1
|
Wang G, Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T. Increased accumulation of fatty acids in engineered Saccharomyces cerevisiae by co-overexpression of interorganelle tethering protein and lipases. N Biotechnol 2024; 85:S1871-6784(24)00558-2. [PMID: 39613152 DOI: 10.1016/j.nbt.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/27/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Fatty acids (FAs) and their derivatives are versatile chemicals widely used in various industries. Synthetic biology, using microbial cell factories, emerges as a promising alternative technology for FA production. To enhance the production capacity of these microbial chassis, additional engineering strategies are imperative. Based on the comparison of the morphological changes of lipid droplets (LDs) between oleaginous and non-oleaginous yeasts, we developed a new engineering strategy to increase the accumulation of FAs in Saccharomyces cerevisiae through manipulation of regulation factor and lipases related to LD. The increased biogenesis of LDs, achieved by overexpressing the interorganelle tethering protein Mdm1, coupled with the accelerated degradation of LDs through upregulated lipases, resulted in a 10.70-fold increase in total FAs production. Co-overexpression of Mdm1 and selected lipases significantly improved the biosynthesis of FAs and linoleic acid in the engineered S. cerevisiae. The efficient LD-based metabolic engineering strategy presented in this study holds the potential to advance the high-level production of FAs and their derivatives in microbial cell factories.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
2
|
Zheng W, Wang Y, Cui J, Guo G, Li Y, Hou J, Tu Q, Yin Y, Stewart F, Zhang Y, Bian X, Wang X. ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism. Nat Commun 2024; 15:9790. [PMID: 39532871 PMCID: PMC11557832 DOI: 10.1038/s41467-024-54191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (Recombineering and Linear CRISPR/Cas9 assisted Multiplex Genome Engineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into E. coli, Schlegelella brevitalea and Pseudomonas putida genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt S. brevitalea to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.
Collapse
Affiliation(s)
- Wentao Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
- Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Guangdong, P. R. China
| | - Yuxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jie Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Guangyao Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yufeng Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | | | - Francis Stewart
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, Dresden, Germany.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| |
Collapse
|
3
|
Li L, Deng A, Liu S, Wang J, Shi R, Wang T, Cui D, Bai H, Zhang Y, Wen T. A Universal Method for Developing Autoinduction Expression Systems Using AHL-Mediated Quorum-Sensing Circuits. ACS Synth Biol 2022; 11:3114-3119. [PMID: 36000977 DOI: 10.1021/acssynbio.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A major challenge in engineering microorganisms for the desirable product is maintaining the rational balance between cell growth and production. Quorum sensing (QS)-based dynamic regulations provide a pathway-independent genetic control technology to rebalance metabolic flux for biomass and product synthesis. However, the lack of a universal method for screening QS elements and the complex design of autoinduction circuits limit their applications in metabolic engineering. Here, we developed a universal method for simple and rapid screening and evaluating various QS systems from Gram-negative bacteria, and the largest library containing 195 combinations of receiving device/signal molecules was constructed and evaluated in Escherichia coli. A simple logical circuit with different inducer synthesis rates was established to dynamically regulate gene expression levels, leading to efficient protein expression and product synthesis. The system was further applied in Pseudomonas putida, which indicated it could be widely accommodated in other microorganisms. Therefore, the method could be used in diverse Gram-negative strains for the desired biosynthesis.
Collapse
Affiliation(s)
- Lai Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,China Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyue Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ruilin Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tiantian Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Cui
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,China Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Li Y, Zhai X, Yu W, Feng D, Shah AA, Gao J, Zhou YJ. Production of free fatty acids from various carbon sources by Ogataea polymorpha. BIORESOUR BIOPROCESS 2022; 9:78. [PMID: 38647893 PMCID: PMC10992350 DOI: 10.1186/s40643-022-00566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
Energy shortage and environmental concern urgently require establishing the feasible bio-refinery process from various feedstocks. The methylotrophic yeast Ogataea polymorpha is thermo-tolerant and can utilize various carbon sources, such as glucose, xylose and methanol, which makes it a promising host for bio-manufacturing. Here, we explored the capacity of O. polymorpha for overproduction of free fatty acids (FFAs) from multiple substrates. The engineered yeast produced 674 mg/L FFA from 20 g/L glucose in shake flask and could sequentially utilize the mixture of glucose and xylose. However, the FFA producing strain failed to survive in sole methanol and supplementing co-substrate xylose promoted methanol metabolism. A synergistic utilization of xylose and methanol was observed in the FFA producing strain. Finally, a mixture of glucose, xylose and methanol was evaluated for FFA production (1.2 g/L). This study showed that O. polymorpha is an ideal host for chemical production from various carbon sources.
Collapse
Affiliation(s)
- Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - XiaoXin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dao Feng
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
5
|
Microbial pathways for advanced biofuel production. Biochem Soc Trans 2022; 50:987-1001. [PMID: 35411379 PMCID: PMC9162456 DOI: 10.1042/bst20210764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 01/16/2023]
Abstract
Decarbonisation of the transport sector is essential to mitigate anthropogenic climate change. Microbial metabolisms are already integral to the production of renewable, sustainable fuels and, building on that foundation, are being re-engineered to generate the advanced biofuels that will maintain mobility of people and goods during the energy transition. This review surveys the range of natural and engineered microbial systems for advanced biofuels production and summarises some of the techno-economic challenges associated with their implementation at industrial scales.
Collapse
|
6
|
Ahmed MS, Lauersen KJ, Ikram S, Li C. Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synth Biol 2021; 10:646-669. [PMID: 33751883 DOI: 10.1021/acssynbio.0c00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic engineering of microbial hosts for the production of heterologous metabolites and biochemicals is an enabling technology to generate meaningful quantities of desired products that may be otherwise difficult to produce by traditional means. Heterologous metabolite production can be restricted by the accumulation of toxic products within the cell. Efflux transport proteins (transporters) provide a potential solution to facilitate the export of these products, mitigate toxic effects, and enhance production. Recent investigations using knockout lines, heterologous expression, and expression profiling of transporters have revealed candidates that can enhance the export of heterologous metabolites from microbial cell systems. Transporter engineering efforts have revealed that some exhibit flexible substrate specificity and may have broader application potentials. In this Review, the major superfamilies of efflux transporters, their mechanistic modes of action, selection of appropriate efflux transporters for desired compounds, and potential transporter engineering strategies are described for potential applications in enhancing engineered microbial metabolite production. Future studies in substrate recognition, heterologous expression, and combinatorial engineering of efflux transporters will assist efforts to enhance heterologous metabolite production in microbial hosts.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Abid Majeed Road, The Mall, Rawalpindi 46000, Pakistan
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Sana Ikram
- Beijing Higher Institution Engineering Research Center for Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
7
|
Liu Y, Benitez MG, Chen J, Harrison E, Khusnutdinova AN, Mahadevan R. Opportunities and Challenges for Microbial Synthesis of Fatty Acid-Derived Chemicals (FACs). Front Bioeng Biotechnol 2021; 9:613322. [PMID: 33575251 PMCID: PMC7870715 DOI: 10.3389/fbioe.2021.613322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Global warming and uneven distribution of fossil fuels worldwide concerns have spurred the development of alternative, renewable, sustainable, and environmentally friendly resources. From an engineering perspective, biosynthesis of fatty acid-derived chemicals (FACs) is an attractive and promising solution to produce chemicals from abundant renewable feedstocks and carbon dioxide in microbial chassis. However, several factors limit the viability of this process. This review first summarizes the types of FACs and their widely applications. Next, we take a deep look into the microbial platform to produce FACs, give an outlook for the platform development. Then we discuss the bottlenecks in metabolic pathways and supply possible solutions correspondingly. Finally, we highlight the most recent advances in the fast-growing model-based strain design for FACs biosynthesis.
