1
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
2
|
Konarska A, Weryszko-Chmielewska E, Sulborska-Różycka A, Kiełtyka-Dadasiewicz A, Dmitruk M, Gorzel M. Herb and Flowers of Achillea millefolium subsp. millefolium L.: Structure and Histochemistry of Secretory Tissues and Phytochemistry of Essential Oils. Molecules 2023; 28:7791. [PMID: 38067521 PMCID: PMC10708006 DOI: 10.3390/molecules28237791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Achillea millefolium L. herb and flowers have high biological activity; hence, they are used in medicine and cosmetics. The aim of this study was to perform morpho-anatomical analyses of the raw material, including secretory tissues, histochemical assays of the location of lipophilic compounds, and quantitative and qualitative analysis of essential oil (EO). Light and scanning electron microscopy techniques were used to analyse plant structures. The qualitative analyses of EO were carried out using gas chromatography-mass spectrometry (GC/MS). The results of this study showed the presence of exogenous secretory structures in the raw material, i.e., conical cells (papillae) on the adaxial surface of petal teeth and biseriate glandular trichomes on the surface flowers, bracts, stems, and leaves. Canal-shaped endogenous secretory tissue was observed in the stems and leaves. The histochemical assays revealed the presence of total, acidic, and neutral lipids as well as EO in the glandular trichome cells. Additionally, papillae located at the petal teeth contained neutral lipids. Sesquiterpenes were detected in the glandular trichomes and petal epidermis cells. The secretory canals in the stems were found to contain total and neutral lipids. The phytochemical assays demonstrated that the A. millefolium subsp. millefolium flowers contained over 2.5-fold higher amounts of EO (6.1 mL/kg) than the herb (2.4 mL/kg). The EO extracted from the flowers and herb had a similar dominant compounds: β-pinene, bornyl acetate, (E)-nerolidol, 1,8-cineole, borneol, sabinene, camphor, and α-pinene. Both EO samples had greater amounts of monoterpenes than sesquiterpenes. Higher amounts of oxygenated monoterpenes and oxygenated sesquiterpenoids were detected in the EO from the herb than from the flowers.
Collapse
Affiliation(s)
- Agata Konarska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Elżbieta Weryszko-Chmielewska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Aneta Sulborska-Różycka
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland;
| | - Marta Dmitruk
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Małgorzata Gorzel
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland;
- Faculty of Health Sciences, Vincent Pol University in Lublin, 20-816 Lublin, Poland
| |
Collapse
|
3
|
Gharibi S, Matkowski A, Sarfaraz D, Mirhendi H, Fakhim H, Szumny A, Rahimmalek M. Identification of Polyphenolic Compounds Responsible for Antioxidant, Anti- Candida Activities and Nutritional Properties in Different Pistachio ( Pistacia vera L.) Hull Cultivars. Molecules 2023; 28:4772. [PMID: 37375327 DOI: 10.3390/molecules28124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The use of by-products from the agri-food industry is a promising approach for production of value-added, polyphenol-rich dietary supplements or natural pharmaceutical preparations. During pistachio nut processing, a great amount of husk is removed, leaving large biomass for potential re-use. The present study compares antiglycative, antioxidant, and antifungal activities as well as nutritional values of 12 genotypes belonging to four pistachio cultivars. Antioxidant activity was measured using DPPH and ABTS assays. Antiglycative activity was evaluated as inhibition of advanced glycation end product (AGE) formation in the bovine serum albumin/methylglyoxal model. HPLC analysis was performed to determine the major phenolic compounds. Cyanidin-3-O-galactoside (120.81-181.94 mg/100 g DW), gallic acid (27.89-45.25), catechin (7.2-11.01), and eriodictyol-7-O-glucoside (7.23-16.02) were the major components. Among genotypes, the highest total flavonol content (14.8 mg quercetin equivalents/g DW) and total phenolic content (262 mg tannic acid equivalent/g DW) were in KAL1 (Kaleghouchi) and FAN2 (Fandoghi), respectively. The highest antioxidant (EC50 = 375 μg/mL) and anti-glycative activities were obtained for Fan1. Furthermore, potent inhibitory activity against Candida species was recorded with MIC values of 3.12-12.5 µg/mL. The oil content ranged from 5.4% in Fan2 to 7.6% in Akb1. The nutritional parameters of the tested cultivars were highly variable: crude protein (9.8-15.8%), ADF (acid detergent fiber 11.9-18.2%), NDF (neutral detergent fiber, 14.8-25.6%), and condensed tannins (1.74-2.86%). Finally, cyanidin-3-O-galactoside was considered an effective compound responsible for antioxidant and anti-glycative activities.
