1
|
Stiles AR, Donti TR, Hall PL, Wilcox WR. Biomarker testing for lysosomal diseases: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2024:101242. [PMID: 39499245 DOI: 10.1016/j.gim.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 11/07/2024] Open
Abstract
Measurement of lysosomal disease (LD) biomarkers can reveal valuable information about disease status. Lyso-globotriaosylceramide (lyso-Gb3), glucosylsphingosine (lyso-Gb1), galactosylsphingosine (psychosine), and glucose tetrasaccharide (Glca1-6Glca1-4Glca1-4Glc, Glc4) are biomarkers associated with Fabry, Gaucher, Krabbe, and Pompe disease, respectively. Clinical biomarker testing is performed to guide patient management, including monitoring disease progression and initiating treatment, and in diagnostic evaluations of either symptomatic patients or asymptomatic individuals with a positive family history or abnormal newborn screen. Biomarker analysis can be performed through independent analysis of a single analyte or as a multiplex assay measuring analytes for more than one disorder utilizing liquid chromatographic separation and tandem mass spectrometric detection. These guidelines were developed to provide technical standards for biomarker analysis, results interpretation, and results reporting, highlighting Fabry, Gaucher, Krabbe, and Pompe diseases as examples.
Collapse
Affiliation(s)
- Ashlee R Stiles
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | | | - Patricia L Hall
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - William R Wilcox
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
2
|
Castillo-Ribelles L, Arranz-Amo JA, Hernández-Vara J, Samaniego-Toro D, Enriquez-Calzada S, Pozo SLD, Camprodon-Gomez M, Laguna A, Gonzalo MA, Ferrer R, Martinez-Vicente M, Carnicer-Caceres C. Evaluation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Analysis of Glucosylceramide and Galactosylceramide Isoforms in Cerebrospinal Fluid of Parkinson's Disease Patients. Anal Chem 2024; 96:12875-12882. [PMID: 39047057 PMCID: PMC11308999 DOI: 10.1021/acs.analchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Mutations in GBA1, encoding glucocerebrosidase beta 1 (GCase), are the most common genetic risk factor for Parkinson's disease (PD). GCase dysfunction leads to an accumulation of glucosylceramide (GluCer) substrates in different organs and fluids. Despite the challenges in quantifying GluCer isoforms in biological samples, their potential clinical interest as PD biomarkers justifies the development of robust assays. An extensively evaluated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for quantifying 14 GluCer and galactosylceramide (GalCer) isoforms in human cerebrospinal fluid (CSF) samples is presented. Sample pretreatment, HPLC, and MS/MS parameters were optimized. Evaluation was performed according to the recommendations of the Clinical and Laboratory Standards Institute and European Medicines Agency guidelines. Four 7-point calibration curves were generated, with a linearity interval from 2.5 to 200 nM (R2 ≥ 0.995). The limit of quantification was set at 5 nM. Between-run precision and accuracy were up to 12.5 and 9%, respectively. After method validation, we measured the levels of GluCer and GalCer isoforms in CSF human samples, including 6 healthy controls (HC), 22 idiopathic GBA1 wild-type PD (iPD) patients, and 5 GBA1-associated PD (PD-GBA) patients. GluCer/GalCer median ratios were found to be higher in the CSF of PD-GBA patients, particularly in severe GBA1 mutations, than those in iPD and HC. The observed trends in GluCer/GalCer ratios among groups provide novel information for the comprehensive analysis of sphingolipids as potential biomarkers of PD.