Collapse
Affiliation(s)
- Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mauricio Garcia Benitez
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Emma Harrison
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Li S, Zhang Q, Wang J, Liu Y, Zhao Y, Deng Y. Recent progress in metabolic engineering of Saccharomyces cerevisiae for the production of malonyl-CoA derivatives. J Biotechnol 2020; 325:83-90. [PMID: 33278463 DOI: 10.1016/j.jbiotec.2020.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
To reduce dependence on petroleum, the biosynthesis of important chemicals from simple substrates using industrial microorganisms has attracted increased attention. Metabolic engineering of Saccharomyces cerevisiae offers a sustainable and flexible alternative for the production of various chemicals. As a key metabolic intermediate, malonyl-CoA is a precursor for many useful compounds. However, the productivity of malonyl-CoA derivatives is restricted by the low cellular level of malonyl-CoA and enzymatic performance. In this review, we focused on how to increase the intracellular malonyl-CoA level and summarize the recent advances in different metabolic engineering strategies for directing intracellular malonyl-CoA to the desired malonyl-CoA derivatives, including strengthening the malonyl-CoA supply, reducing malonyl-CoA consumption, and precisely controlling the intracellular malonyl-CoA level. These strategies provided new insights for further improving the synthesis of malonyl-CoA derivatives in microorganisms.
Collapse
Affiliation(s)
- Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiyue Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Nies SC, Alter TB, Nölting S, Thiery S, Phan ANT, Drummen N, Keasling JD, Blank LM, Ebert BE. High titer methyl ketone production with tailored Pseudomonas taiwanensis VLB120. Metab Eng 2020; 62:84-94. [PMID: 32810591 DOI: 10.1016/j.ymben.2020.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq-1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq-1 methyl ketones (corresponding to 69.3 g Lorg-1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.
Collapse
Affiliation(s)
- Salome C Nies
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Tobias B Alter
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Sophia Nölting
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Susanne Thiery
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - An N T Phan
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Noud Drummen
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark; Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA; Virtual Institute of Microbial Stress and Survival, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Dept. of Bioengineering, University of California, Berkeley, CA, 94720, USA; Dept. of Chemical Engineering, University of California, Berkeley, CA, 94720, USA; Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Birgitta E Ebert
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia.
| |
Collapse
|
10
|
Venkateswar Reddy M, Kumar G, Mohanakrishna G, Shobana S, Al-Raoush RI. Review on the production of medium and small chain fatty acids through waste valorization and CO 2 fixation. BIORESOURCE TECHNOLOGY 2020; 309:123400. [PMID: 32371319 DOI: 10.1016/j.biortech.2020.123400] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
The developing approaches in the recovery of resources from biowastes for the production of renewable value-added products and fuels, using microbial cultures as bio-catalyst have now became promising aspect. In the path of anaerobic digestion, the microorganisms are assisting transformation of a complex organic feedstock/waste to biomass and biogas. This potentiality consequently leads to the production of intermediate precursors of renewable value-added products. Particularly, a set of anaerobic pathways in the fermentation process, yields small-chain fatty acids (SCFA), and medium-chain fatty acids (MCFA) via chain elongation pathways from waste valorization and CO2 fixation. This review focuses on the production of SCFA and MCFA from CO2, synthetic substrates and waste materials. Moreover, the review introduces the metabolic engineering of Escherichia coli and Saccharomyces cerevisiae for SCFAs/MCFAs production. Furtherly, it concludes that future critical research might target progress of this promising approach as a valorization of complex organic wastes.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität, Corrensstr. 3, 48149 Münster, Germany
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gunda Mohanakrishna
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P O Box 2713, Doha, Qatar.
| | - Sutha Shobana
- Department of Chemistry & Research Centre, Mohamed Sathak Engineering College, Kilakarai, 623 806 Ramanathapuram, Tamil Nadu, India
| | - Riyadh I Al-Raoush
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P O Box 2713, Doha, Qatar
| |
Collapse
|
11
|
Chen Y, Boggess EE, Ocasio ER, Warner A, Kerns L, Drapal V, Gossling C, Ross W, Gourse RL, Shao Z, Dickerson J, Mansell TJ, Jarboe LR. Reverse engineering of fatty acid-tolerant Escherichia coli identifies design strategies for robust microbial cell factories. Metab Eng 2020; 61:120-130. [PMID: 32474056 DOI: 10.1016/j.ymben.2020.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/05/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
Adaptive laboratory evolution is often used to improve the performance of microbial cell factories. Reverse engineering of evolved strains enables learning and subsequent incorporation of novel design strategies via the design-build-test-learn cycle. Here, we reverse engineer a strain of Escherichia coli previously evolved for increased tolerance of octanoic acid (C8), an attractive biorenewable chemical, resulting in increased C8 production, increased butanol tolerance, and altered membrane properties. Here, evolution was determined to have occurred first through the restoration of WaaG activity, involved in the production of lipopolysaccharides, then an amino acid change in RpoC, a subunit of RNA polymerase, and finally mutation of the BasS-BasR two component system. All three mutations were required in order to reproduce the increased growth rate in the presence of 20 mM C8 and increased cell surface hydrophobicity; the WaaG and RpoC mutations both contributed to increased C8 titers, with the RpoC mutation appearing to be the major driver of this effect. Each of these mutations contributed to changes in the cell membrane. Increased membrane integrity and rigidity and decreased abundance of extracellular polymeric substances can be attributed to the restoration of WaaG. The increase in average lipid tail length can be attributed to the RpoCH419P mutation, which also confers tolerance to other industrially-relevant inhibitors, such as furfural, vanillin and n-butanol. The RpoCH419P mutation may impact binding or function of the stringent response alarmone ppGpp to RpoC site 1. Each of these mutations provides novel strategies for engineering microbial robustness, particularly at the level of the microbial cell membrane.
Collapse
Affiliation(s)
- Yingxi Chen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Erin E Boggess
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA; Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Efrain Rodriguez Ocasio
- NSF Center for Biorenewable Chemicals (CBiRC) Research Experience for Undergraduates, Ames, IA, 50011, USA; Industrial Biotechnology Program, University of Puerto Rico Mayagüez, 00681, Puerto Rico
| | - Aric Warner
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Lucas Kerns
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Victoria Drapal
- NSF Center for Biorenewable Chemicals (CBiRC) Research Experience for Undergraduates, Ames, IA, 50011, USA; Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68508, USA
| | - Chloe Gossling
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Julie Dickerson
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA; Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, 50011, USA.
