1
|
Zhang J, Shao S, Chen X, Wang S, Shen W, Xie Y, Zhang Z, Lin Y, Lin Z, Li Y, Ding Y, He N, Lin H, Liu X. Genome-Wide Association Study of Persistent Anal Human Papillomavirus Infection Among HIV-Positive Males in Taizhou, China: A Cohort Study. J Med Virol 2024; 96:e70126. [PMID: 39688065 DOI: 10.1002/jmv.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
The determinants of persistent human papillomavirus (HPV) infection remain largely unknown, and existing studies have predominantly focused on the female population. Individual genetic background may influence the persistence of HPV infection, we the evidence overall and among human immunodeficiency virus (HIV)-positive males are very limited. We conducted a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with anal HPV persistence, based on a cohort designed to study the natural history of anal HPV infection among HIV-positive males in Taizhou, China from 2016 to 2022. A total of 322 HIV-positive males with anal HPV infection, with a mean age of 43.0 (standard deviation [SD]: 13.8) years, were included in this GWAS. The median follow-up time was 1.8 (interquartile range [IQR]: 1.5-2.0) years. The persistence of any type of HPV infection was 53.4%. After adjusting for age and sexual orientation, there were 2 SNPs with p < 1 × 10-5 and 24 SNPs with p < 1 × 10-4. The most closely associated with HPV persistence in additive models were rs7359031 (LOC105370461, odds ratio [OR]T/C = 0.36, 95% confidence interval [CI]: 0.24-0.56; p = 6.67 × 10-6) located at 14q21.1, and rs11046048 (PYROXD1, ORC/A = 0.41, 95% CI: 0.28-0.60; p = 7.80 × 10-6) located at 12p12.1. Other SNPs were mainly located at 6q23.3 (HBS1L-MYB) and 6p21.33 (CCHCR1, PSORS1C3). LOC105370461, PYROXD1, HBS1L-MYB, CCHCR1, and PSORS1C3 may be susceptible genes for HPV persistence. We appeal further studies to validate these associations and examine the underlying mechanisms.
Collapse
Affiliation(s)
- Jing Zhang
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Xuhui District Center for Disease Control and Prevention, Shanghai, China
| | - Shuang Shao
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xiaoxiao Chen
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Shanling Wang
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Weiwei Shen
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Yali Xie
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Zhen Zhang
- Linhai District Center for Disease Control and Prevention, Taizhou, China
| | - Yajun Lin
- Sanmen District Center for Disease Control and Prevention, Taizhou, China
| | - Zhebin Lin
- Wenling District Center for Disease Control and Prevention, Taizhou, China
| | - Yan Li
- Huangyan District Center for Disease Control and Prevention, Taizhou, China
| | - Yingying Ding
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Na He
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Haijiang Lin
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Xing Liu
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Eisenblätter R, Seifert F, Schürmann P, Beckhaus T, Hanel P, Jentschke M, Böhmer G, Strauß HG, Hirchenhain C, Schmidmayr M, Müller F, Hein A, Stuebs F, Koch M, Ruebner M, Beckmann MW, Fasching PA, Luyten A, Häfner N, Hillemanns P, Dörk T, Ramachandran D. Validation and functional follow-up of cervical cancer risk variants at the HLA locus. HLA 2024; 104:e15597. [PMID: 39101335 DOI: 10.1111/tan.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
Cervical cancer is the fourth most common cancer in females. Genome-wide association studies (GWASs) have proposed cervical cancer susceptibility variants at the HLA locus on chromosome 6p21. To corroborate these findings and investigate their functional impact in cervical tissues and cell lines, we genotyped nine variants from cervical cancer GWASs (rs17190106, rs535777, rs1056429, rs2763979, rs143954678, rs113937848, rs3117027, rs3130214, and rs9477610) in a German hospital-based series of 1122 invasive cervical cancers, 1408 dysplasias, and 1196 healthy controls. rs17190106, rs1056429 and rs143954678/rs113937848 associated with cervical malignancies overall, while rs17190106 and rs535777 associated specifically with invasive cancer (OR = 0.69, 95% CI = 0.55-0.86, p = 0.001) or adenocarcinomas (OR = 1.63, 95%CI = 1.17-2.27, p = 0.004), respectively. We tested these and one previously genotyped GWAS variant, rs9272117, for potential eQTL effects on 36 gene transcripts at the HLA locus in 280 cervical epithelial tissues. The strongest eQTL pairs were rs9272117 and HLA-DRB6 (p = 1.9x10E-5), rs1056429 and HLA-DRB5 (p = 2.5x10E-4), and rs535777 and HLA-DRB1 (p = 2.7x10E-4). We also identified transcripts that were specifically upregulated (DDX39B, HCP5, HLA-B, LTB, NFKBIL1) or downregulated (HLA-C, HLA-DPB2) in HPV+ or HPV16+ samples. In comparison, treating cervical epithelial cells with proinflammatory cytokine γ-IFN led to a dose-dependent induction of HCP5, HLA-B, HLA-C, HLA-DQB1, HLA-DRB1, HLA-DRB6, and repression of HSPA1L. Taken together, these results identify relevant genes from both the MHC class I and II regions that are inflammation-responsive in cervical epithelium and associate with HPV (HCP5, HLA-B, HLA-C) and/or with genomic cervical cancer risk variants (HLA-DRB1, HLA-DRB6). They may thus constitute important contributors to the immune escape of precancerous cells after HPV-infection.
Collapse
Affiliation(s)
- Rieke Eisenblätter
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Finja Seifert
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Peter Schürmann
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Theresa Beckhaus
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Patricia Hanel
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Matthias Jentschke
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | | | - Hans-Georg Strauß
- Department of Gynaecology, University Clinics, Martin-Luther University, Halle-Wittenberg, Germany
| | - Christine Hirchenhain
- Department of Gynaecology, Clinics Carl Gustav Carus, University of Dresden, Dresden, Germany
| | - Monika Schmidmayr
- Department of Gynaecology, Technische Universität München, Munich, Germany
| | - Florian Müller
- Martin-Luther Hospital, Charite University, Berlin, Germany
| | - Alexander Hein
- Department of Gynaecology and Obstetrics, Klinikum Esslingen, Esslingen am Neckar, Germany
| | - Frederik Stuebs
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander, University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Koch
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander, University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander, University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander, University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander, University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Luyten
- Dysplasia Unit, Department of Gynecology and Obstetrics, Mare Klinikum, Kronshagen, Germany
- Department of Gynaecology, Wolfsburg Hospital, Wolfsburg, Germany
| | - Norman Häfner
- Department of Gynaecology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Peter Hillemanns
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Dhanya Ramachandran
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Seifert F, Eisenblätter R, Beckmann J, Schürmann P, Hanel P, Jentschke M, Böhmer G, Strauß HG, Hirchenhain C, Schmidmayr M, Müller F, Fasching P, Luyten A, Häfner N, Dürst M, Runnebaum IB, Hillemanns P, Dörk T, Ramachandran D. Association of two genomic variants with HPV type-specific risk of cervical cancer. Tumour Virus Res 2023; 16:200269. [PMID: 37499979 PMCID: PMC10415783 DOI: 10.1016/j.tvr.2023.200269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
