1
|
Gautam J, Banskota S, Shah S, Jee JG, Kwon E, Wang Y, Kim DY, Chang HW, Kim JA. 4-Hydroxynonenal-induced GPR109A (HCA 2 receptor) activation elicits bipolar responses, G αi -mediated anti-inflammatory effects and G βγ -mediated cell death. Br J Pharmacol 2018; 175:2581-2598. [PMID: 29473951 DOI: 10.1111/bph.14174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 12/07/2017] [Accepted: 01/30/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE In this study, we examined the possibility that 4-hydroxynonenal (4-HNE) acting as a ligand for the HCA2 receptor (GPR109A) elicits both anti-inflammatory and cell death responses. EXPERIMENTAL APPROACH Agonistic activity of 4-HNE was determined by observing the inhibition of cAMP generation in CHO-K1-GPR109A-Gi cell line, using surface plasmon resonance (SPR) binding and competition binding assays with [3 H]-niacin. 4-HNE-mediated signalling pathways and cellular responses were investigated in cells expressing GPR109A and those not expressing these receptors. KEY RESULTS Agonistic activity of 4-HNE was stronger than that of niacin or 3-OHBA at inhibiting forskolin-induced cAMP production and SPR binding affinity. In ARPE-19 and CCD-841 cells, activation of GPR109A by high concentrations of the agonists 4-HNE (≥10 μM), niacin (≥1000 μM) and 3-OHBA (≥1000 μM) induced apoptosis accompanied by elevated Ca2+ and superoxide levels. This 4-HNE-induced cell death was blocked by knockdown of GPR109A or NOX4 genes, or treatment with chemical inhibitors of Gβγ (gallein), intracellular Ca2+ (BAPTA-AM), NOX4 (VAS2870) and JNK (SP600125), but not by the cAMP analogue 8-CPT-cAMP. By contrast, low concentrations of 4-HNE, niacin and 3-OHBA down-regulated the expression of pro-inflammatory cytokines IL-6 and IL-8. These 4-HNE-induced inhibitory effects were blocked by a cAMP analogue but not by inhibitors of Gβγ -downstream signalling molecules. CONCLUSIONS AND IMPLICATIONS These results revealed that 4-HNE is a strong agonist for GPR109A that induces Gαi -dependent anti-inflammatory and Gβγ -dependent cell death responses. Moreover, the findings indicate that specific intracellular signalling molecules, but not GPR109A, can serve as therapeutic targets to block 4-HNE-induced cell death.
Collapse
Affiliation(s)
- Jaya Gautam
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | | | - Sajita Shah
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Jun-Goo Jee
- College of Pharmacy, Kyungpook National University, Daegu, Korea
| | - Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Ying Wang
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | | | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
2
|
Farnsworth N, Bensard C, Bryant SJ. The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels. Osteoarthritis Cartilage 2012; 20:1326-35. [PMID: 22796510 DOI: 10.1016/j.joca.2012.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 06/16/2012] [Accepted: 06/26/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objectives for this study were to determine whether radical initiated photopolymerizations typically employed for cell encapsulations lead to oxidative stress incurred by chondrocytes and whether the development of a pericellular matrix (PCM) decreases this oxidative stress and has longer-term benefits on chondrocyte function. METHODS Freshly isolated bovine chondrocytes were encapsulated in poly(ethylene glycol) (PEG) hydrogels devoid of a PCM or with a PCM, confirmed by immunocytochemistry (IC), and cultured for up to 2 weeks. Reactive oxygen species (ROS) production and damage to cell membrane by lipid peroxidation were accomplished using carboxy-2,7-difluorodihydrofluorescein diacetate (carboxy-H(2)DFFDA) and by malondialdehyde (MDA) content, respectively. Gene expression and proteoglycan synthesis were analyzed using reverse transcription (RT)-quantitative PCR (qPCR) and (35)SO(4) incorporation, respectively. RESULTS The photopolymerization reaction, which alone generates radicals and extracellular ROS, led to oxidative stress in chondrocytes evidenced by increased intracellular ROS and lipid peroxidation. The presence of a PCM decreased intracellular ROS and abrogated membrane lipid peroxidation, improved aggrecan, collagen II and collagen VI expression, and enhanced proteoglycan synthesis. CONCLUSIONS The development of the PCM prior to photoencapsulation in PEG hydrogels reduces oxidative stress and improves chondrocyte anabolic activity. Our data suggest this reduction occurs by decreased ROS diffusion into the cell and decreased membrane damage. Our findings suggest that minimizing oxidative stress, such as through the presence of a PCM, may have long-term beneficial effects on tissue elaboration when employing photopolymerizations to encapsulate chondrocytes for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- N Farnsworth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
