID: 38048920 DOI: 10.1016/j.biotechadv.2023.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA), are beneficial for reducing blood cholesterol and enhancing memory. Traditional PUFA production relies on extraction from plants and animals, which is unsustainable. Thus, using microorganisms as lipid-producing factories holds promise as an alternative way for PUFA production. Several oleaginous microorganisms have been successfully industrialized to date. These can be divided into universal and specialized hosts according to the products range of biosynthesis. The Yarrowia lipolytica is universal oleaginous host that has been engineered to produce a variety of fatty acids, such as γ-linolenic acid (GLA), EPA, ARA and so on. By contrast, the specialized host are used to produce only certain fatty acids, such as ARA in Mortierella alpina, EPA in Nannochloropsis, and DHA in Thraustochytrids. The metabolic engineering and fermentation strategies for improving PUFA production in universal and specialized hosts are different, which is the subject of this review. In addition, the widely applicable strategies for microbial lipid production that are not specific to individual hosts were also reviewed.
Collapse
Affiliation(s)
- Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Microbial micro-tube culture system: A miniature bioreactor for controllable bubble-free oxygen supply based on high gas-permeability Teflon tube. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Maschke RW, John GT, Eibl D. Monitoring of Oxygen, pH, CO
2
, and Biomass in Smart Single‐Use Shake Flasks. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rüdiger W. Maschke
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management Campus Grüental 8820 Wädenswil Switzerland
| | - Gernot T. John
- PreSens Precision Sensing GmbH Am BioPark 11 95053 Regensburg Germany
| | - Dieter Eibl
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management Campus Grüental 8820 Wädenswil Switzerland
| |
Collapse
|
7
|
Askri H, Akrouti I, Rourou S, Kallèl H. Production, purification, and characterization of recombinant rabies virus glycoprotein expressed in PichiaPink™ yeast. BIOTECHNOLOGY REPORTS 2022; 35:e00736. [PMID: 35646619 PMCID: PMC9130087 DOI: 10.1016/j.btre.2022.e00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022]
Abstract
The rabies virus glycoprotein was produced in the Pichia pastoris production strains PichiaPink™ . Different carbon sources were found able to support the RABV-G expression under the control of the constitutive GAP promoter. Culture parameters such as oxygen supply, pH or growth rate can affect the yield and the quality of the produced RABV-G. The purified RABV-G was found correctly glycosylated and able to mediate trimeric oligomerization.
The commonly used host for industrial production of recombinant proteins Pichia pastoris, has been used in this work to produce the rabies virus glycoprotein (RABV-G). To allow a constitutive expression and the secretion of the expressed recombinant RABV-G, the PichiaPink™ commercialized expression vectors were modified to contain the constitutive GAP promoter and the α secretion signal sequences. Recombinant PichiaPink™ strains co-expressing the RABV-G and the protein chaperone PDI, have been then generated and screened for the best producer clone. The influence of seven carbon sources on the expression of the RABV-G, has been studied under different culture conditions in shake flask culture. An incubation temperature of 30°C under an agitation rate of 250 rpm in a filling volume of 10:1 flask/culture volume ratio were the optimal conditions for the RABV-G production in shake flask for all screened carbon sources. A bioreactor Fed batch culture has been then carried using glycerol and glucose as they were good carbon sources for cell growth and RABV-G production in shake flask scale. Cells were grown on glycerol during the batch phase then fed with glycerol or glucose defined solutions, a final RABV-G concentration of 2.7 µg/l was obtained with a specific product yield (YP/X) of 0.032 and 0.06 µg/g(DCW) respectively. The use of semi-defined feeding solution enhanced the production and the YP/X to 12.9 µg/l and 0.135 µg/g(DCW) respectively. However, the high cell density favored by these carbon sources resulted in oxygen limitation which influenced the glycosylation pattern of the secreted RABV-G. Alternatively, the use of sucrose as substrate for RABV-G production in large scale culture, resulted in less biomass production and a YP/X of 0.310 µg/g(DCW) was obtained. A cation exchange chromatography was then used for RABV-G purification as one step method. The purified protein was correctly folded and glycosylated and able to adopt trimeric conformation. The knowledges gained through this work offer a valuable insight into the bioprocess design of RABV-G production in Pichia pastoris to obtain a correctly folded protein which can be used during an immunization proposal for subunit Rabies vaccine development.
Collapse
|
8
|
Neto PM, Nogueira DES, Hashimura Y, Jung S, Pedras B, Berberan-Santos MN, Palmeira T, Lee B, Cabral JMS, Geraldes V, Rodrigues CAV. Characterization of the Aeration and Hydrodynamics in Vertical-Wheel™ Bioreactors. Bioengineering (Basel) 2022; 9:bioengineering9080386. [PMID: 36004911 PMCID: PMC9405225 DOI: 10.3390/bioengineering9080386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, the oxygen transport and hydrodynamic flow of the PBS Vertical-Wheel MINI™ 0.1 bioreactor were characterized using experimental data and computational fluid dynamics simulations. Data acquired from spectroscopy-based oxygenation measurements was compared with data obtained from 3D simulations with a rigid-lid approximation and LES-WALE turbulence modeling, using the open-source software OpenFOAM-8. The mass transfer coefficients were determined for a range of stirring speeds between 10 and 100 rpm and for working volumes between 60 and 100 mL. Additionally, boundary condition, mesh refinement, and temperature variation studies were performed. Lastly, cell size, energy dissipation rate, and shear stress fields were calculated to determine optimal hydrodynamic conditions for culture. The experimental results demonstrate that the kL can be predicted using Sh=1.68Re0.551Sc13G1.18, with a mean absolute error of 2.08%. Using the simulations and a correction factor of 0.473, the expression can be correlated to provide equally valid results. To directly obtain them from simulations, a partial slip boundary condition can be tuned, ensuring better near-surface velocity profiles or, alternatively, by deeply refining the mesh. Temperature variation studies support the use of this correlation for temperatures up to 37 °C by using a Schmidt exponent of 1/3. Finally, the flow was characterized as transitional with diverse mixing mechanisms that ensure homogeneity and suspension quality, and the results obtained are in agreement with previous studies that employed RANS models. Overall, this work provides new data regarding oxygen mass transfer and hydrodynamics in the Vertical-Wheel bioreactor, as well as new insights for air-water mass transfer modeling in systems with low interface deformation, and a computational model that can be used for further studies.
Collapse
Affiliation(s)
- Pedro M. Neto
- Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB —Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Diogo E. S. Nogueira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB —Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | - Bruno Pedras
- Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB —Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Mário N. Berberan-Santos
- Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB —Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | - Brian Lee
- PBS Biotech, Camarillo, CA 93012, USA
| | - Joaquim M. S. Cabral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB —Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vitor Geraldes
- Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- CeFEMA—Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (V.G.); (C.A.V.R.)
| | - Carlos A. V. Rodrigues
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB —Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (V.G.); (C.A.V.R.)
| |
Collapse
|
9
|
Auto-induction Screening Protocol for Ranking Clonal Libraries of Pichia pastoris MutS Strains. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Viebrock K, Rabl D, Meinen S, Wunder P, Meyer JA, Frey LJ, Rasch D, Dietzel A, Mayr T, Krull R. Microsensor in Microbioreactors: Full Bioprocess Characterization in a Novel Capillary-Wave Microbioreactor. BIOSENSORS 2022; 12:bios12070512. [PMID: 35884315 PMCID: PMC9312480 DOI: 10.3390/bios12070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Microbioreactors (MBRs) with a volume below 1 mL are promising alternatives to established cultivation platforms such as shake flasks, lab-scale bioreactors and microtiter plates. Their main advantages are simple automatization and parallelization and the saving of expensive media components and test substances. These advantages are particularly pronounced in small-scale MBRs with a volume below 10 µL. However, most described small-scale MBRs are lacking in process information from integrated sensors due to limited space and sensor technology. Therefore, a novel capillary-wave microbioreactor (cwMBR) with a volume of only 7 µL has the potential to close this gap, as it combines a small volume with integrated sensors for biomass, pH, dissolved oxygen (DO) and glucose concentration. In the cwMBR, pH and DO are measured by established luminescent optical sensors on the bottom of the cwMBR. The novel glucose sensor is based on a modified oxygen sensor, which measures the oxygen uptake of glucose oxidase (GOx) in the presence of glucose up to a concentration of 15 mM. Furthermore, absorbance measurement allows biomass determination. The optical sensors enabled the characterization of an Escherichia coli batch cultivation over 8 h in the cwMBR as proof of concept for further bioprocesses. Hence, the cwMBR with integrated optical sensors has the potential for a wide range of microscale bioprocesses, including cell-based assays, screening applications and process development.