PROBLEM Human papillomavirus infection is integral to developing invasive cervical cancer in the majority of patients. In a recent genome-wide association study, rs9357152 and rs4243652 have been associated with seropositivity for HPV16 or HPV18, respectively. It is unknown whether these variants also associate with cervical cancer triggered by either HPV16 or HPV18. METHODS We investigate whether the two HPV susceptibility variants show association with type-specific cervical cancer in a genetic case-control study with cases stratified by HPV16 or HPV18, respectively. We further tested whether rs9357152 modulates gene expression of any of 36 genes at the human leukocyte antigen locus in 256 cervical tissues. RESULTS rs9357152 was associated with invasive HPV16-positive cervical cancer (OR 1.33, 95%CI 1.03-1.70, p = 0.03), and rs4243652 was associated with HPV18-positive adenocarcinomas (OR 2.96, 95%CI 1.18-7.41, p = 0.02). These associations remained borderline significant after testing against different sets of controls. rs9357152 was found to be an eQTL for HLA-DRB1 in HPV-positive cervical tissues (pANOVA = 0.0009), with the risk allele lowering mRNA levels. CONCLUSIONS We find evidence that HPV seropositivity variants at chromosome 6 and 14 may modulate type-specific cervical cancer risk. rs9357152 may exert its effect through regulating HLA-DRB1 induction in the presence of HPV. In regard of multiple testing, these results need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Finja Seifert
- Gynaecology Research Unit, Comprehensive Cancer Center, Hannover Medical School, D-30625, Hannover, Germany
| | - Rieke Eisenblätter
- Gynaecology Research Unit, Comprehensive Cancer Center, Hannover Medical School, D-30625, Hannover, Germany
| | - Julia Beckmann
- Gynaecology Research Unit, Comprehensive Cancer Center, Hannover Medical School, D-30625, Hannover, Germany
| | - Peter Schürmann
- Gynaecology Research Unit, Comprehensive Cancer Center, Hannover Medical School, D-30625, Hannover, Germany
| | - Patricia Hanel
- Gynaecology Research Unit, Comprehensive Cancer Center, Hannover Medical School, D-30625, Hannover, Germany
| | - Matthias Jentschke
- Clinics of Gynaecology and Obstetrics, Hannover Medical School, D-30625, Hannover, Germany
| | | | - Hans-Georg Strauß
- Department of Gynaecology, University Clinics, Martin-Luther University, Halle-Wittenberg, Germany
| | - Christine Hirchenhain
- Department of Gynaecology, Clinics Carl Gustav Carus, University of Dresden, Dresden, Germany
| | - Monika Schmidmayr
- Department of Gynaecology, Technische Universität München, Munich, Germany
| | - Florian Müller
- Martin-Luther Hospital, Charite University, Berlin, Germany
| | - Peter Fasching
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Luyten
- Dysplasia Unit, Department of Gynaecology and Obstetrics, Mare Klinikum, Kronshagen, Germany; Department of Gynaecology, Wolfsburg Hospital, Wolfsburg, Germany
| | - Norman Häfner
- Department of Gynaecology, Jena University Hospital, Friedrich -Schiller-University Jena, Jena, Germany
| | - Matthias Dürst
- Department of Gynaecology, Jena University Hospital, Friedrich -Schiller-University Jena, Jena, Germany
| | - Ingo B Runnebaum
- Department of Gynaecology, Jena University Hospital, Friedrich -Schiller-University Jena, Jena, Germany
| | - Peter Hillemanns
- Clinics of Gynaecology and Obstetrics, Hannover Medical School, D-30625, Hannover, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Comprehensive Cancer Center, Hannover Medical School, D-30625, Hannover, Germany
| | - Dhanya Ramachandran
- Gynaecology Research Unit, Comprehensive Cancer Center, Hannover Medical School, D-30625, Hannover, Germany.
| |
Collapse
|
4
|
Wang S, Onyeaghala GC, Pankratz N, Nelson HH, Thyagarajan B, Tang W, Norby FL, Ugoji C, Joshu CE, Gomez CR, Couper DJ, Coresh J, Platz EA, Prizment AE. Associations between MICA and MICB Genetic Variants, Protein Levels, and Colorectal Cancer: Atherosclerosis Risk in Communities (ARIC). Cancer Epidemiol Biomarkers Prev 2023; 32:784-794. [PMID: 36958849 PMCID: PMC10239349 DOI: 10.1158/1055-9965.epi-22-1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/24/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND The MHC class I chain-related protein A (MICA) and protein B (MICB) participate in tumor immunosurveillance and may be important in colorectal cancer, but have not been examined in colorectal cancer development. METHODS sMICA and sMICB blood levels were measured by SomaScan in Visit 2 (1990-92, baseline) and Visit 3 (1993-95) samples in cancer-free participants in the Atherosclerosis Risk in Communities Study. We selected rs1051792, rs1063635, rs2516448, rs3763288, rs1131896, rs2596542, and rs2395029 that were located in or in the vicinity of MICA or MICB and were associated with cancer or autoimmune diseases in published studies. SNPs were genotyped by the Affymetrix Genome-Wide Human SNP Array. We applied linear and Cox proportional hazards regressions to examine the associations of preselected SNPs with sMICA and sMICB levels and colorectal cancer risk (236 colorectal cancers, 8,609 participants) and of sMICA and sMICB levels with colorectal cancer risk (312 colorectal cancers, 10,834 participants). In genetic analyses, estimates adjusted for ancestry markers were meta-analyzed. RESULTS Rs1051792-A, rs1063635-A, rs2516448-C, rs3763288-A, rs2596542-T, and rs2395029-G were significantly associated with decreased sMICA levels. Rs2395029-G, in the vicinity of MICA and MICB, was also associated with increased sMICB levels. Rs2596542-T was significantly associated with decreased colorectal cancer risk. Lower sMICA levels were associated with lower colorectal cancer risk in males (HR = 0.68; 95% confidence interval, 0.49-0.96) but not in females (Pinteraction = 0.08). CONCLUSIONS Rs2596542-T associated with lower sMICA levels was associated with decreased colorectal cancer risk. Lower sMICA levels were associated with lower colorectal cancer risk in males. IMPACT These findings support an importance of immunosurveillance in colorectal cancer.
Collapse
Affiliation(s)
- Shuo Wang
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, MN
| | - Guillaume C. Onyeaghala
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN
| | - Heather H Nelson
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Faye L. Norby
- Department of Cardiology, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA
| | - Chinenye Ugoji
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Corinne E. Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Christian R. Gomez
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS
| | - David J. Couper
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Anna E. Prizment
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, MN
| |
Collapse
|
5
|
Ramachandran D, Dörk T. Genomic Risk Factors for Cervical Cancer. Cancers (Basel) 2021; 13:5137. [PMID: 34680286 PMCID: PMC8533931 DOI: 10.3390/cancers13205137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is the fourth common cancer amongst women worldwide. Infection by high-risk human papilloma virus is necessary in most cases, but not sufficient to develop invasive cervical cancer. Despite a predicted genetic heritability in the range of other gynaecological cancers, only few genomic susceptibility loci have been identified thus far. Various case-control association studies have found corroborative evidence for several independent risk variants at the 6p21.3 locus (HLA), while many reports of associations with variants outside the HLA region remain to be validated in other cohorts. Here, we review cervical cancer susceptibility variants arising from recent genome-wide association studies and meta-analysis in large cohorts and propose 2q14 (PAX8), 17q12 (GSDMB), and 5p15.33 (CLPTM1L) as consistently replicated non-HLA cervical cancer susceptibility loci. We further discuss the available evidence for these loci, knowledge gaps, future perspectives, and the potential impact of these findings on precision medicine strategies to combat cervical cancer.