3
|
Harry RS, Hiatt LA, Kimmel DW, Carney CK, Halfpenny KC, Cliffel DE, Wright DW. Metabolic impact of 4-hydroxynonenal on macrophage-like RAW 264.7 function and activation. Chem Res Toxicol 2012; 25:1643-51. [PMID: 22799741 DOI: 10.1021/tx3001048] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolic profiling of macrophage metabolic response upon exposure to 4-hydroxynonenal (HNE) demonstrates that HNE does not simply inactivate superoxide-generating enzymes but also could be responsible for the impairment of downfield signaling pathways. Multianalyte microphysiometry (MAMP) was employed to simultaneously measure perturbations in extracellular acidification, lactate production, and oxygen consumption for the examination of aerobic and anaerobic pathways. Combining the activation of oxidative burst with phorbol myristate acetate (PMA) and the immunosuppression with HNE, the complex nature of HNE toxicity was determined to be concentration- and time-dependent. Further analysis was utilized to assess the temporal effect of HNE on reactive oxygen species (ROS) production and on protein kinase C (PKC). Increased levels of HNE with decreasing PKC activity suggest that PKC is a target for HNE adductation prior to oxidative burst. Additionally, localization of PKC to the cell membrane was prevented with the introduction of HNE, demonstrating a consequence of HNE adductation on NADPH activation. The impairment of ROS by HNE suggests that HNE has a greater role in foam cell formation and tissue damage than is already known. Although work has been performed to understand the effect of HNE's regulation of specific signaling pathways, details regarding its involvement in cellular metabolism as a whole are generally unknown. This study examines the impact of HNE on macrophage oxidative burst and identifies PKC as a key protein for HNE suppression and eventual metabolic response.
Collapse
Affiliation(s)
- Reese S Harry
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Ambrozova G, Pekarova M, Lojek A. The effect of lipid peroxidation products on reactive oxygen species formation and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages. Toxicol In Vitro 2010; 25:145-52. [PMID: 20940037 DOI: 10.1016/j.tiv.2010.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 01/28/2023]
Abstract
Lipid peroxidation induced by oxidants leads to the formation of highly reactive metabolites. These can affect various immune functions, including reactive oxygen species (ROS) and nitric oxide (NO) production. The aim of the present study was to investigate the effects of lipid peroxidation products (LPPs) - acrolein, 4-hydroxynonenal, and malondialdehyde - on ROS and NO production in RAW 264.7 macrophages and to compare these effects with the cytotoxic properties of LPPs. Macrophages were stimulated with lipopolysaccharide (0.1 μg/ml) and treated with selected LPPs (concentration range: 0.1-100 μM). ATP test, luminol-enhanced chemiluminescence, Griess reaction, Western blotting analysis, amperometric and total peroxyl radical-trapping antioxidant parameter assay were used for determining the LPPs cytotoxicity, ROS and NO production, inducible nitric oxide synthase expression, NO scavenging, and antioxidant properties of LPPs, respectively. Our study shows that the cytotoxic action of acrolein and 4-hydroxynonenal works in a dose- and time-dependent manner. Further, our results imply that acrolein, 4-hydroxynonenal, and malondialdehyde can inhibit, to a different degree, ROS and NO production in stimulated macrophages, partially independently of their toxic effect. Also, changes in enzymatic pathways (especially NADPH-oxidase and nitric oxide synthase inhibition) and NO scavenging properties are included in the downregulation of reactive species formation.