Collapse
Affiliation(s)
- Shima Gharibi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Danial Sarfaraz
- Department of Plant Breeding, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Mehdi Rahimmalek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
4
|
Hallaj-Nezhadi S, Ghanbari H, Alizadeh S, Hamedeyazdan S. Investigation on phytochemical constituents of Achillea aucheri Boiss. Endemic to Iranian flora accompanied by antioxidant and antimicrobial evaluations. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Inhibition of AGEs formation, antioxidative, and cytoprotective activity of Sumac (Rhus typhina L.) tannin under hyperglycemia: molecular and cellular study. Mol Cell Biochem 2023; 478:443-457. [PMID: 35861915 DOI: 10.1007/s11010-022-04522-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
It is well known that accumulation of advanced glycation ends products (AGEs) lead to various diseases such as diabetes and diabetic complications. In this study we showed that hydrolysable tannin from Sumac (Rhus typhina L.)-3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (C55H40O34) inhibited generation of glycation markers in bovine serum albumin such as AGEs, dityrosine, N'-formylkynurenine and kynurenine under high glucose treatment. This effect was accompanied by stabilization of the protein structure, as was shown using ATR-FT-IR spectroscopy and fluorescence methods. C55H40O34 exhibited also a neuroprotective effect in high glucose-exposed Neuro2A cells suppressing ROS formation and expression of phospho NF-κβ and iNOS. At the same time C55H40O34 increased expression of heme oxygenase-1 and NAD(P)H: quinone oxidoreductase and mitochondrial complex I and V activities. Results from this study demonstrates a potent antiglycation activity of C55H40O34 in vitro and indicates its possible therapeutic application in glycation related diseases.
Collapse
|
6
|
Radušienė J, Karpavičienė B, Raudone L, Vilkickyte G, Çırak C, Seyis F, Yayla F, Marksa M, Rimkienė L, Ivanauskas L. Trends in Phenolic Profiles of Achillea millefolium from Different Geographical Gradients. PLANTS (BASEL, SWITZERLAND) 2023; 12:746. [PMID: 36840094 PMCID: PMC9964219 DOI: 10.3390/plants12040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The traditional widely used raw material of Achillea millefolium is currently mainly derived from wild populations, leading to diversification and uncertainty in its quality. The aim of the study was to determine the accumulation differences of phenolic compounds between geographically distant populations of Achillea millefolium from northern and southern gradients. Plant material was collected from Gaziantep and Nevşehir provinces in Turkey and from wild populations in Lithuania. A complex of nine hydroxycinnamic acids and eleven flavonoids was identified and quantified in the methanolic extracts of inflorescences, leaves, and stems using the HPLC-PDA method. Caffeoylquinic acids predominated in leaves, while inflorescences tended to prevail in flavonoids. The PCA score plot model represented the quantitative distribution pattern of phenolic compounds along a geographical gradient of populations. The content of phenolic compounds in plant materials from northern latitudes was more than twice that of plants from southern latitudes. A significant correlation of individual phenolic compounds with latitude/longitude corresponded to their differences between two countries. Differences in accumulation of caffeoylquinic acids and flavonoids revealed several intraspecific groups within A. millefolium. Our findings suggest that spatial geographical data on the distribution of phenolic compounds in A. millefolium populations could be used as a tool to find potential collection sites for high-quality raw materials.
