1
|
Thi Quynh Le H, Lee EY. Biological production of 2-propanol from propane using a metabolically engineered type I methanotrophic bacterium. BIORESOURCE TECHNOLOGY 2022; 362:127835. [PMID: 36031125 DOI: 10.1016/j.biortech.2022.127835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
2-Propanol is a widely used industrial solvents. Herein, we employed a unique feature of type I methanotrophic bacterium Methylotuvimicrobium alcaliphilum 20Z possessing only particulate methane monooxygenase (pMMO) for one-step direct production of pure 2-propanol from propane. By maintaining cell growth on glycerol, and after deletion of both Ca2+-dependent and La3+-dependent methanol dehydrogenases, propane was converted to 2-propanol by pMMO. Although most of the 2-propanol produced was further oxidized to acetone, deletion of active alcohol dehydrogenase, concomitant with synchronous overexpression of secondary alcohol dehydrogenase, significantly inhibited such undesirable oxidation. As a result, a remarkable enhancement (263 mg/L) of 2-propanol was achieved for 120 h by increasing cell growth with a supply of 50% (v/v) propane in headspace. This is the first demonstration to develop an engineered methanotrophic strain for the one-step direct production of pure 2-propanol from propane using one-phase cultivation without the supply of chemical inhibitors or additional reducing-power sources.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
A multi-enzyme cascade reaction for the production of α,ω-dicarboxylic acids from free fatty acids. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Systems Analysis of NADH Dehydrogenase Mutants Reveals Flexibility and Limits of Pseudomonas taiwanensis VLB120's Metabolism. Appl Environ Microbiol 2020; 86:AEM.03038-19. [PMID: 32245760 DOI: 10.1128/aem.03038-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Obligate aerobic organisms rely on a functional electron transport chain for energy conservation and NADH oxidation. Because of this essential requirement, the genes of this pathway are likely constitutively and highly expressed to avoid a cofactor imbalance and energy shortage under fluctuating environmental conditions. We here investigated the essentiality of the three NADH dehydrogenases of the respiratory chain of the obligate aerobe Pseudomonas taiwanensis VLB120 and the impact of the knockouts of corresponding genes on its physiology and metabolism. While a mutant lacking all three NADH dehydrogenases seemed to be nonviable, the single or double knockout mutant strains displayed no, or only a weak, phenotype. Only the mutant deficient in both type 2 dehydrogenases showed a clear phenotype with biphasic growth behavior and a strongly reduced growth rate in the second phase. In-depth analyses of the metabolism of the generated mutants, including quantitative physiological experiments, transcript analysis, proteomics, and enzyme activity assays revealed distinct responses to type 2 and type 1 dehydrogenase deletions. An overall high metabolic flexibility enables P. taiwanensis to cope with the introduced genetic perturbations and maintain stable phenotypes, likely by rerouting of metabolic fluxes. This metabolic adaptability has implications for biotechnological applications. While the phenotypic robustness is favorable in large-scale applications with inhomogeneous conditions, the possible versatile redirecting of carbon fluxes upon genetic interventions can thwart metabolic engineering efforts.IMPORTANCE While Pseudomonas has the capability for high metabolic activity and the provision of reduced redox cofactors important for biocatalytic applications, exploitation of this characteristic might be hindered by high, constitutive activity of and, consequently, competition with the NADH dehydrogenases of the respiratory chain. The in-depth analysis of NADH dehydrogenase mutants of Pseudomonas taiwanensis VLB120 presented here provides insight into the phenotypic and metabolic response of this strain to these redox metabolism perturbations. This high degree of metabolic flexibility needs to be taken into account for rational engineering of this promising biotechnological workhorse toward a host with a controlled and efficient supply of redox cofactors for product synthesis.
Collapse
|
5
|
Abstract
On the occasion of Professor Frances H. Arnold's recent acceptance of the 2018 Nobel Prize in Chemistry, we honor her numerous contributions to the fields of directed evolution and biocatalysis. Arnold pioneered the development of directed evolution methods for engineering enzymes as biocatalysts. Her highly interdisciplinary research has provided a ground not only for understanding the mechanisms of enzyme evolution but also for developing commercially viable enzyme biocatalysts and biocatalytic processes. In this Account, we highlight some of her notable contributions in the past three decades in the development of foundational directed evolution methods and their applications in the design and engineering of enzymes with desired functions for biocatalysis. Her work has created a paradigm shift in the broad catalysis field.
Collapse
Affiliation(s)
- Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - S. B. Jennifer Kan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Huimin Zhao
- Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate by increasing the intracellular FAD pool. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Zhang Z, Li F, Cao Y, Tian Y, Li J, Zong Y, Song H. Electricity-driven 7α-hydroxylation of a steroid catalyzed by a cytochrome P450 monooxygenase in engineered yeast. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01288e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Schematic diagram of the cytochrome P450 monooxygenase-catalyzed BES.