Collapse
Affiliation(s)
- Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
5
|
Siems W, Crifo C, Capuozzo E, Uchida K, Grune T, Salerno C. Metabolism of 4-hydroxy-2-nonenal in human polymorphonuclear leukocytes. Arch Biochem Biophys 2010; 503:248-52. [PMID: 20804722 DOI: 10.1016/j.abb.2010.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 08/13/2010] [Accepted: 08/22/2010] [Indexed: 01/22/2023]
Abstract
Intracellular metabolism of 4-hydroxy-2-nonenal (HNE), a major product and mediator of oxidative stress and inflammation, is analyzed in resting and fMLP-stimulated human polymorphonuclear leukocytes (PMNL), where this compound is generated during activation of the respiratory burst. HNE consumption rate in PMNL is very low, if compared to other cell types (rat hepatocytes, rabbit fibroblasts), where HNE metabolism is always an important part of secondary antioxidative defense mechanisms. More than 98% of HNE metabolites are identified. The pattern of HNE intermediates is quite similar in stimulated and resting PMNL - except for higher water formation in resting PMNL - while the initial velocity of HNE degradation is somewhat higher in resting cells, 0.44 instead of 0.28 nmol/(min×10(6) cells). The main products of HNE metabolism are 4-hydroxynonenoic acid (HNA), 1,4-dihydroxynonene (DHN) and the glutathione adducts with HNE, HNA, and DHN. Protein-bound HNE and water account for about 3-4% of the total HNE derivatives in stimulated cells, while in resting cells protein-bound HNE and water are 4% and 20%, respectively. Cysteinyl-glycine-HNE adduct and mercapturic acids contribute to about 5%.
Collapse
Affiliation(s)
- Werner Siems
- Department of Physiotherapy and Gerontology, KortexMed Institute of Medical Education, Bad Harzburg, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Gorudko IV, Vakhrusheva TV, Mukhortova AV, Cherenkevich SN, Timoshenko AV, Sergienko VI, Panasenko OM. The priming effect of halogenated phospholipids on the functional responses of human neutrophils. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2010. [DOI: 10.1134/s1990747810030037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Rubio N, Rajadurai A, Held KD, Prise KM, Liber HL, Redmond RW. Real-time imaging of novel spatial and temporal responses to photodynamic stress. Free Radic Biol Med 2009; 47:283-90. [PMID: 19409981 DOI: 10.1016/j.freeradbiomed.2009.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/21/2009] [Accepted: 04/24/2009] [Indexed: 01/06/2023]
Abstract
Cells subjected to various forms of stress have been shown to induce bystander responses in nontargeted cells, thus extending the stress response to a larger population. However, the mechanism(s) of bystander responses remains to be clearly identified, particularly for photodynamic stress. Oxidative stress and cell viability were studied on the spatial and temporal levels after photodynamic targeting of a subpopulation of EMT6 murine mammary cancer cells in a multiwell plate by computerized time-lapse fluorescence microscopy. In the targeted population a dose-dependent loss of cell viability was observed in accordance with increased oxidative stress. This was accompanied by increased oxidative stress in bystander populations but on different time scales, reaching a maximum more rapidly in targeted cells. Treatment with extracellular catalase, or the NADPH oxidase inhibitor diphenyleneiodinium, decreased production of reactive oxygen species (ROS) in both populations. These effects are ascribed to photodynamic activation of NADPH-oxidase in the targeted cells, resulting in a rapid burst of ROS formation with hydrogen peroxide acting as the signaling molecule responsible for initiation of these photodynamic bystander responses. The consequences of increased oxidative stress in bystander cells should be considered in the overall framework of photodynamic stress.
Collapse
Affiliation(s)
- Noemi Rubio
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
8
|
Spite M, Summers L, Porter TF, Srivastava S, Bhatnagar A, Serhan CN. Resolvin D1 controls inflammation initiated by glutathione-lipid conjugates formed during oxidative stress. Br J Pharmacol 2009; 158:1062-73. [PMID: 19422383 DOI: 10.1111/j.1476-5381.2009.00234.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammation is associated with oxidative stress and local generation of lipid peroxidation-derived aldehydes, such as 4-hydroxy-trans-2-nonenal (HNE). In most tissues, HNE is readily conjugated with glutathione and presently it is unknown whether glutathionyl-HNE (GS-HNE) plays a functional role in inflammation. Here, we sought to determine whether GS-HNE is a mediator of oxidative stress-initiated inflammation and if its actions can be regulated by the anti-inflammatory and pro-resolving lipid mediator, resolvin D1 (RvD1). EXPERIMENTAL APPROACH GS-HNE was administered intraperitoneally to mice and peritoneal lavages were assessed for leukocyte infiltration and lipid mediators were targeted by mediator-lipidomics. RvD1 was administered to mice treated with GS-HNE and leukocyte infiltration was assessed in the peritoneum. Superoxide production and CD11b modulation were measured in isolated human polymorphonuclear leukocytes incubated with GS-HNE. KEY RESULTS GS-HNE (1-10 microg) evoked infiltration of Gr-1(+) leukocytes into the peritoneum to form an inflammatory exudate. With isolated human polymorphonuclear leukocytes, GS-HNE stimulated both superoxide generation and CD11b expression. Among the lipid mediators, both cyclooxygenase- and lipoxygenase-derived pro-inflammatory eicosanoids, including prostaglandin E(2), leukotriene B(4) and cysteinyl leukotrienes, were generated in exudates of mice injected intraperitoneally with GS-HNE. RvD1, given i.v. in doses as low as 0.01-10.0 ng, sharply reduced GS-HNE-stimulated leukocyte infiltration ( approximately 30-70%). CONCLUSIONS AND IMPLICATIONS Glutathione conjugates of HNE, derived during oxidative stress, are pro-inflammatory in vivo. RvD1 protects against this oxidative stress-initiated inflammation.