Collapse
Affiliation(s)
- Jolita Radušienė
- Laboratory of Economic Botany, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania
| | - Birutė Karpavičienė
- Laboratory of Economic Botany, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania
| | - Lina Raudone
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| | - Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| | - Cüneyt Çırak
- Vocational High School of Bafra, Ondokuz Mayis University, Samsun 55200, Turkey
| | - Fatih Seyis
- Department of Field Crops, Faculty of Agriculture and Natural Sciences, Recep Tayyip Erdoğan University, Rize 53100, Turkey
| | - Fatih Yayla
- Department of Biology, Faculty of Arts and Sciences, Gaziantep University, Gaziantep 27310, Turkey
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| | - Laura Rimkienė
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| |
Collapse
|
7
|
Achillea moschata Wulfen: From Ethnobotany to Phytochemistry, Morphology, and Biological Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238318. [PMID: 36500411 PMCID: PMC9736511 DOI: 10.3390/molecules27238318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
A multidisciplinary investigation on Achillea moschata Wulfen (Asteraceae) is outlined herein. This work, part of the European Interreg Italy-Switzerland B-ICE project, originated from an ethnobotanical survey performed in Chiesa in Valmalenco (Sondrio, Lombardy, Northern Italy) in 2019-2021 which highlighted this species' relevance of use in folk medicine to treat gastrointestinal diseases. In addition, this contribution included analyses of the: (a) phytochemical profile of the aqueous and methanolic extracts of the dried flower heads using LC-MS/MS; (b) morpho-anatomy and histochemistry of the vegetative and reproductive organs through Light, Fluorescence, and Scanning Electron Microscopy; (c) biological activity of the aqueous extract concerning the antioxidant and anti-inflammatory potential through cell-based in vitro models. A total of 31 compounds (5 phenolic acids, 13 flavonols, and 13 flavones) were detected, 28 of which included in both extracts. Covering and secreting trichomes were observed: the biseriate 10-celled glandular trichomes prevailing on the inflorescences represented the main sites of synthesis of the polyphenols and flavonoids detected in the extracts, along with volatile terpenoids. Finally, significant antioxidant and anti-inflammatory activities of the aqueous extract were documented, even at very low concentrations; for the first time, the in vitro tests allowed us to formulate hypotheses about the mechanism of action. This work brings an element of novelty due to the faithful reproduction of the traditional aqueous preparation and the combination of phytochemical and micromorphological research approaches.
Collapse
|
8
|
Goulas V, Banegas-Luna AJ, Constantinou A, Pérez-Sánchez H, Barbouti A. Computation Screening of Multi-Target Antidiabetic Properties of Phytochemicals in Common Edible Mediterranean Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1637. [PMID: 35807588 PMCID: PMC9269125 DOI: 10.3390/plants11131637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus is a metabolic disease and one of the leading causes of deaths worldwide. Numerous studies support that the Mediterranean diet has preventive and treatment effects on diabetes. These effects have been attributed to the special bioactive composition of Mediterranean foods. The objective of this work was to decipher the antidiabetic activity of Mediterranean edible plant materials using the DIA-DB inverse virtual screening web server. A literature review on the antidiabetic potential of Mediterranean plants was performed and twenty plants were selected for further examination. Subsequently, the most abundant flavonoids, phenolic acids, and terpenes in plant materials were studied to predict their antidiabetic activity. Results showed that flavonoids are the most active phytochemicals as they modulate the function of 17 protein-targets and present high structural similarity with antidiabetic drugs. Their antidiabetic effects are linked with three mechanisms of action, namely (i) regulation of insulin secretion/sensitivity, (ii) regulation of glucose metabolism, and (iii) regulation of lipid metabolism. Overall, the findings can be utilized to understand the antidiabetic activity of edible Mediterranean plants pinpointing the most active phytoconstituents.
Collapse
Affiliation(s)
- Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus;
| | - Antonio J. Banegas-Luna
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, UCAM Universidad Católica de Murcia, 30107 Guadalupe, Spain; (A.J.B.-L.); (H.P.-S.)
| | - Athena Constantinou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus;
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, UCAM Universidad Católica de Murcia, 30107 Guadalupe, Spain; (A.J.B.-L.); (H.P.-S.)
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
9
|
Phytochemistry and Evidence-Based Traditional Uses of the Genus Achillea L.: An Update (2011–2021). Sci Pharm 2021. [DOI: 10.3390/scipharm89040050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Knowledge within the field of phytochemistry research has accelerated at a tremendous speed. The excess of literature reports featuring plants of high ethnopharmacological importance, in combination with our interest in the Asteraceae family and traditional medicine, led us to acknowledge the value of the Achillea L. genus. In a broad context, the various Achillea species are used around the globe for the prevention and treatment of different diseases, including gastrointestinal problems, haemorrhages, pneumonia, rheumatic pains, diuresis, inflammation, infections, and wounds, as well as menstrual and gynaecologic abnormalities. The present review aims to provide and summarize the recent literature (2011–2021) on the phytochemistry of the Achillea genus. In parallel, this study attempts to bridge the reports on the traditional uses with modern pharmacological data. Research articles that focused on secondary metabolites, traditional uses and pharmacological activities were collected from various scientific databases such as Pubmed, ScienceDirect, Reaxys and Google Scholar. This study revealed the presence of 141 phytochemicals, while 24 traditionally used Achillea spp. were discussed in comparison to current data with an experimental basis.