Collapse
Affiliation(s)
- Ziyin Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Yao Tian
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Jiansheng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Yongchao Zong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
8
|
Li Y, Li J, Qian B, Cheng L, Xu S, Wang R. De Novo Biosynthesis of p-Coumaric Acid in E. coli with a trans-Cinnamic Acid 4-Hydroxylase from the Amaryllidaceae Plant Lycoris aurea. Molecules 2018; 23:molecules23123185. [PMID: 30513965 PMCID: PMC6320932 DOI: 10.3390/molecules23123185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/18/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022] Open
Abstract
p-Coumaric acid is a commercially available phenolcarboxylic acid with a great number of important applications in the nutraceutical, pharmaceutical, material and chemical industries. p-Coumaric acid has been biosynthesized in some engineered microbes, but the potential of the plant CYP450-involved biosynthetic route has not investigated in Escherichia coli. In the present study, a novel trans-cinnamic acid 4-hydroxylase (C4H) encoding the LauC4H gene was isolated from Lycoris aurea (L’ Hér.) Herb via rapid amplification of cDNA ends. Then, N-terminal 28 amino acids of LauC4H were characterized, for the subcellular localization, at the endoplasmic reticulum membrane in protoplasts of Arabidopsis thaliana. In E. coli, LauC4H without the N-terminal membrane anchor region was functionally expressed when fused with the redox partner of A. thaliana cytochrome P450 enzyme (CYP450), and was verified to catalyze the trans-cinnamic acid to p-coumaric acid transformation by whole-cell bioconversion, HPLC detection and LC-MS analysis as well. Further, with phenylalanine ammonia-lyase 1 of A. thaliana, p-coumaric acid was de novo biosynthesized from glucose as the sole carbon source via the phenylalanine route in the recombinant E. coli cells. By regulating the level of intracellular NADPH, the production of p-coumaric acid was dramatically improved by 9.18-fold, and achieved with a titer of 156.09 μM in shake flasks. The recombinant cells harboring functional LauC4H afforded a promising chassis for biological production of p-coumaric acid, even other derivatives, via a plant CYP450-involved pathway.
Collapse
Affiliation(s)
- Yikui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| | - Jie Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Binbin Qian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Li Cheng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Sheng Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| | - Ren Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| |
Collapse
|
9
|
Saab-Rincón G, Alwaseem H, Guzmán-Luna V, Olvera L, Fasan R. Stabilization of the Reductase Domain in the Catalytically Self-Sufficient Cytochrome P450 BM3 by Consensus-Guided Mutagenesis. Chembiochem 2018; 19:622-632. [PMID: 29276819 PMCID: PMC5941085 DOI: 10.1002/cbic.201700546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/07/2022]
Abstract
The multidomain, catalytically self-sufficient cytochrome P450 BM-3 from Bacillus megaterium (P450BM3 ) constitutes a versatile enzyme for the oxyfunctionalization of organic molecules and natural products. However, the limited stability of the diflavin reductase domain limits the utility of this enzyme for synthetic applications. In this work, a consensus-guided mutagenesis approach was applied to enhance the thermal stability of the reductase domain of P450BM3 . Upon phylogenetic analysis of a set of distantly related P450s (>38 % identity), a total of 14 amino acid substitutions were identified and evaluated in terms of their stabilizing effects relative to the wild-type reductase domain. Recombination of the six most stabilizing mutations generated two thermostable variants featuring up to tenfold longer half-lives at 50 °C and increased catalytic performance at elevated temperatures. Further characterization of the engineered P450BM3 variants indicated that the introduced mutations increased the thermal stability of the FAD-binding domain and that the optimal temperature (Topt ) of the enzyme had shifted from 25 to 40 °C. This work demonstrates the effectiveness of consensus mutagenesis for enhancing the stability of the reductase component of a multidomain P450. The stabilized P450BM3 variants developed here could potentially provide more robust scaffolds for the engineering of oxidation biocatalysts.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Hanan Alwaseem
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| | - Valeria Guzmán-Luna
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Leticia Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| |
Collapse
|
10
|
Chánique AM, Parra LP. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges. Front Microbiol 2018; 9:194. [PMID: 29491854 PMCID: PMC5817062 DOI: 10.3389/fmicb.2018.00194] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 01/10/2023] Open
Abstract
Oxidoreductases are ubiquitous enzymes that catalyze an extensive range of chemical reactions with great specificity, efficiency, and selectivity. Most oxidoreductases are nicotinamide cofactor-dependent enzymes with a strong preference for NADP or NAD. Because these coenzymes differ in stability, bioavailability and costs, the enzyme preference for a specific coenzyme is an important issue for practical applications. Different approaches for the manipulation of coenzyme specificity have been reported, with different degrees of success. Here we present various attempts for the switching of nicotinamide coenzyme preference in oxidoreductases by protein engineering. This review covers 103 enzyme engineering studies from 82 articles and evaluates the accomplishments in terms of coenzyme specificity and catalytic efficiency compared to wild type enzymes of different classes. We analyzed different protein engineering strategies and related them with the degree of success in inverting the cofactor specificity. In general, catalytic activity is compromised when coenzyme specificity is reversed, however when switching from NAD to NADP, better results are obtained. In most of the cases, rational strategies were used, predominantly with loop exchange generating the best results. In general, the tendency of removing acidic residues and incorporating basic residues is the strategy of choice when trying to change specificity from NAD to NADP, and vice versa. Computational strategies and algorithms are also covered as helpful tools to guide protein engineering strategies. This mini review aims to give a general introduction to the topic, giving an overview of tools and information to work in protein engineering for the reversal of coenzyme specificity.
Collapse
Affiliation(s)
- Andrea M Chánique
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto P Parra
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
12
|
Cahn JKB, Werlang CA, Baumschlager A, Brinkmann-Chen S, Mayo SL, Arnold FH. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases. ACS Synth Biol 2017; 6:326-333. [PMID: 27648601 DOI: 10.1021/acssynbio.6b00188] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to control enzymatic nicotinamide cofactor utilization is critical for engineering efficient metabolic pathways. However, the complex interactions that determine cofactor-binding preference render this engineering particularly challenging. Physics-based models have been insufficiently accurate and blind directed evolution methods too inefficient to be widely adopted. Building on a comprehensive survey of previous studies and our own prior engineering successes, we present a structure-guided, semirational strategy for reversing enzymatic nicotinamide cofactor specificity. This heuristic-based approach leverages the diversity and sensitivity of catalytically productive cofactor binding geometries to limit the problem to an experimentally tractable scale. We demonstrate the efficacy of this strategy by inverting the cofactor specificity of four structurally diverse NADP-dependent enzymes: glyoxylate reductase, cinnamyl alcohol dehydrogenase, xylose reductase, and iron-containing alcohol dehydrogenase. The analytical components of this approach have been fully automated and are available in the form of an easy-to-use web tool: Cofactor Specificity Reversal-Structural Analysis and Library Design (CSR-SALAD).
