1
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
2
|
Chen L, Xin X, Zhang Y, Li S, Zhao X, Li S, Xu Z. Advances in Biosynthesis of Non-Canonical Amino Acids (ncAAs) and the Methods of ncAAs Incorporation into Proteins. Molecules 2023; 28:6745. [PMID: 37764520 PMCID: PMC10534643 DOI: 10.3390/molecules28186745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The functional pool of canonical amino acids (cAAs) has been enriched through the emergence of non-canonical amino acids (ncAAs). NcAAs play a crucial role in the production of various pharmaceuticals. The biosynthesis of ncAAs has emerged as an alternative to traditional chemical synthesis due to its environmental friendliness and high efficiency. The breakthrough genetic code expansion (GCE) technique developed in recent years has allowed the incorporation of ncAAs into target proteins, giving them special functions and biological activities. The biosynthesis of ncAAs and their incorporation into target proteins within a single microbe has become an enticing application of such molecules. Based on that, in this study, we first review the biosynthesis methods for ncAAs and analyze the difficulties related to biosynthesis. We then summarize the GCE methods and analyze their advantages and disadvantages. Further, we review the application progress of ncAAs and anticipate the challenges and future development directions of ncAAs.
Collapse
Affiliation(s)
- Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (X.X.); (Y.Z.); (S.L.); (X.Z.); (S.L.); (Z.X.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Hu Z, Liang J, Su T, Zhang D, Li H, Gao X, Yao W, Song X. Minimizing the Anticodon-Recognized Loop of Methanococcus jannaschii Tyrosyl-tRNA Synthetase to Improve the Efficiency of Incorporating Noncanonical Amino Acids. Biomolecules 2023; 13:biom13040610. [PMID: 37189358 DOI: 10.3390/biom13040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
In the field of genetic code expansion (GCE), improvements in the efficiency of noncanonical amino acid (ncAA) incorporation have received continuous attention. By analyzing the reported gene sequences of giant virus species, we noticed some sequence differences at the tRNA binding interface. On the basis of the structural and activity differences between Methanococcus jannaschii Tyrosyl-tRNA Synthetase (MjTyrRS) and mimivirus Tyrosyl-tRNA Synthetase (MVTyrRS), we found that the size of the anticodon-recognized loop of MjTyrRS influences its suppression activity regarding triplet and specific quadruplet codons. Therefore, three MjTyrRS mutants with loop minimization were designed. The suppression of wild-type MjTyrRS loop-minimized mutants increased by 1.8–4.3-fold, and the MjTyrRS variants enhanced the activity of the incorporation of ncAAs by 15–150% through loop minimization. In addition, for specific quadruplet codons, the loop minimization of MjTyrRS also improves the suppression efficiency. These results suggest that loop minimization of MjTyrRS may provide a general strategy for the efficient synthesis of ncAAs-containing proteins.
Collapse
|
5
|
Sisila V, Indhu M, Radhakrishnan J, Ayyadurai N. Building biomaterials through genetic code expansion. Trends Biotechnol 2023; 41:165-183. [PMID: 35908989 DOI: 10.1016/j.tibtech.2022.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 01/24/2023]
Abstract
Genetic code expansion (GCE) enables directed incorporation of noncoded amino acids (NCAAs) and unnatural amino acids (UNAAs) into the active core that confers dedicated structure and function to engineered proteins. Many protein biomaterials are tandem repeats that intrinsically include NCAAs generated through post-translational modifications (PTMs) to execute assigned functions. Conventional genetic engineering approaches using prokaryotic systems have limited ability to biosynthesize functionally active biomaterials with NCAAs/UNAAs. Codon suppression and reassignment introduce NCAAs/UNAAs globally, allowing engineered proteins to be redesigned to mimic natural matrix-cell interactions for tissue engineering. Expanding the genetic code enables the engineering of biomaterials with catechols - growth factor mimetics that modulate cell-matrix interactions - thereby facilitating tissue-specific expression of genes and proteins. This method of protein engineering shows promise in achieving tissue-informed, tissue-compliant tunable biomaterials.
