1
|
Dias I, Bon L, Banas A, Chavarria D, Borges F, Guerreiro-Oliveira C, Cardoso SM, Sanna D, Garribba E, Chaves S, Santos MA. Exploiting the potential of rivastigmine-melatonin derivatives as multitarget metal-modulating drugs for neurodegenerative diseases. J Inorg Biochem 2025; 262:112734. [PMID: 39378762 DOI: 10.1016/j.jinorgbio.2024.112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
The multifaceted nature of the neurodegenerative diseases, as Alzheimer's disease (AD) and Parkinson's disease (PD) with several interconnected etiologies, and the absence of effective drugs, led herein to the development and study of a series of multi-target directed ligands (MTDLs). The developed RIV-IND hybrids, derived from the conjugation of an approved anti-AD drug, rivastigmine (RIV), with melatonin analogues, namely indole (IND) derivatives, revealed multifunctional properties, by associating the cholinesterase inhibition of the RIV drug with antioxidant activity, biometal (Cu(II), Zn(II), Fe(III)) chelation properties, inhibition of amyloid-β (Aβ) aggregation (self- and Cu-induced) and of monoamine oxidases (MAOs), as well as neuroprotection capacity in cell models of AD and PD. In particular, two hybrids with hydroxyl-substituted indoles (5a2 and 5a3) could be promising multifunctional compounds that inspire further development of novel anti-neurodegenerative drugs.
Collapse
Affiliation(s)
- Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Leo Bon
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Angelika Banas
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Catarina Guerreiro-Oliveira
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine University of Coimbra (FMUC), 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chimica e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Ma L, Meng T, Wang Y, Xue Y, Zheng Y, Chen J, Xu D, Sun J, Yang F, Huang J, Yang X. Real-time analysis of the biomolecular interaction between gelsolin and Aβ 1-42 monomer and its implication for Alzheimer's disease. Talanta 2025; 282:126938. [PMID: 39357407 DOI: 10.1016/j.talanta.2024.126938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Biomolecular interaction acts a pivotal part in understanding the mechanisms underlying the development of Alzheimer's disease (AD). Herein, we built a biosensing platform to explore the interaction between gelsolin (GSN) and different β-amyloid protein 1-42 (Aβ1-42) species, including Aβ1-42 monomer (m-Aβ), Aβ1-42 oligomers with both low and high levels of aggregation (LLo-Aβ and HLo-Aβ) via dual polarization interferometry (DPI). Real-time molecular interaction process and kinetic analysis showed that m-Aβ had the strongest affinity and specificity with GSN compared with LLo-Aβ and HLo-Aβ. The impact of GSN on inhibiting aggregation of Aβ1-42 and solubilizing Aβ1-42 aggregates was evaluated by circular dichroism (CD) spectroscopy. The maintenance of random coil structure of m-Aβ and the reversal of β-sheet structure in HLo-Aβ were observed, demonstrating the beneficial effects of GSN on preventing Aβ from aggregation. In addition, the structure of m-Aβ/GSN complex was analyzed in detail by molecular dynamics (MD) simulation and molecular docking. The specific binding sites and crucial intermolecular forces were identified, which are believed to stabilize m-Aβ in its soluble state and to inhibit the fibrilization of Aβ1-42. Combined theoretical simulations and experiment results, we speculate that the success of GSN sequestration mechanism and the balance of GSN levels in cerebrospinal fluid and plasma of AD subjects may contribute to a delay in AD progression. This research not only unveils the molecular basis of the interaction between GSN and Aβ1-42, but also provides clues to understanding the crucial functions of GSN in AD and drives the development of AD drugs and therapeutic approaches.
Collapse
Affiliation(s)
- Limin Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tian Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuxin Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jinghuang Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dongming Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Meyer N, Torrent J, Balme S. Characterizing Prion-Like Protein Aggregation: Emerging Nanopore-Based Approaches. SMALL METHODS 2024; 8:e2400058. [PMID: 38644684 PMCID: PMC11672191 DOI: 10.1002/smtd.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Indexed: 04/23/2024]
Abstract
Prion-like protein aggregation is characteristic of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This process involves the formation of aggregates ranging from small and potentially neurotoxic oligomers to highly structured self-propagating amyloid fibrils. Various approaches are used to study protein aggregation, but they do not always provide continuous information on the polymorphic, transient, and heterogeneous species formed. This review provides an updated state-of-the-art approach to the detection and characterization of a wide range of protein aggregates using nanopore technology. For each type of nanopore, biological, solid-state polymer, and nanopipette, discuss the main achievements for the detection of protein aggregates as well as the significant contributions to the understanding of protein aggregation and diagnostics.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonCedex 5Montpellier34095France
- INMUniversity of MontpellierINSERMMontpellier34095France
| | - Joan Torrent
- INMUniversity of MontpellierINSERMMontpellier34095France
| | - Sébastien Balme
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonCedex 5Montpellier34095France
| |
Collapse
|
4
|
Leuci R, Simic S, Carrieri A, Chaves S, La Spada G, Brunetti L, Tortorella P, Loiodice F, Laghezza A, Catto M, Santos MA, Tufarelli V, Wackerlig J, Piemontese L. Rivastigmine structure-based hybrids as potential multi-target anti-Alzheimer's drug candidates. Bioorg Chem 2024; 153:107895. [PMID: 39454499 DOI: 10.1016/j.bioorg.2024.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
In recent years, an increasing amount of work has been carried out regarding the study of the etiopathology of Alzheimer's Disease (AD). This neurodegenerative disease is characterized by several organic and molecular correlates, which paint a complex picture that also reflects the historic challenge faced by the worldwide scientific community in finding an effective cure for it. In this paper, we describe the synthesis of novel rivastigmine derivatives and their characterization as wide-spectrum enzyme (AChE, BChE, FAAH, MAO-A and MAO-B) inhibitors with potential application in the therapy of AD following the paradigm of multi-target design. 5 (ROS151) and 23 show similar inhibitory profile compared to donepezil on cholinesterases, and ca. two hundred twenty-three and eighty-seven times more active than rivastigmine on AChE. Moreover, ROS151 was found to be a potential metal chelator. Compounds 6 and 8 are very interesting and original multi-functional promising hybrids, with comparable potency on distinct panels of enzymes. All these promising rivastigmine-like hybrids were assayed for their pharmacokinetic properties by using different bio-analytical techniques, showing interesting applicability profiles. Moreover, cytotoxicity assays displayed a safety profile on three different cell lines.
Collapse
Affiliation(s)
- Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Stefan Simic
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Paolo Tortorella
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Fulvio Loiodice
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Antonio Laghezza
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - M Amélia Santos
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Valenzano, 70010, Italy
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
5
|
Shen R, Zhao W, Li X, Liu J, Yang A, Kou X. Emodin derivatives as promising multi-aspect intervention agents for amyloid aggregation: molecular docking/dynamics simulation, bioactivities evaluation, and cytoprotection. Mol Divers 2024; 28:3085-3099. [PMID: 37737959 DOI: 10.1007/s11030-023-10733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with complex pathogenesis. Despite the pathogenesis is unknown, the misfolding and accumulation of β-amyloid (Aβ) peptide play the important role in the occurrence and development of AD. Hence, multi-aspect intervention of the misfolded Aβ peptides aggregation is a promising therapy for AD. In previous work, we obtained the emodin derivatives (a-d) with multifunctional anti-AD activities, including metal ions chelation, cholinesterase inhibition, and hydroxyl/superoxide anion radical elimination. In this work, we predicted the interaction of emodin derivatives (a-d) with Aβ by combining molecular docking simulation and molecular dynamics simulation, and evaluated the ability to intervene with the self-, Cu2+- and AChE-induced Aβ aggregation via in vitro methods. The results indicated that a-d could act as the potent multi-aspect intervention agents for Aβ aggregation. In addition, a-d could effectively eliminate peroxyl radical, had virtually no neurotoxicity, and protect cells from oxidative and Aβ-induced damage. The prediction results of ADMET properties showed that a-d had suitable pharmacokinetic characteristics. It suggested that a-d could act as the promising multi-targeted directed ligands (MTDLs) for AD. These results may provide meaningful information for the development of the potential MTDLs for AD which are modified from natural-origin scaffolds.
Collapse
Affiliation(s)
- Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Wenshuang Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xiangyu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Juanjuan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
6
|
Nasr EE, Tawfik SS, Massoud MAM, Mostafa AS. Unveiling new thiazole-clubbed piperazine derivatives as multitarget anti-AD: Design, synthesis, and in silico studies. Arch Pharm (Weinheim) 2024; 357:e2400044. [PMID: 38754070 DOI: 10.1002/ardp.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
New thiazole-clubbed piperazine derivatives were designed, synthesized, evaluated for their inhibitory capabilities against human acetylcholinesterase and butyrylcholinesterase (hAChE and/or hBuChE) and β-amyloid (Aβ) aggregation, and investigated for their metal chelating potential as multitarget agents for the treatment of Alzheimer's disease. Compounds 10, 19-21, and 24 showed the highest hAChE inhibitory activity at submicromolar concentrations, of which compound 10 was the most potent with a half-maximal inhibitory concentration (IC50) value of 0.151 μM. Compounds 10 and 20 showed the best hBuChE inhibitory activities (IC50 values of 0.135 and 0.103 μM, respectively), in addition to remarkable Aβ1-42 aggregation inhibitory activities and metal chelating capabilities. Both compounds were further evaluated against human neuroblastoma SH-SY5Y and PC12 neuronal cells, where they proved noncytotoxic at their active concentrations against hAChE or hBuChE. They also offered a significant neuroprotective effect against Aβ25-35-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Compound 10 displayed acceptable physicochemical properties and could pass the blood-brain barrier. The molecular docking study revealed the good binding interactions of compound 10 with the key amino acids of both the catalytic active site and the peripheral anionic site of hAChE, explaining its significant potency.