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
12
|
Building cell factories for the production of advanced fuels. Biochem Soc Trans 2020; 47:1701-1714. [PMID: 31803925 DOI: 10.1042/bst20190168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
Abstract
Synthetic biology-based engineering strategies are being extensively employed for microbial production of advanced fuels. Advanced fuels, being comparable in energy efficiency and properties to conventional fuels, have been increasingly explored as they can be directly incorporated into the current fuel infrastructure without the need for reconstructing the pre-existing set-up rendering them economically viable. Multiple metabolic engineering approaches have been used for rewiring microbes to improve existing or develop newly programmed cells capable of efficient fuel production. The primary challenge in using these approaches is improving the product yield for the feasibility of the commercial processes. Some of the common roadblocks towards enhanced fuel production include - limited availability of flux towards precursors and desired pathways due to presence of competing pathways, limited cofactor and energy supply in cells, the low catalytic activity of pathway enzymes, obstructed product transport, and poor tolerance of host cells for end products. Consequently, despite extensive studies on the engineering of microbial hosts, the costs of industrial-scale production of most of these heterologously produced fuel compounds are still too high. Though considerable progress has been made towards successfully producing some of these biofuels, a substantial amount of work needs to be done for improving the titers of others. In this review, we have summarized the different engineering strategies that have been successfully used for engineering pathways into commercial hosts for the production of advanced fuels and different approaches implemented for tuning host strains and pathway enzymes for scaling up production levels.
Collapse
|
13
|
Kassab E, Fuchs M, Haack M, Mehlmer N, Brueck TB. Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids. Microb Cell Fact 2019; 18:163. [PMID: 31581944 PMCID: PMC6777021 DOI: 10.1186/s12934-019-1217-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background Sustainable production of microbial fatty acids derivatives has the potential to replace petroleum based equivalents in the chemical, cosmetic and pharmaceutical industry. Most fatty acid sources for production oleochemicals are currently plant derived. However, utilization of these crops are associated with land use change and food competition. Microbial oils could be an alternative source of fatty acids, which circumvents the issue with agricultural competition. Results In this study, we generated a chimeric microbial production system that features aspects of both prokaryotic and eukaryotic fatty acid biosynthetic pathways targeted towards the generation of long chain fatty acids. We redirected the type-II fatty acid biosynthetic pathway of Escherichia coli BL21 (DE3) strain by incorporating two homologues of the beta-ketoacyl-[acyl carrier protein] synthase I and II from the chloroplastic fatty acid biosynthetic pathway of Arabidopsis thaliana. The microbial clones harboring the heterologous pathway yielded 292 mg/g and 220 mg/g DCW for KAS I and KAS II harboring plasmids respectively. Surprisingly, beta-ketoacyl synthases KASI/II isolated from A. thaliana showed compatibility with the FAB pathway in E. coli. Conclusion The efficiency of the heterologous plant enzymes supersedes the overexpression of the native enzyme in the E. coli production system, which leads to cell death in fabF overexpression and fabB deletion mutants. The utilization of our plasmid based system would allow generation of plant like fatty acids in E. coli and their subsequent chemical or enzymatic conversion to high end oleochemical products.
Collapse
Affiliation(s)
- Elias Kassab
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Monika Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Thomas B Brueck
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany.
| |
Collapse
|
14
|
Heil CS, Wehrheim SS, Paithankar KS, Grininger M. Fatty Acid Biosynthesis: Chain‐Length Regulation and Control. Chembiochem 2019; 20:2298-2321. [DOI: 10.1002/cbic.201800809] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Christina S. Heil
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - S. Sophia Wehrheim
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| |
Collapse
|
15
|
Kim HM, Chae TU, Choi SY, Kim WJ, Lee SY. Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat Chem Biol 2019; 15:721-729. [DOI: 10.1038/s41589-019-0295-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 04/18/2019] [Indexed: 12/19/2022]
|
16
|
Yan Q, Pfleger BF. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 2019; 58:35-46. [PMID: 31022535 DOI: 10.1016/j.ymben.2019.04.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/20/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
Microbial production of oleochemicals from renewable feedstocks remains an attractive route to produce high-energy density, liquid transportation fuels and high-value chemical products. Metabolic engineering strategies have been applied to demonstrate production of a wide range of oleochemicals, including free fatty acids, fatty alcohols, esters, olefins, alkanes, ketones, and polyesters in both bacteria and yeast. The majority of these demonstrations synthesized products containing long-chain fatty acids. These successes motivated additional effort to produce analogous molecules comprised of medium-chain fatty acids, molecules that are less common in natural oils and therefore of higher commercial value. Substantial progress has been made towards producing a subset of these chemicals, but significant work remains for most. The other primary challenge to producing oleochemicals in microbes is improving the performance, in terms of yield, rate, and titer, of biocatalysts such that economic large-scale processes are feasible. Common metabolic engineering strategies include blocking pathways that compete with synthesis of oleochemical building blocks and/or consume products, pulling flux through pathways by removing regulatory signals, pushing flux into biosynthesis by overexpressing rate-limiting enzymes, and engineering cells to tolerate the presence of oleochemical products. In this review, we describe the basic fundamentals of oleochemical synthesis and summarize advances since 2013 towards improving performance of heterotrophic microbial cell factories.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
17
|
Zhang Y, Wang J, Wang Z, Zhang Y, Shi S, Nielsen J, Liu Z. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun 2019; 10:1053. [PMID: 30837474 PMCID: PMC6400946 DOI: 10.1038/s41467-019-09005-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 12/26/2022] Open
Abstract
With rapid progress in DNA synthesis and sequencing, strain engineering starts to be the rate-limiting step in synthetic biology. Here, we report a gRNA-tRNA array for CRISPR-Cas9 (GTR-CRISPR) for multiplexed engineering of Saccharomyces cerevisiae. Using reported gRNAs shown to be effective, this system enables simultaneous disruption of 8 genes with 87% efficiency. We further report an accelerated Lightning GTR-CRISPR that avoids the cloning step in Escherichia coli by directly transforming the Golden Gate reaction mix to yeast. This approach enables disruption of 6 genes in 3 days with 60% efficiency using reported gRNAs and 23% using un-optimized gRNAs. Moreover, we applied the Lightning GTR-CRISPR to simplify yeast lipid networks, resulting in a 30-fold increase in free fatty acid production in 10 days using just two-round deletions of eight previously identified genes. The GTR-CRISPR should be an invaluable addition to the toolbox of synthetic biology and automation.