Collapse
Affiliation(s)
- Kevin Viebrock
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Dominik Rabl
- Institute of Analytical Chemistry and Food Chemistry, Technische Universität Graz, 8010 Graz, Austria; (D.R.); (T.M.)
| | - Sven Meinen
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| | - Paul Wunder
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Jan-Angelus Meyer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Lasse Jannis Frey
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Technische Universität Graz, 8010 Graz, Austria; (D.R.); (T.M.)
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Correspondence:
| |
Collapse
|
11
|
Coetzee G, Smith JJ, Görgens JF. Influence of codon optimization, promoter, and strain selection on the heterologous production of a β-fructofuranosidase from Aspergillus fijiensis ATCC 20611 in Pichia pastoris. Folia Microbiol (Praha) 2022; 67:339-350. [PMID: 35133569 DOI: 10.1007/s12223-022-00947-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by β-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis β-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt®, respectively, and 6057 U/ml and 1790 U/ml for the GAP promoter for ATUM and GeneArt®, respectively. The ATUM-optimized gene produced higher enzyme activities when compared to the one from GeneArt®, under the control of both promoters.
Collapse
Affiliation(s)
- Gerhardt Coetzee
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Jacques J Smith
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
12
|
Biorefinery Processing of Waste to Supply Cost-Effective and Sustainable Inputs for Two-Stage Microalgal Cultivation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overcoming obstacles to commercialization of algal-based processes for biofuels and co-products requires not just piecemeal incremental improvements, but rather a comprehensive and fundamental re-consideration starting with the selected algae and its associated cultivation, harvesting, biomass conversion, and refinement. A novel two-stage process designed to address challenges of mass outdoor microalgal cultivation for biofuels and co-products was previously demonstrated using an oleaginous, haloalkaline-tolerant, and multi-trophic green Chlorella vulgaris. ALP2 from a soda lake. This involved cultivating the microalgae in a fermenter heterotrophically or photobioreactor mixotrophically (first-stage) to rapidly obtain high cell densities and inoculate an open-pond phototrophic culture (second-stage) featuring high levels of NaHCO3, pH, and salinity. An improved two-stage cultivation that instead sustainably used as more cheap and sustainable inputs the organic carbon, nitrogen, and phosphorous from fractionation of waste was here demonstrated in a small-scale biorefinery process. The first cultivation stage consisted of two simultaneous batch flask cultures featuring (1) mixotrophic cell productivity of 7.25 × 107 cells mL−1 day−1 on BG-110 medium supplemented with 1.587 g L−1 urea and an enzymatic hydrolysate of pre-treated (torrefaction + grinding + ozonolysis + soaking ammonia) wheat-straw that corresponded to 10 g L−1 glucose, and (2) mixotrophic cell productivity of 2.25 × 107 cells mL−1 day−1 on BG-110 medium supplemented with 1.587 g L−1 urea and a purified and de-toxified condensate of pre-treated (torrefaction + grinding) wheat straw that corresponded to 0.350 g L−1 of potassium acetate. The second cultivation stage featured 1H NMR-determined phototrophic lipid productivity of 0.045 g triacylglycerides (TAG) L−1 day−1 on BG-110 medium supplemented with 16.8 g L−1 NaHCO3 and fed batch-added 22% (v/v) anaerobically digested food waste effluent at HCl-mediated pH 9.
Collapse
|
13
|
Abdelgalil SA, Soliman NA, Abo-Zaid GA, Abdel-Fattah YR. Biovalorization of raw agro-industrial waste through a bioprocess development platform for boosting alkaline phosphatase production by Lysinibacillus sp. strain APSO. Sci Rep 2021; 11:17564. [PMID: 34475429 PMCID: PMC8413444 DOI: 10.1038/s41598-021-96563-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022] Open
Abstract
This study highlighted the exploitation of mathematical models for optimizing the growth conditions that give the highest phosphatase productivity from a newfound Lysinibacillus sp. strain APSO isolated from a slime sample. Mathematical models facilitate data interpretation and provide a strategy to solve fermentation problems. Alkaline phosphatase (ALP) throughput was enhanced by 16.5-fold compared to basal medium based on a sequential optimization strategy that depended on two-level Plackett–Burman design and central composite design. The additional improvement for volumetric productivity and specific production yield was followed in a 7 L bench-top bioreactor to evaluate microbial growth kinetics under controlled and uncontrolled pH conditions. The pH-controlled batch cultivation condition neither supported cell growth nor enhanced ALP productivity. In contrast, the uncontrolled pH batch cultivation condition provided the highest ALP output (7119.4 U L−1) and specific growth rate (µ = 0.188 h−1) at 15 h from incubation time, which was augmented > 20.75-fold compared to the basal medium. To the authors’ knowledge, this study is the second report that deals with how to reduce the production cost of the ALP production process via utilization of agro-industrial waste, such as molasses and food waste (eggshell), as a nutrimental source for the improvement of the newfound Lysinibacillus sp. strain APSO ALP throughput.
Collapse
Affiliation(s)
- Soad A Abdelgalil
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, New Borg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt.
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, New Borg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt
| | - Gaber A Abo-Zaid
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, New Borg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, New Borg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt
| |
Collapse
|
14
|
Deng Y, Beahm DR, Ionov S, Sarpeshkar R. Measuring and modeling energy and power consumption in living microbial cells with a synthetic ATP reporter. BMC Biol 2021; 19:101. [PMID: 34001118 PMCID: PMC8130387 DOI: 10.1186/s12915-021-01023-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/10/2021] [Indexed: 11/29/2022] Open
Abstract
Background Adenosine triphosphate (ATP) is the main energy carrier in living organisms, critical for metabolism and essential physiological processes. In humans, abnormal regulation of energy levels (ATP concentration) and power consumption (ATP consumption flux) in cells is associated with numerous diseases from cancer, to viral infection and immune dysfunction, while in microbes it influences their responses to drugs and other stresses. The measurement and modeling of ATP dynamics in cells is therefore a critical component in understanding fundamental physiology and its role in pathology. Despite the importance of ATP, our current understanding of energy dynamics and homeostasis in living cells has been limited by the lack of easy-to-use ATP sensors and the lack of models that enable accurate estimates of energy and power consumption related to these ATP dynamics. Here we describe a dynamic model and an ATP reporter that tracks ATP in E. coli over different growth phases. Results The reporter is made by fusing an ATP-sensing rrnB P1 promoter with a fast-folding and fast-degrading GFP. Good correlations between reporter GFP and cellular ATP were obtained in E. coli growing in both minimal and rich media and in various strains. The ATP reporter can reliably monitor bacterial ATP dynamics in response to nutrient availability. Fitting the dynamics of experimental data corresponding to cell growth, glucose, acetate, dissolved oxygen, and ATP yielded a mathematical and circuit model. This model can accurately predict cellular energy and power consumption under various conditions. We found that cellular power consumption varies significantly from approximately 0.8 and 0.2 million ATP/s for a tested strain during lag and stationary phases to 6.4 million ATP/s during exponential phase, indicating ~ 8–30-fold changes of metabolic rates among different growth phases. Bacteria turn over their cellular ATP pool a few times per second during the exponential phase and slow this rate by ~ 2–5-fold in lag and stationary phases. Conclusion Our rrnB P1-GFP reporter and kinetic circuit model provide a fast and simple way to monitor and predict energy and power consumption dynamics in bacterial cells, which can impact fundamental scientific studies and applied medical treatments in the future.