Collapse
Affiliation(s)
- M Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
9
|
Forman HJ, Fukuto JM, Miller T, Zhang H, Rinna A, Levy S. The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys 2008; 477:183-95. [PMID: 18602883 PMCID: PMC2590784 DOI: 10.1016/j.abb.2008.06.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/11/2008] [Accepted: 06/14/2008] [Indexed: 02/07/2023]
Abstract
During the past several years, major advances have been made in understanding how reactive oxygen species (ROS) and nitrogen species (RNS) participate in signal transduction. Identification of the specific targets and the chemical reactions involved still remains to be resolved with many of the signaling pathways in which the involvement of reactive species has been determined. Our understanding is that ROS and RNS have second messenger roles. While cysteine residues in the thiolate (ionized) form found in several classes of signaling proteins can be specific targets for reaction with H(2)O(2) and RNS, better understanding of the chemistry, particularly kinetics, suggests that for many signaling events in which ROS and RNS participate, enzymatic catalysis is more likely to be involved than non-enzymatic reaction. Due to increased interest in how oxidation products, particularly lipid peroxidation products, also are involved with signaling, a review of signaling by 4-hydroxy-2-nonenal (HNE) is included. This article focuses on the chemistry of signaling by ROS, RNS, and HNE and will describe reactions with selected target proteins as representatives of the mechanisms rather attempt to comprehensively review the many signaling pathways in which the reactive species are involved.
Collapse
Affiliation(s)
- Henry Jay Forman
- School of Natural Sciences, University of California, Merced, 4225 N. Hospital Road, Building 1200, Merced, CA 95344, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Ageing is a process involving morphological and physiological modifications that gradually appear with time and lead to death. Given the heterogeneous nature of the process among individuals and among the different organs, tissues, and systems in the same individual, the concept of <<biological age>> has been developed. The search for parameters that enable us to evaluate biological age--and therefore longevity--and the analysis of the efficacy of strategies to retard the ageing process are the objectives of gerontology. At present, one of the most important theories of ageing is the <<oxidative-inflammatory>> theory. Given that immune cell function is an excellent marker of health, we review the concepts that enable different functional and oxidative stress parameters in immune cells to be identified as markers of biological age and longevity. None of these parameters is universally accepted as a biomarker of ageing, although they are becoming increasingly important.
Collapse
|
11
|
Carney CK, Schrimpe AC, Halfpenny K, Harry RS, Miller CM, Broncel M, Sewell SL, Schaff JE, Deol R, Carter MD, Wright DW. The basis of the immunomodulatory activity of malaria pigment (hemozoin). J Biol Inorg Chem 2006; 11:917-29. [PMID: 16868743 DOI: 10.1007/s00775-006-0147-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/05/2006] [Indexed: 11/28/2022]
Abstract
The most common and deadly form of the malaria parasite, Plasmodium falciparum, is responsible for 1.5-2.7 million deaths and 300-500 million acute illnesses annually [Bremen in J. Trop. Med. Hyg. 64:1-11 (2001); World Health Organization (2002)]. Hemozoin, the biomineral formed to detoxify the free heme produced during parasitic hemoglobin catabolism, has long been suspected of contributing to the pathological immunodeficiencies that occur during malarial infection. While there is a growing consensus in the literature that native hemozoin maintains immunosuppressive activity, there is considerable controversy over the reactivity of the synthetic form, beta-hematin (BH). Given the emerging importance of hemozoin in modulating a host immune response to malarial infection, a careful examination of the effects of the constitutive components of the malaria pigment on macrophage response has been made in order to clarify the understanding of this process. Herein, we present evidence that BH alone is unable to inhibit stimulation of NADPH oxidase and inducible nitric oxide synthase, the key enzymes involved in oxidative burst, and is sensitive to the microbicidal agents of these enzymes both in vitro and in vivo. Further, by systematically examining each of the malaria pigment's components, we were able to dissect their impact on the immune reactivity of a macrophage model cell line. Reactions between BH and red blood cell (RBC) ghosts effectively reconstituted the observed immunomodulatory reactivity of native hemozoin. Together, these results suggest that the interaction between hemozoin and the RBC lipids results in the generation of toxic products and that these products are responsible for disrupting macrophage function in vivo.