Collapse
Affiliation(s)
- Laura Castillo-Ribelles
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jose Antonio Arranz-Amo
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Jorge Hernández-Vara
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Neurology
Department, Vall d’Hebron University
Hospital, Barcelona 08035, Spain
| | | | - Silvia Enriquez-Calzada
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Sara Lucas-Del Pozo
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Neurology
Department, Vall d’Hebron University
Hospital, Barcelona 08035, Spain
- Department
of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London WC1N 3BG, U.K.
| | - Maria Camprodon-Gomez
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
- Unit
of Hereditary Metabolic Disorders, Internal Medicine Department, Vall d’Hebron University Hospital, Barcelona 08035, Spain
| | - Ariadna Laguna
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Mercedes Arrúe Gonzalo
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Roser Ferrer
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marta Martinez-Vicente
- Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Neurodegenerative
Diseases Research Group- Center for Networked Biomedical Research
on Neurodegenerative Diseases (CIBERNED), Vall d’Hebron Research
Institute (VHIR), Vall d’Hebron Barcelona
Hospital Campus, Barcelona 08035, Spain
| | - Clara Carnicer-Caceres
- Clinical
Biochemistry Department, Vall d’Hebron
University Hospital, Barcelona 08035, Spain
- Clinical
Biochemistry, Drug Delivery & Therapy (CB-DDT) Research Group,
Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| |
Collapse
|
3
|
Mangini L, Lawrence R, Lopez ME, Graham TC, Bauer CR, Nguyen H, Su C, Ramphal J, Crawford BE, Hartl TA. Galactokinase 1 is the source of elevated galactose-1-phosphate and cerebrosides are modestly reduced in a mouse model of classic galactosemia. JIMD Rep 2024; 65:280-294. [PMID: 38974607 PMCID: PMC11224506 DOI: 10.1002/jmd2.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Classic galactosemia (CG) arises from loss-of-function mutations in the Galt gene, which codes for the enzyme galactose-1-phosphate uridylyltransferase (GALT), a central component in galactose metabolism. The neonatal fatality associated with CG can be prevented by galactose dietary restriction, but for decades it has been known that limiting galactose intake is not a cure and patients often have lasting complications. Even on a low-galactose diet, GALT's substrate galactose-1-phosphate (Gal1P) is elevated and one hypothesis is that elevated Gal1P is a driver of pathology. Here we show that Gal1P levels were elevated above wildtype (WT) in Galt mutant mice, while mice doubly mutant for Galt and the gene encoding galactokinase 1 (Galk1) had normal Gal1P levels. This indicates that GALK1 is necessary for the elevated Gal1P in CG. Another hypothesis to explain the pathology is that an inability to metabolize galactose leads to diminished or disrupted galactosylation of proteins or lipids. Our studies reveal that levels of a subset of cerebrosides-galactosylceramide 24:1, sulfatide 24:1, and glucosylceramide 24:1-were modestly decreased compared to WT. In contrast, gangliosides were unaltered. The observed reduction in these 24:1 cerebrosides may be relevant to the clinical pathology of CG, since the cerebroside galactosylceramide is an important structural component of myelin, the 24:1 species is the most abundant in myelin, and irregularities in white matter, of which myelin is a constituent, have been observed in patients with CG. Therefore, impaired cerebroside production may be a contributing factor to the brain damage that is a common clinical feature of the human disease.