Collapse
Affiliation(s)
- Yijie Deng
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | | | - Steven Ionov
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Rahul Sarpeshkar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA. .,Departments of Engineering, Microbiology & Immunology, Physics, and Molecular and Systems Biology, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
15
|
Dynamic Metabolic Analysis of Cupriavidus necator DSM545 Producing Poly(3-hydroxybutyric acid) from Glycerol. Processes (Basel) 2020. [DOI: 10.3390/pr8060657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cupriavidus necator DSM 545 can utilise glycerol to synthesise poly(3-hydroxybutyric acid) under unbalanced growth conditions, i.e., nitrogen limitation. To improve poly(3-hydroxybutyric acid) (PHB) batch production by C. necator through model-guided bioprocessing or genetic engineering, insights into the dynamic effect of the fermentation conditions on cell metabolism are crucial. In this work, we have used dynamic flux balance analysis (DFBA), a constrained-based stoichiometric modelling approach, to study the metabolic change associated with PHB synthesis during batch cultivation. The model employs the ‘minimisation of all fluxes’ as cellular objectives and measured extracellular fluxes as additional constraints. The mass balance constraints are further adjusted based on thermodynamic considerations. The resultant flux distribution profiles characterise the evolution of metabolic states due to adaptation to dynamic extracellular conditions and provide further insights towards improvements that can be implemented to enhance PHB productivity.
Collapse
|
16
|
Chopda VR, Holzberg T, Ge X, Folio B, Tolosa M, Kostov Y, Tolosa L, Rao G. Real-time dissolved carbon dioxide monitoring I: Application of a novel in situ sensor for CO 2 monitoring and control. Biotechnol Bioeng 2020; 117:981-991. [PMID: 31840812 PMCID: PMC7079146 DOI: 10.1002/bit.27253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
Dissolved carbon dioxide (dCO2 ) is a well-known critical parameter in bioprocesses due to its significant impact on cell metabolism and on product quality attributes. Processes run at small-scale faces many challenges due to limited options for modular sensors for online monitoring and control. Traditional sensors are bulky, costly, and invasive in nature and do not fit in small-scale systems. In this study, we present the implementation of a novel, rate-based technique for real-time monitoring of dCO2 in bioprocesses. A silicone sampling probe that allows the diffusion of CO2 through its wall was inserted inside a shake flask/bioreactor and then flushed with air to remove the CO2 that had diffused into the probe from the culture broth (sensor was calibrated using air as zero-point calibration). The gas inside the probe was then allowed to recirculate through gas-impermeable tubing to a CO2 monitor. We have shown that by measuring the initial diffusion rate of CO2 into the sampling probe we were able to determine the partial pressure of the dCO2 in the culture. This technique can be readily automated, and measurements can be made in minutes. Demonstration experiments conducted with baker's yeast and Yarrowia lipolytica yeast cells in both shake flasks and mini bioreactors showed that it can monitor dCO2 in real-time. Using the proposed sensor, we successfully implemented a dCO2 -based control scheme, which resulted in significant improvement in process performance.
Collapse
Affiliation(s)
- Viki R. Chopda
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Timothy Holzberg
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Xudong Ge
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Brandon Folio
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Michael Tolosa
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Yordan Kostov
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Leah Tolosa
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| | - Govind Rao
- Department of Chemical, Biochemical and Environmental Engineering, Center for Advanced Sensor TechnologyUniversity of MarylandBaltimoreMaryland
| |
Collapse
|
17
|
Khalil ZG, Salim AA, Capon RJ. Microbioreactor Techniques for the Production and Spectroscopic Characterization of Microbial Peptides. Methods Mol Biol 2020; 2103:303-322. [PMID: 31879935 DOI: 10.1007/978-1-0716-0227-0_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have demonstrated that the simple and low-cost microbioreactor can speed up the bioprocessing techniques by using small amount of reagents and very few seed cultures to give results comparable with those obtained from the shake flask. The microbioreactor has the potential of replacing the normal conventional-scale process and offers a high-throughput efficient and analytical technique in addressing some of the challenges encountered in bioprocessing starting that includes bacterial growth and secondary metabolites production targeting the discovery of new antibacterial peptides. In our case studies, we proved that microbes were capable of growing in the microbioreactor and the production of microbial secondary metabolites (i.e., peptides) was detectable in HPLC-DAD-MS. We used QTOF-MS/MS to detect the production of peptides in the microbial culture. The purified peptides were characterized using 1D and 2D NMR, QTOF-MS/MS, and Marfey's analysis.
Collapse
Affiliation(s)
- Zeinab G Khalil
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Angela A Salim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Ebrahimi E, Amiri H, Asadollahi MA, Shojaosadati SA. Efficient butanol production under aerobic conditions by coculture of
Clostridium acetobutylicum
and
Nesterenkonia
sp. strain F. Biotechnol Bioeng 2019; 117:392-405. [DOI: 10.1002/bit.27221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Ehsan Ebrahimi
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahan Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahan Iran
- Environmental Research Institute, Department of Environmental BiotechnologyUniversity of IsfahanIsfahan Iran
| | - Mohammad A. Asadollahi
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahan Iran
- Environmental Research Institute, Department of Environmental BiotechnologyUniversity of IsfahanIsfahan Iran
| | | |
Collapse
|
19
|
Kolbeck S, Reetz L, Hilgarth M, Vogel RF. Quantitative Oxygen Consumption and Respiratory Activity of Meat Spoiling Bacteria Upon High Oxygen Modified Atmosphere. Front Microbiol 2019; 10:2398. [PMID: 31781049 PMCID: PMC6857183 DOI: 10.3389/fmicb.2019.02398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/03/2019] [Indexed: 11/26/2022] Open
Abstract
High oxygen modified atmosphere packaging is a commonly applied method to prolong the minimum shelf life of fresh (red) meats. Upon spoilage, changes of the initial oxygen concentration and microbiome composition can be observed. Thus, we classified the typical representative meat spoiling bacteria Brochothrix (B.) thermosphacta TMW2.2101 and the four lactic acid bacteria (LAB) Carnobacterium (C.) divergens TMW2.1577, C. maltaromaticum TMW2.1581, Leuconostoc (L.) gelidum subsp. gelidum TMW2.1618, and L. gelidum subsp. gasicomitatum TMW2.1619 along their oxygen consuming capacity, which can indicate the timeline of microbiome and sensorial changes. All bacteria were grown in a model system employing gas tight glass bottles containing meat simulation media and under modified atmosphere (70% O2 and 30% CO2). Oxygen concentrations of media and headspaces were monitored over time and the oxygen uptake rate (OUR) was calculated for all species. All bacteria were able to consume dissolved oxygen, with B. thermosphacta TMW2.2101 exhibiting a 31-times higher OUR per single cell in 60 h. Furthermore, all strains showed significant growth enhancement in the presence of heme indicating respiratory activity. Comparative genomic and physiological analyses predict the activity of a respiratory chain for all species upon high oxygen atmosphere. An additional cytochrome aa3 oxidase is suggested to be responsible for the increased OUR of B. thermosphacta TMW2.2101. Furthermore, B. thermosphacta TMW2.2101 revealed highest oxidative stress tolerance compared to the other bacteria, facilitating a higher respiratory activity. Coupling of respiration and fermentation via regeneration of NADH can be a competitive advantage for meat spoiling bacteria resulting in a higher cell count and possibly accelerated spoilage. The exhibited highest capacity for oxygen consumption of B. thermosphacta compared to LAB in vitro also suggests a higher contribution of this bacterium to the change in the atmosphere upon spoilage of MAP meats in situ.