Collapse
Affiliation(s)
- Yueping Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Juan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zibai Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Lyngby, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
18
|
Microbial Production of Fatty Acid via Metabolic Engineering and Synthetic Biology. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Abstract
Biocatalytic systems (e.g., multienzyme pathways or complexes) enable the conversion of simple sugars into complex products under ambient conditions and, thus, represent promising platforms for the synthesis of renewable fuels and chemicals. Unfortunately, to date, many of these systems have proven difficult to engineer without a detailed understanding of the kinetic relationships that regulate the concerted action of their constituent enzymes. This study develops a mechanistic kinetic model of the fatty acid synthase (FAS) of Escherichia coli and uses that model to determine how different FAS components work together to control the production of free fatty acids-precursors to a wide range of oleochemicals. Perturbational analyses indicate that the modification or overexpression of a single FAS component can depress fatty acid production (a commonly observed phenomenon) by sequestering the proteins with which it interacts and/or by depleting common substrate pools. Compositional studies, in turn, suggest that simple changes in the ratios of FAS components can alter the average length of fatty acids but show that specialized enzymes (i.e., highly specific ketoacyl synthases or thioesterases) are required for narrow product profiles. Intriguingly, a sensitivity analysis indicates that two components primarily influence-and, thus, enable fine control over-total production, but suggests that the enzymes that regulate product profile are more broadly influential. Findings thus reveal the general importance of kinetic considerations in efforts to engineer fatty acid biosynthesis and provide strategies-and a kinetic model-for incorporating those considerations into FAS designs.
Collapse
Affiliation(s)
- Sophia Ruppe
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
20
|
Koduru L, Lakshmanan M, Lee DY. In silico model-guided identification of transcriptional regulator targets for efficient strain design. Microb Cell Fact 2018; 17:167. [PMID: 30359263 PMCID: PMC6201637 DOI: 10.1186/s12934-018-1015-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/20/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cellular metabolism is tightly regulated by hard-wired multiple layers of biological processes to achieve robust and homeostatic states given the limited resources. As a result, even the most intuitive enzyme-centric metabolic engineering endeavours through the up-/down-regulation of multiple genes in biochemical pathways often deliver insignificant improvements in the product yield. In this regard, targeted engineering of transcriptional regulators (TRs) that control several metabolic functions in modular patterns is an interesting strategy. However, only a handful of in silico model-added techniques are available for identifying the TR manipulation candidates, thus limiting its strain design application. RESULTS We developed hierarchical-Beneficial Regulatory Targeting (h-BeReTa) which employs a genome-scale metabolic model and transcriptional regulatory network (TRN) to identify the relevant TR targets suitable for strain improvement. We then applied this method to industrially relevant metabolites and cell factory hosts, Escherichia coli and Corynebacterium glutamicum. h-BeReTa suggested several promising TR targets, many of which have been validated through literature evidences. h-BeReTa considers the hierarchy of TRs in the TRN and also accounts for alternative metabolic pathways which may divert flux away from the product while identifying suitable metabolic fluxes, thereby performing superior in terms of global TR target identification. CONCLUSIONS In silico model-guided strain design framework, h-BeReTa, was presented for identifying transcriptional regulator targets. Its efficacy and applicability to microbial cell factories were successfully demonstrated via case studies involving two cell factory hosts, as such suggesting several intuitive targets for overproducing various value-added compounds.
Collapse
Affiliation(s)
- Lokanand Koduru
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore.
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
21
|
Lessons in Membrane Engineering for Octanoic Acid Production from Environmental Escherichia coli Isolates. Appl Environ Microbiol 2018; 84:AEM.01285-18. [PMID: 30030228 DOI: 10.1128/aem.01285-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023] Open
Abstract
Fermentative production of many attractive biorenewable fuels and chemicals is limited by product toxicity in the form of damage to the microbial cell membrane. Metabolic engineering of the production organism can help mitigate this problem, but there is a need for identification and prioritization of the most effective engineering targets. Here, we use a set of previously characterized environmental Escherichia coli isolates with high tolerance and production of octanoic acid, a model membrane-damaging biorenewable product, as a case study for identifying and prioritizing membrane engineering strategies. This characterization identified differences in the membrane lipid composition, fluidity, integrity, and cell surface hydrophobicity from those of the lab strain MG1655. Consistent with previous publications, decreased membrane fluidity was associated with increased fatty acid production ability. Maintenance of high membrane integrity or longer membrane lipids seemed to be of less importance than fluidity. Cell surface hydrophobicity was also directly associated with fatty acid production titers, with the strength of this association demonstrated by plasmid-based expression of the multiple stress resistance outer membrane protein BhsA. This expression of bhsA was effective in altering hydrophobicity, but the direction and magnitude of the change differed between strains. Thus, additional strategies are needed to reliably engineer cell surface hydrophobicity. This work demonstrates the ability of environmental microbiological studies to impact the metabolic engineering design-build-test-learn cycle and possibly increase the economic viability of fermentative bioprocesses.IMPORTANCE The production of bulk fuels and chemicals in a bio-based fermentation process requires high product titers. This is often difficult to achieve, because many of the target molecules damage the membrane of the microbial cell factory. Engineering the composition of the membrane in order to decrease its vulnerability to this damage has proven to be an effective strategy for improving bioproduction, but additional strategies and engineering targets are needed. Here, we studied a small set of environmental Escherichia coli isolates that have higher production titers of octanoic acid, a model biorenewable chemical, than those of the lab strain MG1655. We found that membrane fluidity and cell surface hydrophobicity are strongly associated with improved octanoic acid production. Fewer genetic modification strategies have been demonstrated for tuning hydrophobicity relative to fluidity, leading to the conclusion that there is a need for expanding hydrophobicity engineering strategies in E. coli.
Collapse
|
22
|
Kelwick R, Ricci L, Chee SM, Bell D, Webb AJ, Freemont PS. Cell-free prototyping strategies for enhancing the sustainable production of polyhydroxyalkanoates bioplastics. Synth Biol (Oxf) 2018; 3:ysy016. [PMID: 32995523 PMCID: PMC7445755 DOI: 10.1093/synbio/ysy016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 07/29/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
The polyhydroxyalkanoates (PHAs) are microbially-produced biopolymers that could potentially be used as sustainable alternatives to oil-derived plastics. However, PHAs are currently more expensive to produce than oil-derived plastics. Therefore, more efficient production processes would be desirable. Cell-free metabolic engineering strategies have already been used to optimize several biosynthetic pathways and we envisioned that cell-free strategies could be used for optimizing PHAs biosynthetic pathways. To this end, we developed several Escherichia coli cell-free systems for in vitro prototyping PHAs biosynthetic operons, and also for screening relevant metabolite recycling enzymes. Furthermore, we customized our cell-free reactions through the addition of whey permeate, an industrial waste that has been previously used to optimize in vivo PHAs production. We found that the inclusion of an optimal concentration of whey permeate enhanced relative cell-free GFPmut3b production by approximately 50%. In cell-free transcription-translation prototyping reactions, gas chromatography-mass spectrometry quantification of cell-free 3-hydroxybutyrate (3HB) production revealed differences between the activities of the Native ΔPhaC_C319A (1.18 ± 0.39 µM), C104 ΔPhaC_C319A (4.62 ± 1.31 µM) and C101 ΔPhaC_C319A (2.65 ± 1.27 µM) phaCAB operons that were tested. Interestingly, the most active operon, C104 produced higher levels of PHAs (or PHAs monomers) than the Native phaCAB operon in both in vitro and in vivo assays. Coupled cell-free biotransformation/transcription-translation reactions produced greater yields of 3HB (32.87 ± 6.58 µM), and these reactions were also used to characterize a Clostridium propionicum Acetyl-CoA recycling enzyme. Together, these data demonstrate that cell-free approaches complement in vivo workflows for identifying additional strategies for optimizing PHAs production.