Collapse
Affiliation(s)
| | - Thilo Dörk
- Gynaecology Research Unit, Department of Gynaecology and Obstetrics, Comprehensive Cancer Center, Hannover Medical School, D-30625 Hannover, Germany;
| |
Collapse
|
6
|
Bowden SJ, Bodinier B, Kalliala I, Zuber V, Vuckovic D, Doulgeraki T, Whitaker MD, Wielscher M, Cartwright R, Tsilidis KK, Bennett P, Jarvelin MR, Flanagan JM, Chadeau-Hyam M, Kyrgiou M. Genetic variation in cervical preinvasive and invasive disease: a genome-wide association study. Lancet Oncol 2021; 22:548-557. [PMID: 33794208 PMCID: PMC8008734 DOI: 10.1016/s1470-2045(21)00028-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Most uterine cervical high-risk human papillomavirus (HPV) infections are transient, with only a small fraction developing into cervical cancer. Family aggregation studies and heritability estimates suggest a significant inherited genetic component. Candidate gene studies and previous genome-wide association studies (GWASs) report associations between the HLA region and cervical cancer. Adopting a genome-wide approach, we aimed to compare genetic variation in women with invasive cervical cancer and cervical intraepithelial neoplasia (CIN) grade 3 with that in healthy controls. METHODS We did a GWAS in a cohort of unrelated European individuals using data from UK Biobank, a population-based cohort including 273 377 women aged 40-69 years at recruitment between March 13, 2006, and Oct 1, 2010. We used an additive univariate logistic regression model to analyse genetic variants associated with invasive cervical cancer or CIN3. We sought replication of candidate associations in FinnGen, a large independent dataset of 128 123 individuals. We also did a two-sample mendelian randomisation approach to explore the role of risk factors in the genetic risk of cervical cancer. FINDINGS We included 4769 CIN3 and invasive cervical cancer case samples and 145 545 control samples in the GWAS. Of 9 600 464 assayed and imputed single-nucleotide polymorphisms (SNPs), six independent variants were associated with CIN3 and invasive cervical cancer. These included novel loci rs10175462 (PAX8; odds ratio [OR] 0·87, 95% CI 0·84-0·91; p=1·07 × 10-9) and rs27069 (CLPTM1L; 0·88, 0·84-0·92; p=2·51 × 10-9), and previously reported signals at rs9272050 (HLA-DQA1; 1·27, 1·21-1·32; p=2·51 × 10-28), rs6938453 (MICA; 0·79, 0·75-0·83; p=1·97 × 10-17), rs55986091 (HLA-DQB1; 0·66, 0·60-0·72; p=6·42 × 10-28), and rs9266183 (HLA-B; 0·73, 0·64-0·83; p=1·53 × 10-6). Three SNPs were replicated in the independent Finnish dataset of 1648 invasive cervical cancer cases: PAX8 (rs10175462; p=0·015), CLPTM1L (rs27069; p=2·54 × 10-7), and HLA-DQA1 (rs9272050; p=7·90 × 10-8). Mendelian randomisation further supported the complementary role of smoking (OR 2·46, 95% CI 1·64-3·69), older age at first pregnancy (0·80, 0·68-0·95), and number of sexual partners (1·95, 1·44-2·63) in the risk of developing cervical cancer. INTERPRETATION Our results provide new evidence for the genetic susceptibility to cervical cancer, specifically the PAX8, CLPTM1L, and HLA genes, suggesting disruption in apoptotic and immune function pathways. Future studies integrating host and viral, genetic, and epigenetic variation, could further elucidate complex host-viral interactions. FUNDING NIHR Imperial BRC Wellcome 4i Clinician Scientist Training Programme.
Collapse
Affiliation(s)
- Sarah J Bowden
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; West London Gynaecological Cancer Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Barbara Bodinier
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Ilkka Kalliala
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Dragana Vuckovic
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Triada Doulgeraki
- West London Gynaecological Cancer Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew D Whitaker
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Rufus Cartwright
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK; Department of Urogynaecology, London North West Hospitals NHS Trust, London, UK
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Phillip Bennett
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland; Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - James M Flanagan
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Maria Kyrgiou
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; West London Gynaecological Cancer Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
7
|
Hasan ME, Matin M, Haque ME, Aziz MA, Millat MS, Uddin MS, Moghal MMR, Islam MS. Polymorphic variants INSIG2 rs6726538, HLA-DRB1 rs9272143, and GCNT1P5 rs7780883 contribute to the susceptibility of cervical cancer in the Bangladeshi women. Cancer Med 2021; 10:1829-1838. [PMID: 33586351 PMCID: PMC7940232 DOI: 10.1002/cam4.3782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/16/2021] [Accepted: 01/27/2021] [Indexed: 01/13/2023] Open
Abstract
Objective Cervical cancer is a gynecological health problem, affecting nearly 500,000 women each year worldwide. Genome‐wide association studies have revealed multiple susceptible genes and their polymorphisms for cervical carcinoma risk. We have carried out this case‐control study to investigate the association of INSIG2 rs6726538 (A; T), HLA‐DRB1 rs9272143 (T; C), and GCNT1P5 rs7780883 (G; A) with cervical cancer. Methods The present study recruited 234 cervical cancer patients as cases and 212 healthy females as controls. We have applied the tetra‐primer amplification refractory mutation system polymerase chain reaction (T‐ARMS‐PCR) method for genotyping. Results The SNP rs6726538 was significantly associated with increased risk of cervical cancer in all genetic models (AT vs. AA: OR = 3.30, 95% CI = 2.19–4.97, p < 0.0001; TT vs. AA: OR = 8.72, 95% CI = 3.87–19.7, p < 0.0001; AT+TT vs. AA: OR = 3.87, 95% CI = 2.61–5.73, p < 0.0001; T vs. A: OR = 2.97, 95% CI = 2.20–4.01, p < 0.0001) except the recessive model which showed a significantly reduced risk (TT vs. AA+AT: OR = 0.20, 95% CI = 0.09–0.44, p = 0.0001). rs9272143 showed significantly reduced risk for the additive model 1, dominant model, and allelic model (TC vs. TT: OR = 0.46, 95% CI = 0.31–0.70, p = 0.0004; TC+CC vs. TT: OR = 0.47 95% CI = 0.32–0.70, p = 0.0002; C vs. T: OR = 0.56, 95% CI = 0.40–0.78, p = 0.0006, respectively). The third variant, rs7780883, was significantly associated with increased risk in additive model 2, dominant, and allelic models (AA vs. GG: OR = 5.08, 95% CI = 2.45–10.5, p < 0.0001; GA+AA vs. GG: OR = 1.54, 95% CI = 1.06–2.24, p = 0.0237; A vs. G: OR = 1.88, 95% CI = 1.34–2.52, p < 0.0001, consecutively), whereas recessive model reduced the risk of cervical cancer (AA vs. GG+GA: OR = 0.20, 95% CI = 0.09–0.41, p < 0.0001). Other models of these SNPs were not associated with cervical cancer. All significant associations for three SNPs withstand after Bonferroni correction except the additive model 2 of rs7780883. Conclusion Our study concludes that INSIG2 rs6726538, HLA‐DRB1 rs9272143, and GCNT1P5 rs7780883 polymorphisms may contribute to the development of cervical cancer in the Bangladeshi population.