Collapse
Affiliation(s)
- Valappil Sisila
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohan Indhu
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Janani Radhakrishnan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
6
|
Elastin-like polypeptide-based micelles as a promising platform in nanomedicine. J Control Release 2023; 353:713-726. [PMID: 36526018 DOI: 10.1016/j.jconrel.2022.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
New and improved nanomaterials are constantly being developed for biomedical purposes. Nanomaterials based on elastin-like polypeptides (ELPs) have increasingly shown potential over the past two decades. These polymers are artificial proteins of which the design is based on human tropoelastin. Due to this similarity, ELP-based nanomaterials are biodegradable and therefore well suited to drug delivery. The assembly of ELP molecules into nanoparticles spontaneously occurs at temperatures above a transition temperature (Tt). The ELP sequence influences both the Tt and the physicochemical properties of the assembled nanomaterial. Nanoparticles with desired properties can hence be designed by choosing the appropriate sequence. A promising class of ELP nanoparticles are micelles assembled from amphiphilic ELP diblock copolymers. Such micelles are generally uniform and well defined. Furthermore, site-specific attachment of cargo to the hydrophobic block results in micelles with the cargo shielded inside their core, while conjugation to the hydrophilic block causes the cargo to reside in the corona where it is available for interactions. Such control over particle design is one of the main contributing factors for the potential of ELP-based micelles as a drug delivery system. Additionally, the micelles are easily loaded with protein or peptide-based cargo by expressing it as a fusion protein. Small molecule drugs and other cargo types can be either covalently conjugated to ELP domains or physically entrapped inside the micelle core. This review aims to give an overview of ELP-based micelles and their applications in nanomedicine.
Collapse
|
7
|
Gueta O, Amiram M. Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Adv Drug Deliv Rev 2022; 190:114460. [PMID: 36030987 DOI: 10.1016/j.addr.2022.114460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/24/2023]
Abstract
Expanding the chemical repertoire of natural and artificial protein-based polymers (PBPs) can enable the production of sequence-defined, yet chemically diverse, biopolymers with customized or new properties that cannot be accessed in PBPs composed of only natural amino acids. Various approaches can enable the expansion of the chemical repertoire of PBPs, including chemical and enzymatic treatments or the incorporation of unnatural amino acids. These techniques are employed to install a wide variety of chemical groups-such as bio-orthogonally reactive, cross-linkable, post-translation modifications, and environmentally responsive groups-which, in turn, can facilitate the design of customized PBP-based drug-delivery systems with modified, fine-tuned, or entirely new properties and functions. Here, we detail the existing and emerging technologies for expanding the chemical repertoire of PBPs and review several chemical groups that either demonstrate or are anticipated to show potential in the design of PBP-based drug delivery systems. Finally, we provide our perspective on the remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Osher Gueta
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
8
|
Wang B, Patkar SS, Kiick KL. Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials. Macromol Biosci 2021; 21:e2100129. [PMID: 34145967 PMCID: PMC8449816 DOI: 10.1002/mabi.202100129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Indexed: 01/15/2023]
Abstract
Modulation of inter- and intramolecular interactions between bioinspired designer molecules can be harnessed for developing functional structures that mimic the complex hierarchical organization of multicomponent assemblies observed in nature. Furthermore, such multistimuli-responsive molecules offer orthogonal tunability for generating versatile multifunctional platforms via independent biochemical and biophysical cues. In this review, the remarkable physicochemical and mechanical properties of genetically engineered protein polymers derived from intrinsically disordered proteins, specifically elastin and resilin, are discussed. This review highlights emerging technologies which use them as building blocks in the fabrication of highly programmable structured biomaterials for applications in delivery of biotherapeutic cargo and regenerative medicine.
Collapse
Affiliation(s)
- Bin Wang
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
9
|
Abstract
The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.