Collapse
Affiliation(s)
- Clare K Carney
- Department of Chemistry, Vanderbilt University, Station B. 351822, Nashville, TN 37235, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dianzani C, Collino M, Gallicchio M, Samaritani S, Signore G, Menicagli R, Fantozzi R. Evaluation of in-vitro anti-inflammatory activity of some 2-alkyl-4,6-dimethoxy-1,3,5-triazines. J Pharm Pharmacol 2006; 58:219-26. [PMID: 16451750 DOI: 10.1211/jpp.58.2.0009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The ability of some 2-alkyl(aryl)-4,6-dimethoxy-1,3,5-triazine derivatives to interfere with production of reactive oxygen species (ROS) by human phagocytes was evaluated in an in-vitro cell model. Superoxide anion (O(2)(-*)) production by human polymorphonuclear cells (PMNs), challenged by the chemotactic agent N-formylmethionyl-leucyl-phenylalanine (FMLP), was inhibited in a dose-dependent manner by all the compounds tested, compounds 3, 4 and 5 being statistically the most active. Adhesion of PMNs to vascular endothelial cells (ECs) is a critical step in recruitment and infiltration of leucocytes into tissues during inflammation, and the effects of 1,3,5-triazine derivatives on PMN adhesion to ECs from the human umbilical vein (HUVEC) were also investigated. Triazines were incubated with PMNs and HUVEC; adhesion was quantitated by computerized micro-imaging fluorescence analysis. The 1,3,5-triazines tested inhibited the adhesion evoked by pro-inflammatory stimuli, such as platelet activating factor (PAF), FMLP, phorbol myristate acetate (PMA), tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta(IL-1beta) in a dose-response manner over the concentration range 10(-9) to 10(-4)M, compounds 5 and 6 being the most active. Both of these compounds inhibited PMN adhesion to HUVEC, even when endothelial or PMN stimuli were used. Indeed, when both cell populations were activated contemporarily, the anti-adhesive effect was enhanced. The study suggests that 2-aryl-4,6-dimethoxy-1,3,5-triazines deserve further evaluation as anti-inflammatory agents.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Dianzani C, Collino M, Gallicchio M, Di Braccio M, Roma G, Fantozzi R. Effects of anti-inflammatory [1, 2, 4]triazolo[4, 3-a] [1, 8]naphthyridine derivatives on human stimulated PMN and endothelial cells: an in vitro study. JOURNAL OF INFLAMMATION-LONDON 2006; 3:4. [PMID: 16569220 PMCID: PMC1435878 DOI: 10.1186/1476-9255-3-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 03/28/2006] [Indexed: 01/16/2023]
Abstract
Background [1,2,4] triazolo [4, 3-a][1,8]naphthyridine derivatives (including NF161 and NF177) were tested for anti-inflammatory, analgesic and antipyretic properties and for their effects on spontaneous locomotor activity in mice and acute gastrolesivity in rats. Both NF161 and NF177 appeared to be anti-inflammatory and analgesic agents without toxic effects or acute gastrolesivity, but NF161 showed stronger anti-inflammatory activity, whereas NF177 was more active as analgesic. Methods An EIA kit was used to investigate the ability of NF161 and NF177 to affect prostaglandin E2 (PGE2) and prostacyclin (PGI2) production by human umbilical vascular endothelial cells (HUVEC). The compounds' effects on the production of reactive oxygen species (ROS) by human polymorphonuclear cells (PMNs) were studied in an in vitro cell model, evaluating inhibition of superoxide anion (O2-.) production induced by N-formylmethionyl-leucyl-phenylalanine (FMLP). Their effects on PMN adhesion to HUVEC were also investigated; they were incubated with PMNs and endothelial cells (EC) and challenged by stimuli including Platelet Activating Factor (PAF), FMLP, Phorbol Myristate Acetate (PMA), Tumor Necrosis Factor-α (TNF-α) and Interleukin-1β (IL-1β). Adhesion was quantitated by computerized micro-imaging fluorescence analysis. Results Neither compounds modified PGE2 or PGI2 production induced by IL-1α. O2-. production and myeloperoxidase release from PMNs stimulated by FMLP was inhibited in a dose- but not time-dependent manner by both [1,8]naphthyridine derivatives, NF161 being statistically more active than NF177 (P < 0.01). The compounds inhibited adhesion evoked by the pro-inflammatory stimuli PAF, FMLP, TNF-α and IL-1β in a concentration-dependent manner in the 10-6–10-4M range, being more active when PAF was used as stimulus and inactive when cells were challenged by PMA. Both compounds acted both on PMN and HUVEC. Conclusion Considering the interesting anti-inflammatory effects of these compounds in in vivo models and the absence of acute gastrolesivity, the study improved knowledge of anti-inflammatory properties of NF161 and NF177, also demonstrating their potential in vitro, through inhibition of O2-. production, myeloperoxidase release and PMN adhesion to HUVEC. Negative results on PG production suggest a cyclooxygenase (COX)-independent mechanism.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, V P Giuria 9, 10125 Torino, Italy