Collapse
Affiliation(s)
- Md Emtiaz Hasan
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Maliha Matin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Enamul Haque
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shalahuddin Millat
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammad Sarowar Uddin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
8
|
Ramachandran D, Schürmann P, Mao Q, Wang Y, Bretschneider LM, Speith LM, Hülse F, Enßen J, Bousset K, Jentschke M, Böhmer G, Strauß HG, Hirchenhain C, Schmidmayr M, Tarbiat J, Runnebaum I, Dürst M, Hein A, Koch M, Ruebner M, Ekici A, Beckmann MW, Fasching PA, Luyten A, Petry KU, Hillemanns P, Dörk T. Association of genomic variants at the human leukocyte antigen locus with cervical cancer risk, HPV status and gene expression levels. Int J Cancer 2020; 147:2458-2468. [PMID: 32580243 DOI: 10.1002/ijc.33171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
Abstract
The human leukocyte antigen (HLA) locus on chromosome 6 has been reported to be associated with cervical cancer. We investigated two independent single-nucleotide polymorphisms in a large case-control series of cervical dysplasia and carcinoma that has been newly established by the German Cervigen Consortium, comprising a total of 2481 cases and 1556 healthy females. We find significant associations for both variants, rs9272117 at HLA-DQA1 and rs2844511 at MICA and HCP5, with cervical disease. Both variants showed evidence of association with invasive cervical cancer (rs9272117: OR 0.89, 95% CI 0.79-0.99, P = .036; rs2844511: OR 1.17, 95% CI 1.04-1.31, P = .008) and with high-grade dysplasia (rs9272117: OR 0.78, 95% CI 0.70-0.87, P = 7.1 × 10-6 ; rs2844511: OR 1.13, 95% CI 1.01-1.26, P = .035), as well as in a combined analysis of both groups (rs9272117: OR 0.83, 95% CI 0.75-0.91, P = 6.9 × 10-5 ; rs2844511: OR 1.14, 95% CI 1.04-1.26, P = .005). Variant rs2844511, but not rs9272117, also showed modest evidence of association with low-grade dysplasia (OR 1.26, 95% CI 1.04-1.54, P = .019). In case-only analyses, rs2844511 tended to predict HPV status (P = .044) and rs9272117 tended to associate with HPV16 (P = .022). RNA studies in cervical samples showed a significant correlation in the transcript levels of MICA, HCP5 and HLA-DQA1, suggesting extensive co-regulation. All three genes were upregulated in HPV16-positive samples. In stratified analyses, rs9272117 was associated with HLA-DQA1 levels, specifically in HPV-positive samples, while rs2844511 was associated with MICA and HCP5 levels. The risk allele of rs2844511 was required for correlations between MICA or HCP5 with HLA-DQA1. Altogether, our results support 6p21.32-33 as the first consistent cervical cancer susceptibility locus and provide evidence for a link between genetic risk variants, HPV16 status and transcript levels of HLA-DQA1, HCP5 and MICA, which may contribute to tumor immune evasion.
Collapse
Affiliation(s)
- Dhanya Ramachandran
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Peter Schürmann
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Qianqian Mao
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Yingying Wang
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Lisa-Marie Bretschneider
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Lisa-Marie Speith
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Fabienne Hülse
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Julia Enßen
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Kristine Bousset
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Matthias Jentschke
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | | | - Hans-Georg Strauß
- Department of Gynaecology, University Clinics, Martin-Luther University, Halle-Wittenberg, Germany
| | - Christine Hirchenhain
- Department of Gynaecology, Clinics Carl Gustav Carus, University of Dresden, Dresden, Germany
| | - Monika Schmidmayr
- Department of Gynaecology, Technische Universität München, Munich, Germany
| | | | - Ingo Runnebaum
- Department of Gynecology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Martin Koch
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Alexander Luyten
- Dysplasia Unit, Department of Gynecology and Obstetrics, Mare Klinikum, Kronshagen, Germany.,Department of Gynecology, Wolfsburg Hospital, Wolfsburg, Germany
| | | | - Peter Hillemanns
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Shete S, Liu H, Wang J, Yu R, Sturgis EM, Li G, Dahlstrom KR, Liu Z, Amos CI, Wei Q. A Genome-Wide Association Study Identifies Two Novel Susceptible Regions for Squamous Cell Carcinoma of the Head and Neck. Cancer Res 2020; 80:2451-2460. [PMID: 32276964 PMCID: PMC7299763 DOI: 10.1158/0008-5472.can-19-2360] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
To identify genetic variants for risk of squamous cell carcinoma of the head and neck (SCCHN), we conducted a two-phase genome-wide association study consisting of 7,858,089 SNPs in 2,171 cases and 4,493 controls of non-Hispanic white, of which, 434,839 typed and 7,423,250 imputed SNPs were used as the discovery. SNPs with P < 1 × 10-3 were further validated in the OncoArray study of oral and pharynx cancer (5,205 cases and 3,232 controls of European ancestry) from databases of Genotypes and Phenotypes. Meta-analysis of the discovery and replication studies identified one novel locus 6p22.1 (P = 2.96 × 10-9 for the leading rs259919) and two cancer susceptibility loci 6p21.32 (rs3135001, HLA-DQB1) and 6p21.33 (rs1265081, CCHCR1) associated with SCCHN risk. Further stratification by tumor site revealed four known cancer loci (5p15.33, 6p21.32, 6p21.33, and 2p23.1) associated with oral cavity cancer risk and oropharyngeal cancer risk, respectively. In addition, one novel locus 18q22.2 (P = 2.54 × 10-9 for the leading SNP rs142021700) was identified for hypopharynx and larynx cancer risk. For SNPs in those reported or novel loci, we also performed functional annotations by bioinformatics prediction and expression quantitative trait loci analysis. Collectively, our identification of four reported loci (2p23.1, 5p15.33, 6p21.32, and 6p21.33) and two novel loci (6p22.1 and 18q22.2) for SCCHN risk highlight the importance of human leukocyte antigen loci for oropharyngeal cancer risk, suggesting that immunologic mechanisms are implicated in the etiology of this subset of SCCHN. SIGNIFICANCE: Two novel risk loci for SCCHN in non-Hispanic white individuals highlight the importance of immunologic mechanism in the disease etiology.
Collapse
Affiliation(s)
- Sanjay Shete
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Yu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristina R Dahlstrom
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Christopher I Amos
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Department of Population Health Sciences, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
10
|
von Linsingen R, Pinho de França P, de Carvalho NS, Bicalho MDG. MICA and KLRK1 genes and their impact in cervical intraepithelial neoplasia development in the southern Brazilian population. Hum Immunol 2020; 81:249-253. [PMID: 32107037 DOI: 10.1016/j.humimm.2020.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 11/15/2022]
Abstract
Cervical carcinoma and cervical intraepithelial neoplasia (CIN) are associated with persistent infection by oncogenic subtypes of HPV (Human Papillomavirus). Factors linked to immunity, genetics and others like oral contraceptive use, sexual behavior, coinfections with other microorganisms and smoking seem to influence the mechanisms that determine regression or progression to CIN and cervical cancer. We investigated the effect of the MHC class I chain-related gene A (MICA) and Killer Cell Lectin Like receptor K1 (KLRK1) genes on cervical cancer and CIN lesions susceptibility in a group of 195 patients from southern Brazil. There were found a significantly higher number of ex-smokers in the control group (p = 0.005). There were more oral contraceptives (OC) users in the patient group. MICA*008:01/04 allele showed a significant difference between patient and control groups (p = 0.03; OR = 0.63, 95% CI 0.41-0.96), as well as MICA*018:01(p = 0.004, OR = 0.15, 95% CI 0.03-0.64) and MICA*002:01/020 (p = 0.01; OR = 0.60, 95% CI 0.40-0.88). We also analyzed cases and controls according to the MICA-129 genotypes (Met/Val). There was found a difference (p = 0.02) with the Met/Val genotype in a higher frequency in controls and Val/Val and Val/MICA del at a higher frequency in the patient group. For the KLRK1 gene there was no significant difference between groups.