Collapse
Affiliation(s)
- Linley Mangini
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Roger Lawrence
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Manuel E. Lopez
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Timothy C. Graham
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Christopher R. Bauer
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Hang Nguyen
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Cheng Su
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - John Ramphal
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Brett E. Crawford
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Tom A. Hartl
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| |
Collapse
|
4
|
Khrouf W, Saracino D, Rucheton B, Houot M, Clot F, Rinaldi D, Vitor J, Huynh M, Heng E, Schlemmer D, Pasquier F, Deramecourt V, Auriacombe S, Azuar C, Levy R, Bombois S, Boutoleau-Brétonnière C, Pariente J, Didic M, Wallon D, Fluchère F, Auvin S, Younes IB, Nadjar Y, Brice A, Dubois B, Bonnefont-Rousselot D, Le Ber I, Lamari F, Auriacombe S, Belliard S, Blanc F, Boutoleau-Brétonnière C, Brice A, Ceccaldi M, Couratier P, Didic M, Dubois B, Etcharry-Bouyx F, Formaglio M, Golfier V, Hannequin D, Lacomblez L, Lagarde J, Le Ber I, Levy R, Michel BF, Pariente J, Pasquier F, Rinaldi D, Roué-Jagot C, Sellal F, Thauvin-Robinet C, Thomas-Antérion C, Vercelletto M, Didic M, Girard N, Guedj E, Puel M, Pariente J, Berry I, Payoux P, Vercelletto M, Boutoleau-Brétonnière C, Auffray-Calvier E, Pallardy A, Pasquier F, Deramecourt V, Bombois S, Lebouvier T, Rollin A, Kuchinski G, Hannequin D, Martinaud O, Wallon D, Gerardin E, Vera P, Rinaldi D, Camuzat A, Brice A, Chupin M, Bardinet E, Kas A, Lemercier VC, Masmanian M, Oya H. Plasma lysosphingolipids in GRN-related diseases: Monitoring lysosomal dysfunction to track disease progression. Neurobiol Dis 2023; 181:106108. [PMID: 37003407 DOI: 10.1016/j.nbd.2023.106108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
GRN mutations are among the main genetic causes of frontotemporal dementia (FTD). Considering the progranulin involvement in lysosomal homeostasis, we aimed to evaluate if plasma lysosphingolipids (lysoSPL) are increased in GRN mutation carriers, and whether they might represent relevant fluid-based biomarkers in GRN-related diseases. We analyzed four lysoSPL levels in plasmas of 131 GRN carriers and 142 non-carriers, including healthy controls and patients with frontotemporal dementias (FTD) carrying a C9orf72 expansion or without any mutation. GRN carriers consisted of 102 heterozygous FTD patients (FTD-GRN), three homozygous patients with neuronal ceroid lipofuscinosis-11 (CLN-11) and 26 presymptomatic carriers (PS-GRN), the latter with longitudinal assessments. Glucosylsphingosin d18:1 (LGL1), lysosphingomyelins d18:1 and isoform 509 (LSM18:1, LSM509) and lysoglobotriaosylceramide (LGB3) were measured by electrospray ionization-tandem mass spectrometry coupled to ultraperformance liquid chromatography. Levels of LGL1, LSM18:1 and LSM509 were increased in GRN carriers compared to non-carriers (p < 0.0001). No lysoSPL increases were detected in FTD patients without GRN mutations. LGL1 and LSM18:1 progressively increased with age at sampling, and LGL1 with disease duration, in FTD-GRN. Among PS-GRN carriers, LSM18:1 and LGL1 significantly increased over 3.4-year follow-up. LGL1 levels were associated with increasing neurofilaments in presymptomatic carriers. This study evidences an age-dependent increase of β-glucocerebrosidase and acid sphingomyelinase substrates in GRN patients, with progressive changes as early as the presymptomatic phase. Among FTD patients, plasma lysoSPL appear to be uniquely elevated in GRN carriers, and thus might serve as suitable non-invasive disease-tracking biomarkers of progression, specific to the pathophysiological process. Finally, this study might add lysoSPL to the portfolio of fluid-based biomarkers, and pave the way to disease-modifying approaches based on lysosomal function rescue in GRN diseases.