Collapse
Affiliation(s)
- Richard Kelwick
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK
| | - Luca Ricci
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Soo Mei Chee
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- The London DNA Foundry, Imperial College London, London, UK
| | - David Bell
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- The London DNA Foundry, Imperial College London, London, UK
| | - Alexander J Webb
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK
| | - Paul S Freemont
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK
- The London DNA Foundry, Imperial College London, London, UK
| |
Collapse
|
23
|
Tan Z, Clomburg JM, Gonzalez R. Synthetic Pathway for the Production of Olivetolic Acid in Escherichia coli. ACS Synth Biol 2018; 7:1886-1896. [PMID: 29976061 DOI: 10.1021/acssynbio.8b00075] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type III polyketide synthases (PKS IIIs) contribute to the synthesis of many economically important natural products, most of which are currently produced by direct extraction from plants or through chemical synthesis. Olivetolic acid (OLA) is a plant secondary metabolite sourced from PKS III catalysis, which along with its prenylated derivatives has various pharmacological activities. To demonstrate the potential for microbial cell factories to circumvent limitations of plant extraction or chemical synthesis for OLA, here we utilize a synthetic approach to engineer Escherichia coli for the production of OLA. In vitro characterization of polyketide synthase and cyclase enzymes, OLA synthase and OLA cyclase, respectively, validated their requirement as enzymatic components of the OLA pathway and confirmed the ability for these eukaryotic enzymes to be functionally expressed in E. coli. This served as a platform for the combinatorial expression of these enzymes with auxiliary enzymes aimed at increasing the supply of hexanoyl-CoA and malonyl-CoA as starting and extender units, respectively. Through combining OLA synthase and OLA cyclase expression with the required modules of a β-oxidation reversal for hexanoyl-CoA generation, we demonstrate the in vivo synthesis of olivetolic acid from a single carbon source. The integration of additional auxiliary enzymes to increase hexanoyl-CoA and malonyl-CoA, along with evaluation of varying fermentation conditions enabled the synthesis of 80 mg/L OLA. This is the first report of OLA production in E. coli, adding a new example to the repertoire of valuable compounds synthesized in this industrial workhorse.
Collapse
Affiliation(s)
- Zaigao Tan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - James M. Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
24
|
Yu T, Zhou YJ, Huang M, Liu Q, Pereira R, David F, Nielsen J. Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Cell 2018; 174:1549-1558.e14. [PMID: 30100189 DOI: 10.1016/j.cell.2018.07.013] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Accepted: 07/09/2018] [Indexed: 12/01/2022]
Abstract
Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of metabolism for optimal growth in the organism's natural habitat. Here, we show through metabolic engineering that it is possible to alter the metabolism of Saccharomyces cerevisiae from traditional ethanol fermentation to a pure lipogenesis metabolism, resulting in high-level production of free fatty acids. Through metabolic engineering and process design, we altered subcellular metabolic trafficking, fine-tuned NADPH and ATP supply, and decreased carbon flux to biomass, enabling production of 33.4 g/L extracellular free fatty acids. We further demonstrate that lipogenesis metabolism can replace ethanol fermentation by deletion of pyruvate decarboxylase enzymes followed by adaptive laboratory evolution. Genome sequencing of evolved strains showed that pyruvate kinase mutations were essential for this phenotype.
Collapse
Affiliation(s)
- Tao Yu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Yongjin J Zhou
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Mingtao Huang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Quanli Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Rui Pereira
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Florian David
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
25
|
Marcella AM, Barb AW. Acyl-coenzyme A:(holo-acyl carrier protein) transacylase enzymes as templates for engineering. Appl Microbiol Biotechnol 2018; 102:6333-6341. [PMID: 29858956 DOI: 10.1007/s00253-018-9114-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/18/2023]
Abstract
This review will cover the structure, enzymology, and related aspects that are important for structure-based engineering of the transacylase enzymes from fatty acid biosynthesis and polyketide synthesis. Furthermore, this review will focus on in vitro characteristics and not cover engineering of the upstream or downstream reactions or strategies to manipulate metabolic flux in vivo. The malonyl-coenzyme A(CoA)-holo-acyl-carrier protein (holo-ACP) transacylase (FabD) from Escherichia coli serves as a model for this enzyme with thorough descriptions of structure, enzyme mechanism, and effects of mutation on substrate binding presented in the literature. Here, we discuss multiple practical and theoretical considerations regarding engineering transacylase enzymes to accept non-cognate substrates and form novel acyl-ACPs for downstream reactions.
Collapse
Affiliation(s)
- Aaron M Marcella
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, rm 4210, Ames, IA, 50011, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, rm 4210, Ames, IA, 50011, USA.
| |
Collapse
|
26
|
Tan Z, Yoon JM, Chowdhury A, Burdick K, Jarboe LR, Maranas CD, Shanks JV. Engineering of E. coli inherent fatty acid biosynthesis capacity to increase octanoic acid production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:87. [PMID: 29619083 PMCID: PMC5879999 DOI: 10.1186/s13068-018-1078-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/13/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND As a versatile platform chemical, construction of microbial catalysts for free octanoic acid production from biorenewable feedstocks is a promising alternative to existing petroleum-based methods. However, the bio-production strategy has been restricted by the low capacity of E. coli inherent fatty acid biosynthesis. In this study, a combination of integrated computational and experimental approach was performed to manipulate the E. coli existing metabolic network, with the objective of improving bio-octanoic acid production. RESULTS First, a customized OptForce methodology was run to predict a set of four genetic interventions required for production of octanoic acid at 90% of the theoretical yield. Subsequently, all the ten candidate proteins associated with the predicted interventions were regulated individually, as well as in contrast to the combination of interventions as suggested by the OptForce strategy. Among these enzymes, increased production of 3-hydroxy-acyl-ACP dehydratase (FabZ) resulted in the highest increase (+ 45%) in octanoic acid titer. But importantly, the combinatorial application of FabZ with the other interventions as suggested by OptForce further improved octanoic acid production, resulting in a high octanoic acid-producing E. coli strain +fabZ ΔfadE ΔfumAC ΔackA (TE10) (+ 61%). Optimization of TE10 expression, medium pH, and C:N ratio resulted in the identified strain producing 500 mg/L of C8 and 805 mg/L of total FAs, an 82 and 155% increase relative to wild-type MG1655 (TE10) in shake flasks. The best engineered strain produced with high selectivity (> 70%) and extracellularly (> 90%) up to 1 g/L free octanoic acid in minimal medium fed-batch culture. CONCLUSIONS This work demonstrates the effectiveness of integration of computational strain design and experimental characterization as a starting point in rewiring metabolism for octanoic acid production. This result in conjunction with the results of other studies using OptForce in strain design demonstrates that this strategy may be also applicable to engineering E. coli for other customized bioproducts.