Collapse
Affiliation(s)
- Jackson K. B. Cahn
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Caroline A. Werlang
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Armin Baumschlager
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Stephen L. Mayo
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, and ‡Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Bajaj P, Sreenilayam G, Tyagi V, Fasan R. Gram-Scale Synthesis of Chiral Cyclopropane-Containing Drugs and Drug Precursors with Engineered Myoglobin Catalysts Featuring Complementary Stereoselectivity. Angew Chem Int Ed Engl 2016; 55:16110-16114. [PMID: 27885768 PMCID: PMC5755974 DOI: 10.1002/anie.201608680] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/02/2016] [Indexed: 11/07/2022]
Abstract
Engineered hemoproteins have recently emerged as promising systems for promoting asymmetric cyclopropanations, but variants featuring predictable, complementary stereoselectivity in these reactions have remained elusive. In this study, a rationally driven strategy was implemented and applied to engineer myoglobin variants capable of providing access to 1-carboxy-2-aryl-cyclopropanes with high trans-(1R,2R) selectivity and catalytic activity. The stereoselectivity of these cyclopropanation biocatalysts complements that of trans-(1S,2S)-selective variants developed here and previously. In combination with whole-cell biotransformations, these stereocomplementary biocatalysts enabled the multigram synthesis of the chiral cyclopropane core of four drugs (Tranylcypromine, Tasimelteon, Ticagrelor, and a TRPV1 inhibitor) in high yield and with excellent diastereo- and enantioselectivity (98-99.9% de; 96-99.9% ee). These biocatalytic strategies outperform currently available methods to produce these drugs.
Collapse
Affiliation(s)
- Priyanka Bajaj
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| | | | - Vikas Tyagi
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| |
Collapse
|
14
|
Bajaj P, Sreenilayam G, Tyagi V, Fasan R. Gram-Scale Synthesis of Chiral Cyclopropane-Containing Drugs and Drug Precursors with Engineered Myoglobin Catalysts Featuring Complementary Stereoselectivity. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608680] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Priyanka Bajaj
- Department of Chemistry; University of Rochester; 120 Trustee Road Rochester NY 14627 USA
| | | | - Vikas Tyagi
- Department of Chemistry; University of Rochester; 120 Trustee Road Rochester NY 14627 USA
| | - Rudi Fasan
- Department of Chemistry; University of Rochester; 120 Trustee Road Rochester NY 14627 USA
| |
Collapse
|
15
|
Tyagi V, Alwaseem H, O'Dwyer KM, Ponder J, Li QY, Jordan CT, Fasan R. Chemoenzymatic synthesis and antileukemic activity of novel C9- and C14-functionalized parthenolide analogs. Bioorg Med Chem 2016; 24:3876-3886. [PMID: 27396927 PMCID: PMC5083853 DOI: 10.1016/j.bmc.2016.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
Parthenolide is a naturally occurring terpene with promising anticancer properties, particularly in the context of acute myeloid leukemia (AML). Optimization of this natural product has been challenged by limited opportunities for the late-stage functionalization of this molecule without affecting the pharmacologically important α-methylene-γ-lactone moiety. Here, we report the further development and application of a chemoenzymatic strategy to afford a series of new analogs of parthenolide functionalized at the aliphatic positions C9 and C14. Several of these compounds were determined to be able to kill leukemia cells and patient-derived primary AML specimens with improved activity compared to parthenolide, exhibiting LC50 values in the low micromolar range. These studies demonstrate that different O-H functionalization chemistries can be applied to elaborate the parthenolide scaffold and that modifications at the C9 or C14 position can effectively enhance the antileukemic properties of this natural product. The C9-functionalized analogs 22a and 25b were identified as the most interesting compounds in terms of antileukemic potency and selectivity toward AML versus healthy blood cells.
Collapse
Affiliation(s)
- Vikas Tyagi
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Hanan Alwaseem
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Kristen M O'Dwyer
- Department of Hematology/Oncology, University of Rochester, Rochester, NY 14627, United States
| | - Jessica Ponder
- Division of Hematology, University of Colorado, Aurora, CO 80045, United States; Division of Toxicology, University of Colorado, Aurora, CO 80045, United States
| | - Qi Ying Li
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Aurora, CO 80045, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
16
|
Ramesh H, Zajkoska P, Rebroš M, Woodley JM. The effect of cultivation media and washing whole-cell biocatalysts on monoamine oxidase catalyzed oxidative desymmetrization of 3-azabicyclo[3,3,0]octane. Enzyme Microb Technol 2015; 83:7-13. [PMID: 26777245 DOI: 10.1016/j.enzmictec.2015.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/21/2015] [Accepted: 11/18/2015] [Indexed: 11/25/2022]
Abstract
It is well known that washing whole-cells containing enzyme activities after fermentation, but prior to biocatalysis can improve their activity in the subsequent reaction. In this paper, we quantify the impact of both the fermentation media and cell washing on the performance of whole-cell biocatalysis. The results are illustrated using a recombinant monoamine oxidase (expressed in Escherichia coli, used in resting state) for the oxidative desymmetrization of 3-azabicyclo[3,3,0]octane. It was shown that the need for washing biocatalyst prior to use in a reaction is dependent upon growth medium. Unlike cells grown in LB medium, washing of the cells was essential for cells grown on TB medium. With TB media, washing the cells improved the final conversion by approximately a factor of two. Additionally, over 50-fold improvement was achieved in initial activity. A potential reason for this improvement in activity was identified to be the increase in transfer of substrates across the cell membrane as a result of cell washing.