Collapse
|
5
|
Rebiai R, Rue E, Zaldua S, Nguyen D, Scesa G, Jastrzebski M, Foster R, Wang B, Jiang X, Tai L, Brady ST, van Breemen R, Givogri MI, Sands MS, Bongarzone ER. CRISPR-Cas9 Knock-In of T513M and G41S Mutations in the Murine β-Galactosyl-Ceramidase Gene Re-capitulates Early-Onset and Adult-Onset Forms of Krabbe Disease. Front Mol Neurosci 2022; 15:896314. [PMID: 35620447 PMCID: PMC9127972 DOI: 10.3389/fnmol.2022.896314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Krabbe Disease (KD) is a lysosomal storage disorder characterized by the genetic deficiency of the lysosomal enzyme β-galactosyl-ceramidase (GALC). Deficit or a reduction in the activity of the GALC enzyme has been correlated with the progressive accumulation of the sphingolipid metabolite psychosine, which leads to local disruption in lipid raft architecture, diffuse demyelination, astrogliosis, and globoid cell formation. The twitcher mouse, the most used animal model, has a nonsense mutation, which limits the study of how different mutations impact the processing and activity of GALC enzyme. To partially address this, we generated two new transgenic mouse models carrying point mutations frequently found in infantile and adult forms of KD. Using CRISPR-Cas9 gene editing, point mutations T513M (infantile) and G41S (adult) were introduced in the murine GALC gene and stable founders were generated. We show that GALC T513M/T513M mice are short lived, have the greatest decrease in GALC activity, have sharp increases of psychosine, and rapidly progress into a severe and lethal neurological phenotype. In contrast, GALC G41S/G41S mice have normal lifespan, modest decreases of GALC, and minimal psychosine accumulation, but develop adult mild inflammatory demyelination and slight declines in coordination, motor skills, and memory. These two novel transgenic lines offer the possibility to study the mechanisms by which two distinct GALC mutations affect the trafficking of mutated GALC and modify phenotypic manifestations in early- vs adult-onset KD.
Collapse
Affiliation(s)
- Rima Rebiai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Emily Rue
- Department of Pharmaceutical Science, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Steve Zaldua
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Giuseppe Scesa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Martin Jastrzebski
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Robert Foster
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Bin Wang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Leon Tai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Scott T Brady
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Richard van Breemen
- Department of Pharmaceutical Science, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Babcock MC, Mikulka CR, Wang B, Chandriani S, Chandra S, Xu Y, Webster K, Feng Y, Nelvagal HR, Giaramita A, Yip BK, Lo M, Jiang X, Chao Q, Woloszynek JC, Shen Y, Bhagwat S, Sands MS, Crawford BE. Substrate reduction therapy for Krabbe disease and metachromatic leukodystrophy using a novel ceramide galactosyltransferase inhibitor. Sci Rep 2021; 11:14486. [PMID: 34262084 PMCID: PMC8280112 DOI: 10.1038/s41598-021-93601-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022] Open
Abstract
Krabbe disease (KD) and metachromatic leukodystrophy (MLD) are caused by accumulation of the glycolipids galactosylceramide (GalCer) and sulfatide and their toxic metabolites psychosine and lysosulfatide, respectively. We discovered a potent and selective small molecule inhibitor (S202) of ceramide galactosyltransferase (CGT), the key enzyme for GalCer biosynthesis, and characterized its use as substrate reduction therapy (SRT). Treating a KD mouse model with S202 dose-dependently reduced GalCer and psychosine in the central (CNS) and peripheral (PNS) nervous systems and significantly increased lifespan. Similarly, treating an MLD mouse model decreased sulfatides and lysosulfatide levels. Interestingly, lower doses of S202 partially inhibited CGT and selectively reduced synthesis of non-hydroxylated forms of GalCer and sulfatide, which appear to be the primary source of psychosine and lysosulfatide. Higher doses of S202 more completely inhibited CGT and reduced the levels of both non-hydroxylated and hydroxylated forms of GalCer and sulfatide. Despite the significant benefits observed in murine models of KD and MLD, chronic CGT inhibition negatively impacted both the CNS and PNS of wild-type mice. Therefore, further studies are necessary to elucidate the full therapeutic potential of CGT inhibition.