Collapse
Affiliation(s)
- Zaigao Tan
- Department of Chemical and Biological Engineering, Iowa State University, 3031 Sweeney, Ames, IA 50011 USA
| | - Jong Moon Yoon
- Department of Chemical and Biological Engineering, Iowa State University, 3031 Sweeney, Ames, IA 50011 USA
| | - Anupam Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Kaitlin Burdick
- Department of Chemical and Biological Engineering, Iowa State University, 3031 Sweeney, Ames, IA 50011 USA
| | - Laura R. Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, 3031 Sweeney, Ames, IA 50011 USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Jacqueline V. Shanks
- Department of Chemical and Biological Engineering, Iowa State University, 3031 Sweeney, Ames, IA 50011 USA
| |
Collapse
|
27
|
Feng Y, Wang Y, Liu J, Liu Y, Cao X, Xue S. Structural Insight into Acyl-ACP Thioesterase toward Substrate Specificity Design. ACS Chem Biol 2017; 12:2830-2836. [PMID: 28991437 DOI: 10.1021/acschembio.7b00641] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acyl-ACP thioesterase (TE) catalyzes the hydrolysis of thioester bonds during type II fatty acid synthesis and directly determines fatty acid chain length. Most TEs are responsible for recognition of 16:0 and 18:1 substrates, while specific TEs interrupt acyl-ACP elongation at C8-C14. However, the acyl selection mechanism of TE has not been thoroughly elucidated to date. In this study, the crystal structure of the C12-specific thioesterase FatB from Umbellularia californica, which consists of two independent hotdog domains, was determined. An uncanonical Asp-His-Glu catalytic network was identified on the C-terminal hotdog domain, whereas the substrate binding pocket was determined to be on the N-terminal hotdog domain. Moreover, we elucidated UcFatB's substrate selection mechanism, which is accommodated by several unconservative amino acids on the β5, β2, and β4 sheets and enclosed by T137 on the α1 helix. On this basis, the C12-specific TE was rationally redesigned toward C14 selectivity by tuning the substrate binding pocket capacity. The T137G mutant demonstrated comparative relative activity on C14 substrates compared to C12 substrates in vitro. Furthermore, the reconstructed UcFatB_T137G achieved C14 fatty acid content up to 40% in contrast to 10% C14 from the wild type in engineered E. coli cells. The unraveled substrate selection mechanism of TE provides a new strategy for tailoring fatty acid synthesis.
Collapse
Affiliation(s)
- Yanbin Feng
- Marine
Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yayue Wang
- Marine
Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Liu
- Marine
Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinghui Liu
- Marine
Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xupeng Cao
- Marine
Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Song Xue
- Marine
Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
28
|
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction. Biochem J 2017; 474:3935-3950. [PMID: 29146872 PMCID: PMC5688466 DOI: 10.1042/bcj20170377] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022]
Abstract
What does it take to convert a living organism into a truly productive biofactory? Apart from optimizing biosynthesis pathways as standalone units, a successful bioengineering approach must bend the endogenous metabolic network of the host, and especially its central metabolism, to support the bioproduction process. In practice, this usually involves three complementary strategies which include tuning-down or abolishing competing metabolic pathways, increasing the availability of precursors of the desired biosynthesis pathway, and ensuring high availability of energetic resources such as ATP and NADPH. In this review, we explore these strategies, focusing on key metabolic pathways and processes, such as glycolysis, anaplerosis, the TCA (tricarboxylic acid) cycle, and NADPH production. We show that only a holistic approach for bioengineering — considering the metabolic network of the host organism as a whole, rather than focusing on the production pathway alone — can truly mold microorganisms into efficient biofactories.
Collapse
|
29
|
Lee JE, Vadlani PV, Guragain YN, San KY, Min DH. Production of free fatty acids from switchgrass using recombinant Escherichia coli. Biotechnol Prog 2017; 34:91-98. [DOI: 10.1002/btpr.2569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/24/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Jung-Eun Lee
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas
| | - Praveen V. Vadlani
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas
- Department of Chemical Engineering; Kansas State University; Manhattan Kansas
| | - Yadhu N. Guragain
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas
| | - Ka-Yiu San
- Department of Bioengineering; Rice University; Houston Texas
- Department of Chemical and Molecular Engineering; Rice University; Houston Texas
| | - Doo-Hong Min
- Department of Agronomy; Kansas State University; Manhattan Kansas
| |
Collapse
|
30
|
Wu J, Zhang X, Xia X, Dong M. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli. Metab Eng 2017; 41:115-124. [PMID: 28392294 DOI: 10.1016/j.ymben.2017.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/15/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022]
Abstract
Medium-chain fatty acids (MCFAs, 6-10 carbons) are valuable precursors to many industrial biofuels and chemicals, recently engineered reversal of the β-oxidation (r-BOX) cycle has been proposed as a potential platform for efficient synthesis of MCFAs. Previous studies have made many exciting achievements on functionally characterizing four core enzymes of this r-BOX cycle. However, the information about bottleneck nodes in this cycle is elusive. Here, a quantitative assessment of the inherent limitations of this cycle was conducted to capitalize on its potential. The selection of the core β-oxidation reversal enzymes in conjunction with acetyl-CoA synthetase endowed the ability to synthesize about 1g/L MCFAs. Furthermore, a gene dosage experiment was developed to identify two rate-limiting enzymes (acetyl-CoA synthetase and thiolase). The de novo pathway was then separated into two modules at thiolase and MCFA production titer increased to 2.8g/L after evaluating different construct environments. Additionally, the metabolism of host organism was reprogrammed to the desired biochemical product by the clustered regularly interspaced short palindromic repeats interference system, resulted in a final MCFA production of 3.8g/L. These findings described here identified the inherent limitations of r-BOX cycle and further unleashed the lipogenic potential of this cycle, thus paving the way for the development of a bacterial platform for microbial production of high-value oleo-chemicals from low-value carbons in a sustainable and environmentally friendly manner.
Collapse
Affiliation(s)
- Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Xia Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Xiudong Xia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
31
|
Fang H, Kang J, Zhang D. Microbial production of vitamin B 12: a review and future perspectives. Microb Cell Fact 2017; 16:15. [PMID: 28137297 PMCID: PMC5282855 DOI: 10.1186/s12934-017-0631-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Vitamin B12 is an essential vitamin that is widely used in medical and food industries. Vitamin B12 biosynthesis is confined to few bacteria and archaea, and as such its production relies on microbial fermentation. Rational strain engineering is dependent on efficient genetic tools and a detailed knowledge of metabolic pathways, regulation of which can be applied to improve product yield. Recent advances in synthetic biology and metabolic engineering have been used to efficiently construct many microbial chemical factories. Many published reviews have probed the vitamin B12 biosynthetic pathway. To maximize the potential of microbes for vitamin B12 production, new strategies and tools are required. In this review, we provide a comprehensive understanding of advances in the microbial production of vitamin B12, with a particular focus on establishing a heterologous host for the vitamin B12 production, as well as on strategies and tools that have been applied to increase microbial cobalamin production. Several worthy strategies employed for other products are also included.