Collapse
Affiliation(s)
- Eman E Nasr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samar S Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed A M Massoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Polykretis P, D’Andrea C, Banchelli M, Napolitano L, Cascella R, de Angelis M, Matteini P. Exploring the Aβ 1-42 fibrillogenesis timeline by atomic force microscopy and surface enhanced Raman spectroscopy. Front Mol Biosci 2024; 11:1376411. [PMID: 38948077 PMCID: PMC11211275 DOI: 10.3389/fmolb.2024.1376411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction: Alzheimer's disease (AD) is a progressive debilitating neurological disorder representing the most common neurodegenerative disease worldwide. Although the exact pathogenic mechanisms of AD remain unresolved, the presence of extracellular amyloid-β peptide 1-42 (Aβ1-42) plaques in the parenchymal and cortical brain is considered one of the hallmarks of the disease. Methods: In this work, we investigated the Aβ1-42 fibrillogenesis timeline up to 48 h of incubation, providing morphological and chemo-structural characterization of the main assemblies formed during the aggregation process of Aβ1-42, by atomic force microscopy (AFM) and surface enhanced Raman spectroscopy (SERS), respectively. Results: AFM topography evidenced the presence of characteristic protofibrils at early-stages of aggregation, which form peculiar macromolecular networks over time. SERS allowed to track the progressive variation in the secondary structure of the aggregation species involved in the fibrillogenesis and to determine when the β-sheet starts to prevail over the random coil conformation in the aggregation process. Discussion: Our research highlights the significance of investigating the early phases of fibrillogenesis to better understand the molecular pathophysiology of AD and identify potential therapeutic targets that may prevent or slow down the aggregation process.
Collapse
Affiliation(s)
- Panagis Polykretis
- Institute of Applied Physics “Nello Carrara”, National Research Council, Sesto Fiorentino, Italy
| | - Cristiano D’Andrea
- Institute of Applied Physics “Nello Carrara”, National Research Council, Sesto Fiorentino, Italy
| | - Martina Banchelli
- Institute of Applied Physics “Nello Carrara”, National Research Council, Sesto Fiorentino, Italy
| | - Liliana Napolitano
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Marella de Angelis
- Institute of Applied Physics “Nello Carrara”, National Research Council, Sesto Fiorentino, Italy
| | - Paolo Matteini
- Institute of Applied Physics “Nello Carrara”, National Research Council, Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Bon L, Banaś A, Dias I, Melo-Marques I, Cardoso SM, Chaves S, Santos MA. New Multitarget Rivastigmine-Indole Hybrids as Potential Drug Candidates for Alzheimer's Disease. Pharmaceutics 2024; 16:281. [PMID: 38399339 PMCID: PMC10892719 DOI: 10.3390/pharmaceutics16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no cure so far, probably due to the complexity of this multifactorial disease with diverse processes associated with its origin and progress. Several neuropathological hallmarks have been identified that encourage the search for new multitarget drugs. Therefore, following a multitarget approach, nine rivastigmine-indole (RIV-IND) hybrids (5a1-3, 5b1-3, 5c1-3) were designed, synthesized and evaluated for their multiple biological properties and free radical scavenging activity, as potential multitarget anti-AD drugs. The molecular docking studies of these hybrids on the active center of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) suggest their capacity to act as dual enzyme inhibitors with probable greater disease-modifying impact relative to AChE-selective FDA-approved drugs. Compounds 5a3 (IC50 = 10.9 µM) and 5c3 (IC50 = 26.8 µM) revealed higher AChE inhibition than the parent RIV drug. Radical scavenging assays demonstrated that all the hybrids containing a hydroxyl substituent in the IND moiety (5a2-3, 5b2-3, 5c2-3) have good antioxidant activity (EC50 7.8-20.7 µM). The most effective inhibitors of Aβ42 self-aggregation are 5a3, 5b3 and 5c3 (47.8-55.5%), and compounds 5b2 and 5c2 can prevent the toxicity induced by Aβ1-42 to cells. The in silico evaluation of the drug-likeness of the hybrids also showed that all the compounds seem to have potential oral availability. Overall, within this class of RIV-IND hybrids, 5a3 and 5c3 appear as lead compounds for anti-AD drug candidates, deserving further investigation.
Collapse
Affiliation(s)
- Leo Bon
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Angelika Banaś
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Inês Melo-Marques
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (I.M.-M.); (S.M.C.)
| | - Sandra M. Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (I.M.-M.); (S.M.C.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - M. Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| |
Collapse
|
9
|
Yu G, Shi Y, Cong S, Wu C, Liu J, Zhang Y, Liu H, Liu X, Deng H, Tan Z, Deng Y. Synthesis and evaluation of butylphthalide-scutellarein hybrids as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2024; 265:116099. [PMID: 38160618 DOI: 10.1016/j.ejmech.2023.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
A series of butylphthalide and scutellarein hybrids 3-(alkyl/alkenyl) hydroxyphthalide derivatives were designed, synthesized and evaluated as multifunctional agents against Alzheimer's disease. In vitro bioactivity assays indicated that most of the compounds displayed excellent antioxidant activity and moderate to good inhibition activities of self-induced Aβ1-42 aggregation. Among them, compound 7c was demonstrated as a potential and balanced multifunctional candidate displaying the best inhibitory effects on self- and Cu2+-induced Aβ1-42 aggregation (90.2 % and 35.4 %, respectively) and moderate activity for disaggregation of Aβ1-42 aggregation (42.5 %). In addition, 7c also displayed excellent antioxidant (2.42 Trolox equivalents), metal ions chelating, oxidative stress alleviation, neuroprotective and anti-neuroinflammatory activities. Furthermore, in vivo study demonstrated that 7c could ameliorate the learning and memory impairment induced by sodium nitrite and Aβ1-42 in the step-down passive avoidance test. These balanced multifunctional profiles supporting compound 7c as a novel potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yichun Shi
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shiqin Cong
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengxun Wu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jing Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhang
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hongyan Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiuxiu Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Haixing Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Guan Y, Li Y, Gao W, Mei J, Xu W, Wang C, Ai H. Aggregation Dynamics Characteristics of Seven Different Aβ Oligomeric Isoforms-Dependence on the Interfacial Interaction. ACS Chem Neurosci 2024; 15:155-168. [PMID: 38109178 DOI: 10.1021/acschemneuro.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The aggregation of β-amyloid (Aβ) peptides has been confirmed to be associated with the onset of Alzheimer's disease (AD). Among the three phases of Aβ aggregation, the lag phase has been considered to be the best time for early Aβ pathological deposition clinical intervention and prevention for potential patients with normal cognition. Aβ peptide exists in various lengths in vivo, and Aβ oligomer in the early lag phase is neurotoxic but polymorphous and metastable, depending on Aβ length (isoform), molecular weight, and specific phase, and therefore hardly characterized experimentally. To cope with the problem, molecular dynamics simulation was used to investigate the aggregation process of five monomers for each of the seven common Aβ isoforms during the lag phase. Results showed that Aβ(1-40) and Aβ(1-38) monomers aggregated faster than their truncated analogues Aβ(4-40) and Aβ(4-38), respectively. However, the aggregation rate of Aβ(1-42) was slower than that of its truncated analogues Aβ(4-42) rather than that of Aβpe(3-42). More importantly, Aβ(1-38) is first predicted as more likely to form stable hexamer than the remaining five Aβ isoforms, as Aβ(1-42) does. It is hydrophobic interaction mainly (>50%) from the interfacial β1 and β2 regions of two reactants, pentamer and monomer, aggregated by Aβ(1-38)/Aβ(1-42) rather than by other Aβ isoforms, that drives the hexamer stably as a result of the formation of the effective hydrophobic collapse. This paper provides new insights into the aggregation characteristics of Aβ with different lengths and the conditions necessary for Aβ to form oligomers with a high molecular weight in the early lag phase, revealing the dependence of Aβ hexamer formation on the specific interfacial interaction.
Collapse
Affiliation(s)
- Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ye Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wenqi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
11
|
Wei W, Jing L, Tian Y, Więckowska A, Kang D, Meng B, Panek D, Godyń J, Góral I, Song Y, Liu X, Zhan P. Multifunctional agents against Alzheimer's disease based on oxidative stress: Polysubstituted pyrazine derivatives synthesized by multicomponent reactions. Bioorg Med Chem 2023; 96:117535. [PMID: 37956505 DOI: 10.1016/j.bmc.2023.117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
As Alzheimer's disease (AD) is a neurodegenerative disease with a complex pathogenesis, the exploration of multi-target drugs may be an effective strategy for AD treatment. Multifunctional small molecular agents can be obtained by connecting two or more active drugs or privileged pharmacophores by multicomponent reactions (MCRs). In this paper, two series of polysubstituted pyrazine derivatives with multifunctional moieties were designed as anti-AD agents and synthesized by Passerini-3CR and Ugi-4CR. Since the oxidative stress plays an important role in the pathological process of AD, the antioxidant activities of the newly synthesized compounds were first evaluated. Subsequently, selected active compounds were further screened in a series of AD-related bioassays, including Aβ1-42 self-aggregation and deaggregation, BACE-1 inhibition, metal chelation, and protection of SH-SY5Y cells from H2O2-induced oxidative damage. Compound A3B3C1 represented the best one with multifunctional potencies. Mechanism study showed that A3B3C1 acted on Nrf2/ARE signaling pathway, thus increasing the expression of related antioxidant proteins NQO1 and HO-1 to normal cell level. Furthermore, A3B3C1 showed good in vitro human plasma and liver microsome stability, indicating a potential for further development as multifunctional anti-AD agent.