Collapse
|
10
|
Ayan İÇ, Çetinkaya S, Dursun HG, Güneş CE, Şirin S. Anticancer Effect and Phytochemical Profile of the Extract from Achillea ketenoglui against Human Colorectal Cancer Cell Lines. Anticancer Agents Med Chem 2021; 22:1769-1779. [PMID: 34503424 DOI: 10.2174/1871520621666210908110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the treatment of colorectal cancer (CRC), the search for new antineoplastic drugs with fewer side effects and more effectiveness continues. A significant part of these pursuits and efforts focus on medicinal herbs and plant components derived from these plants. A. ketenoglui is one of these medicinal plants, and its anticancer potential has never been studied before. METHODS The phenolic and flavonoid content, and antioxidant activity of A. ketenoglui extracts were determined. The phytochemical profiling and quantification analysis of major components were performed by HPLC-ESI-Q-TOF-MS. Cytotoxicity, proliferation, apoptosis and cell cycle were evaluated to reveal the anticancer activity of the extract on CRC cells (HCT 116 and HT-29). The determined anticancer activity was confirmed by mRNA (RT-qPCR) and protein (Western blotting) analyzes. RESULTS A. ketenoglui methanol extract was found to have high phenolic (281.89±0.23) and flavonoid (33.80±0.15) content and antioxidant activity (IC50 40.03±0.38). According to the XTT assay, the extract has strong cytotoxic activity (IC50 350 µM in HCT 116 and IC50 263 µM in HT-29 cell line). The compounds most commonly found in the plant are, in descending order, chlorogenic acid, apigenin, genistin, baicalin, eupatorin, casticin, and luteolin. In flowcytometric analysis, the extract was found to induce greater apoptosis and cell cycle arrest in both cell lines than in both control and positive control (casticin). According to the results of the mRNA expression analysis, the extract treatment upregulated the expression of the critical genes of the cell cycle and apoptosis, such as p53, p21, caspase-3, and caspase-9. In protein expression analysis, an increase in caspase-3 and p53 expression was observed in both cell lines treated with the extract. In addition, caspase-9 expression was increased in HT-29 cells. CONCLUSION The findings show that A. ketenoglui has an anticancer potential by inducing apoptosis and arresting the cancer cell cycle and may be promising for CRC therapy. This potential of the plant is realized through the synergistic effects of its newly identified components.
Collapse
Affiliation(s)
- İlknur Çınar Ayan
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Meram, Konya. Turkey
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara. Turkey
| | - Hatice Gül Dursun
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Meram, Konya. Turkey
| | - Canan Eroğlu Güneş
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Meram, Konya. Turkey
| | - Seda Şirin
- Department of Biology, Faculty of Science, Gazi University, Teknikokullar, Ankara. Turkey
| |
Collapse
|
11
|
Achillea Species as Sources of Active Phytochemicals for Dermatological and Cosmetic Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643827. [PMID: 33833853 PMCID: PMC8018854 DOI: 10.1155/2021/6643827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/06/2021] [Accepted: 03/14/2021] [Indexed: 12/29/2022]
Abstract
Achillea spp. is well known for its broad range of applications and long history of use in traditional medicine around the world. Health benefits of Achillea extracts result from the multitude of secondary metabolites identified in the plants from this genus that include flavonoids, phenolic acids, terpenes, guaianolides, phytosterols, fatty acids, and organic acids. The properties of several Achillea extracts meet also the expectations of a vividly developing cosmetic market. An increasing number of studies on the dermatological properties of Achillea spp. are observed in the recent years, with Achillea millefolium L. being the most studied and used representative of the genus. There is strong scientific evidence showing that also other yarrow species might be rich sources of effective cosmetic ingredients, with skin calming and rejuvenating properties, wound healing activity, and anti-inflammatory potential. Several Achillea extracts and isolated compounds were also shown to display significant tyrosinase inhibitory, antioxidant, and antimicrobial properties and thus are interesting candidates for active ingredients of medications and cosmetic products protecting the skin from the harmful impact of environmental stressors. The aim of this review is to collect the current information on the composition and cosmeceutical significance of different Achillea species.