Collapse
Affiliation(s)
- Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jie Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134 China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
32
|
|
33
|
Affiliation(s)
- Tao Jin
- Iowa State University; Department of Chemical and Biological Engineering; 2114 Sweeney Hall, 618 Bissell Rd. Ames, IA 50011 USA
| | - Jieni Lian
- Iowa State University; Department of Chemical and Biological Engineering; 2114 Sweeney Hall, 618 Bissell Rd. Ames, IA 50011 USA
| | - Laura R. Jarboe
- Iowa State University; Department of Chemical and Biological Engineering; 2114 Sweeney Hall, 618 Bissell Rd. Ames, IA 50011 USA
| |
Collapse
|
34
|
Yenkie KM, Wu W, Clark RL, Pfleger BF, Root TW, Maravelias CT. A roadmap for the synthesis of separation networks for the recovery of bio-based chemicals: Matching biological and process feasibility. Biotechnol Adv 2016; 34:1362-1383. [PMID: 27756578 DOI: 10.1016/j.biotechadv.2016.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/20/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Microbial conversion of renewable feedstocks to high-value chemicals is an attractive alternative to current petrochemical processes because it offers the potential to reduce net CO2 emissions and integrate with bioremediation objectives. Microbes have been genetically engineered to produce a growing number of high-value chemicals in sufficient titer, rate, and yield from renewable feedstocks. However, high-yield bioconversion is only one aspect of an economically viable process. Separation of biologically synthesized chemicals from process streams is a major challenge that can contribute to >70% of the total production costs. Thus, process feasibility is dependent upon the efficient selection of separation technologies. This selection is dependent on upstream processing or biological parameters, such as microbial species, product titer and yield, and localization. Our goal is to present a roadmap for selection of appropriate technologies and generation of separation schemes for efficient recovery of bio-based chemicals by utilizing information from upstream processing, separation science and commercial requirements. To achieve this, we use a separation system comprising of three stages: (I) cell and product isolation, (II) product concentration, and (III) product purification and refinement. In each stage, we review the technology alternatives available for different tasks in terms of separation principles, important operating conditions, performance parameters, advantages and disadvantages. We generate separation schemes based on product localization and its solubility in water, the two most distinguishing properties. Subsequently, we present ideas for simplification of these schemes based on additional properties, such as physical state, density, volatility, and intended use. This simplification selectively narrows down the technology options and can be used for systematic process synthesis and optimal recovery of bio-based chemicals.
Collapse
Affiliation(s)
- Kirti M Yenkie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - WenZhao Wu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Ryan L Clark
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Thatcher W Root
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Christos T Maravelias
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
35
|
Woo JM, Kim JW, Song JW, Blank LM, Park JB. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity. PLoS One 2016; 11:e0163265. [PMID: 27681369 PMCID: PMC5040553 DOI: 10.1371/journal.pone.0163265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/05/2016] [Indexed: 01/29/2023] Open
Abstract
The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.
Collapse
Affiliation(s)
- Ji-Min Woo
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Ji-Won Kim
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Ji-Won Song
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Jin-Byung Park
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
- * E-mail:
| |
Collapse
|
36
|
A case study in flux balance analysis: Lysine, a cephamycin C precursor, can also increase clavulanic acid production. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway. PLoS One 2016; 11:e0160035. [PMID: 27466817 PMCID: PMC4965127 DOI: 10.1371/journal.pone.0160035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022] Open
Abstract
Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product.
Collapse
|
38
|
Deb SS, Reshamwala SMS, Lali AM. A series of template plasmids for Escherichia coli genome engineering. J Microbiol Methods 2016; 125:49-57. [PMID: 27071533 DOI: 10.1016/j.mimet.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
Metabolic engineering strategies often employ multi-copy episomal vectors to overexpress genes. However, chromosome-based overexpression is preferred as it avoids the use of selective pressure and reduces metabolic burden on the cell. We have constructed a series of template plasmids for λ Red-mediated Escherichia coli genome engineering. The template plasmids allow construction of genome integrating cassettes that can be used to integrate single copies of DNA sequences at predetermined sites or replace promoter regions. The constructed cassettes provide flexibility in terms of expression levels achieved and antibiotics used for selection, as well as allowing construction of marker-free strains. The modular design of the template plasmids allows replacement of genetic parts to construct new templates. Gene integration and promoter replacement using the template plasmids are illustrated.
Collapse
Affiliation(s)
- Shalini S Deb
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| | - Shamlan M S Reshamwala
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India.
| | - Arvind M Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India; Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| |
Collapse
|
39
|
Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metab Eng 2016; 35:105-113. [DOI: 10.1016/j.ymben.2016.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 11/23/2022]
|
40
|
Zhang YC, Zhang Y, Zhu BR, Zhang BW, Ni C, Zhang DY, Huang Y, Pang E, Lin K. Genome sequences of two closely related strains of Escherichia coli K-12 GM4792. Stand Genomic Sci 2015; 10:125. [PMID: 26664654 PMCID: PMC4675052 DOI: 10.1186/s40793-015-0114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/09/2015] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli lab strains K-12 GM4792 Lac+ and GM4792 Lac- carry opposite lactose markers, which are useful for distinguishing evolved lines as they produce different colored colonies. The two closely related strains are chosen as ancestors for our ongoing studies of experimental evolution. Here, we describe the genome sequences, annotation, and features of GM4792 Lac+ and GM4792 Lac-. GM4792 Lac+ has a 4,622,342-bp long chromosome with 4,061 protein-coding genes and 83 RNA genes. Similarly, the genome of GM4792 Lac- consists of a 4,621,656-bp chromosome containing 4,043 protein-coding genes and 74 RNA genes. Genome comparison analysis reveals that the differences between GM4792 Lac+ and GM4792 Lac- are minimal and limited to only the targeted lac region. Moreover, a previous study on competitive experimentation indicates the two strains are identical or nearly identical in survivability except for lactose utilization in a nitrogen-limited environment. Therefore, at both a genetic and a phenotypic level, GM4792 Lac+ and GM4792 Lac-, with opposite neutral markers, are ideal systems for future experimental evolution studies.
Collapse
Affiliation(s)
- Yan-Cong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Yan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China ; Present address: National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bi-Ru Zhu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Chuan Ni
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China ; Present address: The second high school attached to Beijing Normal University, Beijing, 100192 China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Ying Huang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
| | - Erli Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 China
| |
Collapse
|
41
|
Leber C, Choi JW, Polson B, Da Silva NA. Disrupted short chain specific β‐oxidation and improved synthase expression increase synthesis of short chain fatty acids in
Saccharomyces cerevisiae. Biotechnol Bioeng 2015; 113:895-900. [DOI: 10.1002/bit.25839] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher Leber
- Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaIrvine92697‐2575California
| | - Jin Wook Choi
- Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaIrvine92697‐2575California
| | - Brian Polson
- Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaIrvine92697‐2575California
| | - Nancy A. Da Silva
- Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaIrvine92697‐2575California
| |
Collapse
|
42
|
Tang X, Lee J, Chen WN. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production. Metab Eng Commun 2015; 2:58-66. [PMID: 34150509 PMCID: PMC8193251 DOI: 10.1016/j.meteno.2015.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 11/30/2022] Open
Abstract
Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Recent progress in metabolic engineering for enhanced fatty acid production. Regulation of acetyl-CoA, NADPH pathway for fatty acid synthesis. Regulation of elongation and catabolic pathway to strength fatty acid synthesis. Enhanced production of activated precursors for fatty acid derivatives production.