Collapse
Affiliation(s)
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
10
|
Lieser RM, Yur D, Sullivan MO, Chen W. Site-Specific Bioconjugation Approaches for Enhanced Delivery of Protein Therapeutics and Protein Drug Carriers. Bioconjug Chem 2020; 31:2272-2282. [DOI: 10.1021/acs.bioconjchem.0c00456] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rachel M. Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| |
Collapse
|
11
|
Saha S, Banskota S, Roberts S, Kirmani N, Chilkoti A. Engineering the Architecture of Elastin-Like Polypeptides: From Unimers to Hierarchical Self-Assembly. ADVANCED THERAPEUTICS 2020; 3:1900164. [PMID: 34307837 PMCID: PMC8297442 DOI: 10.1002/adtp.201900164] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Well-defined tunable nanostructures formed through the hierarchical self-assembly of peptide building blocks have drawn significant attention due to their potential applications in biomedical science. Artificial protein polymers derived from elastin-like polypeptides (ELPs), which are based on the repeating sequence of tropoelastin (the water-soluble precursor to elastin), provide a promising platform for creating nanostructures due to their biocompatibility, ease of synthesis, and customizable architecture. By designing the sequence and composition of ELPs at the gene level, their physicochemical properties can be controlled to a degree that is unmatched by synthetic polymers. A variety of ELP-based nanostructures are designed, inspired by the self-assembly of elastin and other proteins in biological systems. The choice of building blocks determines not only the physical properties of the nanostructures, but also their self-assembly into architectures ranging from spherical micelles to elongated nanofibers. This review focuses on the molecular determinants of ELP and ELP-hybrid self-assembly and formation of spherical, rod-like, worm-like, fibrillar, and vesicle architectures. A brief discussion of the potential biomedical applications of these supramolecular assemblies is also included.
Collapse
Affiliation(s)
- Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Samagya Banskota
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
12
|
Israeli B, Vaserman L, Amiram M. Multi‐Site Incorporation of Nonstandard Amino Acids into Protein‐Based Biomaterials. Isr J Chem 2019. [DOI: 10.1002/ijch.201900043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bar Israeli
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Livne Vaserman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| |
Collapse
|
13
|
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 2019; 37:642-666. [PMID: 30902728 PMCID: PMC6624476 DOI: 10.1016/j.biotechadv.2019.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/03/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.
Collapse
Affiliation(s)
- Marc W T Werten
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands.
| | - Gerrit Eggink
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands; Bioprocess Engineering, Wageningen University & Research, NL-6708 PB Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
14
|
Wang Y, Katyal P, Montclare JK. Protein-Engineered Functional Materials. Adv Healthc Mater 2019; 8:e1801374. [PMID: 30938924 PMCID: PMC6703858 DOI: 10.1002/adhm.201801374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/25/2019] [Indexed: 12/13/2022]
Abstract
Proteins are versatile macromolecules that can perform a variety of functions. In the past three decades, they have been commonly used as building blocks to generate a range of biomaterials. Owing to their flexibility, proteins can either be used alone or in combination with other functional molecules. Advances in synthetic and chemical biology have enabled new protein fusions as well as the integration of new functional groups leading to biomaterials with emergent properties. This review discusses protein-engineered materials from the perspectives of domain-based designs as well as physical and chemical approaches for crosslinked materials, with special emphasis on the creation of hydrogels. Engineered proteins that organize or template metal ions, bear noncanonical amino acids (NCAAs), and their potential applications, are also reviewed.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
- Department of Chemistry, New York University, New York, NY
10003, United States
- Department of Biomaterials, New York University College of
Dentistry, New York, NY 10010, United States
- Department of Radiology, New York University School of
Medicine, New York, New York, 10016, United States
| |
Collapse
|
15
|
Lieser RM, Chen W, Sullivan MO. Controlled Epidermal Growth Factor Receptor Ligand Display on Cancer Suicide Enzymes via Unnatural Amino Acid Engineering for Enhanced Intracellular Delivery in Breast Cancer Cells. Bioconjug Chem 2019; 30:432-442. [PMID: 30615416 DOI: 10.1021/acs.bioconjchem.8b00783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteins are ideal candidates for disease treatment because of their high specificity and potency. Despite this potential, delivery of proteins remains a significant challenge due to the intrinsic size, charge, and stability of proteins. Attempts to overcome these challenges have most commonly relied on direct conjugation of polymers and peptides to proteins via reactive groups on naturally occurring residues. While such approaches have shown some success, they allow limited control of the spacing and number of moieties coupled to proteins, which can hinder bioactivity and delivery capabilities of the therapeutic. Here, we describe a strategy to site-specifically conjugate delivery moieties to therapeutic proteins through unnatural amino acid (UAA) incorporation, in order to explore the effect of epidermal growth factor receptor (EGFR)-targeted ligand valency and spacing on internalization of proteins in EGFR-overexpressing inflammatory breast cancer (IBC) cells. Our results demonstrate the ability to enhance targeted protein delivery by tuning a small number of EGFR ligands per protein and clustering these ligands to promote multivalent ligand-receptor interactions. Furthermore, the tailorability of this simple approach was demonstrated through IBC-targeted cell death via the delivery of yeast cytosine deaminase (yCD), a prodrug converting enzyme.