Collapse
|
12
|
Sarfaraz D, Rahimmalek M, Saeidi G. Polyphenolic and molecular variation in Thymus species using HPLC and SRAP analyses. Sci Rep 2021; 11:5019. [PMID: 33658577 PMCID: PMC7930249 DOI: 10.1038/s41598-021-84449-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
In the present research, inter and intra genetic variability of 77 accessions belonging to 11 Thymus species were assessed using eight SRAP primer combinations. High polymorphism (98.3%) was observed in the studied species. The cluster analysis classified Thymus species into five main groups. According to molecular variance (AMOVA) analysis, 63.14% of total genetic variation was obtained within the species, while 36.86% of variation was observed among species. STRUCTURE analysis was also performed to estimate the admixture of species. For instance, T. carmanicus and T. transcaspicus revealed high admixtures. HPLC analysis also demonstrated the presence of rosmarinic acid (32.3–150.7 mg/100 g DW), salvianolic acid (8–90 mg/100 g DW), and cinnamic acid (1.7–32.3 mg/100 g DW) as major phenolic acids, as well as apigenin, epicatechin, and naringenin as the major flavonoids. The highest phenolic and flavonoid contents were detected in T. transcaspicus (37.62 mg gallic acid equivalents (GAE) g−1 DW) and T. vulgaris (8.72 mg quercetin equivalents (QE) g−1 DW), respectively. The antioxidant properties and total phenolic of Thymus species were examined using DPPH and β-carotene-linoleic acid model systems and consequently T. vulgaris and T. pubescens were detected with the highest and the lowest antioxidant activities respectively. Cluster and principal Components Analysis (PCA) of the components classified the species in to three groups. Finally, similarity within some species was observed comparing molecular and phytochemical markers. For instance, T. vulgaris separated from other species according to major polyphenolic profiles and molecular analyses, as well as T. transcaspicus, T. carmanicus, and T. fedtschenkoi that were clustered in the same groups.
Collapse
Affiliation(s)
- Danial Sarfaraz
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156 83111, Isfahan, Iran
| | - Mehdi Rahimmalek
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156 83111, Isfahan, Iran. .,Department of Horticulture, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Ghodratollah Saeidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156 83111, Isfahan, Iran
| |
Collapse
|
13
|
Afshari M, Rahimmalek M. Variation in essential oil composition, anatomical, and antioxidant characteristics of Achillea filipendulina Lam. as affected by different phenological stages. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1885510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mahvash Afshari
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mehdi Rahimmalek
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
14
|
Identification of Mushroom and Murine Tyrosinase Inhibitors from Achillea biebersteinii Afan. Extract. Molecules 2021; 26:molecules26040964. [PMID: 33670416 PMCID: PMC7917799 DOI: 10.3390/molecules26040964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Growing scientific evidence indicates that Achillea biebersteinii is a valuable source of active ingredients with potential cosmetic applications. However, the data on its composition and pharmacological properties are still insufficient. This study aims to optimize the extraction procedure of the plant material, evaluate its phytochemical composition, and compare anti-tyrosinase potential of A. biebersteinii extracts obtained by various methods. In order to identify compounds responsible for the tyrosinase inhibitory activity of A. biebersteinii, the most active anti-tyrosinase extract was fractionated by column chromatography. The fractions were examined for their skin lightening potential by mushroom and murine tyrosinase inhibitory assays and melanin release assay. HPLC-ESI-Q-TOF-MS/MS analysis of the total extract revealed the presence of several phenolic acids, flavonoids, flavonoid glucosides, and carboxylic acid. Among them, fraxetin-8-O-glucoside, quercetin-O-glucopyranose, schaftoside/isoschaftoside, gmelinin B, 1,3-dicaffeoylquinic acid (1,3-DCQA), and ferulic acid were found in the fractions with the highest skin lightening potential. Based on obtained qualitative and quantitative analysis of the fractions, it was assumed that the caffeoylquinic acid derivatives and dicaffeoylquinic acid derivatives are more likely responsible for mushroom tyrosinase inhibitory activity of A. biebersteinii extracts and fractions. Ferulic acid was proposed as the most active murine tyrosinase inhibitor, responsible also for the reduced melanin release from B16F10 murine melanoma cells.