Collapse
Affiliation(s)
- Michael C Babcock
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Christina R Mikulka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bing Wang
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Sanjay Chandriani
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Sundeep Chandra
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Yue Xu
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Katherine Webster
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Ying Feng
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Hemanth R Nelvagal
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alex Giaramita
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Bryan K Yip
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Melanie Lo
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qi Chao
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Josh C Woloszynek
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Yuqiao Shen
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Shripad Bhagwat
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brett E Crawford
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA.
| |
Collapse
|
7
|
Stiles AR, Huggins E, Fierro L, Jung SH, Balwani M, Kishnani PS. The role of glucosylsphingosine as an early indicator of disease progression in early symptomatic type 1 Gaucher disease. Mol Genet Metab Rep 2021; 27:100729. [PMID: 33614410 PMCID: PMC7876627 DOI: 10.1016/j.ymgmr.2021.100729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022] Open
Abstract
Gaucher disease (GD), a lysosomal storage disorder caused by β-glucocerebrosidase deficiency, results in the accumulation of glucosylceramide and glucosylsphingosine. Glucosylsphingosine has emerged as a sensitive and specific biomarker for GD and treatment response. However, limited information exists on its role in guiding treatment decisions in pre-symptomatic patients identified at birth or due to a positive family history. We present two pediatric patients with GD1 and highlight the utility of glucosylsphingosine monitoring in guiding treatment initiation.
Collapse
Affiliation(s)
- Ashlee R. Stiles
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
| | - Erin Huggins
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Luca Fierro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seung-Hye Jung
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Bradbury AM, Bagel JH, Nguyen D, Lykken EA, Pesayco Salvador J, Jiang X, Swain GP, Assenmacher CA, Hendricks IJ, Miyadera K, Hess RS, Ostrager A, ODonnell P, Sands MS, Ory DS, Shelton GD, Bongarzone ER, Gray SJ, Vite CH. Krabbe disease successfully treated via monotherapy of intrathecal gene therapy. J Clin Invest 2021; 130:4906-4920. [PMID: 32773406 DOI: 10.1172/jci133953] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Globoid cell leukodystrophy (GLD; Krabbe disease) is a progressive, incurable neurodegenerative disease caused by deficient activity of the hydrolytic enzyme galactosylceramidase (GALC). The ensuing cytotoxic accumulation of psychosine results in diffuse central and peripheral nervous system (CNS, PNS) demyelination. Presymptomatic hematopoietic stem cell transplantation (HSCT) is the only treatment for infantile-onset GLD; however, clinical outcomes of HSCT recipients often remain poor, and procedure-related morbidity is high. There are no effective therapies for symptomatic patients. Herein, we demonstrate in the naturally occurring canine model of GLD that presymptomatic monotherapy with intrathecal AAV9 encoding canine GALC administered into the cisterna magna increased GALC enzyme activity, normalized psychosine concentration, improved myelination, and attenuated inflammation in both the CNS and PNS. Moreover, AAV-mediated therapy successfully prevented clinical neurological dysfunction, allowing treated dogs to live beyond 2.5 years of age, more than 7 times longer than untreated dogs. Furthermore, we found that a 5-fold lower dose resulted in an attenuated form of disease, indicating that sufficient dosing is critical. Finally, postsymptomatic therapy with high-dose AAV9 also significantly extended lifespan, signifying a treatment option for patients for whom HSCT is not applicable. If translatable to patients, these findings would improve the outcomes of patients treated either pre- or postsymptomatically.
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica H Bagel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Erik A Lykken
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jill Pesayco Salvador
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gary P Swain
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles A Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian J Hendricks
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecka S Hess
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arielle Ostrager
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patricia ODonnell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Li Y, Miller CA, Shea LK, Jiang X, Guzman MA, Chandler RJ, Ramakrishnan SM, Smith SN, Venditti CP, Vogler CA, Ory DS, Ley TJ, Sands MS. Enhanced Efficacy and Increased Long-Term Toxicity of CNS-Directed, AAV-Based Combination Therapy for Krabbe Disease. Mol Ther 2021; 29:691-701. [PMID: 33388420 PMCID: PMC7854295 DOI: 10.1016/j.ymthe.2020.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC) and the progressive accumulation of the toxic metabolite psychosine. We showed previously that central nervous system (CNS)-directed, adeno-associated virus (AAV)2/5-mediated gene therapy synergized with bone marrow transplantation and substrate reduction therapy (SRT) to greatly increase therapeutic efficacy in the murine model of Krabbe disease (Twitcher). However, motor deficits remained largely refractory to treatment. In the current study, we replaced AAV2/5 with an AAV2/9 vector. This single change significantly improved several endpoints primarily associated with motor function. However, nearly all (14/16) of the combination-treated Twitcher mice and all (19/19) of the combination-treated wild-type mice developed hepatocellular carcinoma (HCC). 10 out of 10 tumors analyzed had AAV integrations within the Rian locus. Several animals had additional integrations within or near genes that regulate cell growth or death, are known or potential tumor suppressors, or are associated with poor prognosis in human HCC. Finally, the substrate reduction drug L-cycloserine significantly decreased the level of the pro-apoptotic ceramide 18:0. These data demonstrate the value of AAV-based combination therapy for Krabbe disease. However, they also suggest that other therapies or co-morbidities must be taken into account before AAV-mediated gene therapy is considered for human therapeutic trials.