Collapse
Affiliation(s)
- Wenxiu Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China; Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Bairu Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Izabella Góral
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
12
|
Smeralda W, Since M, Corvaisier S, Fayolle D, Cardin J, Duprey S, Jourdan JP, Cullin C, Malzert-Freon A. A Biomimetic Multiparametric Assay to Characterise Anti-Amyloid Drugs. Int J Mol Sci 2023; 24:16982. [PMID: 38069305 PMCID: PMC10707238 DOI: 10.3390/ijms242316982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most widespread form of senile dementia worldwide and represents a leading socioeconomic problem in healthcare. Although it is widely debated, the aggregation of the amyloid β peptide (Aβ) is linked to the onset and progression of this neurodegenerative disease. Molecules capable of interfering with specific steps in the fibrillation process remain of pharmacological interest. To identify such compounds, we have set up a small molecule screening process combining multiple experimental methods (UV and florescence spectrometry, ITC, and ATR-FTIR) to identify and characterise potential modulators of Aβ1-42 fibrillation through the description of the biochemical interactions (molecule-membrane Aβ peptide). Three known modulators, namely bexarotene, Chicago sky blue and indomethacin, have been evaluated through this process, and their modulation mechanism in the presence of a biomembrane has been described. Such a well-adapted physico-chemical approach to drug discovery proves to be an undeniable asset for the rapid characterisation of compounds of therapeutic interest for Alzheimer's disease. This strategy could be adapted and transposed to search for modulators of other amyloids such as tau protein.
Collapse
Affiliation(s)
- Willy Smeralda
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Marc Since
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Sophie Corvaisier
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Dimitri Fayolle
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Julien Cardin
- CIMAP, ENSICAEN, UNICAEN, UMR6252 CNRS, CEA, Normandie Université, 6 Bd du Maréchal Juin, 14050 Caen, France; (J.C.); (S.D.)
| | - Sylvain Duprey
- CIMAP, ENSICAEN, UNICAEN, UMR6252 CNRS, CEA, Normandie Université, 6 Bd du Maréchal Juin, 14050 Caen, France; (J.C.); (S.D.)
| | - Jean-Pierre Jourdan
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
- Pharmacie à Usage Intérieur, Centre Hospitalier de Vire, Normandie, 14504 Vire, France
| | | | - Aurélie Malzert-Freon
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| |
Collapse
|
13
|
Kou X, Hu C, Pang Z, Zhang X, Wang H, Shen R, Yang A. A coumarin-based multifunctional chemosensor for Cu 2+/Al 3+ as an AD theranostic agent: Synthesis, X-ray single crystal analysis and activity study. Anal Chim Acta 2023; 1279:341818. [PMID: 37827640 DOI: 10.1016/j.aca.2023.341818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex. So far there is no effective drug to treat the disease. The pathological changes of AD began 30 years before symptoms, so early diagnosis is considered to be important for AD treatment. Integrating diagnosis and therapy into a single regent has provided a new opportunity for AD treatment. Given that metal dyshomeostasis is thought to be one of the key factors to cause AD, a Schiff base substituted coumarin (probe 1) has been designed and synthesized as a selective metal chelator for multi-factor anti-AD in this work. The results of metal ions recognition showed that probe 1 had high selective fluorescent turn-on response to Al3+ and fluorescent turn-off response to Cu2+, due to intramolecular charge transfer (ICT) mechanism. Meanwhile, the results of both in vitro and in vivo bioactivities evaluation including metal chelation, reactive oxide species (ROS) elimination, self-/Cu2+-induced Aβ aggregation showed that 1 and 1-Cu(II) complex had excellent synergistic anti-AD activities. In addition, 1 had low cytotoxicity and was predicted to cross the blood-brain barrier (BBB). Noticeably, X-ray single crystal diffraction of 1-Cu(II) provided molecular level information to explain the structure and theranostic activity relationship. To sum up, 1 may be a promising candidate for the development of AD theranostic agent.
Collapse
Affiliation(s)
- Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chengting Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zi Pang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyu Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huiyan Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
14
|
Mei J, Xu W, Gao W, Wang C, Guan Y, Ahmad S, Ai H. Identification and characterization of the conformation and size of amyloid-β (42) oligomers targeting the receptor LilrB2. Phys Chem Chem Phys 2023; 25:25229-25239. [PMID: 37700616 DOI: 10.1039/d3cp02746e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Experimental observations revealed that the amyloid-β 42 oligomer (AβO) can directly bind to the LilrB2 D1D2(LDD) receptor with nanomolar-affinity, leading to changes in synaptic plasticity and cognitive deficits. However, the dependence of neurotoxicity on the morphology, size, and aggregation stage (SP1, SP2) of AβO, as well as the specific molecular mechanism of AβO-LDD interaction, remain uncertain. To address these uncertainties, we investigated the interaction between the LDD neuroreceptor and AβO with different Aβ42 species (nontoxic species, toxic species, and protofibril) and sizes. Our results showed that the LDD selectively binds AβO species rather than the Aβ42 monomer, accommodating various Aβ42 dimers and trimers as well as SP2 AβO, in a specific pose in the pocket of the LDD receptor (region I). Additionally, protofibrils with exposed β1/β2 regions can also bind to region I of the LDD receptor, as observed experimentally (Cao, et al., Nat. Chem., 2018, 10, 1213; and Aim et al., Nat. Commun., 2021, 12, 3451). More extensively, we identified two additional regions of the LDD receptor, regions II and III, suitable for binding to larger AβO species at the SP1 with different molecular weights and conformations, accounting for the stronger binding strength obtained experimentally. We suggest that the two regions are more competitive than region I in causing toxicity by AβO binding. The detailed and systematic characterization for the complexes generated between the LDD receptor and various AβO species, including the protofibril, offers deep insight into the dependence of neurotoxicity on the AβO size and conformation at the molecular level, and provides novel and specific targets for drug design of Alzheimer's disease.
Collapse
Affiliation(s)
- Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wenqi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
15
|
Vargas-Rosales P, D’Addio A, Zhang Y, Caflisch A. Disrupting Dimeric β-Amyloid by Electric Fields. ACS PHYSICAL CHEMISTRY AU 2023; 3:456-466. [PMID: 37780539 PMCID: PMC10540290 DOI: 10.1021/acsphyschemau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023]
Abstract
The early oligomers of the amyloid Aβ peptide are implicated in Alzheimer's disease, but their transient nature complicates the characterization of their structure and toxicity. Here, we investigate the stability of the minimal toxic species, i.e., β-amyloid dimers, in the presence of an oscillating electric field. We first use deep learning (AlphaFold-multimer) for generating initial models of Aβ42 dimers. The flexibility and secondary structure content of the models are then analyzed by multiple runs of molecular dynamics (MD). Structurally stable models are similar to ensemble representatives from microsecond-long MD sampling. Finally, we employ the validated model as the starting structure of MD simulations in the presence of an external oscillating electric field and observe a fast decay of β-sheet content at high field strengths. Control simulations using the helical dimer of the 42-residue leucine zipper peptide show higher structural stability than the Aβ42 dimer. The simulation results provide evidence that an external electric field (oscillating at 1 GHz) can disrupt amyloid oligomers which should be further investigated by experiments with brain organoids in vitro and eventually in vivo.