Collapse
|
15
|
In-depth study of phytochemical composition, antioxidant activity, enzyme inhibitory and antiproliferative properties of Achillea filipendulina: a good candidate for designing biologically-active food products. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Achillea millefolium L. and Achillea biebersteinii Afan. Hydroglycolic Extracts-Bioactive Ingredients for Cosmetic Use. Molecules 2020; 25:molecules25153368. [PMID: 32722270 PMCID: PMC7436264 DOI: 10.3390/molecules25153368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Abstract
Studies on hydroglycolic (HG) extracts of Achillea biebersteinii (AB)—a less investigated representative of the genus—were performed to determine their potential for cosmetic applications compared to the well-known Achillea millefolium (AM). Three types of water:polyethylene glycol extracts (1:1, 4:1, 6:1 v/v) were obtained from both species and analyzed for their composition by high performance liquid chromatography coupled with mass spectrometry (HPLC-ESI-Q-TOF-MS) and assayed for their biological activities. The study led to the identification of 11 metabolites from different natural product classes with the highest share corresponding to 5-caffeoylquinic acid, axillarin, coumaroylquinic acid isomers and 3-caffeoylquinic acid. The highest antiradical capacity in DPPH and ABTS scavenging assays was shown for HG 4:1 of AB and AM extracts. HG 1:1 extracts from both species inhibited monophenolase and diphenolase activity of tyrosinase, whereas AB HG 4:1 extract showed significant monophenolase inhibition. The highest sun protection factor (SPF) was determined for AM HG 4:1 extract, equal to 14.04 ± 0.17. The AB extracts were cytotoxic for both human keratinocytes HaCaT and A375 melanoma, however HG 1:1 and 4:1 extracts were more cytotoxic for cancer than for noncancerous cells. In conclusion, AB HG 1:1 and 4:1 extracts display significant potential as active cosmetic ingredients.
Collapse
|
17
|
Yener I, Yilmaz MA, Olmez OT, Akdeniz M, Tekin F, Hasimi N, Alkan MH, Ozturk M, Ertas A. A Detailed Biological and Chemical Investigation of Sixteen
Achillea
Species’ Essential Oils via Chemometric Approach. Chem Biodivers 2020; 17:e1900484. [DOI: 10.1002/cbdv.201900484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/29/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Ismail Yener
- Department of Analytical ChemistryFaculty of Pharmacy, Dicle University 21280 Diyarbakir Turkey
| | - Mustafa Abdullah Yilmaz
- Dicle University Science and Technology Research and Application Center (DUBTAM) 21280 Diyarbakir Turkey
| | - Ozge Tokul Olmez
- Department of ChemistryFaculty of Science, Muğla Sıtkı Koçman University 48121 Mugla Turkey
| | - Mehmet Akdeniz
- The Council of Forensic MedicineMinistry of Justice Diyarbakir 21100 Turkey
| | - Fetullah Tekin
- GAP International Agricultural Research and Training Center 21110 Diyarbakir Turkey
| | - Nesrin Hasimi
- Department of Nutrition and Dietetics, School of HealthBatman University 72060 Batman Turkey
| | - Mehmet Huseyin Alkan
- Department of Biochemistry, Faculty of PharmacyDicle University 21280 Diyarbakır Turkey
| | - Mehmet Ozturk
- Department of ChemistryFaculty of Science, Muğla Sıtkı Koçman University 48121 Mugla Turkey
| | - Abdulselam Ertas
- Department of Pharmacognosy, Faculty of PharmacyDicle University 21280 Diyarbakir Turkey
| |
Collapse
|
18
|
Rahmanifar E, Miroliaei M. Differential effect of biophenols on attenuation of AGE-induced hemoglobin aggregation. Int J Biol Macromol 2020; 151:797-805. [PMID: 32061846 DOI: 10.1016/j.ijbiomac.2020.02.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Despite most studied activities of natural biophenols rely on antioxidant properties, little clues explored their key structural components with regard to opposing action on glycation-induced aggregation. Herein, human hemoglobin (hHb)/fructose system used to decipher if structural peculiarities of two biophenols "chlorogenic acid (CGA) and curcumin (CUR)" are effective toward AGEs-bridged aggregate formation. Suppression in amyloid cross-β formation was monitored by CD spectroscopy, fluorescence microscopy, ANS and AGE fluorescence. Reduction in molten globule structure of modified-Hb by CGA was corroborated with helix structure, thiol group and lysine residues content estimation for native, glycated and biophenols treated samples. ThT and Congo red assays showed the cross-β breaking properties of CGA. Molecular docking outcomes revealed the positioning of CGA/CUR is driven by "aromatic interactions" with Trp β1180 and Tyr α2540. These interactions are modulated by the structural constraints such as number of hydroxyl groups and their methylation status directing the biophenols to the amyloidogenic core. The results are applicable to formulation of small-molecule nutraceuticals for treatment of conformational diseases.