Collapse
Affiliation(s)
| | | | - Maik Hilgarth
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | | |
Collapse
|
20
|
He Y, Chen Y, Morris DL, Lee DY, Tjandra N. Bax expression is optimal at low oxygen tension and constant agitation. Protein Expr Purif 2019; 165:105501. [PMID: 31542563 PMCID: PMC6908824 DOI: 10.1016/j.pep.2019.105501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/02/2022]
Abstract
Bax is a pro-apoptosis protein that translocates from the cytosol to the mitochondria membrane upon initiation of programed cell death. Bax subsequently disrupts the mitochondria membrane, resulting in the release of cytochrome C which activates the downstream caspases. The structure of inactive Bax has been solved, but despite intensive investigation, the mechanism by which it regulates apoptosis is not established. The low yield of Bax expression in E. coli hampers efforts to elucidate the mechanism. Thus, we undertook a systematic study aimed at improving the yield of Bax. Bacteria were grown in a computer-controlled fermenter and expression was induced by addition of Isopropyl ß-D-1-thiogalactopyranoside (IPTG). The Bax expression level decreased continuously when the dissolved oxygen level was kept at 30%, which is non-limiting for E. coli. Alternatively, when oxygen input was decreased with constant agitation and air flow (or kLa), Bax yield increased by a factor of three. To make sure the short chain fatty acids generated during micro-aerobic fermentation had no adverse effect, their concentrations were closely monitored with HPLC and their effect on cell growth and Bax expression were investigated additionally using shake flasks. Through proteomic analysis using Tandem Mass Tag (TMT) labeling, we identified degradation pathway within E. coli cells as a potential player behind the lower expression level.
Collapse
Affiliation(s)
- Yi He
- National Institutes of Health, National Heart, Lung and Blood Institute, Biochemistry and Biophysics Center, Bethesda, MD, 20892, USA.
| | - Yong Chen
- National Institutes of Health, National Heart, Lung and Blood Institute, Proteomics Core, Bethesda, MD, 20892, USA
| | - Daniel L Morris
- National Institutes of Health, National Heart, Lung and Blood Institute, Biochemistry and Biophysics Center, Bethesda, MD, 20892, USA
| | - Duck-Yeon Lee
- National Institutes of Health, National Heart, Lung and Blood Institute, Biochemistry Core, Bethesda, MD, 20892, USA
| | - Nico Tjandra
- National Institutes of Health, National Heart, Lung and Blood Institute, Biochemistry and Biophysics Center, Bethesda, MD, 20892, USA
| |
Collapse
|
21
|
Ladner T, Flitsch D, Lukacs M, Sieben M, Büchs J. Combined dissolved oxygen tension and online viscosity measurements in shake flask cultivations via infrared fluorescent oxygen-sensitive nanoparticles. Biotechnol Bioeng 2019; 116:3215-3227. [PMID: 31429921 DOI: 10.1002/bit.27145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/05/2022]
Abstract
Oxygen supply is one of the most critical process parameters in aerobic cultivations. To assure sufficient oxygen supply, shake flasks are usually used in combination with orbital shaking machines. In this study, a measurement technique for the dissolved oxygen tension (DOT) in shake flask cultures with viscosity changes is presented. The movement of the shaker table is monitored by means of a Hall effect sensor. For DOT measurements, infrared fluorescent oxygen-sensitive nanoparticles are added to the culture broth. The position of the rotating bulk liquid needs to be determined to assure measurements inside the liquid. The leading edge of the bulk liquid is detected based on the fluorescence signal intensity of the oxygen-sensitive nanoparticles. Furthermore, online information about the viscosity of the culture broth is acquired due to the detection of the position of the leading edge of the bulk liquid relative to the direction of the centrifugal force, as described by Sieben et al. (2019. Sci. Rep., 9, 8335). The DOT measurement is combined with a respiration activity monitoring system which allows for the determination of the oxygen transfer rate (OTR) in eight parallel shake flasks. Based on DOT and OTR, the volumetric oxygen transfer coefficient (kL a) is calculated during cultivation. The new system was successfully applied in cultivations of Escherichia coli, Bacillus licheniformis, and Xanthomonas campestris.
Collapse
Affiliation(s)
- Tobias Ladner
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - David Flitsch
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Mihaly Lukacs
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Michaela Sieben
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
22
|
Orsi E, Folch PL, Monje-López VT, Fernhout BM, Turcato A, Kengen SWM, Eggink G, Weusthuis RA. Characterization of heterotrophic growth and sesquiterpene production by Rhodobacter sphaeroides on a defined medium. J Ind Microbiol Biotechnol 2019; 46:1179-1190. [PMID: 31187318 PMCID: PMC6697705 DOI: 10.1007/s10295-019-02201-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
Abstract
Rhodobacter sphaeroides is a metabolically versatile bacterium capable of producing terpenes natively. Surprisingly, terpene biosynthesis in this species has always been investigated in complex media, with unknown compounds possibly acting as carbon and nitrogen sources. Here, a defined medium was adapted for R. sphaeroides dark heterotrophic growth, and was used to investigate the conversion of different organic substrates into the reporter terpene amorphadiene. The amorphadiene synthase was cloned in R. sphaeroides, allowing its biosynthesis via the native 2-methyl-d-erythritol-4-phosphate (MEP) pathway and, additionally, via a heterologous mevalonate one. The latter condition increased titers up to eightfold. Consequently, better yields and productivities to previously reported complex media cultivations were achieved. Productivity was further investigated under different cultivation conditions, including nitrogen and oxygen availability. This novel cultivation setup provided useful insight into the understanding of terpene biosynthesis in R. sphaeroides, allowing to better comprehend its dynamics and regulation during chemoheterotrophic cultivation.
Collapse
Affiliation(s)
- Enrico Orsi
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Pauline L Folch
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Vicente T Monje-López
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Bas M Fernhout
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Alessandro Turcato
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Gerrit Eggink
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands.,Biobased Products Food and Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Hecht A, Filliben J, Munro SA, Salit M. A minimum information standard for reproducing bench-scale bacterial cell growth and productivity. Commun Biol 2018; 1:219. [PMID: 30534611 PMCID: PMC6283831 DOI: 10.1038/s42003-018-0220-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/29/2018] [Indexed: 11/09/2022] Open
Abstract
Reproducing, exchanging, comparing, and building on each other's work is foundational to technological advances. Advancing biotechnology calls for reliable reuse of engineered organisms. Reliable reuse of engineered organisms requires reproducible growth and productivity. Here, we identify the experimental factors that have the greatest effect on the growth and productivity of our engineered organisms in order to demonstrate reproducibility for biotechnology. We present a draft of a Minimum Information Standard for Engineered Organism Experiments (MIEO) based on this method. We evaluate the effect of 22 factors on Escherichia coli engineered to produce the small molecule lycopene, and 18 factors on E. coli engineered to produce red fluorescent protein. Container geometry and shaking have the greatest effect on product titer and yield. We reproduce our results under two different conditions of reproducibility: conditions of use (different fractional factorial experiments), and time (48 biological replicates performed on 12 different days over 4 months).