Collapse
Affiliation(s)
| | - Alessio D’Addio
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Yang Zhang
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| |
Collapse
|
16
|
Wang Y, Liu W, Dong X, Sun Y. Design of Self-Assembled Nanoparticles as a Potent Inhibitor and Fluorescent Probe for β-Amyloid Fibrillization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12576-12589. [PMID: 37624641 DOI: 10.1021/acs.langmuir.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alzheimer's disease (AD) remains incurable due to its complex pathogenesis. The deposition of β-amyloid (Aβ) in the brain appears much earlier than any clinical symptoms and plays an essential role in the occurrence and development of AD neuropathology, which implies the importance of early theranostics. Herein, we designed a self-assembled bifunctional nanoparticle (LC8-pCG-fLC8) for Aβ fluorescent diagnosis and inhibition. The nanoparticle was synthesized by click chemistry from Aβ-targeting peptide Ac-LVFFARKC-NH2 (LC8) and an Aβ fluorescent probe f with the zwitterionic copolymer poly(carboxybetaine methacrylate-glycidyl methacrylate) (p(CBMA-GMA), pCG). Owing to the high reactivity of epoxy groups, the peptide concentration of LC8-pCG-fLC8 nanoparticles reached about 4 times higher than that of the existing inhibitor LVFFARK@poly(carboxybetaine) (LK7@pCB). LC8-pCG-fLC8 exhibited remarkable inhibitory capability (suppression efficiency of 83.0% at 20 μM), altered the aggregation pathway of Aβ, and increased the survival rate of amyloid-induced cultured cells from 76.5% to 98.0% at 20 μM. Notably, LC8-pCG-fLC8 possessed excellent binding affinity, good biostability, and high fluorescence responsivity to β-sheet-rich Aβ oligomers and fibrils, which could be used for the early diagnosis of Aβ aggregation. More importantly, in vivo tests using transgenic C. elegans CL2006 stain showed that LC8-pCG-fLC8 could specifically image Aβ plaques, prolong the lifespan (from 13 to 17 days), and attenuate the AD-like symptoms (reducing paralysis and Aβ deposition). Therefore, self-assembled nanoparticles hold great potential in AD theranostics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
17
|
Xu W, Mei J, Wang C, Yang H, Ma X, Gao W, Ahmad S, Ai H. Origin of stronger binding of ionic pair (IP) inhibitor to Aβ42 than the equimolar neutral counterparts: synergy mechanism of IP in disrupting Aβ42 protofibril and inhibiting Aβ42 aggregation under two pH conditions. Phys Chem Chem Phys 2023; 25:21612-21630. [PMID: 37551434 DOI: 10.1039/d3cp01683h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Fibrous aggregates of beta-amyloid (Aβ) is a hallmark of Alzheimer's disease (AD). Several major strategies of drugs or inhibitors, including neutral molecules, positive or negative ions, and dual-inhibitor, are used to inhibit the misfolding or aggregation of Aβ42, among which a kind of dual-inhibitor composed of a pair of positive and negative ions is emerging as the most powerful candidate. This knowledge lacks the origin of the strong inhibitory effect and synergy mechanisms blocking the development and application of such inhibitors. To this end, we employed 1 : 1 ionic pairs (IP) of oppositely charged benzothiazole molecules (+)BAM1-EG6 (Pos) and (-)BAM1-EG6 (Neg) as well as equimolar neutral BAM1-EG6 (Neu) counterpart at two pH conditions (5.5 and 7.0) to bind Aβ42 targets, Aβ42 monomer (AβM), soluble pentamer (AβP), and pentameric protofibril (AβF) models, respectively, corresponding to the products of three toxic Aβ42 development pathways, lag, exponential and fibrillation phases. Simulated results illustrated the details of the inhibitory mechanisms of IP and Neu for the AβY (Y = M, P, or F) in the three different phases, characterizing the roles of Pos and Neg of IP as well as their charged, hydrophobic groups and linker playing in the synergistic interaction, and elucidated a previously unknown molecular mechanism governing the IP-Aβ42 interaction. Most importantly, we first revealed the origin of the stronger binding of IP inhibitors to Aβ42 than that of the equimolar neutral counterparts, observing a perplexing phenomenon that the physiological condition (pH = 7.0) than the acidic one (pH = 5.5) is more favorable to the enhancement of IP binding, and finally disclosed that solvation is responsible to the enhancement because at pH 7.0, AβP and AβF act as anionic membranes, where solvation plays a critical role in the chemoelectromechanics. The result not only provides a new dimension in dual-inhibitor/drug design and development but also a new perspective for uncovering charged protein disaggregation under IP-like inhibitors.
Collapse
Affiliation(s)
- Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Huijuan Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiaohong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wenqi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
18
|
Fares S, El Husseiny WM, Selim KB, Massoud MAM. Modified Tacrine Derivatives as Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease: Synthesis, Biological Evaluation, and Molecular Modeling Study. ACS OMEGA 2023; 8:26012-26034. [PMID: 37521639 PMCID: PMC10373466 DOI: 10.1021/acsomega.3c02051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
To develop multitarget-directed ligands (MTDLs) as potential treatments for Alzheimer's disease (AD) and to shed light on the effect of the chromene group in designing these ligands, 35 new tacrine-chromene derivatives were designed, synthesized, and biologically evaluated. Compounds 5c and 5d exhibited the most desirable multiple functions for AD; they were strong hAChE inhibitors with IC50 values of 0.44 and 0.25 μM, respectively. Besides, their potent BuChE inhibitory activity was 10- and 5-fold more active than rivastigmine with IC50 = 0.08 and 0.14 μM, respectively. Moreover, they could bind to the peripheral anionic site (PAS), influencing Aβ aggregation and decreasing Aβ-related neurodegeneration, especially compound 5d, which was 8 times more effective than curcumin with IC50 = 0.74 μM and 76% inhibition at 10 μM. Compounds 5c and 5d showed strong BACE-1 inhibition at the submicromolar level with IC50 = 0.38 and 0.44 μM, respectively, which almost doubled the activity of curcumin. They also showed single-digit micromolar inhibitory activity against MAO-B with IC50 = 5.15 and 2.42 μM, respectively. They also had antioxidant activities and showed satisfactory metal-chelating properties toward Fe+2, Zn+2, and Cu+2, inhibiting oxidative stress in AD brains. Furthermore, compounds 5c and 5d showed acceptable relative safety upon normal cells SH-SY5Y and HepG2. It was shown that 5c and 5d were blood-brain barrier (BBB) penetrants by online prediction. Taken together, these multifunctional properties highlight that compounds 5c and 5d can serve as promising candidates for the further development of multifunctional drugs against AD.
Collapse
Affiliation(s)
- Salma Fares
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department
of Pharmaceutical Chemistry, Delta University
For science and Technology, Gamasa 11152, Egypt
| | - Walaa M. El Husseiny
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Khalid B. Selim
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. M. Massoud
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
19
|
Zheng Y, Zheng C, Tu W, Jiang Y, Lin H, Chen W, Lee Q, Zheng W. Danshensu inhibits Aβ aggregation and neurotoxicity as one of the main prominent features of Alzheimer's disease. Int J Biol Macromol 2023:125294. [PMID: 37315666 DOI: 10.1016/j.ijbiomac.2023.125294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
It has been found that the main cause of neurodegenerative proteinopathies, especially Alzheimer's disease (AD) is the formation of Aβ amyloid plaques, which can be regulated by application of potential small molecules. In the present study, we aimed to investigate the inhibitory effect of danshensu on Aβ(1-42) aggregation and relevant apoptotic pathway in neurons. A broad range of spectroscopic, theoretical, and cellular assays were done to investigate the anti-amyloidogenic characteristics of danshensu. It was found that danshensu triggers its inhibitory effect against Aβ(1-42) aggregation through modulation of hydrophobic patches as well as structural and morphological changes through a stacking interaction. Furthermore, it was observed that incubation of Aβ(1-42) samples with danshensu during aggregation process recovered the cell viability and mitigated the expression of caspase-3 mRNA and protein as well caspase-3 activity deregulated by Aβ(1-42) amyloid fibrils alone. In general, obtained data showed that danshensu potentially inhibits Aβ(1-42) aggregation and associated proteinopathies through regulation of apoptotic pathway in a concentration-dependent manner. Therefore, danshensu may be used as a promising biomolecule against the Aβ aggregation and associated proteinopathies, which can be further analyzed in the future studies for the treatment of AD.
Collapse
Affiliation(s)
- Yuyin Zheng
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Cheng Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou 325000, China
| | - Haiyan Lin
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qian Lee
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wu Zheng
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
20
|
Habashi M, Chauhan PS, Vutla S, Senapati S, Diachkov M, El-Husseini A, Guérin B, Lubell WD, Rahimipour S. Aza-Residue Modulation of Cyclic d,l-α-Peptide Nanotube Assembly with Enhanced Anti-Amyloidogenic Activity. J Med Chem 2023; 66:3058-3072. [PMID: 36763536 DOI: 10.1021/acs.jmedchem.2c02049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Transient soluble oligomers of amyloid-β (Aβ) are considered among the most toxic species in Alzheimer's disease (AD). Soluble Aβ oligomers accumulate early prior to insoluble plaque formation and cognitive impairment. The cyclic d,l-α-peptide CP-2 (1) self-assembles into nanotubes and demonstrates promising anti-amyloidogenic activity likely by a mechanism involving engagement of soluble oligomers. Systematic replacement of the residues in peptide 1 with aza-amino acid counterparts was performed to explore the effects of hydrogen bonding on propensity to mitigate Aβ aggregation and toxicity. Certain azapeptides exhibited improved ability to engage, alter the secondary structure, and inhibit aggregation of Aβ. Moreover, certain azapeptides disassembled preformed Aβ fibrils and protected cells from Aβ-mediated toxicity. Substitution of the l-norleucine3 and d-serine6 residues in peptide 1 with aza-norleucine and aza-homoserine provided, respectively, nontoxic [azaNle3]-1 (4) and [azaHse6]-1 (7), that significantly abated symptoms in a transgenic Caenorhabditis elegans AD model by decreasing Aβ oligomer levels.