Collapse
Affiliation(s)
- Rachel M Lieser
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| |
Collapse
|
16
|
Kato Y. Translational Control using an Expanded Genetic Code. Int J Mol Sci 2019; 20:ijms20040887. [PMID: 30781713 PMCID: PMC6412442 DOI: 10.3390/ijms20040887] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
A bio-orthogonal and unnatural substance, such as an unnatural amino acid (Uaa), is an ideal regulator to control target gene expression in a synthetic gene circuit. Genetic code expansion technology has achieved Uaa incorporation into ribosomal synthesized proteins in vivo at specific sites designated by UAG stop codons. This site-specific Uaa incorporation can be used as a controller of target gene expression at the translational level by conditional read-through of internal UAG stop codons. Recent advances in optimization of site-specific Uaa incorporation for translational regulation have enabled more precise control over a wide range of novel important applications, such as Uaa-auxotrophy-based biological containment, live-attenuated vaccine, and high-yield zero-leakage expression systems, in which Uaa translational control is exclusively used as an essential genetic element. This review summarizes the history and recent advance of the translational control by conditional stop codon read-through, especially focusing on the methods using the site-specific Uaa incorporation.
Collapse
Affiliation(s)
- Yusuke Kato
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
17
|
van Oppen LMPE, Pille J, Stuut C, van Stevendaal M, van der Vorm LN, Smeitink JAM, Koopman WJH, Willems PHGM, van Hest JCM, Brock R. Octa-arginine boosts the penetration of elastin-like polypeptide nanoparticles in 3D cancer models. Eur J Pharm Biopharm 2019; 137:175-184. [PMID: 30776413 DOI: 10.1016/j.ejpb.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Elastin-like polypeptide (ELP) nanoparticles are a versatile platform for targeted drug delivery. As for any type of nanocarrier system, an important challenge remains the ability of deep (tumor) tissue penetration. In this study, ELP particles with controlled surface density of the cell-penetrating peptide (CPP) octa-arginine (R8) were created by temperature-induced co-assembly. ELPs formed micellar nanoparticles with a diameter of around 60 nm. Cellular uptake in human skin fibroblasts was directly dependent on the surface density of R8 as confirmed by flow cytometry and confocal laser scanning microscopy. Remarkably, next to promoting cellular uptake, the presence of the CPP also enhanced penetration into spheroids generated from human glioblastoma U-87 cells. After 24 h, uptake into cells was observed in multiple layers towards the spheroid core. ELP particles not carrying any CPP did not penetrate. Clearly, a high CPP density exerted a dual benefit on cellular uptake and tissue penetration. At low nanoparticle concentration, there was evidence of a binding site barrier as observed for the penetration of molecules binding with high affinity to cell surface receptors. In conclusion, R8-functionalized ELP nanoparticles form an excellent delivery vehicle that combines tunability of surface characteristics with small and well-defined size.