Collapse
Affiliation(s)
- Renate von Linsingen
- Department of Gynecology and Obstetrics, Infectious Diseases in Gynecology and Obstetrics Sector, Post Graduate Program of Gynecology and Obstetrics, Clinics Hospital of Federal University of Paraná (UFPR), Rua General Carneiro, 181, Alto da Glória, CEP 80060-900 Curitiba, Paraná, Brazil; Immunogenetics and Histocompatibility Laboratory (LIGH), Biological Sciences Sector, Federal University of Paraná, Avenida Coronel Francisco H. dos Santos, 100. Centro Politécnico, Jardim das Américas, CEP 80050-540 Curitiba, Paraná, Brazil.
| | - Patrícia Pinho de França
- Genetics Department of Federal University of Paranál, Biological Sciences Sector, Federal University of Paraná, Avenida Coronel Francisco H. dos Santos, 100. Centro Politécnico, Jardim das Américas, CEP 80050-540 Curitiba, Paraná, Brazil; Immunogenetics and Histocompatibility Laboratory (LIGH), Biological Sciences Sector, Federal University of Paraná, Avenida Coronel Francisco H. dos Santos, 100. Centro Politécnico, Jardim das Américas, CEP 80050-540 Curitiba, Paraná, Brazil
| | - Newton Sérgio de Carvalho
- Department of Gynecology and Obstetrics, Infectious Diseases in Gynecology and Obstetrics Sector, Post Graduate Program of Gynecology and Obstetrics, Clinics Hospital of Federal University of Paraná (UFPR), Rua General Carneiro, 181, Alto da Glória, CEP 80060-900 Curitiba, Paraná, Brazil
| | - Maria da Graça Bicalho
- Department of Gynecology and Obstetrics, Infectious Diseases in Gynecology and Obstetrics Sector, Post Graduate Program of Gynecology and Obstetrics, Clinics Hospital of Federal University of Paraná (UFPR), Rua General Carneiro, 181, Alto da Glória, CEP 80060-900 Curitiba, Paraná, Brazil; Genetics Department of Federal University of Paranál, Biological Sciences Sector, Federal University of Paraná, Avenida Coronel Francisco H. dos Santos, 100. Centro Politécnico, Jardim das Américas, CEP 80050-540 Curitiba, Paraná, Brazil; Immunogenetics and Histocompatibility Laboratory (LIGH), Biological Sciences Sector, Federal University of Paraná, Avenida Coronel Francisco H. dos Santos, 100. Centro Politécnico, Jardim das Américas, CEP 80050-540 Curitiba, Paraná, Brazil
| |
Collapse
|
11
|
Association between MICA rs2596542 Polymorphism with the Risk of Hepatocellular Carcinoma in Chronic Hepatitis C Patients. Pathol Oncol Res 2019; 26:1519-1525. [PMID: 31471884 DOI: 10.1007/s12253-019-00738-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
In this study we investigated the impact of rs2596542A/G single nucleotide polymorphism (SNP) in the major histocompatibility complex class I chain-related sequence A (MICA) gene on HCV-induced hepatocellular carcinoma (HCC) susceptibility in a Brazilian population. In total, 252 HCV-infected patients (98 with HCV-induced HCC and 154 non-malignant HCV-induced liver cirrhosis) were enrolled and 98 healthy control subjects (negative anti-HCV). The MICA rs2596542 SNP genotypes were determined by real-time PCR assay. No differences in MICA genotype frequencies between HCV-induced cirrhosis patients and controls were observed. However, genotype frequencies of rs2596542A/G SNP were statistically different between HCV-induced HCC patients and controls (p = 0.048), and also between HCC and HCV-induced cirrhosis patients (p = 0.039). The highest frequency of the rs2596542AA genotype was observed in HCC patients (31.6%) when compared with HCV-induced cirrhosis patients (18.8%) and healthy controls (19.4%). Also, rs2596542AA genotype carriers have an increased risk for HCC when compared to HCV-induced cirrhosis status [odds ratio (OR) = 1.99; 95% confidence interval (CI) = 1.06-3.74, p = 0.020)] and healthy individuals (OR = 1.92, 95% CI = 1.00-3.70, p = 0.049). Taken together our study suggest that MICA rs2596542 SNP impacts HCV-induced HCC susceptibility suggesting that genetic variants in MICA are of clinical relevance to hepatocarcinogenesis by impacting host immune response in chronic HCV infection.
Collapse
|
12
|
Next-generation sequencing reveals new information about HLA allele and haplotype diversity in a large European American population. Hum Immunol 2019; 80:807-822. [PMID: 31345698 DOI: 10.1016/j.humimm.2019.07.275] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/21/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
Abstract
The human leukocyte antigen (HLA) genes are extremely polymorphic and are useful molecular markers to make inferences about human population history. However, the accuracy of the estimation of genetic diversity at HLA loci very much depends on the technology used to characterize HLA alleles; high-resolution genotyping of long-range HLA gene products improves the assessment of HLA population diversity as well as other population parameters compared to lower resolution typing methods. In this study we examined allelic and haplotype HLA diversity in a large healthy European American population sourced from the UCSF-DNA bank. A high-resolution next-generation sequencing method was applied to define non-ambiguous 3- and 4-field alleles at the HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DRB3/4/5, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 loci in samples provided by 2248 unrelated individuals. A number of population parameters were examined including balancing selection and various measurements of linkage disequilibrium were calculated. There were no detectable deviations from Hardy-Weinberg proportions at HLA-A, HLA-DRB1, HLA-DQA1 and HLA-DQB1. For the remaining loci moderate and significant deviations were detected at HLA-C, HLA-B, HLA-DRB3/4/5, HLA-DPA1 and HLA-DPB1 loci mostly from population substructures. Unique 4-field associations were observed among alleles at 2 loci and haplotypes extending large intervals that were not apparent in results obtained using testing methodologies with limited sequence coverage and phasing. The high diversity at HLA-DPA1 results from detection of intron variants of otherwise well conserved protein sequences. It may be speculated that divergence in exon sequences may be negatively selected. Our data provides a valuable reference source for future population studies that may allow for precise fine mapping of coding and non-coding sequences determining disease susceptibility and allo-immunogenicity.
Collapse
|
13
|
Takeuchi F, Kukimoto I, Li Z, Li S, Li N, Hu Z, Takahashi A, Inoue S, Yokoi S, Chen J, Hang D, Kuroda M, Matsuda F, Mizuno M, Mori S, Wu P, Tanaka N, Matsuo K, Kamatani Y, Kubo M, Ma D, Shi Y. Genome-wide association study of cervical cancer suggests a role for ARRDC3 gene in human papillomavirus infection. Hum Mol Genet 2019; 28:341-348. [PMID: 30412241 DOI: 10.1093/hmg/ddy390] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022] Open
Abstract
The development of cervical cancer is initiated by human papillomavirus (HPV) infection and involves both viral and host genetic factors. Genome-wide association studies (GWAS) of cervical cancer have identified associations in the HLA locus and two loci outside HLA, but the principal genes that control infection and pathogenesis have not been identified. In the present study, we performed GWAS of cervical cancer in East Asian populations, involving 2609 cases and 4712 controls in the discovery stage and 1461 cases and 3295 controls in the follow-up stage. We identified novel-significant associations at 5q14 with the lead single nucleotide polymorphism (SNP) rs59661306 (P = 2.4 × 10-11) and at 7p11 with the lead SNP rs7457728 (P = 1.2 × 10-8). In 5q14, the chromatin region of the GWAS-significant SNPs was found to be in contact with the promoter of the ARRDC3 (arrestin domain-containing 3) gene. In our functional studies, ARRDC3 knockdown in HeLa cells caused significant reductions in both cell growth and susceptibility to HPV16 pseudovirion infection, suggesting that ARRDC3 is involved in the infectious entry of HPV into the cell. Our study advances the understanding of host genes that are responsible for cervical cancer susceptibility and guides future research on HPV infection and cancer development.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Research Institute,National Center for Global Health and Medicine, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases,Musashimurayama-shi, Tokyo, Japan
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P.R. China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P.R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shuang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ni Li
- Program Office for Cancer Screening in Urban China, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P.R. China
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shusaku Inoue
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Sana Yokoi
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan.,Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Dong Hang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mika Mizuno
- Department of Gynecological Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases,Musashimurayama-shi, Tokyo, Japan
| | - Peng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Naotake Tanaka
- Division of Gynecology, Chiba Cancer Center, Chiba, Japan
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Aichi, Japan.,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P.R. China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P.R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
14
|
SNP rs2596542G>A in MICA is associated with risk of hepatocellular carcinoma: a meta-analysis. Biosci Rep 2019; 39:BSR20181400. [PMID: 30967497 PMCID: PMC6504665 DOI: 10.1042/bsr20181400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 02/05/2023] Open
Abstract
The association of major histocompatibility complex class I chain-related gene A (MICA) single nucleotide polymorphism (SNP) rs2596542G>A and hepatocellular carcinoma (HCC) has been broadly studied, with inconsistent results. Therefore, we conducted the current meta-analysis to better elucidate the roles of SNP rs2596542G>A in HCC. Eligible articles were searched in PubMed, CNKI, Wanfang, Embase, VIP, Web of Science, and CBM databases up to November 2018. Odds ratios (ORs) and 95% CIs were applied. A total of 11 articles, including 4528 HCC patients and 16,625 control subjects, were analyzed. Results revealed that rs2596542G>A was significantly associated with HCC in the heterozygote (G/A versus A/A, P=0.006, OR = 0.854; 95% CI: 0.763–0.956); and dominant (G/G + G/A versus A/A; P=0.021; OR = 0.796; 95% CI: 0.655–0.967) genetic models. Nevertheless, we also detected significant associations between rs2596542G>A and HCV-induced HCC. Additionally, according to our analyses, SNP rs2596542G>A was not correlated with HBV-induced HCC. In conclusion, our findings suggest that MICA SNP rs2596542G>A is associated with HCC susceptibility amongst the Asian, Caucasian, and African ethnicity in certain genetic models. Specifically, MICA SNP rs2396542G>A is associated with risk of HCV-induced HCC, not HBV-induced HCC.