Collapse
Affiliation(s)
- Ariel Hecht
- Joint Initiative for Metrology in Biology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Genome-scale Measurements Group, National Institute of Standards and Technology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Room 325, Stanford, CA 94035 USA
| | - James Filliben
- Statistical Engineering Division, 100 Bureau Drive, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA
| | - Sarah A. Munro
- Joint Initiative for Metrology in Biology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Genome-scale Measurements Group, National Institute of Standards and Technology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Room 325, Stanford, CA 94035 USA
- Present Address: Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, 55455 USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Genome-scale Measurements Group, National Institute of Standards and Technology, 443 Via Ortega, Room 325, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, 443 Via Ortega, Room 325, Stanford, CA 94035 USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| |
Collapse
|
24
|
Holzberg TR, Watson V, Brown S, Andar A, Ge X, Kostov Y, Tolosa L, Rao G. Sensors for biomanufacturing process development: facilitating the shift from batch to continuous manufacturing. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Biniarz P, Coutte F, Gancel F, Łukaszewicz M. High-throughput optimization of medium components and culture conditions for the efficient production of a lipopeptide pseudofactin by Pseudomonas fluorescens BD5. Microb Cell Fact 2018; 17:121. [PMID: 30077177 PMCID: PMC6076405 DOI: 10.1186/s12934-018-0968-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/28/2018] [Indexed: 11/30/2022] Open
Abstract
Background Lipopeptides are a promising group of surface-active compounds of microbial origin (biosurfactants). These diverse molecules are produced mainly by Bacillus and Pseudomonas strains. Because of their attractive physiochemical and biological properties, biosurfactants are considered to be “green and versatile molecules of the future”. The main obstacles in widespread use of biosurfactants are mainly their low yields and high production costs. Pseudofactin (PF) is a lipopeptide produced by Pseudomonas fluorescens BD5. Recently, we identified two analogues, PF1 (C16-Val) and PF2 (C16-Leu), and reported that PF2 has good emulsification and foaming activities, as well as antibacterial, antifungal, anticancer, and antiadhesive properties. Reported production of PF in a mineral salt medium was approximately 10 mg/L. Results Here, we report successful high-throughput optimization of culture medium and conditions for efficient PF production using P. fluorescens BD5. Compared with production in minimal medium, PF yield increased almost 120-fold, up to 1187 ± 13.0 mg/L. Using Plackett–Burman and central composite design methodologies we identified critical factors that are important for efficient PF production, mainly high glycerol concentration, supplementation with amino acids (leucine or valine) and complex additives (e.g. tryptone), as well as high culture aeration. We also detected the shift in a ratio of produced PF analogues in response to supplementation with different amino acids. Leucine strongly induces PF2 production, while valine addition supports PF1 production. We also reported the identification of two new PF analogues: PF3 (C18-Val) and PF4 (C18-Leu). Conclusions Identification of critical culture parameters that are important for lipopeptide production and their high yields can result in reduction of the production costs of these molecules. This may lead to the industrial-scale production of biosurfactants and their widespread use. Moreover, we produced new lipopeptide pure analogues that can be used to investigate the relationship between the structure and biological activity of lipopeptides. Electronic supplementary material The online version of this article (10.1186/s12934-018-0968-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Piotr Biniarz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - François Coutte
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, 59000, Lille, France
| | - Frédérique Gancel
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, 59000, Lille, France
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
26
|
Pilizota T, Yang YT. "Do It Yourself" Microbial Cultivation Techniques for Synthetic and Systems Biology: Cheap, Fun, and Flexible. Front Microbiol 2018; 9:1666. [PMID: 30105008 PMCID: PMC6077191 DOI: 10.3389/fmicb.2018.01666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
With the emergence of inexpensive 3D printing technology, open-source platforms for electronic prototyping and single-board computers, "Do it Yourself" (DIY) approaches to the cultivation of microbial cultures are becoming more feasible, user-friendly, and thus wider spread. In this perspective, we survey some of these approaches, as well as add-on solutions to commercial instruments for synthetic and system biology applications. We discuss different cultivation designs, including capabilities and limitations. Our intention is to encourage the reader to consider the DIY solutions. Overall, custom cultivation devices offer controlled growth environments with in-line monitoring of, for example, optical density, fluorescence, pH, and dissolved oxygen, all at affordable prices. Moreover, they offer a great degree of flexibility for different applications and requirements and are fun to design and construct. We include several illustrative examples, such as gaining optogenetic control and adaptive laboratory evolution experiments.
Collapse
Affiliation(s)
- Teuta Pilizota
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ya-Tang Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
27
|
Improved microscale cultivation of Pichia pastoris for clonal screening. Fungal Biol Biotechnol 2018; 5:8. [PMID: 29750118 PMCID: PMC5932850 DOI: 10.1186/s40694-018-0053-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Expanding the application of technical enzymes, e.g., in industry and agriculture, commands the acceleration and cost-reduction of bioprocess development. Microplates and shake flasks are massively employed during screenings and early phases of bioprocess development, although major drawbacks such as low oxygen transfer rates are well documented. In recent years, miniaturization and parallelization of stirred and shaken bioreactor concepts have led to the development of novel microbioreactor concepts. They combine high cultivation throughput with reproducibility and scalability, and represent promising tools for bioprocess development. Results Parallelized microplate cultivation of the eukaryotic protein production host Pichia pastoris was applied effectively to support miniaturized phenotyping of clonal libraries in batch as well as fed-batch mode. By tailoring a chemically defined growth medium, we show that growth conditions are scalable from microliter to 0.8 L lab-scale bioreactor batch cultivation with different carbon sources. Thus, the set-up allows for a rapid physiological comparison and preselection of promising clones based on online data and simple offline analytics. This is exemplified by screening a clonal library of P. pastoris constitutively expressing AppA phytase from Escherichia coli. The protocol was further modified to establish carbon-limited conditions by employing enzymatic substrate-release to achieve screening conditions relevant for later protein production processes in fed-batch mode. Conclusion The comparison of clonal rankings under batch and fed-batch-like conditions emphasizes the necessity to perform screenings under process-relevant conditions. Increased biomass and product concentrations achieved after fed-batch microscale cultivation facilitates the selection of top producers. By reducing the demand to conduct laborious and cost-intensive lab-scale bioreactor cultivations during process development, this study will contribute to an accelerated development of protein production processes. Electronic supplementary material The online version of this article (10.1186/s40694-018-0053-6) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Ebert FV, Reitz C, Cruz-Bournazou MN, Neubauer P. Characterization of a noninvasive on-line turbidity sensor in shake flasks for biomass measurements. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Takahashi M, Aoyagi H. Practices of shake-flask culture and advances in monitoring CO 2 and O 2. Appl Microbiol Biotechnol 2018; 102:4279-4289. [PMID: 29582104 DOI: 10.1007/s00253-018-8922-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/13/2018] [Indexed: 11/28/2022]
Abstract
About 85 years have passed since the shaking culture was devised. Since then, various monitoring devices have been developed to measure culture parameters. O2 consumed and CO2 produced by the respiration of cells in shaking cultures are of paramount importance due to their presence in both the culture broth and headspace of shake flask. Monitoring in situ conditions during shake-flask culture is useful for analysing the behaviour of O2 and CO2, which interact according to Henry's law, and is more convenient than conventional sampling that requires interruption of shaking. In situ monitoring devices for shake-flask cultures are classified as direct or the recently developed bypass type. It is important to understand the characteristics of each type along with their unintended effect on shake-flask cultures, in order to improve the existing devices and culture conditions. Technical developments in the bypass monitoring devices are strongly desired in the future. It is also necessary to understand the mechanism underlying conventional shake-flask culture. The existing shaking culture methodology can be expanded into next-generation shake-flask cultures constituting a novel culture environment through a judicious selection of monitoring devices depending on the intended purpose of shake-flask culture. Construction and sharing the databases compatible with the various types of the monitoring devices and measurement instruments adapted for shaking culture can provide a valuable resource for broadening the application of cells with shake-flask culture.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
30
|
Zhang J, Zhou A, Liu Y, Zhao B, Luan Y, Wang S, Yue X, Li Z. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete. Sci Rep 2017; 7:14600. [PMID: 29097756 PMCID: PMC5668378 DOI: 10.1038/s41598-017-15177-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022] Open
Abstract
Current studies have employed various pure-cultures for improving concrete durability based on microbially induced carbonate precipitation (MICP). However, there have been very few reports concerned with microbial consortia, which could perform more complex tasks and be more robust in their resistance to environmental fluctuations. In this study, we constructed three microbial consortia that are capable of MICP under aerobic (AE), anaerobic (AN) and facultative anaerobic (FA) conditions. The results showed that AE consortia showed more positive effects on inorganic carbon conversion than AN and FA consortia. Pyrosequencing analysis showed that clear distinctions appeared in the community structure between different microbial consortia systems. Further investigation on microbial community networks revealed that the species in the three microbial consortia built thorough energetic and metabolic interaction networks regarding MICP, nitrate-reduction, bacterial endospores and fermentation communities. Crack-healing experiments showed that the selected cracks of the three consortia-based concrete specimens were almost completely healed in 28 days, which was consistent with the studies using pure cultures. Although the economic advantage might not be clear yet, this study highlights the potential implementation of microbial consortia on crack healing in concrete.