Collapse
Affiliation(s)
- Esmat Rahmanifar
- Department of Biology, Noordanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Mehran Miroliaei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran.
| |
Collapse
|
19
|
Akif Açıkgöz M. Evaluation of Phytochemical Compositions and Biological Properties of
Achillea gypsicola
at Different Phenological Stages. Chem Biodivers 2019; 16:e1900373. [DOI: 10.1002/cbdv.201900373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
|
20
|
Fathi E, Majdi M, Dastan D, Maroufi A. The spatio-temporal expression of some genes involved in the biosynthetic pathways of terpenes/phenylpropanoids in yarrow (Achillea millefolium). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:43-52. [PMID: 31272034 DOI: 10.1016/j.plaphy.2019.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Yarrow (Achillea millefolium) is a medicinal plant from the Asteracea which biosynthesize different secondary metabolites especially terpenes and phenylpropanoids. To improve our understanding of the regulatory mechanisms behind the biosynthesis of these compounds we analyzed the expression of some genes associated with the biosynthesis of terpenes and phenylpropanoids in different tissues and in response to trans-cinnamic acid (tCA) as an inhibitor of PAL activity. Isolation and expression analysis of DXR, GPPS, PAL and CHS genes together with linalool synthase (LIS) as monoterpene synthase was conducted in different developmental stages of leaves, flowers and in response to trans-cinnamic acid (tCA). Differential expression of these genes observed in different tissues. tCA up-regulated the biosynthetic genes of monterpenes and down-regulated the biosynthetic genes of phenylpropanoids. Gene expression analysis in intact leaves and leaves without glandular trichomes showed that DXR, LIS, PAL and CHS are highly expressed in glandular trichomes while GPPS expressed ubiquitously. Analysis of essential oils composition showed that sesquiterpenes and monoterpenes are main compounds; in which from 57 identified compounds the highest were germacreneD (% 11.5), guaiol (%10.38), spatulenol (%8.73) and caryophyllene oxide (%7.48).
Collapse
Affiliation(s)
- Ehsan Fathi
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Majdi
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Iran; (b)Research Center for Medicinal Plant Breeding and Development, University of Kurdistan, Sanandaj, Iran.