Collapse
Affiliation(s)
- Lisanne M P E van Oppen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan Pille
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Department of Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, PO Box 9010, 6525 AJ Nijmegen, the Netherlands
| | - Christiaan Stuut
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Marleen van Stevendaal
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Lisa N van der Vorm
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan C M van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Department of Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, PO Box 9010, 6525 AJ Nijmegen, the Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
18
|
Le Fer G, Wirotius AL, Brûlet A, Garanger E, Lecommandoux S. Self-Assembly of Stimuli-Responsive Biohybrid Synthetic-b-Recombinant Block Copolypeptides. Biomacromolecules 2018; 20:254-272. [DOI: 10.1021/acs.biomac.8b01390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Gaëlle Le Fer
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| | - Anne-Laure Wirotius
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| | - Annie Brûlet
- Laboratoire Léon Brillouin, UMR 12 CEA−CNRS, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Elisabeth Garanger
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| | - Sébastien Lecommandoux
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| |
Collapse
|
19
|
Ta DT, Vanella R, Nash MA. Bioorthogonal Elastin-like Polypeptide Scaffolds for Immunoassay Enhancement. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30147-30154. [PMID: 30125079 DOI: 10.1021/acsami.8b10092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Artificial multiprotein complexes are sought after reagents for biomolecular engineering. A current limiting factor is the paucity of molecular scaffolds which allow for site-specific multicomponent assembly. Here, we address this limitation by synthesizing bioorthogonal elastin-like polypeptide (ELP) scaffolds containing periodic noncanonical l-azidohomoalanine amino acids in the guest residue position. The nine azide ELP guest residues served as conjugation sites for site-specific modification with dibenzocyclooctyne (DBCO)-functionalized single-domain antibodies (SdAbs) through strain-promoted alkyne-azide cycloaddition (SPAAC). Sortase A and ybbR tags at the C- and N-termini of the ELP scaffold provided two additional sites for derivatization with small molecules and peptides by Sortase A and 4'-phosphopantetheinyl transferase (Sfp), respectively. These functional groups are chemically bioorthogonal, mutually compatible, and highly efficient, thereby enabling synthesis of multi-antibody ELP complexes in a one-pot reaction. We demonstrate application of this material for enhancing the performance of sandwich immunoassays of the recombinant protein mCherry. In undiluted human plasma, surfaces modified with multi-antibody ELP complexes showed between 2.3- and 14.3-fold improvement in sensitivity and ∼30-40% lower limits of detection as compared with nonspecifically adsorbed antibodies. Dual-labeled multi-antibody ELP complexes were further used for cytometric labeling and analysis of live eukaryotic cells. These results demonstrate how multiple antibodies complexed onto bioorthogonal protein-based polymers can be used to enhance immunospecific binding interactions through multivalency effects.
Collapse
Affiliation(s)
- Duy Tien Ta
- Department of Chemistry , University of Basel , 4058 Basel , Switzerland
- Department of Biosystems Science and Engineering , ETH Zurich , 4058 Basel , Switzerland
| | - Rosario Vanella
- Department of Chemistry , University of Basel , 4058 Basel , Switzerland
- Department of Biosystems Science and Engineering , ETH Zurich , 4058 Basel , Switzerland
| | - Michael A Nash
- Department of Chemistry , University of Basel , 4058 Basel , Switzerland
- Department of Biosystems Science and Engineering , ETH Zurich , 4058 Basel , Switzerland
| |
Collapse
|
20
|
Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:1-19. [PMID: 27783132 DOI: 10.1007/10_2016_37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To date, the two systems most extensively used for noncanonical amino acid (ncAA) incorporation via orthogonal translation are based on the Methanococcus jannaschii TyrRS/tRNA CUATyr and the Methanosarcina barkeri/Methanosarcina mazei PylRS/tRNA CUAPyl pairs. Here, we summarize the development and usage of the pyrrolysine-based system for orthogonal translation, a process that allows for the recombinant production of site-specifically labeled proteins and peptides. Via stop codon suppression in Escherichia coli and mammalian cells, genetically encoded biomolecules can be equipped with a great diversity of chemical functionalities including click chemistry handles, post-translational modifications, and photocaged sidechains.
Collapse
|
21
|
Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat Commun 2018; 9:1203. [PMID: 29572528 PMCID: PMC5865108 DOI: 10.1038/s41467-018-03469-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
Cell-free protein synthesis has emerged as a powerful approach for expanding the range of genetically encoded chemistry into proteins. Unfortunately, efforts to site-specifically incorporate multiple non-canonical amino acids into proteins using crude extract-based cell-free systems have been limited by release factor 1 competition. Here we address this limitation by establishing a bacterial cell-free protein synthesis platform based on genomically recoded Escherichia coli lacking release factor 1. This platform was developed by exploiting multiplex genome engineering to enhance extract performance by functionally inactivating negative effectors. Our most productive cell extracts enabled synthesis of 1,780 ± 30 mg/L superfolder green fluorescent protein. Using an optimized platform, we demonstrated the ability to introduce 40 identical p-acetyl-l-phenylalanine residues site specifically into an elastin-like polypeptide with high accuracy of incorporation ( ≥ 98%) and yield (96 ± 3 mg/L). We expect this cell-free platform to facilitate fundamental understanding and enable manufacturing paradigms for proteins with new and diverse chemistries. Cell-free protein synthesis allows for producing proteins without the need of a host organism, thus sparing the researcher experimental hassle. Here, the authors developed a cell-free synthesis method that enables incorporating non-standard amino acids in the product.