Collapse
Affiliation(s)
- Xiaoling Tang
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jaslyn Lee
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
43
|
Sheng J, Feng X. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front Microbiol 2015; 6:554. [PMID: 26106371 PMCID: PMC4459083 DOI: 10.3389/fmicb.2015.00554] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles.
Collapse
Affiliation(s)
- Jiayuan Sheng
- Biomolecular Engineering Lab, Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Xueyang Feng
- Biomolecular Engineering Lab, Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| |
Collapse
|
44
|
Royce LA, Yoon JM, Chen Y, Rickenbach E, Shanks JV, Jarboe LR. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab Eng 2015; 29:180-188. [DOI: 10.1016/j.ymben.2015.03.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/07/2015] [Accepted: 03/23/2015] [Indexed: 11/17/2022]
|
45
|
Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metab Eng 2015; 28:202-212. [DOI: 10.1016/j.ymben.2015.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/05/2015] [Accepted: 01/20/2015] [Indexed: 12/28/2022]
|
46
|
On sampled-data control for stabilization of genetic regulatory networks with leakage delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Fu Y, Yoon JM, Jarboe L, Shanks JV. Metabolic flux analysis of Escherichia coli MG1655 under octanoic acid (C8) stress. Appl Microbiol Biotechnol 2015; 99:4397-408. [PMID: 25620365 DOI: 10.1007/s00253-015-6387-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022]
Abstract
Systems metabolic engineering has made the renewable production of industrial chemicals a feasible alternative to modern operations. One major example of a renewable process is the production of carboxylic acids, such as octanoic acid (C8), from Escherichia coli, engineered to express thioesterase enzymes. C8, however, is toxic to E. coli above a certain concentration, which limits the final titer. (13)C metabolic flux analysis of E. coli was performed for both C8 stress and control conditions using NMR2Flux with isotopomer balancing. A mixture of labeled and unlabeled glucose was used as the sole carbon source for bacterial growth for (13)C flux analysis. By comparing the metabolic flux maps of the control condition and C8 stress condition, pathways that were altered under the stress condition were identified. C8 stress was found to reduce carbon flux in several pathways: the tricarboxylic acid (TCA) cycle, the CO2 production, and the pyruvate dehydrogenase pathway. Meanwhile, a few pathways became more active: the pyruvate oxidative pathway, and the extracellular acetate production. These results were statistically significant for three biological replicates between the control condition and C8 stress. As a working hypothesis, the following causes are proposed to be the main causes for growth inhibition and flux alteration for a cell under stress: membrane disruption, low activity of electron transport chain, and the activation of the pyruvate dehydrogenase regulator (PdhR).
Collapse
Affiliation(s)
- Yanfen Fu
- Department of Chemical and Biological Engineering, Iowa State University, 4136 Biorenewables Research Laboratory, Ames, IA, 50011-2230, USA
| | | | | | | |
Collapse
|
48
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
49
|
Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, Rohde C, Rohde M, Fartmann B, Goodwin LA, Chertkov O, Reddy TBK, Pati A, Ivanova NN, Markowitz V, Kyrpides NC, Woyke T, Göker M, Klenk HP. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2. [PMID: 25780495 PMCID: PMC4334874 DOI: 10.1186/1944-3277-9-2] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 12/02/2022] Open
Abstract
Although Escherichia coli is the most widely studied bacterial model organism and often considered to be the model bacterium per se, its type strain was until now forgotten from microbial genomics. As a part of the G enomic E ncyclopedia of B acteria and A rchaea project, we here describe the features of E. coli DSM 30083(T) together with its genome sequence and annotation as well as novel aspects of its phenotype. The 5,038,133 bp containing genome sequence includes 4,762 protein-coding genes and 175 RNA genes as well as a single plasmid. Affiliation of a set of 250 genome-sequenced E. coli strains, Shigella and outgroup strains to the type strain of E. coli was investigated using digital DNA:DNA-hybridization (dDDH) similarities and differences in genomic G+C content. As in the majority of previous studies, results show Shigella spp. embedded within E. coli and in most cases forming a single subgroup of it. Phylogenomic trees also recover the proposed E. coli phylotypes as monophyla with minor exceptions and place DSM 30083(T) in phylotype B2 with E. coli S88 as its closest neighbor. The widely used lab strain K-12 is not only genomically but also physiologically strongly different from the type strain. The phylotypes do not express a uniform level of character divergence as measured using dDDH, however, thus an alternative arrangement is proposed and discussed in the context of bacterial subspecies. Analyses of the genome sequences of a large number of E. coli strains and of strains from > 100 other bacterial genera indicate a value of 79-80% dDDH as the most promising threshold for delineating subspecies, which in turn suggests the presence of five subspecies within E. coli.
Collapse
Affiliation(s)
- Jan P Meier-Kolthoff
- />Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Richard L Hahnke
- />Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Jörn Petersen
- />Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Carmen Scheuner
- />Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Victoria Michael
- />Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Anne Fiebig
- />Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Christine Rohde
- />Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Manfred Rohde
- />Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | | | | | | | - TBK Reddy
- />DOE Joint Genome Institute, Walnut Creek, Ca USA
| | - Amrita Pati
- />DOE Joint Genome Institute, Walnut Creek, Ca USA
| | | | | | - Nikos C Kyrpides
- />DOE Joint Genome Institute, Walnut Creek, Ca USA
- />Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tanja Woyke
- />DOE Joint Genome Institute, Walnut Creek, Ca USA
| | - Markus Göker
- />Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- />Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
50
|
Tang X, Chen WN. Enhanced production of fatty alcohols by engineering the TAGs synthesis pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 2014; 112:386-92. [PMID: 25116045 DOI: 10.1002/bit.25356] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/02/2014] [Accepted: 07/25/2014] [Indexed: 12/24/2022]
Abstract
The production of fatty acid-derived chemicals has received a great deal of attention in recent years. In yeast cells, the main storage forms of fatty acids are TAGs. However, the conversion of TAGs into fatty acid derivatives suffers from a practical standpoint. Herein, a more direct strategy was applied to accumulate cellular fatty acyl-CoAs in Saccharomyces cerevisiae, which are the activated forms of fatty acids and used as important precursors for various converting enzymes. The dga1 gene was deleted to block the fatty acyl-CoAs dependent pathway of TAGs synthesis and a significant decrease in lipid content was observed. The FAR gene was cloned and overexpressed in the wild type strain and gene disrupted strain, to convert the fatty acyl-CoAs to the corresponding fatty acid derivatives. The metabolic engineered pathway resulted in enhanced production of fatty alcohols. Compared with the wild type strain with overexpressed FAR gene, the yield of fatty alcohols in the Δdga1 strain with FAR was dramatically increased: the intracellular fatty alcohols increased from 26 mg/L to 45 mg/L, while the extracellular fatty alcohols increased from 2.2 mg/L to 4.3 mg/L. By optimizing the culture medium with increased carbon concentration and limited nitrogen concentration, the fatty alcohols yield in the Δdga1 strain with FAR was further increased to 84 mg/L in cells and 14 mg/L secreted in broth. The results in this study demonstrated the feasibility of using the designed strategy to solve the bottleneck in utilizing TAGs for fatty acid derivatives production.
Collapse
Affiliation(s)
- Xiaoling Tang
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | | |
Collapse
|