Collapse
Affiliation(s)
- Hemalata Ramesh
- Department of Chemical and Biochemical Engineering, Building 229, Søltofts Plads, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Petra Zajkoska
- Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Martin Rebroš
- Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Building 229, Søltofts Plads, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
17
|
Mosa A, Hutter MC, Zapp J, Bernhardt R, Hannemann F. Regioselective Acetylation of C21 Hydroxysteroids by the Bacterial Chloramphenicol Acetyltransferase I. Chembiochem 2015; 16:1670-9. [DOI: 10.1002/cbic.201500125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 11/11/2022]
|
18
|
Guidelines for development and implementation of biocatalytic P450 processes. Appl Microbiol Biotechnol 2015; 99:2465-83. [PMID: 25652652 DOI: 10.1007/s00253-015-6403-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/17/2023]
Abstract
Biocatalytic reactions performed by cytochrome P450 monooxygenases are interesting in pharmaceutical research since they are involved in human drug metabolism. Furthermore, they are potentially interesting as biocatalysts for synthetic chemistry because of the exquisite selectivity of the chemistry they undertake. For example, selective hydroxylation can be undertaken on a highly functionalized molecule without the need for functional group protection. Recent progress in the discovery of novel P450s as well as protein engineering of these enzymes strongly encourages further development of their application, including use in synthetic processes. The biological characteristics of P450s (e.g., cofactor dependence) motivate the use of whole-cell systems for synthetic processes, and those processes implemented in industry are so far dominated by growing cells and native host systems. However, for an economically feasible process, the expression of P450 systems in a heterologous host with sufficient biocatalyst yield (g/g cdw) for non-growing systems or space-time yield (g/L/h) for growing systems remains a major challenge. This review summarizes the opportunities to improve P450 whole-cell processes and strategies in order to apply and implement them in industrial processes, both from a biological and process perspective. Indeed, a combined approach of host selection and cell engineering, integrated with process engineering, is suggested as the most effective route to implementation.
Collapse
|
19
|
Kracke F, Krömer JO. Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 2014; 15:410. [PMID: 25547630 PMCID: PMC4310134 DOI: 10.1186/s12859-014-0410-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022] Open
Abstract
Background Microbial electrosynthesis and electro fermentation are techniques that aim to optimize microbial production of chemicals and fuels by regulating the cellular redox balance via interaction with electrodes. While the concept is known for decades major knowledge gaps remain, which make it hard to evaluate its biotechnological potential. Here we present an in silico approach to identify beneficial production processes for electro fermentation by elementary mode analysis. Since the fundamentals of electron transport between electrodes and microbes have not been fully uncovered yet, we propose different options and discuss their impact on biomass and product yields. Results For the first time 20 different valuable products were screened for their potential to show increased yields during anaerobic electrically enhanced fermentation. Surprisingly we found that an increase in product formation by electrical enhancement is not necessarily dependent on the degree of reduction of the product but rather the metabolic pathway it is derived from. We present a variety of beneficial processes with product yield increases of maximal 36% in reductive and 84% in oxidative fermentations and final theoretical product yields up to 100%. This includes compounds that are already produced at industrial scale such as succinic acid, lysine and diaminopentane as well as potential novel bio-commodities such as isoprene, para-hydroxybenzoic acid and para-aminobenzoic acid. Furthermore, it is shown that the way of electron transport has major impact on achievable biomass and product yields. The coupling of electron transport to energy conservation could be identified as crucial for most processes. Conclusions This study introduces a powerful tool to determine beneficial substrate and product combinations for electro-fermentation. It also highlights that the maximal yield achievable by bio electrochemical techniques depends strongly on the actual electron transport mechanisms. Therefore it is of great importance to reveal the involved fundamental processes to be able to optimize and advance electro fermentations beyond the level of lab-scale studies. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0410-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frauke Kracke
- Centre for Microbial Electrosynthesis, The University of Queensland, Level 4, Gehrmann Laboratories Building (60), Brisbane, QLD, 4072, Australia. .,Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia.
| | - Jens O Krömer
- Centre for Microbial Electrosynthesis, The University of Queensland, Level 4, Gehrmann Laboratories Building (60), Brisbane, QLD, 4072, Australia. .,Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
20
|
Venkataraman H, te Poele EM, Rosłoniec KZ, Vermeulen N, Commandeur JNM, van der Geize R, Dijkhuizen L. Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme. Appl Microbiol Biotechnol 2014; 99:4713-21. [DOI: 10.1007/s00253-014-6281-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/19/2014] [Accepted: 11/29/2014] [Indexed: 12/01/2022]
|
21
|
Whole-cell biotransformation with recombinant cytochrome P450 for the selective oxidation of Grundmann's ketone. Bioorg Med Chem 2014; 22:5586-92. [PMID: 25023538 DOI: 10.1016/j.bmc.2014.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023]
Abstract
25-Hydroxy-Grundmann's ketone is a key building block in the chemical synthesis of vitamin D3 and its derivatives through convergent routes. Generally, the chemical synthesis of this compound involves tedious procedures and results in a mixture of several products. Recently, the selective hydroxylation of Grundmann's ketone at position C25 by cytochrome P450 (CYP) 154E1 from Thermobifida fusca YX was described. In this study a recombinant whole-cell biocatalyst was developed and applied for hydroxylation of Grundmann's ketone. Biotransformation was performed by Escherichia coli cells expressing CYP154E1 along with two redox partner systems, Pdx/PdR and YkuN/FdR. The system comprising CYP154E1/Pdx/PdR showed the highest production of 25-hydroxy-Grundmann's ketone and resulted in 1.1mM (300mgL(-1)) product concentration.