Collapse
|
22
|
Chin JW. Expanding and reprogramming the genetic code. Nature 2017; 550:53-60. [PMID: 28980641 DOI: 10.1038/nature24031] [Citation(s) in RCA: 526] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
Collapse
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.,Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK
| |
Collapse
|
23
|
Owens AE, Grasso KT, Ziegler CA, Fasan R. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency. Chembiochem 2017; 18:1109-1116. [PMID: 28383180 PMCID: PMC5586079 DOI: 10.1002/cbic.201700039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 01/06/2023]
Abstract
Genetic code expansion through amber stop codon suppression provides a powerful tool for introducing non-proteinogenic functionalities into proteins for a broad range of applications. However, ribosomal incorporation of noncanonical amino acids (ncAAs) by means of engineered aminoacyl-tRNA synthetases (aaRSs) often proceeds with significantly reduced efficiency compared to sense codon translation. Here, we report the implementation of a versatile platform for the development of engineered aaRSs with enhanced efficiency in mediating ncAA incorporation by amber stop codon suppression. This system integrates a white/blue colony screen with a plate-based colorimetric assay, thereby combining high-throughput capabilities with reliable and quantitative measurement of aaRS-dependent ncAA incorporation efficiency. This two-tier functional screening system was successfully applied to obtain a pyrrolysyl-tRNA synthetase (PylRS) variant (CrtK-RS(4.1)) with significantly improved efficiency (+250-370 %) for mediating the incorporation of Nϵ -crotonyl-lysine and other lysine analogues of relevance for the study of protein post-translational modifications into a target protein. Interestingly, the beneficial mutations accumulated by CrtK-RS(4.1) were found to localize within the noncatalytic N-terminal domain of the enzyme and could be transferred to another PylRS variant, improving the ability of the variant to incorporate its corresponding ncAA substrate. This work introduces an efficient platform for the improvement of aaRSs that could be readily extended to other members of this enzyme family and/or other target ncAAs.
Collapse
Affiliation(s)
- Andrew E Owens
- Department of Chemistry, University of Rochester, Hutchinson Hall, Rochester, NY, 14627, USA
| | - Katherine T Grasso
- Department of Chemistry, University of Rochester, Hutchinson Hall, Rochester, NY, 14627, USA
| | - Christine A Ziegler
- Department of Chemistry, University of Rochester, Hutchinson Hall, Rochester, NY, 14627, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Hutchinson Hall, Rochester, NY, 14627, USA
| |
Collapse
|
24
|
Incorporation of non-canonical amino acids into proteins in yeast. Fungal Genet Biol 2016; 89:137-156. [DOI: 10.1016/j.fgb.2016.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
|
25
|
|
26
|
Yamaguchi A, Matsuda T, Ohtake K, Yanagisawa T, Yokoyama S, Fujiwara Y, Watanabe T, Hohsaka T, Sakamoto K. Incorporation of a Doubly Functionalized Synthetic Amino Acid into Proteins for Creating Chemical and Light-Induced Conjugates. Bioconjug Chem 2015; 27:198-206. [DOI: 10.1021/acs.bioconjchem.5b00602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atsushi Yamaguchi
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | | | | | | | | | - Yoshihisa Fujiwara
- Shinsei Chemical Company Ltd., 7-7-15 Saitoasagi, Ibaraki, Osaka 567-0085, Japan
| | - Takayoshi Watanabe
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Takahiro Hohsaka
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | | |
Collapse
|
27
|
Amiram M, Haimovich AD, Fan C, Wang YS, Aerni HR, Ntai I, Moonan DW, Ma NJ, Rovner AJ, Hong SH, Kelleher NL, Goodman AL, Jewett MC, Söll D, Rinehart J, Isaacs FJ. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat Biotechnol 2015; 33:1272-1279. [PMID: 26571098 DOI: 10.1038/nbt.3372] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 09/11/2015] [Indexed: 01/24/2023]
Abstract
Expansion of the genetic code with nonstandard amino acids (nsAAs) has enabled biosynthesis of proteins with diverse new chemistries. However, this technology has been largely restricted to proteins containing a single or few nsAA instances. Here we describe an in vivo evolution approach in a genomically recoded Escherichia coli strain for the selection of orthogonal translation systems capable of multi-site nsAA incorporation. We evolved chromosomal aminoacyl-tRNA synthetases (aaRSs) with up to 25-fold increased protein production for p-acetyl-L-phenylalanine and p-azido-L-phenylalanine (pAzF). We also evolved aaRSs with tunable specificities for 14 nsAAs, including an enzyme that efficiently charges pAzF while excluding 237 other nsAAs. These variants enabled production of elastin-like-polypeptides with 30 nsAA residues at high yields (∼50 mg/L) and high accuracy of incorporation (>95%). This approach to aaRS evolution should accelerate and expand our ability to produce functionalized proteins and sequence-defined polymers with diverse chemistries.