Collapse
Affiliation(s)
- Jiaguang Zhang
- College of Architecture and Civil Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Construction Engineering Group Corporation, Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Yuanzhen Liu
- College of Architecture and Civil Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yunbo Luan
- College of mechanics, Taiyuan University of Technology, Taiyuan, China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhu Li
- College of Architecture and Civil Engineering, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
31
|
|
32
|
Kent JA, Bommaraju TV, Barnicki SD, Kyung YS, Zhang GG. Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification. HANDBOOK OF INDUSTRIAL CHEMISTRY AND BIOTECHNOLOGY 2017. [PMCID: PMC7121293 DOI: 10.1007/978-3-319-52287-6_29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A central pillar of the biotechnology and pharmaceutical industries continues to be the development of biological drug products manufactured from engineered mammalian cell lines. Since the hugely successful launch of human tissue plasminogen activator in 1987 and erythropoietin in 1988, the biopharmaceutical market has grown immensely. In 2014, biotherapeutics made up a significant portion of global drug sales as 7 of the top 10 and 21 of top 50 selling pharmaceuticals in the world were biologics with over US$100 billion in global sales (Table 1, [1]).
Collapse
|
33
|
Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CKM. Strategies for Fermentation Medium Optimization: An In-Depth Review. Front Microbiol 2017; 7:2087. [PMID: 28111566 PMCID: PMC5216682 DOI: 10.3389/fmicb.2016.02087] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022] Open
Abstract
Optimization of production medium is required to maximize the metabolite yield. This can be achieved by using a wide range of techniques from classical “one-factor-at-a-time” to modern statistical and mathematical techniques, viz. artificial neural network (ANN), genetic algorithm (GA) etc. Every technique comes with its own advantages and disadvantages, and despite drawbacks some techniques are applied to obtain best results. Use of various optimization techniques in combination also provides the desirable results. In this article an attempt has been made to review the currently used media optimization techniques applied during fermentation process of metabolite production. Comparative analysis of the merits and demerits of various conventional as well as modern optimization techniques have been done and logical selection basis for the designing of fermentation medium has been given in the present review. Overall, this review will provide the rationale for the selection of suitable optimization technique for media designing employed during the fermentation process of metabolite production.
Collapse
Affiliation(s)
- Vineeta Singh
- Microbiology Division, Council of Scientific and Industrial Research - Central Drug Research InstituteLucknow, India; Department of Biotechnology, Institute of Engineering and TechnologyLucknow, India
| | - Shafiul Haque
- Department of Biosciences, Jamia Millia Islamia (A Central University)New Delhi, India; Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan UniversityJazan, Saudi Arabia
| | - Ram Niwas
- Microbiology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Akansha Srivastava
- Microbiology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - Mukesh Pasupuleti
- Microbiology Division, Council of Scientific and Industrial Research - Central Drug Research Institute Lucknow, India
| | - C K M Tripathi
- Fermentation Technology Division, Council of Scientific and Industrial Research - Central Drug Research InstituteLucknow, India; Department of Biotechnology, Shri Ramswaroop Memorial UniversityLucknow, India
| |
Collapse
|
34
|
Scheel RA, Ji L, Lundgren BR, Nomura CT. Enhancing poly(3-hydroxyalkanoate) production in Escherichia coli by the removal of the regulatory gene arcA. AMB Express 2016; 6:120. [PMID: 27878786 PMCID: PMC5120623 DOI: 10.1186/s13568-016-0291-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
Recombinant Escherichia coli is a desirable platform for the production of many biological compounds including poly(3-hydroxyalkanoates), a class of naturally occurring biodegradable polyesters with promising biomedical and material applications. Although the controlled production of desirable polymers is possible with the utilization of fatty acid feedstocks, a central challenge to this biosynthetic route is the improvement of the relatively low polymer yield, a necessary factor of decreasing the production costs. In this study we sought to address this challenge by deleting arcA and ompR, two global regulators with the capacity to inhibit the uptake and activation of exogenous fatty acids. We found that polymer yields in a ΔarcA mutant increased significantly with respect to the parental strain. In the parental strain, PHV yields were very low but improved 64-fold in the ΔarcA mutant (1.92-124 mg L-1) The ΔarcA mutant also allowed for modest increases in some medium chain length polymer yields, while weight average molecular weights improved by approximately 1.5-fold to 12-fold depending on the fatty acid substrate utilized. These results were supported by an analysis of differential gene expression, which showed that the key genes (fadD, fadL, and fadE) encoding fatty acid degradation enzymes were all upregulated by 2-, 10-, and 31-fold in an ΔarcA mutant, respectively. Additionally, the short chain length fatty acid uptake genes atoA, atoE and atoD were upregulated by 103-, 119-, and 303-fold respectively, though these values are somewhat inflated due to low expression in the parental strain. Overall, this study demonstrates that arcA is an important target to improve PHA production from fatty acids.
Collapse
Affiliation(s)
- Ryan A. Scheel
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Liyuan Ji
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Benjamin R. Lundgren
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Center for Applied Microbiology, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Hubei Collaborative Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
35
|
Pan L, Fang YK, Zhou P, Jin KQ, Wang G, Liu YP. Strategy of oxygen transfer coefficient control on the l -erythrulose fermentation by newly isolated Gluconobacter kondonii. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Salamanca-Cardona L, Scheel RA, Bergey NS, Stipanovic AJ, Matsumoto K, Taguchi S, Nomura CT. Consolidated bioprocessing of poly(lactate-co-3-hydroxybutyrate) from xylan as a sole feedstock by genetically-engineered Escherichia coli. J Biosci Bioeng 2016; 122:406-14. [PMID: 27067372 DOI: 10.1016/j.jbiosc.2016.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Consolidated bioprocessing of lignocellulose is an attractive strategy for the sustainable production of petroleum-based alternatives. One of the underutilized sources of carbon in lignocellulose is the hemicellulosic fraction which largely consists of the polysaccharide xylan. In this study, Escherichia coli JW0885 (pyruvate formate lyase activator protein mutant, pflA(-)) was engineered to express recombinant xylanases and polyhydroxyalkanoate (PHA)-producing enzymes for the biosynthesis of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] from xylan as a consolidated bioprocess. The results show that E. coli JW0885 was capable of producing P(LA-co-3HB) when xylan was the only feedstock and different feeding and growth parameters were examined in order to improve upon initial yields. The highest yields of P(LA-co-3HB) copolymer obtained in this study occurred when xylan was added during mid-exponential growth after cells had been grown at high shaking-speeds (290 rpm). The results showed an inverse relationship between total PHA production and LA-monomer incorporation into the copolymer. Proton nuclear magnetic resonance ((1)H NMR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) analyses corroborate that the polymers produced maintain physical properties characteristic of LA-incorporating PHB-based copolymers. The present study achieves the first ever engineering of a consolidated bioprocessing bacterial system for the production of a bioplastic from a hemicelluosic feedstock.