| | - Dara Dastan
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asad Maroufi
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
21
|
Gharibi S, Sayed Tabatabaei BE, Saeidi G, Talebi M, Matkowski A. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. PHYTOCHEMISTRY 2019; 162:90-98. [PMID: 30875522 DOI: 10.1016/j.phytochem.2019.03.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/02/2019] [Accepted: 03/03/2019] [Indexed: 05/06/2023]
Abstract
This study investigated the effect of drought stress on the amount of phenolic and flavonoid compounds as well as H2O2 and malondialdehyde (MDA) in Achillea pachycephala. The expression patterns of the key genes and their molecular mechanisms in the phenylpropanoid pathway (PAL, CHS, CHI, F3H, F3'H, F3'5'H, FLS) were also assessed during drought stress using quantitative real-time polymerase chain reaction (qRT-PCR). The samples were harvested at 0, 7, 14, 21 and 28 days after exposure to drought stress. High-performance liquid chromatography (HPLC) analysis was performed to determine the changes of phenolic and flavonoid compounds - chlorogenic acid, caffeic acid, rutin, luteolin-7-O-glycoside, 1,3-dicaffeoylquinic acid, apigenin-7-O-glycoside, luteolin, apigenin and kaempferol - during stress conditions. Concentrations of most of the compounds increased with increasing drought stress duration. Most of the phenolic acids continued to accumulate with increasing duration of stress, while flavonoids dramatically decreased at day 28 of stress. Chlorogenic acid was the most abundant phenolic acid (4.97 mg/100 g dry weight [DW]) at the beginning of the experiment, while it decreased at day 7 and increased again at day 21. However, different trends were observed for some flavonoids, such as luteolin and apigenin. At the beginning of stress treatment, high accumulation of free radicals (H2O2) and lipid peroxidation (MDA) led to elevated expression of most of the flavonoid genes. MDA increased from 22.66 to 43.28 μmol g-1 DW at day 28. CHS gene expression was elevated at day 7, while chi gene expression remained unchanged. At the end of the stress period, most of the flavonoid concentrations and expression of the relevant genes also increased. The results can facilitate selection of appropriate drought conditions to obtain the highest levels of flavonoids such as luteolin and apigenin and phenolic compounds such as chlorogenic acid for improved health benefits.
Collapse
Affiliation(s)
- Shima Gharibi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 8415683111, Isfahan, Iran.
| | | | - Ghodratolah Saeidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 8415683111, Isfahan, Iran
| | - Majid Talebi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botanical Garden of Medicinal Plants, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
22
|
Aguilar LE, Lee JY, Park CH, Kim CS. Biomedical Grade Stainless Steel Coating of Polycaffeic Acid via Combined Oxidative and Ultraviolet Light-Assisted Polymerization Process for Bioactive Implant Application. Polymers (Basel) 2019; 11:polym11040584. [PMID: 30960568 PMCID: PMC6523249 DOI: 10.3390/polym11040584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023] Open
Abstract
Stainless steel as a biomedical implant material has been studied in various fields and in various forms, such as vascular stents, bone plates, dental screws, and artificial hip and bone material. In this study, we used polycaffeic acid (PCA), a natural phenolic compound, to coat the surface of medical grade stainless steel to provide added potential medicinal effects by virtue of its inherent anti-inflammatory, antiviral, antifibrosis, antithrombosis, and antihypertensive characteristics. We did this via UV irradiation under an alkaline state to solve the cost and time problems of other existing coating methods. The physicochemical properties of the samples were investigated through field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), contact angle, FTIR, and X-ray photoelectron spectroscopy (XPS). Surface bioactivity using NIH-3T3 cell lines were observed in vitro. We expect that the proposed methodology may contribute to the field of study of implantable metallic devices.
Collapse
Affiliation(s)
- Ludwig Erik Aguilar
- Department of Bionanosystem Engineering, Chonbuk National University, Jeonju City 54001, Korea.
| | - Ji Yeon Lee
- Department of Mechanical Design Engineering, Graduate School, Chonbuk National University, Jeonju City 54001, Korea.
| | - Chan Hee Park
- Department of Mechanical Design Engineering, Graduate School, Chonbuk National University, Jeonju City 54001, Korea.
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju City 54001, Korea.
| | - Cheol Sang Kim
- Department of Mechanical Design Engineering, Graduate School, Chonbuk National University, Jeonju City 54001, Korea.
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju City 54001, Korea.
| |
Collapse
|
23
|
Wang J, Li L, Tan J, Song X, Chen D, Xu J, Ding G. Variations in the Components and Antioxidant and Tyrosinase Inhibitory Activities ofStyphnolobium japonicum(L.)Schott Extract during Flower Maturity Stages. Chem Biodivers 2019; 16:e1800504. [DOI: 10.1002/cbdv.201800504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Ji‐Rui Wang
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Long‐Yun Li
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Jun Tan
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Xu‐Hong Song
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Da‐Xia Chen
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Jin Xu
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| | - Gang Ding
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Materia Medica, Chongqing Sub-Center of National Resource Center for Chinese Materia Medica China Academy of Chinese Medical ScienceChongqing Academy of Chinese Materia Medica No. 34 Nanshan Road, Nan‘an, Chongqing 400065 P. R. China
| |
Collapse
|