| | - Massimo Collino
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, V P Giuria 9, 10125 Torino, Italy
| | - Margherita Gallicchio
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, V P Giuria 9, 10125 Torino, Italy
| | - Mario Di Braccio
- Department of Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Giorgio Roma
- Department of Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Roberto Fantozzi
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, V P Giuria 9, 10125 Torino, Italy
| |
Collapse
|
14
|
Barrera G, Pizzimenti S, Dianzani MU. 4-hydroxynonenal and regulation of cell cycle: effects on the pRb/E2F pathway. Free Radic Biol Med 2004; 37:597-606. [PMID: 15288118 DOI: 10.1016/j.freeradbiomed.2004.05.023] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/17/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
The hypothesis that 4-hydroxynonenal (HNE), a product of lipid peroxidation, might negatively affect cell proliferation, arose from the observation that lipid peroxidation is very low in tumors. In leukemic cells HNE inhibited cell growth and reduced c-myc and c-myb expression. HNE also induced differentiation in different leukemic cell lines. In HL-60 human leukemic cells, HNE induced the accumulation of cells in the G(0)/G(1) phase of the cell cycle accompanied by a decrease of cyclins D1, D2, and A. Moreover, HNE caused an increase in p21 expression. As cyclin D/CDK2 and cyclin A/CDK2 phosphorylate pRB, these findings suggested that pRb phosphorylation could be affected by HNE. Hypophosphorylated pRb binds and inactivates the E2F transcription factors. HNE induced the dephosphorylation of pRb and the increase in pRb/E2F1 complexes, whereas pRb/E2F4 complexes were reduced, because HNE downregulated E2F4 protein expression. The analysis of E2F binding to the P2 c-myc promoter revealed that HNE caused a decrease in "free" E2F, as well as an increase in pRb (and pRB family members) bound to E2F, with consequent repression of the transcription. In conclusion, HNE reduces E2F transcriptional activity by modifying a number of genes involved in regulation of the pRb/E2F pathway.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Department of Experimental Medicine and Oncology, Section of General Pathology, University of Turin, 10125 Torino, Italy
| | | | | |
Collapse
|
15
|
Li WG, Stoll LL, Rice JB, Xu SP, Miller FJ, Chatterjee P, Hu L, Oberley LW, Spector AA, Weintraub NL. Activation of NAD(P)H oxidase by lipid hydroperoxides: mechanism of oxidant-mediated smooth muscle cytotoxicity. Free Radic Biol Med 2003; 34:937-46. [PMID: 12654483 DOI: 10.1016/s0891-5849(03)00032-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidized lipids, such as 13-hydroperoxyoctadecadienoic acid (13-HPODE), have been implicated in the pathogenesis of atherosclerosis. 13-HPODE, a constituent of oxidized low-density lipoproteins, can induce cytotoxicity of vascular smooth muscle cells (SMC), which may facilitate plaque destabilization and/or rupture. 13-HPODE-induced cytotoxicity has been linked to oxidative stress, although the mechanisms by which this occurs are unknown. In the present study, we show that 13-HPODE and 9-HPODE (10-30 microM) increased superoxide (O2*-) production and induced cytotoxicity in SMC. The 13-HPODE-induced increase in O2*- was blocked by transfecting the cells with antisense oligonucleotides against p22phox, suggesting that the O2*- was produced by NAD(P)H oxidase. Similar concentrations of the corresponding HPODE reduction products, 13-hydroxyoctadecadienoic acid (13-HODE) and 9-HODE, neither increased O2*- production nor induced cytotoxicity, while 4-hydroxy nonenal (4-HNE), an unsaturated aldehyde lipid peroxidation product, induced cytotoxicity without increasing O2*- production. Treatment with superoxide dismutase or Tiron to scavenge O2*-, or transfection with p22phox antisense oligonucleotides to inhibit O2*- production, attenuated 13-HPODE-induced cytotoxicity, but not that induced by 4-HNE. These findings suggest that activation of NAD(P)H oxidase, and production of O2*-, play an important role in lipid hydroperoxide-induced smooth muscle cytotoxicity.