Collapse
Affiliation(s)
- Lucia Salamanca-Cardona
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Ryan A Scheel
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Norman Scott Bergey
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Arthur J Stipanovic
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Ken'ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-28, Kita-ku, Sapporo 060-8638, Japan
| | - Seiichi Taguchi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-28, Kita-ku, Sapporo 060-8638, Japan; CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Christopher T Nomura
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China; Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA; Center for Applied Microbiology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
| |
Collapse
|
37
|
Flitsch D, Ladner T, Lukacs M, Büchs J. Easy to use and reliable technique for online dissolved oxygen tension measurement in shake flasks using infrared fluorescent oxygen-sensitive nanoparticles. Microb Cell Fact 2016; 15:45. [PMID: 26912130 PMCID: PMC4765216 DOI: 10.1186/s12934-016-0444-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/15/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Despite the progressive miniaturization of bioreactors for screening purposes, shake flasks are still widespread in biotechnological laboratories and industry as cultivation vessels. Shake flasks are often applied as the first or second step in applications such as strain screening or media optimization. Thus, there are ongoing efforts to develop online measurement techniques for shake flasks, to gain as much information as possible about the cultured microbial system. Since dissolved oxygen tension (DOT) is a key experimental parameter, its accurate determination during the course of experiment is critical. Some of the available DOT measurement techniques can lead to erroneous measurements or are very difficult to handle. A reliable and easy to use DOT measurement system, based on suspended oxygen-sensitive nanoparticles, is presented in this work. RESULTS In a cultivation of Kluyveromyces lactis, a new DOT measurement technique via suspended oxygen-sensitive nanoparticles was compared with the conventional DOT measurement via fixed sensor spots. These experiments revealed the main disadvantage of applying sensor spots. With further cultivations of Escherichia coli and Hansenula polymorpha, the new measurement technique was successfully validated. In combination with a RAMOS device, kLa values were determined during the presented cultivations. The determined kLa values are in good agreement with a correlation recently found in the literature. CONCLUSIONS The presented DOT measurement technique via suspended oxygen-sensitive nanoparticles in shake flasks turned out to be easy to use, robust and reliable under all applied combinations of shaking frequencies and filling volumes. Its applicability as an online monitoring system for cultivations was shown by means of four examples. Additionally, in combination with a RAMOS device, the possibility of experimental kLa determination was successfully demonstrated.
Collapse
Affiliation(s)
- David Flitsch
- Biochemical Engineering, AVT-Aachener Verfahrenstechnik, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Tobias Ladner
- Biochemical Engineering, AVT-Aachener Verfahrenstechnik, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Mihaly Lukacs
- Biochemical Engineering, AVT-Aachener Verfahrenstechnik, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jochen Büchs
- Biochemical Engineering, AVT-Aachener Verfahrenstechnik, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
38
|
Running JA, Bansal K. Oxygen transfer rates in shaken culture vessels from Fernbach flasks to microtiter plates. Biotechnol Bioeng 2016; 113:1729-35. [DOI: 10.1002/bit.25938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/05/2016] [Accepted: 01/22/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Running
- Department of Bioengineering and Bioprocessing R&D; Dow AgroSciences; Indianapolis Indiana
| | - Karan Bansal
- Department of Bioengineering and Bioprocessing R&D; Dow AgroSciences; Indianapolis Indiana
| |
Collapse
|
39
|
Zheng XJ, Jin KQ, Zhang L, Wang G, Liu YP. Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol. Braz J Microbiol 2016; 47:129-35. [PMID: 26887235 PMCID: PMC4822758 DOI: 10.1016/j.bjm.2015.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/09/2015] [Indexed: 11/05/2022] Open
Abstract
The principal objective of this study was to evaluate the kinetics of dihydroxyacetone production by Gluconobacter frateurii CGMCC 5397 under different oxygen volumetric mass transfer coefficient (kLa) conditions in submerged bioreactors using biodiesel-derived crude glycerol as the carbon source. kLa is a key fermentation parameter for the production of dihydroxyacetone. Cultivations were conducted in baffled- and unbaffled-flask cultures (the kLa values were 24.32 h−1 and 52.05 h−1, respectively) and fed-batch cultures (the kLa values were held at 18.21 h−1, 46.03 h−1, and 82.14 h−1) to achieve high dihydroxyacetone concentration and productivity. The results showed that a high kLa could dramatically increase dihydroxyacetone concentrations and productivities. The baffled-flask culture (with a kLa of 52.05 h−1) favored glycerol utilization and dihydroxyacetone production, and a dihydroxyacetone concentration as high as 131.16 g/L was achieved. When the kLa was set to 82.14 h−1 in the fed-batch culture, the dihydroxyacetone concentration, productivity and yield were 175.44 g/L, 7.96 g/L/h and 0.89 g/g, respectively, all of which were significantly higher than those in previous studies and will benefit dihydroxyacetone industrial production.
Collapse
Affiliation(s)
- Xiao-Juan Zheng
- Institute of Bioengineering, School of Life Sciences, Henan University, Kaifeng 475004, PR China
| | - Kui-Qi Jin
- Institute of Bioengineering, School of Life Sciences, Henan University, Kaifeng 475004, PR China
| | - Lei Zhang
- Institute of Bioengineering, School of Life Sciences, Henan University, Kaifeng 475004, PR China
| | - Gang Wang
- Institute of Bioengineering, School of Life Sciences, Henan University, Kaifeng 475004, PR China
| | - Yu-Peng Liu
- Institute of Bioengineering, School of Life Sciences, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
40
|
Reynoso-Cereceda GI, Garcia-Cabrera RI, Valdez-Cruz NA, Trujillo-Roldán MA. Shaken flasks by resonant acoustic mixing versus orbital mixing: Mass transfer coefficient kLa characterization and Escherichia coli cultures comparison. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Adolfsen KJ, Brynildsen MP. A Kinetic Platform to Determine the Fate of Hydrogen Peroxide in Escherichia coli. PLoS Comput Biol 2015; 11:e1004562. [PMID: 26545295 PMCID: PMC4636272 DOI: 10.1371/journal.pcbi.1004562] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022] Open
Abstract
Hydrogen peroxide (H2O2) is used by phagocytic cells of the innate immune response to kill engulfed bacteria. H2O2 diffuses freely into bacteria, where it can wreak havoc on sensitive biomolecules if it is not rapidly detoxified. Accordingly, bacteria have evolved numerous systems to defend themselves against H2O2, and the importance of these systems to pathogenesis has been substantiated by the many bacteria that require them to establish or sustain infections. The kinetic competition for H2O2 within bacteria is complex, which suggests that quantitative models will improve interpretation and prediction of network behavior. To date, such models have been of limited scope, and this inspired us to construct a quantitative, systems-level model of H2O2 detoxification in Escherichia coli that includes detoxification enzymes, H2O2-dependent transcriptional regulation, enzyme degradation, the Fenton reaction and damage caused by •OH, oxidation of biomolecules by H2O2, and repair processes. After using an iterative computational and experimental procedure to train the model, we leveraged it to predict how H2O2 detoxification would change in response to an environmental perturbation that pathogens encounter within host phagosomes, carbon source deprivation, which leads to translational inhibition and limited availability of NADH. We found that the model accurately predicted that NADH depletion would delay clearance at low H2O2 concentrations and that detoxification at higher concentrations would resemble that of carbon-replete conditions. These results suggest that protein synthesis during bolus H2O2 stress does not affect clearance dynamics and that access to catabolites only matters at low H2O2 concentrations. We anticipate that this model will serve as a computational tool for the quantitative exploration and dissection of oxidative stress in bacteria, and that the model and methods used to develop it will provide important templates for the generation of comparable models for other bacterial species.