Collapse
|
22
|
Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation. Appl Microbiol Biotechnol 2014; 98:8191-200. [DOI: 10.1007/s00253-014-5706-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 11/25/2022]
|
23
|
Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:28. [PMID: 24565055 PMCID: PMC3937522 DOI: 10.1186/1754-6834-7-28] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/10/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cytochrome P450 OleTJE from Jeotgalicoccus sp. ATCC 8456, a new member of the CYP152 peroxygenase family, was recently found to catalyze the unusual decarboxylation of long-chain fatty acids to form α-alkenes using H2O2 as the sole electron and oxygen donor. Because aliphatic α-alkenes are important chemicals that can be used as biofuels to replace fossil fuels, or for making lubricants, polymers and detergents, studies on OleTJE fatty acid decarboxylase are significant and may lead to commercial production of biogenic α-alkenes in the future, which are renewable and more environmentally friendly than petroleum-derived equivalents. RESULTS We report the H2O2-independent activity of OleTJE for the first time. In the presence of NADPH and O2, this P450 enzyme efficiently decarboxylates long-chain fatty acids (C12 to C20) in vitro when partnering with either the fused P450 reductase domain RhFRED from Rhodococcus sp. or the separate flavodoxin/flavodoxin reductase from Escherichia coli. In vivo, expression of OleTJE or OleTJE-RhFRED in different E. coli strains overproducing free fatty acids resulted in production of variant levels of multiple α-alkenes, with a highest total hydrocarbon titer of 97.6 mg·l-1. CONCLUSIONS The discovery of the H2O2-independent activity of OleTJE not only raises a number of fundamental questions on the monooxygenase-like mechanism of this peroxygenase, but also will direct the future metabolic engineering work toward improvement of O2/redox partner(s)/NADPH for overproduction of α-alkenes by OleTJE.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Jinyong Yan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Wei Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Wenna Guan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Shengying Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| |
Collapse
|
24
|
Schrewe M, Julsing MK, Bühler B, Schmid A. Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 2014; 42:6346-77. [PMID: 23475180 DOI: 10.1039/c3cs60011d] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the last decades, biocatalysis became of increasing importance for chemical and pharmaceutical industries. Regarding regio- and stereospecificity, enzymes have shown to be superior compared to traditional chemical synthesis approaches, especially in C-O functional group chemistry. Catalysts established on a process level are diverse and can be classified along a functional continuum starting with single-step biotransformations using isolated enzymes or microbial strains towards fermentative processes with recombinant microorganisms containing artificial synthetic pathways. The complex organization of respective enzymes combined with aspects such as cofactor dependency and low stability in isolated form often favors the use of whole cells over that of isolated enzymes. Based on an inventory of the large spectrum of biocatalytic C-O functional group chemistry, this review focuses on highlighting the potentials, limitations, and solutions offered by the application of self-regenerating microbial cells as biocatalysts. Different cellular functionalities are discussed in the light of their (possible) contribution to catalyst efficiency. The combined achievements in the areas of protein, genetic, metabolic, and reaction engineering enable the development of whole-cell biocatalysts as powerful tools in organic synthesis.
Collapse
Affiliation(s)
- Manfred Schrewe
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
25
|
Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol 2013; 40:1449-60. [PMID: 24048943 DOI: 10.1007/s10295-013-1335-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/28/2013] [Indexed: 02/03/2023]
Abstract
Enzymatic synthesis of some industrially important compounds depends heavily on cofactor NADPH as the reducing agent. This is especially true in the synthesis of chiral compounds that are often used as pharmaceutical intermediates to generate the correct stereochemistry in bioactive products. The high cost and technical difficulty of cofactor regeneration often pose a challenge for such biocatalytic reactions. In this study, to increase NADPH bioavailability, the native NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gapA gene in Escherichia coli was replaced with a NADP(+)-dependent gapB from Bacillus subtilis. To overcome the limitation of NADP(+) availability, E. coli NAD kinase, nadK was also coexpressed with gapB. The recombinant strains were then tested in three reporting systems: biosynthesis of lycopene, oxidation of cyclohexanone with cyclohexanone monooxygenase (CHMO), and an anaerobic system utilizing 2-haloacrylate reductase (CAA43). In all the reporting systems, replacing NAD(+)-dependent GapA activity with NADP(+)-dependent GapB activity increased the synthesis of NADPH-dependent compounds. The increase was more pronounced when NAD kinase was also overexpressed in the case of the one-step reaction catalyzed by CAA43 which approximately doubled the product yield. These results validate this novel approach to improve NADPH bioavailability in E. coli and suggest that the strategy can be applied in E. coli or other bacterium-based production of NADPH-dependent compounds.
Collapse
|
26
|
Lorenz E, Klatte S, Wendisch VF. Reductive amination by recombinant Escherichia coli: whole cell biotransformation of 2-keto-3-methylvalerate to L-isoleucine. J Biotechnol 2013; 168:289-94. [PMID: 23831557 DOI: 10.1016/j.jbiotec.2013.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
A whole cell biotransformation system for reductive amination has been studied in recombinant Escherichia coli cells. Reductive amination of 2-keto-3-methylvalerate to L-isoleucine by a two-enzyme-cascade was achieved by overproduction of endogenous L-alanine dependent transaminase AvtA and heterologous L-alanine dehydrogenase from Bacillus subtilis in recombinant E. coli. Up to 100 mM L-isoleucine were produced from 100 mM 2-keto-3-methylvalerate and 100 mM ammonium sulfate. Regeneration of NADH as cofactor in the whole cell system was driven by glucose catabolism. The effects of defined gene deletions in the central carbon metabolism on biotransformation were tested. Strains lacking the NuoG subunit of NADH:ubiquinone oxidoreductase (complex I) or aceA encoding the glyoxylate cycle enzyme isocitrate lyase exhibited increased biotransformation rates.