Collapse
Affiliation(s)
- Miriam Amiram
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Adrian D Haimovich
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Chenguang Fan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yane-Shih Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Hans-Rudolf Aerni
- Systems Biology Institute, Yale University, West Haven, Connecticut, USA.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Ioanna Ntai
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Daniel W Moonan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Natalie J Ma
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Alexis J Rovner
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.,Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, Connecticut, USA.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| |
Collapse
|
28
|
Lee BS, Shin S, Jeon JY, Jang KS, Lee BY, Choi S, Yoo TH. Incorporation of Unnatural Amino Acids in Response to the AGG Codon. ACS Chem Biol 2015; 10:1648-53. [PMID: 25946114 DOI: 10.1021/acschembio.5b00230] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biological protein synthesis system has been engineered to incorporate unnatural amino acid into proteins, and this has opened up new routes for engineering proteins with novel compositions. While such systems have been successfully applied in research, there remains a need to develop new approaches with respect to the wider application of unnatural amino acids. In this study, we reported a strategy for incorporating unnatural amino acids into proteins by reassigning one of the Arg sense codons, the AGG codon. Using this method, several unnatural amino acids were quantitatively incorporated into the AGG site. Furthermore, we applied the method to multiple AGG sites, and even to tandem AGG sequences. The method developed and described here could be used for engineering proteins with diverse unnatural amino acids, particularly when employed in combination with other methods.
Collapse
Affiliation(s)
| | | | | | - Kyoung-Soon Jang
- Division
of Mass Spectrometry Research, Korea Basic Science Institute, 162
Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju 363-883, Korea
| | | | | | | |
Collapse
|
29
|
Kim H, Siu KH, Raeeszadeh-Sarmazdeh M, Sun Q, Chen Q, Chen W. Bioengineering strategies to generate artificial protein complexes. Biotechnol Bioeng 2015; 112:1495-505. [DOI: 10.1002/bit.25637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/01/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Heejae Kim
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Ka-Hei Siu
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | | | - Qing Sun
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Qi Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| |
Collapse
|
30
|
Lau HK, Kiick KL. Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 2015; 16:28-42. [PMID: 25426888 PMCID: PMC4294583 DOI: 10.1021/bm501361c] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/14/2014] [Indexed: 02/08/2023]
Abstract
Hydrogels provide mechanical support and a hydrated environment that offer good cytocompatibility and controlled release of molecules, and myriad hydrogels thus have been studied for biomedical applications. In the past few decades, research in these areas has shifted increasingly to multicomponent hydrogels that better capture the multifunctional nature of native biological environments and that offer opportunities to selectively tailor materials properties. This review summarizes recent approaches aimed at producing multicomponent hydrogels, with descriptions of contemporary chemical and physical approaches for forming networks, and of the use of both synthetic and biologically derived molecules to impart desired properties. Specific multicomponent materials with enhanced mechanical properties are presented, as well as materials in which multiple biological functions are imparted for applications in tissue engineering, cancer treatment, and gene therapies. The progress in the field suggests significant promise for these approaches in the development of biomedically relevant materials.
Collapse
Affiliation(s)
- Hang Kuen Lau
- Department of Materials Science and Engineering and ‡Biomedical Engineering, University of Delaware , Newark Delaware 19716, United States
| | | |
Collapse
|
31
|
Schmidt MJ, Fedoseev A, Summerer D, Drescher M. Genetically Encoded Spin Labels for In Vitro and In-Cell EPR Studies of Native Proteins. Methods Enzymol 2015; 563:483-502. [PMID: 26478496 DOI: 10.1016/bs.mie.2015.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a powerful approach to study the structure, dynamics, and interactions of proteins. The genetic encoding of the noncanonical amino acid spin-labeled lysine 1 (SLK-1) eliminates the need for any chemical labeling steps in SDSL-EPR studies and enables the investigation of native, endogenous proteins with minimal structural perturbation, and without the need to create unique reactive sites for chemical labeling. We report detailed experimental procedures for the efficient synthesis of SLK-1, the expression and purification of SLK-1-containing proteins under conditions that ensure maximal integrity of the nitroxide radical moiety, and procedures for intramolecular EPR distance measurements in proteins by double electron-electron resonance.