Collapse
Affiliation(s)
- Kristin J Adolfsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
42
|
Louca S, Doebeli M. Calibration and analysis of genome-based models for microbial ecology. eLife 2015; 4:e08208. [PMID: 26473972 PMCID: PMC4608356 DOI: 10.7554/elife.08208] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022] Open
Abstract
Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.
Collapse
Affiliation(s)
- Stilianos Louca
- Institute of Applied Mathematics, University of British Columbia, Vancouver, Canada
| | - Michael Doebeli
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
43
|
Sardesai N, Rao G, Kostov Y. Versatile common instrumentation for optical detection of pH and dissolved oxygen. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:074302. [PMID: 26233397 DOI: 10.1063/1.4926542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devices while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring.
Collapse
Affiliation(s)
- Neha Sardesai
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Govind Rao
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Yordan Kostov
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| |
Collapse
|
44
|
Lehner P, Larndorfer C, Garcia-Robledo E, Larsen M, Borisov SM, Revsbech NP, Glud RN, Canfield DE, Klimant I. LUMOS--A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range. PLoS One 2015; 10:e0128125. [PMID: 26029920 PMCID: PMC4451986 DOI: 10.1371/journal.pone.0128125] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/22/2015] [Indexed: 01/17/2023] Open
Abstract
Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized “sensing chemistry” that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented.
Collapse
Affiliation(s)
- Philipp Lehner
- Institute Of Analytical Chemistry And Food Chemistry, Graz University Of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Christoph Larndorfer
- Institute Of Analytical Chemistry And Food Chemistry, Graz University Of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | | | - Morten Larsen
- Nordic Center For Earth Evolution, University Of Southern Denmark, 5230 Odense M, Denmark
| | - Sergey M. Borisov
- Institute Of Analytical Chemistry And Food Chemistry, Graz University Of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | | | - Ronnie N. Glud
- Nordic Center For Earth Evolution, University Of Southern Denmark, 5230 Odense M, Denmark
| | - Donald E. Canfield
- Nordic Center For Earth Evolution, University Of Southern Denmark, 5230 Odense M, Denmark
| | - Ingo Klimant
- Institute Of Analytical Chemistry And Food Chemistry, Graz University Of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
- * E-mail:
| |
Collapse
|
45
|
Dreimann J, Schmidt T, Tscheschke B, v.d. Ruhr JW, Just L, Stahl F, Scheper T. Der Nebelkammer-Reaktor - Neuartiges Reaktorkonzept für anspruchsvolle Kultivierungen. CHEM-ING-TECH 2015. [DOI: 10.1002/cite.201400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Ling X, Guo J, Liu X, Zhang X, Wang N, Lu Y, Ng IS. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. BIORESOURCE TECHNOLOGY 2015; 184:139-147. [PMID: 25451778 DOI: 10.1016/j.biortech.2014.09.130] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 05/22/2023]
Abstract
A new isolated Schizochytrium sp. LU310 from the mangrove forest of Wenzhou, China, was found as a high producing microalga of docosahexaenoic acid (DHA). In this study, the significant improvements for DHA fermentation by the batch mode in the baffled flasks (i.e. higher oxygen supply) were achieved. By applied the nitrogen-feeding strategy in 1000 mL baffled flasks, the biomass, DHA concentration and DHA productivity were increased by 110.4%, 117.9% and 110.4%, respectively. Moreover, DHA concentration of 21.06 g/L was obtained by feeding 15 g/L of glucose intermittently, which was an increase of 41.25% over that of the batch mode. Finally, an innovative strategy was carried out by intermittent feeding carbon and simultaneously feeding nitrogen. The maximum DHA concentration and DHA productivity in the fed-batch cultivation reached to 24.74 g/L and 241.5 mg/L/h, respectively.
Collapse
Affiliation(s)
- Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Jing Guo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xiaoting Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xia Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Nan Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - I-Son Ng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China; Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
47
|
Falcioni F, Bühler B, Schmid A. Efficient hydroxyproline production from glucose in minimal media byCorynebacterium glutamicum. Biotechnol Bioeng 2014; 112:322-30. [DOI: 10.1002/bit.25442] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/06/2014] [Accepted: 08/18/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Francesco Falcioni
- Department of Biochemical and Chemical Engineering; Laboratory of Chemical Biotechnology; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Bruno Bühler
- Department of Biochemical and Chemical Engineering; Laboratory of Chemical Biotechnology; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Andreas Schmid
- Department of Biochemical and Chemical Engineering; Laboratory of Chemical Biotechnology; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| |
Collapse
|
48
|
Chatterjee M, Ge X, Uplekar S, Kostov Y, Croucher L, Pilli M, Rao G. A unique noninvasive approach to monitoring dissolved O2and CO2in cell culture. Biotechnol Bioeng 2014; 112:104-10. [DOI: 10.1002/bit.25348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Madhubanti Chatterjee
- Center for Advanced Sensor Technology; Department of Chemical; Biochemical and Environmental Engineering; University of Maryland; Baltimore County; 1000 Hilltop Circle Baltimore Maryland 21250
| | - Xudong Ge
- Center for Advanced Sensor Technology; Department of Chemical; Biochemical and Environmental Engineering; University of Maryland; Baltimore County; 1000 Hilltop Circle Baltimore Maryland 21250
| | - Shaunak Uplekar
- Center for Advanced Sensor Technology; Department of Chemical; Biochemical and Environmental Engineering; University of Maryland; Baltimore County; 1000 Hilltop Circle Baltimore Maryland 21250
| | - Yordan Kostov
- Center for Advanced Sensor Technology; Department of Chemical; Biochemical and Environmental Engineering; University of Maryland; Baltimore County; 1000 Hilltop Circle Baltimore Maryland 21250
| | - Leah Croucher
- Center for Advanced Sensor Technology; Department of Chemical; Biochemical and Environmental Engineering; University of Maryland; Baltimore County; 1000 Hilltop Circle Baltimore Maryland 21250
| | - Manohar Pilli
- Center for Advanced Sensor Technology; Department of Chemical; Biochemical and Environmental Engineering; University of Maryland; Baltimore County; 1000 Hilltop Circle Baltimore Maryland 21250
| | - Govind Rao
- Center for Advanced Sensor Technology; Department of Chemical; Biochemical and Environmental Engineering; University of Maryland; Baltimore County; 1000 Hilltop Circle Baltimore Maryland 21250
| |
Collapse
|
49
|
Estela-Escalante WD, Rychtera M, Melzoch K, Torres-Ibáñez F, Calixto-Cotos R, Bravo-Araníbar N, Memenza-Zegarra ME, Chávez-Guzmán YM. Efecto de la aireación en la producción de compuestos volátiles por cultivo mixto de Brettanomyces intermedius y Saccharomyces cerevisiae durante la fermentación de sidra. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)70316-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Lopes M, Belo I, Mota M. Over-pressurized bioreactors: Application to microbial cell cultures. Biotechnol Prog 2014; 30:767-75. [DOI: 10.1002/btpr.1917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/12/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Marlene Lopes
- Center of Biological Engineering; University of Minho, Campus de Gualtar; Braga 4710-057 Portugal
| | - Isabel Belo
- Center of Biological Engineering; University of Minho, Campus de Gualtar; Braga 4710-057 Portugal
| | - Manuel Mota
- Center of Biological Engineering; University of Minho, Campus de Gualtar; Braga 4710-057 Portugal
| |
Collapse
|