Collapse
Affiliation(s)
- Elisabeth Lorenz
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, D-33615 Bielefeld, Germany
| | | | | |
Collapse
|
27
|
Pirie CM, De Mey M, Prather KLJ, Ajikumar PK. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis. ACS Chem Biol 2013; 8:662-72. [PMID: 23373985 DOI: 10.1021/cb300634b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.
Collapse
Affiliation(s)
- Christopher M. Pirie
- Manus Biosynthesis Inc., Suite 102, 790 Memorial Drive, Cambridge, Massachusetts 02139,
United States
| | - Marjan De Mey
- Manus Biosynthesis Inc., Suite 102, 790 Memorial Drive, Cambridge, Massachusetts 02139,
United States
- Centre of
Expertise−Industrial Biotechnology and Biocatalysis, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Kristala L. Jones Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Parayil Kumaran Ajikumar
- Manus Biosynthesis Inc., Suite 102, 790 Memorial Drive, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
28
|
Lee WH, Kim MD, Jin YS, Seo JH. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol 2013; 97:2761-72. [PMID: 23420268 DOI: 10.1007/s00253-013-4750-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 11/30/2022]
Abstract
Efficient regeneration of NADPH is one of the limiting factors that constrain the productivity of biotransformation processes. In order to increase the availability of NADPH for enhanced biotransformation by engineered Escherichia coli, modulation of the pentose phosphate pathway and amplification of the transhydrogenases system have been conventionally attempted as primary solutions. Recently, other approaches for stimulating NADPH regeneration during glycolysis, such as replacement of native glyceradehdye-3-phosphate dehydrogenase (GAPDH) with NADP-dependent GAPDH from Clostridium acetobutylicum and introduction of NADH kinase catalyzing direct phosphorylation of NADH to NADPH from Saccharomyces cerevisiae, were attempted and resulted in remarkable impacts on NADPH-dependent bioprocesses. This review summarizes several metabolic engineering approaches used for improving the NADPH regenerating capacity in engineered E. coli for whole-cell-based bioprocesses and discusses the key features and progress of those attempts.
Collapse
Affiliation(s)
- Won-Heong Lee
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Korea
| | | | | | | |
Collapse
|
29
|
Cornelissen S, Julsing MK, Volmer J, Riechert O, Schmid A, Bühler B. Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Biotechnol Bioeng 2013; 110:1282-92. [PMID: 23239244 DOI: 10.1002/bit.24801] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/23/2012] [Accepted: 11/28/2012] [Indexed: 11/09/2022]
Abstract
Living microbial cells are considered to be the catalyst of choice for selective terpene functionalization. However, such processes often suffer from side product formation and poor substrate mass transfer into cells. For the hydroxylation of (S)-limonene to (S)-perillyl alcohol by Pseudomonas putida KT2440 (pGEc47ΔB)(pCom8-PFR1500), containing the cytochrome P450 monooxygenase CYP153A6, the side products perillyl aldehyde and perillic acid constituted up to 26% of the total amount of oxidized terpenes. In this study, it is shown that the reaction rate is substrate-limited in the two-liquid phase system used and that host intrinsic dehydrogenases and not CYP153A6 are responsible for the formation of the undesired side products. In contrast to P. putida KT2440, E. coli W3110 was found to catalyze perillyl aldehyde reduction to the alcohol and no oxidation to the acid. Furthermore, E. coli W3110 harboring CYP153A6 showed high limonene hydroxylation activities (7.1 U g CDW-1). The outer membrane protein AlkL was found to enhance hydroxylation activities of E. coli twofold in aqueous single-phase and fivefold in two-liquid phase biotransformations. In the latter system, E. coli harboring CYP153A6 and AlkL produced up to 39.2 mmol (S)-perillyl alcohol L tot-1 within 26 h, whereas no perillic acid and minor amounts of perillyl aldehyde (8% of the total products) were formed. In conclusion, undesired perillyl alcohol oxidation was reduced by choosing E. coli's enzymatic background as a reaction environment and co-expression of the alkL gene in E. coli represents a promising strategy to enhance terpene bioconversion rates.
Collapse
Affiliation(s)
- Sjef Cornelissen
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Bar-Even A, Salah Tawfik D. Engineering specialized metabolic pathways--is there a room for enzyme improvements? Curr Opin Biotechnol 2012; 24:310-9. [PMID: 23102865 DOI: 10.1016/j.copbio.2012.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023]
Abstract
Recent advances in enzyme engineering enable dramatic improvements in catalytic efficiency and/or selectivity, as well as de novo engineering of enzymes to catalyze reactions where natural enzymes are not available. Can these capabilities be utilized to transform biosynthesis pathways? Metabolic engineering is traditionally based on combining existing enzymes to give new, or modified, pathways, within a new context and/or organism. How efficient, however, are the individual enzyme components? Is there room to improve pathway performance by enzyme engineering? We discuss the differences between enzymes in central versus specialized, or secondary metabolism and highlight unique features of specialized metabolism enzymes participating in the synthesis of natural products. We argue that, for the purpose of metabolic engineering, the catalytic efficiency and selectivity of many enzymes can be improved with the aim of achieving higher rates, yields and product purities. We also note the relative abundance of spontaneous reactions in specialized metabolism, and the potential advantage of engineering enzymes that will catalyze these steps. Specialized metabolism therefore offers new opportunities to integrate enzyme and pathway engineering, thereby achieving higher metabolic efficiencies, enhanced production rates and improved product purities.