Collapse
Affiliation(s)
- Maram Habashi
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Pradeep S Chauhan
- Département de Chimie, Université de Montréal, Complexe des Sciences, B-3015 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Suresh Vutla
- Département de Chimie, Université de Montréal, Complexe des Sciences, B-3015 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Sudipta Senapati
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mykhailo Diachkov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ali El-Husseini
- Département de Chimie, Université de Montréal, Complexe des Sciences, B-3015 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Sherbrooke Molecular Imaging Center (CIMS), Research centre of the CHUS (CRCHUS) 3001, 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, Complexe des Sciences, B-3015 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
21
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Zambrano P. On the interaction of a donepezil-huprine hybrid with synthetic membrane models. Neural Regen Res 2023; 18:333-334. [PMID: 35900422 PMCID: PMC9396516 DOI: 10.4103/1673-5374.343903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Xiao R, Liang R, Cai YH, Dong J, Zhang L. Computational screening for new neuroprotective ingredients against Alzheimer's disease from bilberry by cheminformatics approaches. Front Nutr 2022; 9:1061552. [PMID: 36570129 PMCID: PMC9780678 DOI: 10.3389/fnut.2022.1061552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Bioactive ingredients from natural products have always been an important resource for the discovery of drugs for Alzheimer's disease (AD). Senile plaques, which are formed with amyloid-beta (Aβ) peptides and excess metal ions, are found in AD brains and have been suggested to play an important role in AD pathogenesis. Here, we attempted to design an effective and smart screening method based on cheminformatics approaches to find new ingredients against AD from Vaccinium myrtillus (bilberry) and verified the bioactivity of expected ingredients through experiments. This method integrated advanced artificial intelligence models and target prediction methods to realize the stepwise analysis and filtering of all ingredients. Finally, we obtained the expected new compound malvidin-3-O-galactoside (Ma-3-gal-Cl). The in vitro experiments showed that Ma-3-gal-Cl could reduce the OH· generation and intracellular ROS from the Aβ/Cu2+/AA mixture and maintain the mitochondrial membrane potential of SH-SY5Y cells. Molecular docking and Western blot results indicated that Ma-3-gal-Cl could reduce the amount of activated caspase-3 via binding with unactivated caspase-3 and reduce the expression of phosphorylated p38 via binding with mitogen-activated protein kinase kinases-6 (MKK6). Moreover, Ma-3-gal-Cl could inhibit the Aβ aggregation via binding with Aβ monomer and fibers. Thus, Ma-3-gal-Cl showed significant effects on protecting SH-SY5Y cells from Aβ/Cu2+/AA induced damage via antioxidation effect and inhibition effect to the Aβ aggregation.
Collapse
Affiliation(s)
- Ran Xiao
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China,Sinocare Inc., Changsha, China
| | - Rui Liang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yun-hui Cai
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, China
| | - Lin Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China,*Correspondence: Lin Zhang
| |
Collapse
|
24
|
Basagni F, Naldi M, Ginex T, Luque FJ, Fagiani F, Lanni C, Iurlo M, Marcaccio M, Minarini A, Bartolini M, Rosini M. Inhibition of β-Amyloid Aggregation in Alzheimer’s Disease: The Key Role of (Pro)electrophilic Warheads. ACS Med Chem Lett 2022; 13:1812-1818. [DOI: 10.1021/acsmedchemlett.2c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Tiziana Ginex
- Department of Nutrition, Food Science, and Gastronomy, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - F. Javier Luque
- Department of Nutrition, Food Science, and Gastronomy, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Avinguda Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Francesca Fagiani
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy
| | - Matteo Iurlo
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Massimo Marcaccio
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum - University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
25
|
Chen CH, Jong YJ, Chao YY, Wang CC, Chen YL. Fluorescent aptasensor based on conformational switch-induced hybridization for facile detection of β-amyloid oligomers. Anal Bioanal Chem 2022; 414:8155-8165. [PMID: 36178490 DOI: 10.1007/s00216-022-04350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
Aβ oligomers (AβO) are a dominant biomarker for early Alzheimer's disease diagnosis. A fluorescent aptasensor coupled with conformational switch-induced hybridization was established to detect AβO. The fluorescent aptasensor is based on the interaction of fluorophore-labeled AβO-specific aptamer (FAM-Apt) against its partly complementary DNA sequence on the surface of magnetic beads (cDNA-MBs). Once the FAM-Apt binds to AβO, the conformational switch of FAM-Apt increases the tendency to be captured by cDNA-MBs. This causes a descending fluorescence of supernatant, which can be utilized to determine the levels of AβO. Thus, the base-pair matching above 12 between FAM-Apt and cDNA-MBs with increasing hybridizing free energies reached the ascending fluorescent signal equilibrium. The optimized aptasensor showed linearity from 1.7 ng mL-1 to 85.1 (R = 0.9977) with good recoveries (79.27-109.17%) in plasma. Furthermore, the established aptasensor possesses rational selectivity in the presence of monomeric Aβ, fibrotic Aβ, and interferences. Therefore, the developed aptasensor is capable of quantifying AβO in human plasma and possesses the potential to apply in clinical cases.
Collapse
Affiliation(s)
- Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuh-Jyh Jong
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Ying Chao
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan.
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, Taiwan.
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
26
|
Targeting neuronal calcium channels and GSK3β for Alzheimer's disease with naturally-inspired Diels-Alder adducts. Bioorg Chem 2022; 129:106152. [PMID: 36155094 DOI: 10.1016/j.bioorg.2022.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022]
Abstract
The complexity of neurodegenerative diseases, among which Alzheimer's disease plays a pivotal role, poses one of the tough therapeutic challenges of present time. In this perspective, a multitarget approach appears as a promising strategy to simultaneously interfere with different defective pathways. In this paper, a structural simplification plan was performed on our previously reported multipotent polycyclic compounds, in order to obtain a simpler pharmacophoric central core with improved pharmacokinetic properties, while maintaining the modulating activity on neuronal calcium channels and glycogen synthase kinase 3-beta (GSK-3β), as validated targets to combat Alzheimer's disease. The molecular pruning approach applied here led to tetrahydroisoindole-dione (1), tetrahydromethanoisoindole-dione (2) and tetrahydroepoxyisoindole-dione (3) structures, easily affordable by Diels-Alder cycloaddition. Preliminary data indicated structure 3 as the most appropriate, thus a SAR study was performed by introducing different substituents, selected on the basis of the commercial availability of the furan derivatives required for the synthetic procedure. The results indicated compound 10 as a promising, structurally atypical, safe and BBB-penetrating Cav modulator, inhibiting both L- and N-calcium channels, likely responsible for the Ca2+ overload observed in Alzheimer's disease. In a multitarget perspective, compound 11 appeared as an effective prototype, endowed with improved Cav inhibitory activity, with respect to the reference drug nifedipine, and encouraging modulating activity on GSK-3β.
Collapse
|
27
|
Wang Y, Zheng T, Huo Y, Du W. Exploration of Isoquinoline Alkaloids as Potential Inhibitors against Human Islet Amyloid Polypeptide. ACS Chem Neurosci 2022; 13:2164-2175. [PMID: 35797238 DOI: 10.1021/acschemneuro.2c00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is one of the most concerning public health problems because of its high incidence, multiple complications, and difficult treatment. Human islet amyloid polypeptide (hIAPP) is closely linked to T2DM because its abnormal self-assembly causes membrane damage and cell dysfunction. The development of potential inhibitors to prevent hIAPP fibrillation is a promising strategy for the intervention and treatment of diabetes. Natural isoquinoline alkaloids are used as effective medication that targets different biomolecules. Although studies explored the efficacy of berberine, jatrorrhizine, and chelerythrine in diabetes, the underlying mechanism remains unclear. Herein, three isoquinoline alkaloids are selected to reveal their roles in hIAPP aggregation, disaggregation, and cell protection. All three compounds displayed good inhibitory effects on peptide fibrillation, scattered the preformed fibrils into small oligomers and most monomers, and upregulated cell viability by reducing hIAPP oligomerization. Moreover, combined biophysical analyses indicated that the compounds affected the β-sheet structure and hydrophobicity of polypeptides significantly, and the benzo[c]phenanthridine structure of chelerythrine was beneficial to the inhibition of hIAPP aggregation and their hydrophobic interaction, compared with that of berberine and jatrorrhizine. Our work elaborated the effects of these alkaloids on hIAPP fibrillation and reveals a possible mechanism for these compounds against T2DM.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
28
|
Novel Rivastigmine Derivatives as Promising Multi-Target Compounds for Potential Treatment of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10071510. [PMID: 35884815 PMCID: PMC9313321 DOI: 10.3390/biomedicines10071510] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is the most serious and prevalent neurodegenerative disorder still without cure. Since its aetiology is diverse, recent research on anti-AD drugs has been focused on multi-target compounds. In this work, seven novel hybrids (RIV–BIM) conjugating the active moiety of the drug rivastigmine (RIV) with 2 isomeric hydroxyphenylbenzimidazole (BIM) units were developed and studied. While RIV assures the inhibition of cholinesterases, BIM provides further appropriate properties, such as inhibition of amyloid β-peptide (Aβ) aggregation, antioxidation and metal chelation. The evaluated biological properties of these hybrids included antioxidant activity; inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and Aβ42 aggregation; as well as promotion of cell viability and neuroprotection. All the compounds are better inhibitors of AChE than rivastigmine (IC50 = 32.1 µM), but compounds of series 5 are better inhibitors of BChE (IC50 = 0.9−1.7 µM) than those of series 4. Series 5 also showed good capacity to inhibit self- (42.1−58.7%) and Cu(II)-induced (40.3−60.8%) Aβ aggregation and also to narrow (22.4−42.6%) amyloid fibrils, the relevant compounds being 5b and 5d. Some of these compounds can also prevent the toxicity induced in SH-SY5Y cells by Aβ42 and oxidative stress. Therefore, RIV–BIM hybrids seem to be potential drug candidates for AD with multi-target abilities.