Collapse
Affiliation(s)
- Yedda Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauren K Shea
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Miguel A Guzman
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Sai M Ramakrishnan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie N Smith
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Carole A Vogler
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy J Ley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Tang C, Jia X, Tang F, Liu S, Jiang X, Zhao X, Sheng H, Peng M, Liu L, Huang Y. Detection of glucosylsphingosine in dried blood spots for diagnosis of Gaucher disease by LC-MS/MS. Clin Biochem 2020; 87:79-84. [PMID: 33188770 DOI: 10.1016/j.clinbiochem.2020.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Gaucher disease (GD) is caused by a deficiency of β-glucosidase (GCase), leading to accumulation of glucosylceramide (GlcC) and glucosylsphingosine (Lyso-Gb1). Lyso-Gb1 is a reliable biomarker for GD. OBJECTIVES This study aims to develop a simple, effective and accurate method for the screening and diagnosis of GD using dried blood spot (DBS) samples. METHODS Lyso-Gb1 in DBS was extracted by 50% acetonitrile aqueous solution containing isotope-labeled internal standard and analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). A reference interval was established by analyzing samples from 277 healthy controls. Lyso-Gb1 was detected in the residual DBS samples from 142 high-risk patients with splenomegaly and/or thrombocytopenia. Based on GCase activity in DBS, samples were classified into four groups: confirmed GD patients (n = 52), GD carriers (n = 5), false positive (n = 36) and negative (n = 49). RESULTS The optimized Lyso-Gb1 assay showed intra- and inter-assay variations ranged between 2.0%-8.2% and 3.8%-10.2%, respectively. Accuracies ranged from 93.5% to 112.6%. The lowest limit of quantification was 1 ng/mL. The normal reference interval of Lyso-Gb1 in DBS ranged from 2.1 to 9.9 ng/mL. Among the 142 subjects, except for one GD patient (Lyso-Gb1 > 2500 ng/mL), the Lyso-Gb1 concentrations in 51 GD patients ranged from 190.5 to 2380.6 ng/mL (the median 614.8 ng/mL). Also, one negative patient was found to have an elevated Lyso-Gb1 level (684.5 ng/mL), while the other patients were normal. The negative case was then confirmed to be an atypical GD patient with a c.1091A > G (p.Y364C) homozygous variant in PSAP gene by next generation sequencing. CONCLUSIONS The optimized method to determine Lyso-Gb1 in DBS was demonstrated as a useful tool for the screening and diagnosis of GD.