Collapse
Affiliation(s)
- Arren Bar-Even
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
31
|
Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Appl Microbiol Biotechnol 2012; 97:143-52. [PMID: 22851018 PMCID: PMC3536970 DOI: 10.1007/s00253-012-4314-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 11/02/2022]
Abstract
In this study, the potential of Corynebacterium glutamicum for reductive whole-cell biotransformation is shown. The NADPH-dependent reduction of the prochiral methyl acetoacetate (MAA) to the chiral (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis (Lbadh) was used as model reaction and glucose served as substrate for the regeneration of NADPH. Since NADPH is mainly formed in the oxidative branch of the pentose phosphate pathway (PPP), C. glutamicum was engineered to redirect carbon flux towards the PPP. Mutants lacking the genes for 6-phosphofructokinase (pfkA) or glyceraldehyde 3-phosphate dehydrogenase (gapA) were constructed and analyzed with respect to growth, enzyme activities, and biotransformation performance. Both mutants showed strong growth defects in glucose minimal medium. For biotransformation of MAA to MHB using glucose as reductant, strains were transformed with an Lbadh expression plasmid. The wild type showed a specific MHB production rate of 3.1 mmol(MHB) h(-1) g (cdw) (-1) and a yield of 2.7 mol(MHB) mol (glucose) (-1) . The ∆pfkA mutant showed a similar MHB production rate, but reached a yield of 4.8 mol(MHB) mol (glucose) (-1) , approaching the maximal value of 6 mol(NADPH) mol (glucose) (-1) expected for a partially cyclized PPP. The specific biotransformation rate of the ΔgapA mutant was decreased by 62 % compared to the other strains, but the yield was increased to 7.9 mol(MHB) mol (glucose) (-1) , which to our knowledge is the highest one reported so far for this mode of NADPH regeneration. As one fourth of the glucose was converted to glycerol, the experimental yield was close to the theoretically maximal yield of 9 mol(NADPH) mol (glucose) (-1) .
Collapse
|
32
|
Slessor KE, Hawkes DB, Farlow A, Pearson AG, Stok JE, De Voss JJ. An in vivo cytochrome P450cin (CYP176A1) catalytic system for metabolite production. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Nguyen KT, Virus C, Günnewich N, Hannemann F, Bernhardt R. Changing the Regioselectivity of a P450 from C15 to C11 Hydroxylation of Progesterone. Chembiochem 2012; 13:1161-6. [DOI: 10.1002/cbic.201100811] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Indexed: 11/11/2022]
|
34
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
35
|
Whole-cell hydroxylation of n-octane by Escherichia coli strains expressing the CYP153A6 operon. Appl Microbiol Biotechnol 2012; 96:1507-16. [PMID: 22410745 DOI: 10.1007/s00253-012-3984-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/11/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
CYP153A6 is a well-studied terminal alkane hydroxylase which has previously been expressed in Pseudomonas putida and Escherichia coli by using the pCom8 plasmid. In this study, CYP153A6 was successfully expressed in E. coli BL21(DE3) by cloning the complete operon from Mycobacterium sp. HXN-1500, also encoding the ferredoxin reductase and ferredoxin, into pET28b(+). LB medium with IPTG as well as auto-induction medium was used to express the proteins under the T7 promoter. A maximum concentration of 1.85 μM of active CYP153A6 was obtained when using auto-induction medium, while with IPTG induction of LB cultures, the P450 concentration peaked at 0.6-0.8 μM. Since more biomass was produced in auto-induction medium, the specific P450 content was often almost the same, 0.5-1.0 μmol P450 g (DCW)⁻¹, for both methods. Analytical scale whole-cell biotransformations of n-octane were conducted with resting cells, and it was found that high P450 content in biomass did not necessarily result in high octanol production. Whole cells from LB cultures induced with IPTG gave higher specific and volumetric octanol formation rates than biomass from auto-induction medium. A maximum of 8.7 g octanol L (BRM)⁻¹ was obtained within 24 h (0.34 g L (BRM)⁻¹ h⁻¹) with IPTG-induced cells containing only 0.20 μmol P450 g (DCW)⁻¹, when glucose (22 g L (BRM)⁻¹) was added for cofactor regeneration.