Collapse
Affiliation(s)
- Wei-Gen Li
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nguyen H, Finkelstein E, Reznick A, Cross C, van der Vliet A. Cigarette smoke impairs neutrophil respiratory burst activation by aldehyde-induced thiol modifications. Toxicology 2001; 160:207-17. [PMID: 11246141 DOI: 10.1016/s0300-483x(00)00450-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to airborne pollutants such as tobacco smoke is associated with increased activation of inflammatory-immune processes and is thought to contribute to the incidence of respiratory tract disease. We hypothezised that cigarette smoke (CS) could synergize with activated inflammatory/immune cells to cause oxidative injury or result in the formation of unique reactive oxidants. Isolated human neutrophils were exposed to gas-phase CS, and the production of nitrating and chlorinating oxidants following neutrophil stimulation was monitored using the substrate 4-hydroxyphenylacetate (HPA). Stimulation of neutrophils in the presence of CS resulted in a reduced oxidation and chlorination of HPA, suggesting inhibition of NADPH oxidase or myeloperoxidase (MPO), the two major enzymes involved in inflammatory oxidant formation. Peroxidase assays demonstrated that neutrophil MPO activity was not significantly affected after CS-exposure, leaving the NADPH oxidase as a likely target. The inhibition of neutrophil oxidant formation was found to coincide with depletion of cellular GSH, and a similar modification of critical cysteine residues, such as those in NADPH oxidase components, might be involved in reduced respiratory burst activity. As alpha,beta-unsaturated aldehydes such as acrolein have been implicated in thiol modifications by CS, we exposed neutrophils to acrolein prior to stimulation, and observed inhibition of NADPH oxidase activation in relation to GSH depletion. Additionally, translocation of the cytosolic components of NADPH oxidase to the membrane, a necessary requirement for enzyme activation, was inhibited. Protein adducts of acrolein (or related aldehydes) could be detected in several neutrophil proteins, including NADPH oxidase components, following neutrophil exposure to either CS or acrolein. Alterations in neutrophil function by exposure to (environmental) tobacco smoke may affect inflammatory/infectious conditions and thereby contribute to tobacco-related disease.
Collapse
Affiliation(s)
- H Nguyen
- Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, CCRBM, 1121 Surge I, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
17
|
Parola M, Bellomo G, Robino G, Barrera G, Dianzani MU. 4-Hydroxynonenal as a biological signal: molecular basis and pathophysiological implications. Antioxid Redox Signal 1999; 1:255-84. [PMID: 11229439 DOI: 10.1089/ars.1999.1.3-255] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reactive oxygen intermediates (ROI) and other pro-oxidant agents are known to elicit, in vivo and in vitro, oxidative decomposition of omega-3 and omega-6 polyunsaturated fatty acids of membrane phospholipids (i.e, lipid peroxidation). This leads to the formation of a complex mixture of aldehydic end-products, including malonyldialdehyde (MDA), 4-hydroxy-2,3-nonenal (HNE), and other 4-hydroxy-2,3-alkenals (HAKs) of different chain length. These aldehydic molecules have been considered originally as ultimate mediators of toxic effects elicited by oxidative stress occurring in biological material. Experimental and clinical evidence coming from different laboratories now suggests that HNE and HAKs can also act as bioactive molecules in either physiological and pathological conditions. These aldehydic compounds can affect and modulate, at very low and nontoxic concentrations, several cell functions, including signal transduction, gene expression, cell proliferation, and, more generally, the response of the target cell(s). In this review article, we would like to offer an up-to-date review on this particular aspect of oxidative stress--dependent modulation of cellular functions-as well as to offer comments on the related pathophysiological implications, with special reference to human conditions of disease.