Collapse
|
29
|
Davani L, Fu X, De Simone A, Li P, Montanari S, Lämmerhofer M, Andrisano V. Aß1-42 peptide toxicity on neuronal cells: a lipidomic study. J Pharm Biomed Anal 2022; 219:114876. [DOI: 10.1016/j.jpba.2022.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
|
30
|
Hilt S, Liu R, Maezawa I, Rojalin T, Aung HH, Budamagunta M, Slez R, Gong Q, Carney RP, Voss JC. Novel Stilbene-Nitroxyl Hybrid Compounds Display Discrete Modulation of Amyloid Beta Toxicity and Structure. Front Chem 2022; 10:896386. [PMID: 35720993 PMCID: PMC9204515 DOI: 10.3389/fchem.2022.896386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Several neurodegenerative diseases are driven by misfolded proteins that assemble into soluble aggregates. These "toxic oligomers" have been associated with a plethora of cellular dysfunction and dysregulation, however the structural features underlying their toxicity are poorly understood. A major impediment to answering this question relates to the heterogeneous nature of the oligomers, both in terms of structural disorder and oligomer size. This not only complicates elucidating the molecular etiology of these disorders, but also the druggability of these targets as well. We have synthesized a class of bifunctional stilbenes to modulate both the conformational toxicity within amyloid beta oligomers (AβO) and the oxidative stress elicited by AβO. Using a neuronal culture model, we demonstrate this bifunctional approach has the potential to counter the molecular pathogenesis of Alzheimer's disease in a powerful, synergistic manner. Examination of AβO structure by various biophysical tools shows that each stilbene candidate uniquely alters AβO conformation and toxicity, providing insight towards the future development of structural correctors for AβO. Correlations of AβO structural modulation and bioactivity displayed by each provides insights for future testing in vivo. The multi-target activity of these hybrid molecules represents a highly advantageous feature for disease modification in Alzheimer's, which displays a complex, multifactorial etiology. Importantly, these novel small molecules intervene with intraneuronal AβO, a necessary feature to counter the cycle of dysregulation, oxidative stress and inflammation triggered during the earliest stages of disease progression.
Collapse
Affiliation(s)
- Silvia Hilt
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA, United States
| | - Tatu Rojalin
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Hnin H. Aung
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
- Research Division, California Air Resource Board, Sacramento, CA, United States
| | - Madhu Budamagunta
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Ryan Slez
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Qizhi Gong
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - John C. Voss
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
- Paramag Biosciences Inc., Davis, CA, United States
| |
Collapse
|
31
|
Huang X, An Z, Yu Y, Feng X, Wang Y. Synthesis and Evaluation of Novel Ferulic Amide Derivatives and the Treatment of Alzheimer's Disease. ChemistrySelect 2022. [DOI: 10.1002/slct.202200650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xian‐Feng Huang
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
| | - Zhe An
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
| | - Ying‐Cong Yu
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
| | - Xiao‐Qing Feng
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
| | - Ya‐Jing Wang
- School of Pharmacy & School of Medicine Changzhou University Changzhou Jiangsu, 213164 PR China
| |
Collapse
|
32
|
Gao G, Liu X, Gu Z, Mu Q, Zhu G, Zhang T, Zhang C, Zhou L, Shen L, Sun T. Engineering Nanointerfaces of Au 25 Clusters for Chaperone-Mediated Peptide Amyloidosis. NANO LETTERS 2022; 22:2964-2970. [PMID: 35297644 DOI: 10.1021/acs.nanolett.2c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic nanomaterials possessing biomolecular-chaperone functions are good candidates for modulating physicochemical interactions in many bioapplications. Despite extensive research, no general principle to engineer nanomaterial surfaces is available to precisely manipulate biomolecular conformations and behaviors, greatly limiting attempts to develop high-performance nanochaperone materials. Here, we demonstrate that, by quantifying the length (-SCxR±, x = 3-11) and charges (R- = -COO-, R+ = -NH3+) of ligands on Au25 gold nanochaperones (AuNCs), simulating binding sites and affinities of amyloid-like peptides with AuNCs, and probing peptide folding and fibrillation in the presence of AuNCs, it is possible to precisely manipulate the peptides' conformations and, thus, their amyloidosis via customizing AuNCs nanointerfaces. We show that intermediate-length liganded AuNCs with a specific charge chaperone peptides' native conformations and thus inhibit their fibrillation, while other types of AuNCs destabilize peptides and promote their fibrillation. We offer a microscopic molecular insight into peptide identity on AuNCs and provide a guideline in customizing nanochaperones via manipulating their nanointerfaces.
Collapse
Affiliation(s)
- Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xinglin Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhenhua Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qingxue Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Guowei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ting Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Cheng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Lin Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
33
|
Cho E, Youn K, Kwon H, Jeon J, Cho WS, Park SJ, Son SH, Jang DS, Shin CY, Moon M, Jun M, Kim NJ, Kim DH. Eugenitol ameliorates memory impairments in 5XFAD mice by reducing Aβ plaques and neuroinflammation. Biomed Pharmacother 2022; 148:112763. [PMID: 35240526 DOI: 10.1016/j.biopha.2022.112763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is caused by various pathological mechanisms; therefore, it is necessary to develop drugs that simultaneously act on multiple targets. In this study, we investigated the effects of eugenitol, which has anti-amyloid β (Aβ) and anti-neuroinflammatory effects, in an AD mouse model. We found that eugenitol potently inhibited Aβ plaque and oligomer formation. Moreover, eugenitol dissociated the preformed Aβ plaques and reduced Aβ-induced nero2a cell death. An in silico docking simulation study showed that eugenitol may interact with Aβ1-42 monomers and fibrils. Eugenitol showed radical scavenging effects and potently reduced the release of proinflammatory cytokines from lipopolysaccharide-treated BV2 cells. Systemic administration of eugenitol blocked Aβ aggregate-induced memory impairment in the Morris water maze test in a dose-dependent manner. In 5XFAD mice, prolonged administration of eugenitol ameliorated memory and hippocampal long-term potentiation impairment. Moreover, eugenitol significantly reduced Aβ deposits and neuroinflammation in the hippocampus of 5XFAD mice. These results suggest that eugenitol, which has anti-Aβ aggregation, Aβ fibril dissociation, and anti-inflammatory effects, potently modulates AD-like pathologies in 5XFAD mice, and could be a promising candidate for AD therapy.
Collapse
Affiliation(s)
- Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Huiyoung Kwon
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea
| | - Jieun Jeon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Hwan Son
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, Republic of Korea, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Mira Jun
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea.
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
34
|
Wu D, Chen J, Luo K, Li H, Liu T, Li L, Dai Z, Li Y, Zhao Y, Fu X. Design, synthesis and evaluation of novel scutellarin and scutellarein-N,N-bis-substituted carbamate-l-amino acid derivatives as potential multifunctional therapeutics for Alzheimer's disease. Bioorg Chem 2022; 122:105760. [PMID: 35349945 DOI: 10.1016/j.bioorg.2022.105760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
In this study, we designed, synthesized and evaluated a series of scutellarin and scutellarein-N,N-bis-substituted carbamate-l-amino acid derivatives as multifunctional therapeutic agents for the treatment of Alzheimer's disease (AD). Compounds containing scutellarein as the parent nucleus (6a-l) had good inhibitory activity against acetyl cholinesterase (AChE), with compound 6 h exhibiting the most potent inhibition of electric eel AChE and human AChE enzymes with IC50 values of 6.01 ± 1.66 and 7.91 ± 0.49 μM, respectively. In addition, compound 6 h displayed not only excellent inhibition of self- and Cu2+-induced Aβ1-42 aggregation (89.17% and 86.19% inhibition) but also induced disassembly of self- and Cu2+-induced Aβ fibrils (84.25% and 78.73% disaggregation). Moreover, a neuroprotective assay demonstrated that pre-treatment of PC12 cells with 6 h significantly decreased lactate dehydrogenase levels, increased cell viability, enhanced expression of relevant apoptotic proteins (Bcl-2, Bax, and caspase-3) and inhibited RSL3 induced PC12 cell ferroptosis. Furthermore, hCMEC/D3 and hPepT1-MDCK cell line permeability assays indicated that 6 h would have optimal blood-brain barrier and intestinal absorption characteristics. The in vivo experimental data suggested that 6 h ameliorated learning and memory impairment in mice by decreasing AChE activity, increasing ACh levels and alleviating pathological damage of hippocampal tissue cells. These multifunctional properties highlight compound 6 h as a promising candidate for development as a multifunctional drug against AD.
Collapse
Affiliation(s)
- Dirong Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Jiao Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Keke Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Hui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Li Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Zeqin Dai
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Xiaozhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China.
| |
Collapse
|
35
|
Sun X, Wang Y, Lei Z, Yue S, Chen L, Sun J. Development of 5-hydroxyl-1-azabenzanthrone derivatives as dual binding site and selective acetylcholinesterase inhibitors. Eur J Med Chem 2022; 234:114210. [DOI: 10.1016/j.ejmech.2022.114210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
|
36
|
Kou X, Li X, Hu C, Liu J, Chen Y, Zhang Y, Yang A, Shen R. Multifunctional fluorescence sensor as a potential theranostic agent against Alzheimer's disease. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120587. [PMID: 34782268 DOI: 10.1016/j.saa.2021.120587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Metal ions play an important role in the pathogenesis of Alzheimer's disease (AD). Metal dyshomeostasis, β-amyloid (Aβ) accumulation and oxidative stress, etc. are related to metal ions. So, metal therapeutics has aroused increasingly more attention, especially the research of metal-involved theranostic agents. In this work, a highly selective and sensitive multifunctional fluorescence sensor 1 with a naphthol unit based on photoinduced electron transfer (PET) and excited state proton transfer (ESPT) mechanism was synthesized, and its synergistic biological effects on regulating metal dyshomeostasis, modulating Aβ accumulation and scavenging reactive oxygen species (ROS) was evaluated. The results demonstrated that 1 exhibited significant fluorescence enhancement towards Al3+ (the limit was as low as 0.01 ppm), superior chelating abilities with metal ions, even better modulation effect of Cu2+-induced Aβ1-42 accumulation than curcumin, good elimination effect of ROS, clear fluorescence image in living cells, low cytotoxic and appropriate blood brain barrier (BBB) permeability. Overall, these findings revealed that 1 could be used as a potential theranostic agent against AD for further research.