Collapse
|
15
|
Kuguyo O, Tsikai N, Thomford NE, Magwali T, Madziyire MG, Nhachi CFB, Matimba A, Dandara C. Genetic Susceptibility for Cervical Cancer in African Populations: What Are the Host Genetic Drivers? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:468-483. [PMID: 30004844 DOI: 10.1089/omi.2018.0075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human papillomavirus (HPV) is an essential but not a sufficient cervical cancer etiological factor. Cancer promoters, such as host genetic mutations, significantly modulate therapeutic responses and susceptibility. In cervical cancer, of interest have been viral clearing genes and HPV oncoprotein targets, for which conflicting data have been reported among different populations. This expert analysis evaluates cervical cancer genetic susceptibility biomarkers studied in African populations. Notably, the past decade has seen Africa as a hotbed of biomarker and precision medicine innovations, thus potentially informing worldwide biomarker development strategies. We conducted a critical literature search in PubMed/MEDLINE, Google Scholar, and Scopus databases for case-control studies reporting on cervical cancer genetic polymorphisms among Africans. We found that seven African countries conducted cervical cancer molecular epidemiology studies in one of Casp8, p53, CCR2, FASL, HLA, IL10, TGF-beta, and TNF-alpha genes. This analysis reveals a remarkable gap in cervical cancer molecular epidemiology among Africans, whereas cervical cancer continues to disproportionately have an impact on African populations. Genome-wide association, whole exome- and whole-genome sequencing studies confirmed the contribution of candidate genes in cervical cancer. With such advances and omics technologies, the role of genetic susceptibility biomarkers can be exploited to develop novel interventions to improve current screening, diagnostic and prognostic methods worldwide. Exploring these genetic variations is crucial because African populations are genetically diverse and some variants or their combined effects are yet to be discovered and translated into tangible clinical applications. Thus, translational medicine and flourishing system sciences in Africa warrant further emphasis in the coming decade.
Collapse
Affiliation(s)
- Oppah Kuguyo
- 1 Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Nomsa Tsikai
- 2 Chemotherapy and Radiotherapy Center, Parirenyatwa Group of Hospitals , Harare, Zimbabwe
| | - Nicholas E Thomford
- 3 Pharmacogenetics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Thulani Magwali
- 4 Department of Obstetrics and Gynecology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Mugove G Madziyire
- 4 Department of Obstetrics and Gynecology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Charles F B Nhachi
- 1 Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Alice Matimba
- 1 Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Collet Dandara
- 3 Pharmacogenetics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
16
|
Yang X, Kuang S, Wang L, Wei Y. MHC class I chain-related A: Polymorphism, regulation and therapeutic value in cancer. Biomed Pharmacother 2018; 103:111-117. [PMID: 29635123 DOI: 10.1016/j.biopha.2018.03.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
MICA and MICB are stress-induced molecules recognized by NKG2D, one of major activation receptors of natural killer (NK) cells. Upon binding to NKG2D, NKG2D-mediated cytolytic immune response of immune effector cells will be activated against virally infected and tumor cells expressing MICA. In the early oncogenic development, membrane-bound MICA serves as a key signal to recruit anti-tumor immune effectors. Nevertheless, both MICA polymorphic features and its dysregulated expression in evolving tumors have resulted in tumor evasion in various cancer types. Therefore, in order to reconstitute tumor immunosurveilance, it is of great significance that we understand MICA genetics, polymorphisms, mechanisms of MICA-associated tumor escape and molecular/cellular modulation of MICA. In this review, the MICA-associated co-expression networks involving microRNAs (miRNAs) and novel candidate long non-coding RNAs (lncRNAs) were also discussed. Given the current importance in the study of MICA gene, this review paper focuses on the role of MICA in different cancer types, and strategies that we manipulate MICA regulation against tumor proliferation.
Collapse
Affiliation(s)
- Xi Yang
- Department of Biological Sciences, Clemson University, USA
| | - Shuzhen Kuang
- Department of Biological Sciences, Clemson University, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, USA.
| | - Yanzhang Wei
- Department of Biological Sciences, Clemson University, USA.
| |
Collapse
|
17
|
Xiao D, Huang W, Ou M, Guo C, Ye X, Liu Y, Wang M, Zhang B, Zhang N, Huang S, Zang J, Zhou Z, Wen Z, Zeng C, Wu C, Huang C, Wei X, Yang G, Jing C. Interaction between susceptibility loci in cGAS-STING pathway, MHC gene and HPV infection on the risk of cervical precancerous lesions in Chinese population. Oncotarget 2018; 7:84228-84238. [PMID: 27705945 PMCID: PMC5356657 DOI: 10.18632/oncotarget.12399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/25/2016] [Indexed: 12/21/2022] Open
Abstract
Human papillomavirus (HPV) infection is a definite risk factor for cervical cancer. Nevertheless, only some infected individuals actually develop cervical cancer. The cGAS-STING pathway in innate immunity plays an important role in protecting against HPV infection. Chen et al. described that the rs2516448 SNP in the MHC locus may affect susceptibility to cervical cancer, a finding that we attempted to replicate in a Chinese population. To investigate the effects of cGAS, STING and MHC polymorphisms on susceptibility to cervical precancerous lesions, 9 SNPs were analyzed in 164 cervical precancerous lesion cases and 428 controls. Gene-gene and gene-environment interactions were also evaluated. We found a significantly decreased risk of cervical precancerous lesions for the GG genotype of rs311678 in the cGAS gene (ORadjusted = 0.40, 95% CI: 0.16-0.98). Moreover, MDR analysis identified a significant three-locus interaction model, involving HPV infection, age at menarche and rs311678 in cGAS. Additionally, a significant antagonistic interaction between HPV infection and rs311678 was found on an additive scale. In conclusion, our results indicate that the rs311678 polymorphism in the cGAS gene confers genetic susceptibility to cervical precancerous lesions. Moreover, the three-way gene-environment interactions further demonstrate that the rs311678 polymorphism in cGAS can significantly decrease the risk of HPV infection and the elder at menarche.