Collapse
Affiliation(s)
- Chengfang Tang
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuefang Jia
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Tang
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sichi Liu
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiang Jiang
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyuan Zhao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Minzhi Peng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yonglan Huang
- Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Barrientos RC, Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome - A review. Anal Chim Acta 2020; 1132:134-155. [PMID: 32980104 PMCID: PMC7525043 DOI: 10.1016/j.aca.2020.05.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
Aberrant expression of glycosphingolipids has been implicated in a myriad of diseases, but our understanding of the strucural diversity, spatial distribution, and biological function of this class of biomolecules remains limited. These challenges partly stem from a lack of sensitive tools that can detect, identify, and quantify glycosphingolipids at the molecular level. Mass spectrometry has emerged as a powerful tool poised to address most of these challenges. Here, we review the recent developments in analytical glycosphingolipidomics with an emphasis on sample preparation, mass spectrometry and tandem mass spectrometry-based structural characterization, label-free and labeling-based quantification. We also discuss the nomenclature of glycosphingolipids, and emerging technologies like ion mobility spectrometry in differentiation of glycosphingolipid isomers. The intrinsic advantages and shortcomings of each method are carefully critiqued in line with an individual's research goals. Finally, future perspectives on analytical sphingolipidomics are stated, including a need for novel and more sensive methods in isomer separation, low abundance species detection, and profiling the spatial distribution of glycosphingolipid molecular species in cells and tissues using imaging mass spectrometry.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States.
| |
Collapse
|
12
|
Chen SE, Zhu S, Hu J, Sun J, Zheng Z, Zhao XE, Liu H. 8-Plex stable isotope labeling absolute quantitation strategy combined with dual-targeted recognizing function material for simultaneous separation and determination of glucosylsphingosine and galactosylsphingosine in human plasma. Anal Chim Acta 2020; 1124:40-51. [DOI: 10.1016/j.aca.2020.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/01/2023]
|
13
|
Mikulka CR, Dearborn JT, Benitez BA, Strickland A, Liu L, Milbrandt J, Sands MS. Cell-autonomous expression of the acid hydrolase galactocerebrosidase. Proc Natl Acad Sci U S A 2020; 117:9032-9041. [PMID: 32253319 PMCID: PMC7183170 DOI: 10.1073/pnas.1917675117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are typically caused by a deficiency in a soluble acid hydrolase and are characterized by the accumulation of undegraded substrates in the lysosome. Determining the role of specific cell types in the pathogenesis of LSDs is a major challenge due to the secretion and subsequent uptake of lysosomal hydrolases by adjacent cells, often referred to as "cross-correction." Here we create and validate a conditional mouse model for cell-autonomous expression of galactocerebrosidase (GALC), the lysosomal enzyme deficient in Krabbe disease. We show that lysosomal membrane-tethered GALC (GALCLAMP1) retains enzyme activity, is able to cleave galactosylsphingosine, and is unable to cross-correct. Ubiquitous expression of GALCLAMP1 fully rescues the phenotype of the GALC-deficient mouse (Twitcher), and widespread deletion of GALCLAMP1 recapitulates the Twitcher phenotype. We demonstrate the utility of this model by deleting GALCLAMP1 specifically in myelinating Schwann cells in order to characterize the peripheral neuropathy seen in Krabbe disease.
Collapse
Affiliation(s)
- Christina R Mikulka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua T Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Bruno A Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lin Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
14
|
Corado CR, Pinkstaff J, Jiang X, Galban EM, Fisher SJ, Scholler O, Russell C, Bagel JH, ODonnell PA, Ory DS, Vite CH, Bradbury AM. Cerebrospinal fluid and serum glycosphingolipid biomarkers in canine globoid cell leukodystrophy (Krabbe Disease). Mol Cell Neurosci 2019; 102:103451. [PMID: 31794880 DOI: 10.1016/j.mcn.2019.103451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022] Open
Abstract
Globoid cell leukodystrophy (GLD, Krabbe disease, Krabbe's disease) is caused by genetic mutations in the gene encoding, galactosylceramidase (GALC). Deficiency of this enzyme results in central and peripheral nervous system pathology, and is characterized by loss of myelin and an infiltration of globoid cells. The canine model of GLD provides a translational model which faithfully recapitulates much of the human disease pathology. Targeted lipidomic analysis was conducted in serum and cerebrospinal fluid (CSF) over the lifetime of GLD affected and normal canines, and in brain tissue at humane endpoint to better understand disease progression and identify potential biomarkers of disease. Psychosine, a substrate of GALC and primary contributor to the pathology in GLD, was observed to be significantly elevated in the serum and CSF by 2 or 4 weeks of age, respectively, and steadily increased over the lifetime of affected animals. Importantly, psychosine concentration strongly correlated with disease severity. Galactosylceramide, glucosylceramide, and lactosylceramide were also found to be elevated in the CSF of affected animals and increased with age. Psychosine and galactosylceramide were found to be significantly increased in brain tissue at humane endpoint. This study identified several biomarkers which may be useful in the development of therapeutics for GLD.