Collapse
|
36
|
Zhang W, Modén O, Tars K, Mannervik B. Structure-Based Redesign of GST A2-2 for Enhanced Catalytic Efficiency with Azathioprine. ACTA ACUST UNITED AC 2012; 19:414-21. [DOI: 10.1016/j.chembiol.2012.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/08/2012] [Accepted: 01/10/2012] [Indexed: 11/25/2022]
|
37
|
Urlacher VB, Girhard M. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 2012; 30:26-36. [DOI: 10.1016/j.tibtech.2011.06.012] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 01/14/2023]
|
38
|
Julsing MK, Kuhn D, Schmid A, Bühler B. Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition. Biotechnol Bioeng 2011; 109:1109-19. [DOI: 10.1002/bit.24404] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/24/2011] [Accepted: 11/28/2011] [Indexed: 11/07/2022]
|
39
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
40
|
Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport. Appl Microbiol Biotechnol 2011; 93:1459-67. [PMID: 22002070 PMCID: PMC3275745 DOI: 10.1007/s00253-011-3626-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/12/2011] [Accepted: 09/30/2011] [Indexed: 10/27/2022]
Abstract
Optimization of yields and productivities in reductive whole-cell biotransformations is an important issue for the industrial application of such processes. In a recent study with Escherichia coli, we analyzed the reduction of the prochiral β-ketoester methyl acetoacetate by an R-specific alcohol dehydrogenase (ADH) to the chiral hydroxy ester (R)-methyl 3-hydroxybutyrate (MHB) using glucose as substrate for the generation of NADPH. Deletion of the phosphofructokinase gene pfkA almost doubled the yield to 4.8 mol MHB per mole of glucose, and it was assumed that this effect was due to a partial cyclization of the pentose phosphate pathway (PPP). Here, this partial cyclization was confirmed by (13)C metabolic flux analysis, which revealed a negative net flux from glucose 6-phosphate to fructose 6-phosphate catalyzed by phosphoglucose isomerase. For further process optimization, the genes encoding the glucose facilitator (glf) and glucokinase (glk) of Zymomonas mobilis were overexpressed in recombinant E. coli strains carrying ADH and deletions of either pgi (phosphoglucose isomerase), or pfkA, or pfkA plus pfkB. In all cases, the glucose uptake rate was increased (30-47%), and for strains Δpgi and ΔpfkA also, the specific MHB production rate was increased by 15% and 20%, respectively. The yield of the latter two strains slightly dropped by 11% and 6%, but was still 73% and 132% higher compared to the reference strain with intact pgi and pfkA genes and expressing glf and glk. Thus, metabolic engineering strategies are presented for improving yield and rate of reductive redox biocatalysis by partial cyclization of the PPP and by increasing glucose uptake, respectively.
Collapse
|
41
|
Wong LL. P450BM3 on Steroids: The Swiss Army Knife P450 Enzyme Just Gets Better. Chembiochem 2011; 12:2537-9. [DOI: 10.1002/cbic.201100606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Indexed: 11/10/2022]
|
42
|
Pandit AV, Mahadevan R. In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microb Cell Fact 2011; 10:76. [PMID: 21967745 PMCID: PMC3215969 DOI: 10.1186/1475-2859-10-76] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 10/03/2011] [Indexed: 01/02/2023] Open
Abstract
Background A critical concern in metabolic engineering is the need to balance the demand and supply of redox intermediates such as NADH. Bioelectrochemical techniques offer a novel and promising method to alleviate redox imbalances during the synthesis of biochemicals and biofuels. Broadly, these techniques reduce intracellular NAD+ to NADH and therefore manipulate the cell's redox balance. The cellular response to such redox changes and the additional reducing power available to the cell can be harnessed to produce desired metabolites. In the context of microbial fermentation, these bioelectrochemical techniques can be used to improve product yields and/or productivity. Results We have developed a method to characterize the role of bioelectrosynthesis in chemical production using the genome-scale metabolic model of E. coli. The results in this paper elucidate the role of bioelectrosynthesis and its impact on biomass growth, cellular ATP yields and biochemical production. The results also suggest that strain design strategies can change for fermentation processes that employ microbial electrosynthesis and suggest that dynamic operating strategies lead to maximizing productivity. Conclusions The results in this paper provide a systematic understanding of the benefits and limitations of bioelectrochemical techniques for biochemical production and highlight how electrical enhancement can impact cellular metabolism and biochemical production.
Collapse
Affiliation(s)
- Aditya V Pandit
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | | |
Collapse
|
43
|
Siedler S, Bringer S, Bott M. Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol 2011; 92:929-37. [PMID: 21670981 DOI: 10.1007/s00253-011-3374-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 11/30/2022]
Abstract
A basic requirement for the efficiency of reductive whole-cell biotransformations is the reducing capacity of the host. Here, the pentose phosphate pathway (PPP) was applied for NADPH regeneration with glucose as the electron-donating co-substrate using Escherichia coli as host. Reduction of the prochiral β-keto ester methyl acetoacetate to the chiral hydroxy ester (R)-methyl 3-hydroxybutyrate (MHB) served as a model reaction, catalyzed by an R-specific alcohol dehydrogenase. The main focus was maximization of the reduced product per glucose yield of this pathway-coupled cofactor regeneration with resting cells. With a strain lacking the phosphoglucose isomerase, the yield of the reference strain was increased from 2.44 to 3.78 mol MHB/mol glucose. Even higher yields were obtained with strains lacking either phosphofructokinase I (4.79 mol MHB/mol glucose) or phosphofructokinase I and II (5.46 mol MHB/mol glucose). These results persuasively demonstrate the potential of NADPH generation by the PPP in whole-cell biotransformations.
Collapse
Affiliation(s)
- Solvej Siedler
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425, Jülich, Germany
| | | | | |
Collapse
|
44
|
Jung ST, Lauchli R, Arnold FH. Cytochrome P450: taming a wild type enzyme. Curr Opin Biotechnol 2011; 22:809-17. [PMID: 21411308 DOI: 10.1016/j.copbio.2011.02.008] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 02/11/2011] [Indexed: 11/18/2022]
Abstract
Protein engineering of cytochrome P450 monooxygenases (P450s) has been very successful in generating valuable non-natural activities and properties, allowing these powerful catalysts to be used for the synthesis of drug metabolites and in biosynthetic pathways for the production of precursors of artemisinin and paclitaxel. Collected experience indicates that the P450s are highly 'evolvable' - they are particularly robust to mutation in their active sites and readily accept new substrates and exhibit new selectivities. Their ability to adapt to new challenges upon mutation may reflect the nonpolar nature of their active sites as well as their high degree of conformational variability.
Collapse
Affiliation(s)
- Sang Taek Jung
- Divison of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|