Collapse
Affiliation(s)
- Di Xiao
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Weihuang Huang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Meiling Ou
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Congcong Guo
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xingguang Ye
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yang Liu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Man Wang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baohuan Zhang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Na Zhang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shiqi Huang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jiankun Zang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zixing Zhou
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zihao Wen
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Chengli Zeng
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Chenfei Wu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Chuican Huang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiangcai Wei
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.,Family Planning Research Institute of Guangdong, Guangzhou, Guangdong Province, China
| | - Guang Yang
- Department of Parasitology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.,Key Laboratory of environmental exposure and health in Guangzhou, Jinan University, Guangzhou, Guangdong, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.,Key Laboratory of environmental exposure and health in Guangzhou, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Chen D, Enroth S, Liu H, Sun Y, Wang H, Yu M, Deng L, Xu S, Gyllensten U. Pooled analysis of genome-wide association studies of cervical intraepithelial neoplasia 3 (CIN3) identifies a new susceptibility locus. Oncotarget 2018; 7:42216-42224. [PMID: 27285765 PMCID: PMC5173129 DOI: 10.18632/oncotarget.9916] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/13/2016] [Indexed: 01/09/2023] Open
Abstract
Recent genome-wide association studies (GWASs) in subjects of European descent have identified associations between cervical cancer risk and three independent loci as well as multiple classical human leukocyte antigen (HLA) alleles at 6p21.3. To search for novel loci associated with development of cervical cancer, we performed a pooled analysis of data from two GWASs by imputing over 10 million genetic variants and 424 classical HLA alleles, for 1,553 intraepithelial neoplasia 3 (CIN3), 81 cervical cancer and 4,442 controls from the Swedish population. Notable findings were validated in an independent study of 961 patients (827 with CIN3 and 123 with cervical cancer) and 1,725 controls. Our data provided increased support for previously identified loci at 6p21.3 (rs9271898, P = 1.2 × 10−24; rs2516448, 1.1 × 10−15; and rs3130196, 2.3 × 10−9, respectively) and also confirmed associations with reported classical HLA alleles including HLA-B*07:02, -B*15:01, -DRB1*13:01, -DRB1*15:01, -DQA1*01:03, -DQB1*06:03 and -DQB1*06:02. In addition, we identified and subsequently replicated an independent signal at rs73730372 at 6p21.3 (odds ratio = 0.60, 95% confidence interval = 0.54–0.67, P = 3.0 × 10−19), which was found to be an expression quantitative trait locus (eQTL) of both HLA-DQA1 and HLA-DQB1. This is one of the strongest common genetic protective variants identified so far for CIN3. We also found HLA-C*07:02 to be associated with risk of CIN3. The present study provides new insights into pathogenesis of CIN3.
Collapse
Affiliation(s)
- Dan Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden
| | - Han Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Sun
- Laboratory of Biochemistry and Molecular Biology, School of Life Science,Yunnan University, Kunming, China
| | - Huibo Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Science,Yunnan University, Kunming, China
| | - Lian Deng
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Leo PJ, Madeleine MM, Wang S, Schwartz SM, Newell F, Pettersson-Kymmer U, Hemminki K, Hallmans G, Tiews S, Steinberg W, Rader JS, Castro F, Safaeian M, Franco EL, Coutlée F, Ohlsson C, Cortes A, Marshall M, Mukhopadhyay P, Cremin K, Johnson LG, Garland S, Tabrizi SN, Wentzensen N, Sitas F, Little J, Cruickshank M, Frazer IH, Hildesheim A, Brown MA. Defining the genetic susceptibility to cervical neoplasia-A genome-wide association study. PLoS Genet 2017; 13:e1006866. [PMID: 28806749 PMCID: PMC5570502 DOI: 10.1371/journal.pgen.1006866] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 08/24/2017] [Accepted: 06/12/2017] [Indexed: 01/04/2023] Open
Abstract
A small percentage of women with cervical HPV infection progress to cervical neoplasia, and the risk factors determining progression are incompletely understood. We sought to define the genetic loci involved in cervical neoplasia and to assess its heritability using unbiased unrelated case/control statistical approaches. We demonstrated strong association of cervical neoplasia with risk and protective HLA haplotypes that are determined by the amino-acids carried at positions 13 and 71 in pocket 4 of HLA-DRB1 and position 156 in HLA-B. Furthermore, 36% (standard error 2.4%) of liability of HPV-associated cervical pre-cancer and cancer is determined by common genetic variants. Women in the highest 10% of genetic risk scores have approximately >7.1% risk, and those in the highest 5% have approximately >21.6% risk, of developing cervical neoplasia. Future studies should examine genetic risk prediction in assessing the risk of cervical neoplasia further, in combination with other screening methods. Around 1% of women with cervical human papillomavirus (HPV) infection progress to cervical cancer. Previous studies had indicated that a person’s genetic makeup could predispose to HPV-associated cervical cancer, and that some of the genes likely to be involved include the immune-related human leukocyte antigen (HLA) genes among the major histocompatibility complex (MHC). However, it has been difficult to determine which alleles might be associated with cervical pre-cancer or cancer due to the complex and high level of co-inheritance of MHC alleles. Here, we performed a genome-wide association study that assessed the correlation of genetic variants among those with cervical cancer and healthy controls. We show that host genetics is a major determinant of HPV-associated cervical cancer, with 36% of liability due to common genetic variants in the population, and identify both risk and protective HLA alleles. Our study was also sufficiently powerful to identify particular residue variants on a number of the immune-related proteins that provide risk or protection, providing further insight into the biological basis for cervical cancer development. Our findings could lay the foundation for screening for people at increased risk of developing cancer following HPV infection, and aid in the treatment and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Paul J. Leo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Margaret M. Madeleine
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sophia Wang
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Stephen M. Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Felicity Newell
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Ulrika Pettersson-Kymmer
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Lund, Sweden
| | - Goran Hallmans
- Nutritional Research, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Sven Tiews
- MHC Laboratory for Cytopathology, Dr.Steinberg GmbH, Soest, Germany
| | | | - Janet S. Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Felipe Castro
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mahboobeh Safaeian
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States of America
| | - Eduardo L. Franco
- Division of Cancer Epidemiology, McGill University, Montreal, QC, Canada
| | - François Coutlée
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Claes Ohlsson
- Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Adrian Cortes
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Mhairi Marshall
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Pamela Mukhopadhyay
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Katie Cremin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Lisa G. Johnson
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Suzanne Garland
- Regional World Health Organisation Human Papillomavirus Laboratory Network, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville, Victoria, 3052, Australia
| | - Sepehr N. Tabrizi
- Department of Obstetrics and Gynaecology, University of Melbourne, Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville, Victoria, 3052, Australia
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States of America
| | - Freddy Sitas
- Cancer Council NSW, Sydney, NSW, Australia
- Sydney School of Public Health, University of Sydney, Camperdown, NSW, Australia
- School of Public Health and Community Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Julian Little
- School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maggie Cruickshank
- Division of Medical Education, University of Aberdeen, Aberdeen, Scotland
| | - Ian H. Frazer
- Faculty of Medicine and Biomedical Sciences, University of Queensland, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States of America
| | - Matthew A. Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Australia
- * E-mail:
| |
Collapse
|
20
|
McKay J, Tenet V, Franceschi S, Chabrier A, Gheit T, Gaborieau V, Chopin S, Avogbe PH, Tommasino M, Ainouze M, Hasan U, Vaccarella S. Immuno-related polymorphisms and cervical cancer risk: The IARC multicentric case-control study. PLoS One 2017; 12:e0177775. [PMID: 28505207 PMCID: PMC5432183 DOI: 10.1371/journal.pone.0177775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/07/2017] [Indexed: 11/23/2022] Open
Abstract
A small proportion of women who are exposed to infection with human-papillomavirus (HPV) develop cervical cancer (CC). Genetic factors may affect the risk of progression from HPV infection to cervical precancer and cancer. We used samples from the International Agency for Research on Cancer (IARC) multicentric case-control study to evaluate the association of selected genetic variants with CC. Overall, 790 CC cases and 717 controls from Algeria, Morocco, India and Thailand were included. Cervical exfoliated cells were obtained from control women and cervical exfoliated cells or biopsy specimens from cases. HPV-positivity was determined using a general primer GP5+/6+ mediated PCR. Unconditional logistic regression was used to estimate odds ratios (OR) and corresponding 95% confidence intervals (CI) of host genotypes with CC risk, using the homozygous wild type genotype as the referent category and adjusting by age and study centre. The association of polymorphisms with the risk of high-risk HPV-positivity among controls was also evaluated. A statistically significant association was observed between single nucleotide polymorphism (SNP) CHR6 rs2844511 and CC risk: the OR for carriers of the GA or GG genotypes was 0.70 (95% CI: 0.43-1.14) and 0.61 (95% CI: 0.38-0.98), respectively, relative to carriers of AA genotype (p-value for trend 0.03). We also observed associations of borderline significance with the TIPARP rs2665390 polymorphism, which was previously found to be associated with ovarian and breast cancer, and with the EXOC1 rs13117307 polymorphism, which has been linked to cervical cancer in a large study in a Chinese population. We confirmed the association between CC and the rs2844511 polymorphism previously identified in a GWAS study in a Swedish population. The major histocompatibility region of chromosome 6, or perhaps other SNPs in linkage disequilibrium, may be involved in CC onset.