Collapse
Affiliation(s)
- Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xingying Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chengting Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Juanjuan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuhong Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
37
|
Basu A, Mahammad A, Das A. Inhibition of the formation of lysozyme fibrillar assemblies by the isoquinoline alkaloid coralyne. NEW J CHEM 2022. [DOI: 10.1039/d1nj06007d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isoquinoline alkaloid coralyne can efficiently attenuate fibrillogenesis in lysozyme.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Adil Mahammad
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Arindam Das
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| |
Collapse
|
38
|
Liang Y, Ueno M, Zha S, Okimura T, Jiang Z, Yamaguchi K, Hatakeyama T, Oda T. Sulfated polysaccharide ascophyllan prevents amyloid fibril formation of human insulin and inhibits amyloid-induced hemolysis and cytotoxicity in PC12 cells. Biosci Biotechnol Biochem 2021; 85:2281-2291. [PMID: 34519773 DOI: 10.1093/bbb/zbab163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023]
Abstract
We found that ascophyllan significantly inhibited the fibrillation of human insulin and was the most effective among the sulfated polysaccharides tested. Gel-filtration analysis suggested that ascophyllan was capable of forming a complex with insulin through a weak interaction. Secondary structure transition from native α-helix to β-sheet predominant structure of insulin under the fibrillation conditions was suppressed in the presence of ascophyllan. Interestingly, ascophyllan attenuated insulin fibril-induced hemolysis of human erythrocytes. Moreover, ascophyllan attenuated insulin amyloid-induced cytotoxicity on rat pheochromocytoma PC12 cells and reduced the level of intracellular reactive oxygen species. This is the first report indicating that a sulfated polysaccharide, ascophyllan, can suppress the insulin amyloid fibril formation and inhibit the fibril-induced detrimental bioactivities.
Collapse
Affiliation(s)
- Yan Liang
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Mikinori Ueno
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Shijiao Zha
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
| | - Takasi Okimura
- Research and Development Division, Hayashikane Sangyo Co., Ltd., Shimonoseki, Yamaguchi, Japan
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
- Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen, China
| | - Kenichi Yamaguchi
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Tomomitsu Hatakeyama
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
- Organization for Marine Science and Technology, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| |
Collapse
|
39
|
Zambrano P, Suwalsky M, Jemiola-Rzeminska M, Gallardo-Nelson MJ, Strzalka K, Muñoz-Torrero D. Protective Role of a Donepezil-Huprine Hybrid against the β-Amyloid (1-42) Effect on Human Erythrocytes. Int J Mol Sci 2021; 22:ijms22179563. [PMID: 34502472 PMCID: PMC8431064 DOI: 10.3390/ijms22179563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Aβ(1-42) peptide is a neurotoxic agent strongly associated with the etiology of Alzheimer's disease (AD). Current treatments are still of very low effectiveness, and deaths from AD are increasing worldwide. Huprine-derived molecules have a high affinity towards the enzyme acetylcholinesterase (AChE), act as potent Aβ(1-42) peptide aggregation inhibitors, and improve the behavior of experimental animals. AVCRI104P4 is a multitarget donepezil-huprine hybrid that improves short-term memory in a mouse model of AD and exerts protective effects in transgenic Caenorhabditis elegans that express Aβ(1-42) peptide. At present, there is no information about the effects of this compound on human erythrocytes. Thus, we considered it important to study its effects on the cell membrane and erythrocyte models, and to examine its protective effect against the toxic insult induced by Aβ(1-42) peptide in this cell and models. This research was developed using X-ray diffraction and differential scanning calorimetry (DSC) on molecular models of the human erythrocyte membrane constituted by lipid bilayers built of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). They correspond to phospholipids representative of those present in the external and internal monolayers, respectively, of most plasma and neuronal membranes. The effect of AVCRI104P4 on human erythrocyte morphology was studied by scanning electron microscopy (SEM). The experimental results showed a protective effect of AVCRI104P4 against the toxicity induced by Aβ(1-42) peptide in human erythrocytes and molecular models.
Collapse
Affiliation(s)
- Pablo Zambrano
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile
- Correspondence: ; Tel.: +49-89-8578-2374
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile;
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (M.J.-R.); (K.S.)
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | | | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (M.J.-R.); (K.S.)
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food, Sciences, University of Barcelona (UB), E-08028 Barcelona, Spain;
- Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| |
Collapse
|
40
|
Toward the equilibrium and kinetics of amyloid peptide self-assembly. Curr Opin Struct Biol 2021; 70:87-98. [PMID: 34153659 DOI: 10.1016/j.sbi.2021.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 01/28/2023]
Abstract
Several devastating human diseases are linked to peptide self-assembly, but our understanding their onset and progression is not settled. This is a sign of the complexity of the aggregation process, which is prevented, catalyzed, or retarded by numerous factors in body fluids and cells, varying in time and space. Biophysical studies of pure peptide solutions contribute insights into the underlying steps in the process and quantitative parameters relating to rate constants (energy barriers) and equilibrium constants (population distributions). This requires methods to quantify the concentration of at least one species in the process. Translation to an in vivo situation poses an enormous challenge, and the effects of selected components (bottom up) or entire body fluids (top down) need to be quantified.
Collapse
|
41
|
Zhang H, Song Q, Yu G, Cao Z, Qiang X, Liu X, Deng Y. Phthalimide-(N-alkylbenzylamine) cysteamide hybrids as multifunctional agents against Alzheimer's disease: Design, synthesis, and biological evaluation. Chem Biol Drug Des 2021; 98:493-500. [PMID: 34143938 DOI: 10.1111/cbdd.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/13/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022]
Abstract
The complex pathogenesis of Alzheimer's disease (AD) calls for multi-target approach for disease treatment. Herein, based on the MTDLs strategy, a series of phthalimide-(N-alkylbenzylamine) cysteamide hybrids were designed, synthesized, and investigated in vitro for the purpose. Most of the target compounds were found to be potential multi-target agents. In vitro results showed that compound 9e was the representative compound in this series, endowed with high EeAChE and HuAChE inhibitory potency (IC50 = 1.55 µm and 2.23 µm, respectively), good inhibitory activity against self-induced Aβ1-42 aggregation (36.08% at 25 µm), and moderate antioxidant capacity (ORAC-FL value was 0.68 Trolox equivalents). Molecular docking studies rationalized the binding mode of 9e in both PAS and CAS of AChE. Moreover, 9e displayed excellent ability to against H2 O2 -induced PC12 cell injury and penetrate BBB. Overall, these results highlighted that compound 9e was an effective and promising multi-target agent for further anti-AD drug development.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qing Song
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhongcheng Cao
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiaoming Qiang
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiuxiu Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Montanari S, Allarà M, Scalvini L, Kostrzewa M, Belluti F, Gobbi S, Naldi M, Rivara S, Bartolini M, Ligresti A, Bisi A, Rampa A. New Coumarin Derivatives as Cholinergic and Cannabinoid System Modulators. Molecules 2021; 26:molecules26113254. [PMID: 34071439 PMCID: PMC8198714 DOI: 10.3390/molecules26113254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/12/2023] Open
Abstract
In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer’s disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aβ42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aβ42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation.
Collapse
Affiliation(s)
- Serena Montanari
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Marco Allarà
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Laura Scalvini
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.S.); (S.R.)
| | - Magdalena Kostrzewa
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Silvia Rivara
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.S.); (S.R.)
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
- Correspondence: (A.B.); (A.R.)
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
- Correspondence: (A.B.); (A.R.)