Collapse
Affiliation(s)
- Carley R Corado
- BioMarin Pharmaceutical, Inc., 105 Digital Drive, Novato, CA 94949, United States of America
| | - Jason Pinkstaff
- AnaptysBio, Inc., 10421 Pacific Center Court, San Diego, CA 92121, United States of America
| | - Xuntian Jiang
- Washington University, 1 Brookings Drive, St Louis, MO 63130, United States of America
| | - Evelyn M Galban
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America
| | - Samantha J Fisher
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America
| | - Oriane Scholler
- BioMarin Pharmaceutical, Inc., 105 Digital Drive, Novato, CA 94949, United States of America
| | - Chris Russell
- BioMarin Pharmaceutical, Inc., 105 Digital Drive, Novato, CA 94949, United States of America
| | - Jessica H Bagel
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America
| | - Patricia A ODonnell
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America
| | - Daniel S Ory
- Washington University, 1 Brookings Drive, St Louis, MO 63130, United States of America
| | - Charles H Vite
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America
| | - Allison M Bradbury
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
15
|
Li Y, Xu Y, Benitez BA, Nagree MS, Dearborn JT, Jiang X, Guzman MA, Woloszynek JC, Giaramita A, Yip BK, Elsbernd J, Babcock MC, Lo M, Fowler SC, Wozniak DF, Vogler CA, Medin JA, Crawford BE, Sands MS. Genetic ablation of acid ceramidase in Krabbe disease confirms the psychosine hypothesis and identifies a new therapeutic target. Proc Natl Acad Sci U S A 2019; 116:20097-20103. [PMID: 31527255 PMCID: PMC6778236 DOI: 10.1073/pnas.1912108116] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a fatal demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramidase (GALC). GALC deficiency leads to the accumulation of the cytotoxic glycolipid, galactosylsphingosine (psychosine). Complementary evidence suggested that psychosine is synthesized via an anabolic pathway. Here, we show instead that psychosine is generated catabolically through the deacylation of galactosylceramide by acid ceramidase (ACDase). This reaction uncouples GALC deficiency from psychosine accumulation, allowing us to test the long-standing "psychosine hypothesis." We demonstrate that genetic loss of ACDase activity (Farber disease) in the GALC-deficient mouse model of human GLD (twitcher) eliminates psychosine accumulation and cures GLD. These data suggest that ACDase could be a target for substrate reduction therapy (SRT) in Krabbe patients. We show that pharmacological inhibition of ACDase activity with carmofur significantly decreases psychosine accumulation in cells from a Krabbe patient and prolongs the life span of the twitcher (Twi) mouse. Previous SRT experiments in the Twi mouse utilized l-cycloserine, which inhibits an enzyme several steps upstream of psychosine synthesis, thus altering the balance of other important lipids. Drugs that directly inhibit ACDase may have a more acceptable safety profile due to their mechanistic proximity to psychosine biogenesis. In total, these data clarify our understanding of psychosine synthesis, confirm the long-held psychosine hypothesis, and provide the impetus to discover safe and effective inhibitors of ACDase to treat Krabbe disease.
Collapse
Affiliation(s)
- Yedda Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yue Xu
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Bruno A Benitez
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
| | - Joshua T Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Miguel A Guzman
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Josh C Woloszynek
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Alex Giaramita
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Bryan K Yip
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Joseph Elsbernd
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Michael C Babcock
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Melanie Lo
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Stephen C Fowler
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Carole A Vogler
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
- Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Brett E Crawford
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|