Collapse
Affiliation(s)
- James McKay
- International Agency for Research on Cancer, Lyon, France
| | - Vanessa Tenet
- International Agency for Research on Cancer, Lyon, France
| | | | | | - Tarik Gheit
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | - Michelle Ainouze
- Centre International de Recherche en Infectiologie, International Center for Infectiology Research (CIRI), Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- University Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | - Uzma Hasan
- Centre International de Recherche en Infectiologie, International Center for Infectiology Research (CIRI), Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- University Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | | |
Collapse
|
21
|
HERD OLIVIA, FRANCIES FLAVIA, KOTZEN JEFFREY, SMITH TRUDY, NXUMALO ZWIDE, MULLER XANTHENE, SLABBERT JACOBUS, VRAL ANNE, BAEYENS ANS. Chromosomal radiosensitivity of human immunodeficiency virus positive/negative cervical cancer patients in South Africa. Mol Med Rep 2016; 13:130-6. [PMID: 26549042 PMCID: PMC4686097 DOI: 10.3892/mmr.2015.4504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/28/2015] [Indexed: 12/01/2022] Open
Abstract
Cervical cancer is the second most common cancer amongst South African women and is the leading cause of cancer-associated mortality in this region. Several international studies on radiation‑induced DNA damage in lymphocytes of cervical cancer patients have remained inconclusive. Despite the high incidence of cervical cancer in South Africa, and the extensive use of radiotherapy to treat it, the chromosomal radiosensitivity of South African cervical cancer patients has not been studied to date. Since a high number of these patients are human immunodeficiency virus (HIV)‑positive, the effect of HIV infection on chromosomal radiosensitivity was also investigated. Blood samples from 35 cervical cancer patients (20 HIV‑negative and 15 HIV‑positive) and 20 healthy controls were exposed to X‑rays at doses of 6 MV of 2 and 4 Gy in vitro. Chromosomal radiosensitivity was assessed using the micronucleus (MN) assay. MN scores were obtained using the Metafer 4 platform, an automated microscopic system. Three scoring methods of the MNScore module of Metafer were applied and compared. Cervical cancer patients had higher MN values than healthy controls, with HIV‑positive patients having the highest MN values. Differences between groups were significant when using a scoring method that corrects for false positive and false negative MN. The present study suggested increased chromosomal radiosensitivity in HIV-positive South African cervical cancer patients.
Collapse
Affiliation(s)
- OLIVIA HERD
- Department of Radiation Biophysics, NRF-iThemba LABS, Somerset West 7129, South Africa
- Department of Radiation Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - FLAVIA FRANCIES
- Department of Radiation Biophysics, NRF-iThemba LABS, Somerset West 7129, South Africa
- Department of Radiation Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - JEFFREY KOTZEN
- Department of Radiation Oncology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa
| | - TRUDY SMITH
- Department of Obstetrics and Gynaecology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa
| | - ZWIDE NXUMALO
- Department of Obstetrics and Gynaecology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa
| | - XANTHENE MULLER
- Department of Radiation Biophysics, NRF-iThemba LABS, Somerset West 7129, South Africa
| | - JACOBUS SLABBERT
- Department of Radiation Biophysics, NRF-iThemba LABS, Somerset West 7129, South Africa
| | - ANNE VRAL
- Department of Basic Medical Sciences, Ghent University, Ghent B-9000, Belgium
| | - ANS BAEYENS
- Department of Radiation Biophysics, NRF-iThemba LABS, Somerset West 7129, South Africa
- Department of Radiation Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
22
|
Chen D, Gyllensten U. Lessons and implications from association studies and post-GWAS analyses of cervical cancer. Trends Genet 2014; 31:41-54. [PMID: 25467628 DOI: 10.1016/j.tig.2014.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022]
Abstract
Cervical cancer has a heritable genetic component. A large number of genetic associations with cervical cancer have been reported in hypothesis-driven candidate gene studies, but many of these results are either inconsistent or have failed to be independently replicated. Genome-wide association studies (GWAS) have identified additional susceptibility loci previously not implicated in cervical cancer development, highlighting the power of genome-wide unbiased association analyses. Post-GWAS analyses including pathway-based analysis and functional characterization of associated variants have provided new insights into the pathogenesis of cervical cancer. In this review we summarize findings from candidate gene association studies, GWAS, and post-GWAS analyses of cervical cancer. We also discuss gaps in our understanding, possible clinical implications of the findings, and lessons for studies of other complex diseases.
Collapse
Affiliation(s)
- Dan Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden.
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Abstract
The major histocompatibility complex class I polypeptide-related sequence A gene (MICA) encodes a membrane-bound protein acting as a ligand to stimulate an activating receptor, NKG2D, expressed on the surface of essentially all human natural killer (NK), γδ T and CD8(+) αβ T cells. MICA protein is absent from most cells but can be induced by infections and oncogenic transformation and is frequently expressed in epithelial tumors. Upon binding to MICA, NKG2D activates cytolytic responses of NK and γδ T cells against infected and tumor cells expressing MICA. Therefore, membrane-bound MICA acts as a signal during the early immune response against infection or spontaneously arising tumors. On the other hand, human tumor cells spontaneously release a soluble form of MICA, causing the downregulation of NKG2D and in turn severe impairment of the antitumor immune response of NK and CD8(+) T cells. This is considered to promote tumor immune evasion and also to compromise host resistance to infections. MICA is the most polymorphic non-classical class I gene. A possible association of MICA polymorphism with genetic predisposition to different cancer types has been investigated in candidate gene-based studies. Two genome-wide association studies have identified loci in MICA that influence susceptibility to cervical neoplasia and hepatitis C virus-induced hepatocellular carcinoma, respectively. Given the current level of interest in the field of MICA gene, we discuss the genetics and biology of the MICA gene and the role of its polymorphism in cancer. Gaps in our understanding and future research needs are also discussed.
Collapse
Affiliation(s)
- Dan Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Biomedical Center, Box 815, 75108 Uppsala, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Biomedical Center, Box 815, 75108 Uppsala, Sweden
| |
Collapse
|