Collapse
Affiliation(s)
- M Parola
- Dipartimento di Medicina e Oncologia Sperimentale, Università degli Studi di Torino, Italy.
| | | | | | | | | |
Collapse
|
18
|
Siems WG, Capuozzo E, Verginelli D, Salerno C, Crifò C, Grune T. Inhibition of NADPH oxidase-mediated superoxide radical formation in PMA-stimulated human neutrophils by 4-hydroxynonenal--binding to -SH and -NH2 groups. Free Radic Res 1997; 27:353-8. [PMID: 9416463 DOI: 10.3109/10715769709065774] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
4-Hydroxynonenal (HNE), a major lipid peroxidation product, effectively inhibits the superoxide radical formation by NADPH oxidase of phorbol myristate acetate (PMA)--stimulated human PMNL. The I50 value for the inhibition of NADPH oxidase-mediated superoxide radical formation by 4-hydroxynonenal was found to be 19 microM. The HNE inhibition involves the reaction with both -SH and -NH2 groups. Superoxide formation as final result of the NADPH oxidase cascade was almost completely restored by addition of dithiothreitol. In presence of hydroxylamine only a minor restoration of superoxide radical formation was found. A combination of dithiothreitol and hydroxylamine yielded the greatest recovery. Two other aldehydes with the same chain length as HNE but different binding to lysine, histidine and cysteine residues, trans-2,3-nonenal and nonanal, gave I50 values for the inhibition of NADPH oxidase-mediated superoxide formation rate of 110 microM or > 300 microM, respectively.
Collapse
Affiliation(s)
- W G Siems
- Herzog-Julius Hospital of Rheumatology and Orthopaedics, Bad Harzburg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Cambiaggi C, Dominici S, Comporti M, Pompella A. Modulation of human T lymphocyte proliferation by 4-hydroxynonenal, the bioactive product of neutrophil-dependent lipid peroxidation. Life Sci 1997; 61:777-85. [PMID: 9275007 DOI: 10.1016/s0024-3205(97)00559-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The proliferative capacity of immune cells is known to be sensitive to conditions of oxidative stress and lipid peroxidation. We tested the hypothesis that activated neutrophils can induce peroxidation in extracellular lipid substrates, and evaluated the effects of 4-hydroxy-2,3-trans-nonenal (4-HNE)--the most reactive aldehydic product of lipid peroxidation--on mitogen-induced proliferation of human T lymphocytes. Neutrophils activated in the presence of extracellular lipid substrates (liposomes, cellular membranes) induced lipid peroxidation. By means of cytoimmunofluorescent labeling and confocal microscopy, the binding of 4-HNE to surface and cytoplasmic proteins of activated neutrophils was observed. Short (20 min) pre-treatment of cells with low concentrations of 4-HNE were able to dose-dependently decrease the proliferation of human peripheral blood lymphocytes challenged with PHA or anti-CD3 monoclonal antibody OKT3, as well as the proliferation of a tetanus specific human T-cell line challenged with tetanus toxoid. In these conditions, the binding of 4-HNE to surface and cytoplasmic proteins of lymphocytes was also observed. When the proliferative capacity of peripheral blood lymphocytes was monitored over several days after 4-HNE treatment and PHA challenge, a recovery and a rebound in cell proliferation was observed. Data reported indicate that the lipid peroxidation promoted by activated neutrophils can exert modulatory effects on the responsivity of human T cells, through the action of its most reactive product, 4-HNE.
Collapse
Affiliation(s)
- C Cambiaggi
- Istituto di Patologia Generale dell'Università, Siena, Italia
| | | | | | | |
Collapse
|