| |
Collapse
|
43
|
Gorecki L, Uliassi E, Bartolini M, Janockova J, Hrabinova M, Hepnarova V, Prchal L, Muckova L, Pejchal J, Karasova JZ, Mezeiova E, Benkova M, Kobrlova T, Soukup O, Petralla S, Monti B, Korabecny J, Bolognesi ML. Phenothiazine-Tacrine Heterodimers: Pursuing Multitarget Directed Approach in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1698-1715. [PMID: 33852284 DOI: 10.1021/acschemneuro.1c00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since 2002, no clinical candidate against Alzheimer's disease has reached the market; hence, an effective therapy is urgently needed. We followed the so-called "multitarget directed ligand" approach and designed 36 novel tacrine-phenothiazine heterodimers which were in vitro evaluated for their anticholinesterase properties. The assessment of the structure-activity relationships of such derivatives highlighted compound 1dC as a potent and selective acetylcholinesterase inhibitor with IC50 = 8 nM and 1aA as a potent butyrylcholinesterase inhibitor with IC50 = 15 nM. Selected hybrids, namely, 1aC, 1bC, 1cC, 1dC, and 2dC, showed a significant inhibitory activity toward τ(306-336) peptide aggregation with percent inhibition ranging from 50.5 to 62.1%. Likewise, 1dC and 2dC exerted a remarkable ability to inhibit self-induced Aβ1-42 aggregation. Notwithstanding, in vitro studies displayed cytotoxicity toward HepG2 cells and cerebellar granule neurons; no pathophysiological abnormality was observed when 1dC was administered to mice at 14 mg/kg (i.p.). 1dC was also able to permeate to the CNS as shown by in vitro and in vivo models. The maximum brain concentration was close to the IC50 value for acetylcholinesterase inhibition with a relatively slow elimination half-time. 1dC showed an acceptable safety and good pharmacokinetic properties and a multifunctional biological profile.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jana Z. Karasova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Marketa Benkova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
44
|
He Y, Xiao G, Yu G, Song Q, Zhang H, Liu Z, Tan Z, Deng Y. 2-(3-Hydroxybenzyl)benzo[d]isothiazol-3(2H)-one Mannich base derivatives as potential multifunctional anti-Alzheimer’s agents. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02725-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Ismaili L, Monnin J, Etievant A, Arribas RL, Viejo L, Refouvelet B, Soukup O, Janockova J, Hepnarova V, Korabecny J, Kucera T, Jun D, Andrys R, Musilek K, Baguet A, García-Frutos EM, De Simone A, Andrisano V, Bartolini M, de los Ríos C, Marco-Contelles J, Haffen E. (±)- BIGI-3h: Pentatarget-Directed Ligand combining Cholinesterase, Monoamine Oxidase, and Glycogen Synthase Kinase 3β Inhibition with Calcium Channel Antagonism and Antiaggregating Properties for Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1328-1342. [PMID: 33797877 DOI: 10.1021/acschemneuro.0c00803] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multitarget-directed ligands (MTDLs) are considered a promising therapeutic strategy to address the multifactorial nature of Alzheimer's disease (AD). Novel MTDLs have been designed as inhibitors of human acetylcholinesterases/butyrylcholinesterases, monoamine oxidase A/B, and glycogen synthase kinase 3β and as calcium channel antagonists via the Biginelli multicomponent reaction. Among these MTDLs, (±)-BIGI-3h was identified as a promising new hit compound showing in vitro balanced activities toward the aforementioned recognized AD targets. Additional in vitro studies demonstrated antioxidant effects and brain penetration, along with the ability to inhibit the aggregation of both τ protein and β-amyloid peptide. The in vivo studies have shown that (±)-BIGI-3h (10 mg/kg intraperitoneally) significantly reduces scopolamine-induced cognitive deficits.
Collapse
Affiliation(s)
- Lhassane Ismaili
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Julie Monnin
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Adeline Etievant
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Raquel L. Arribas
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Lucía Viejo
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Bernard Refouvelet
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department of Chemistry, University Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Aurelie Baguet
- Université Bourgogne Franche Comté, INSERM, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Eva M. García-Frutos
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso di Augusto, 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso di Augusto, 237, 47921 Rimini, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Cristóbal de los Ríos
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Emmanuel Haffen
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
46
|
Dyne E, Prakash PS, Li J, Yu B, Schmidt TL, Huang S, Kim MH. Mild magnetic nanoparticle hyperthermia promotes the disaggregation and microglia-mediated clearance of beta-amyloid plaques. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102397. [PMID: 33857686 DOI: 10.1016/j.nano.2021.102397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
The formation of beta-amyloid (Aβ) plaques is a classical hallmark of Alzheimer's disease (AD) that is associated with the promotion of neuroinflammation and subsequent neurotoxicity. Given the limited therapeutic options for targeting and clearing Aβ plaques in AD, there is an urgent need to develop effective approaches to reduce plaque accumulation. The objective of this study was to validate mild magnetic nanoparticle (MNP) hyperthermia technology as a strategy to clear Aβ deposits and determine the impact on microglia functionality. Our results demonstrated that the heating of MNPs localized to Aβ aggregates upon exposure to high frequency alternating magnetic field (AMF) was sufficient to disrupt Aβ plaques, resulting in its fragmentation. Importantly, this could facilitate the phagocytic clearance of Aβ as well as attenuate pro-inflammatory responses by human microglial cells. Our results support the feasibility of mild MNP/AMF hyperthermia as a new strategy for reducing beta-amyloid burdens in Alzheimer's disease.
Collapse
Affiliation(s)
- Eric Dyne
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Praneetha Sundar Prakash
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Physics, Kent State University, Kent, OH, USA
| | - Junfeng Li
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Thorsten-Lars Schmidt
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Physics, Kent State University, Kent, OH, USA
| | - Songping Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | - Min-Ho Kim
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
47
|
Ye C, Xu R, Cao Z, Song Q, Yu G, Shi Y, Liu Z, Liu X, Deng Y. Design, synthesis, and in vitro evaluation of 4-aminoalkyl-1(2H)-phthalazinones as potential multifunctional anti-Alzheimer's disease agents. Bioorg Chem 2021; 111:104895. [PMID: 33887586 DOI: 10.1016/j.bioorg.2021.104895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/21/2021] [Accepted: 04/04/2021] [Indexed: 01/03/2023]
Abstract
A series of 4-aminoalkyl-1(2H)-phthalazinone derivatives was designed and synthesized as potential multifunctional agents for Alzheimer's disease (AD) treatment. In vitro biological assay results demonstrated that most synthesized compounds exhibited significant AChE inhibition, moderate to high MAOs inhibitory potencies and good anti-platelet aggregation abilities. Among them, compound 15b exhibited the highest inhibitory potencies towards MAO-B and MAO-A (IC50 = 0.7 µM and 6.4 µM respectively), moderate inhibition towards AChE (IC50 = 8.2 µM), and good activities against self- and Cu2+-induced Aβ1-42 aggregation and platelet aggregation. Moreover, 15b also displayed antioxidant capacity, neuroprotective potency, anti-neuroinflammation and BBB permeability. These excellent results indicated that compound 15b could be worthy of further studies to be considered as a promising multifunctional candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chanyuan Ye
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rui Xu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhongcheng Cao
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Song
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yichun Shi
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhuoling Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiuxiu Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
48
|
Pugliese R, Arnoldi A, Lammi C. Nanostructure, Self-Assembly, Mechanical Properties, and Antioxidant Activity of a Lupin-Derived Peptide Hydrogel. Biomedicines 2021; 9:biomedicines9030294. [PMID: 33805635 PMCID: PMC8000348 DOI: 10.3390/biomedicines9030294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Naturally occurring food peptides are frequently used in the life sciences due to their beneficial effects through their impact on specific biochemical pathways. Furthermore, they are often leveraged for applications in areas as diverse as bioengineering, medicine, agriculture, and even fashion. However, progress toward understanding their self-assembling properties as functional materials are often hindered by their long aromatic and charged residue-enriched sequences encrypted in the parent protein sequence. In this study, we elucidate the nanostructure and the hierarchical self-assembly propensity of a lupin-derived peptide which belongs to the α-conglutin (11S globulin, legumin-like protein), with a straightforward N-terminal biotinylated oligoglycine tag-based methodology for controlling the nanostructures, biomechanics, and biological features. Extensive characterization was performed via Circular Dichroism (CD) spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), rheological measurements, and Atomic Force Microscopy (AFM) analyses. By using the biotin tag, we obtained a thixotropic lupin-derived peptide hydrogel (named BT13) with tunable mechanical properties (from 2 to 11 kPa), without impairing its spontaneous formation of β-sheet secondary structures. Lastly, we demonstrated that this hydrogel has antioxidant activity. Altogether, our findings address multiple challenges associated with the development of naturally occurring food peptide-based hydrogels, offering a new tool to both fine tune the mechanical properties and tailor the antioxidant activities, providing new research directions across food chemistry, biochemistry, and bioengineering.
Collapse
Affiliation(s)
- Raffaele Pugliese
- NeMO Lab, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
- Correspondence: (R.P.); (C.L.)
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
- Correspondence: (R.P.); (C.L.)
| |
Collapse
|
49
|
Albertini C, Naldi M, Petralla S, Strocchi S, Grifoni D, Monti B, Bartolini M, Bolognesi ML. From Combinations to Single-Molecule Polypharmacology-Cromolyn-Ibuprofen Conjugates for Alzheimer's Disease. Molecules 2021; 26:1112. [PMID: 33669839 PMCID: PMC7923232 DOI: 10.3390/molecules26041112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/04/2023] Open
Abstract
Despite Alzheimer's disease (AD) incidence being projected to increase worldwide, the drugs currently on the market can only mitigate symptoms. Considering the failures of the classical paradigm "one target-one drug-one disease" in delivering effective medications for AD, polypharmacology appears to be a most viable therapeutic strategy. Polypharmacology can involve combinations of multiple drugs and/or single chemical entities modulating multiple targets. Taking inspiration from an ongoing clinical trial, this work aims to convert a promising cromolyn-ibuprofen drug combination into single-molecule "codrugs." Such codrugs should be able to similarly modulate neuroinflammatory and amyloid pathways, while showing peculiar pros and cons. By exploiting a linking strategy, we designed and synthesized a small set of cromolyn-ibuprofen conjugates (4-6). Preliminary plasma stability and neurotoxicity assays allowed us to select diamide 5 and ethanolamide 6 as promising compounds for further studies. We investigated their immunomodulatory profile in immortalized microglia cells, in vitro anti-aggregating activity towards Aβ42-amyloid self-aggregation, and their cellular neuroprotective effect against Aβ42-induced neurotoxicity. The fact that 6 effectively reduced Aβ-induced neuronal death, prompted its investigation into an in vivo model. Notably, 6 was demonstrated to significantly increase the longevity of Aβ42-expressing Drosophila and to improve fly locomotor performance.
Collapse
Affiliation(s)
- Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, St. Orsola Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| | - Silvia Strocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences (MeSVA), University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy;
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6/Via Selmi 3, 40126 Bologna, Italy; (C.A.); (M.N.); (S.P.); (S.S.); (B.M.); (M.B.)
| |
Collapse
|
50
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|