Collapse
Affiliation(s)
- M J Schmidt
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - A Fedoseev
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - D Summerer
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - M Drescher
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
32
|
Pott M, Schmidt MJ, Summerer D. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. ACS Chem Biol 2014; 9:2815-22. [PMID: 25299570 DOI: 10.1021/cb5006273] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expansion of the genetic code with noncanonical amino acids (ncAA) enables the function of proteins to be tailored with high molecular precision. In this approach, the ncAA is charged to an orthogonal nonsense suppressor tRNA by an aminoacyl-tRNA-synthetase (aaRS) and incorporated into the target protein in vivo by suppression of nonsense codons in the mRNA during ribosomal translation. Compared to sense codon translation, this process occurs with reduced efficiency. However, it is still poorly understood, how the local sequence context of the nonsense codon affects suppression efficiency. Here, we report sequence contexts for highly efficient suppression of the widely used amber codon in E. coli for the orthogonal Methanocaldococcus jannaschii tRNA(Tyr)/TyrRS and Methanosarcina mazei tRNA(Pyl)/PylRS pairs. In vivo selections of sequence context libraries consisting of each two random codons directly up- and downstream of an amber codon afforded contexts with strong preferences for particular mRNA nucleotides and/or amino acids that markedly differed from preferences of contexts obtained in control selections with sense codons. The contexts provided high amber suppression efficiencies with little ncAA-dependence that were transferrable between proteins and resulted in protein expression levels of 70-110% compared to levels of control proteins without amber codon. These sequence contexts represent stable tags for robust and highly efficient incorporation of ncAA into proteins in standard E. coli strains and provide general design rules for the engineering of amber codons into target genes.
Collapse
Affiliation(s)
- Moritz Pott
- Department
of Chemistry,
Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78457, Germany
| | - Moritz Johannes Schmidt
- Department
of Chemistry,
Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78457, Germany
| | - Daniel Summerer
- Department
of Chemistry,
Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
33
|
Smits FCM, Buddingh BC, van Eldijk MB, van Hest JCM. Elastin-like polypeptide based nanoparticles: design rationale toward nanomedicine. Macromol Biosci 2014; 15:36-51. [PMID: 25407963 DOI: 10.1002/mabi.201400419] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/17/2014] [Indexed: 11/06/2022]
Abstract
Elastin-like polypeptides (ELPs) are characterized by a high sequence control, temperature responsiveness and biocompatibility, which make them highly interesting as smart materials for application in nanomedicine. In particular the construction of ELP-based nanoparticles has recently become a focal point of attention in materials research. This review will give an overview of the ELP-based nanoparticles that have been developed until now and their underlying design principles. First a short introduction on ELPs and their stimulus-responsive behavior will be given. This characteristic has been applied for the development of ELP-based block copolymers that can self-assemble into nanoparticles. Both the fully ELP-based as well as several ELP hybrid materials that have been reported to form nanoparticles will be discussed, which is followed by a concise description of the promising biomedical applications reported for this class of materials.
Collapse
Affiliation(s)
- Ferdinanda C M Smits
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
34
|
Schmied WH, Elsässer SJ, Uttamapinant C, Chin JW. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1. J Am Chem Soc 2014; 136:15577-83. [PMID: 25350841 PMCID: PMC4333590 DOI: 10.1021/ja5069728] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficient, site-specific introduction of unnatural amino acids into proteins in mammalian cells is an outstanding challenge in realizing the potential of genetic code expansion approaches. Addressing this challenge will allow the synthesis of modified recombinant proteins and augment emerging strategies that introduce new chemical functionalities into proteins to control and image their function with high spatial and temporal precision in cells. The efficiency of unnatural amino acid incorporation in response to the amber stop codon (UAG) in mammalian cells is commonly considered to be low. Here we demonstrate that tRNA levels can be limiting for unnatural amino acid incorporation efficiency, and we develop an optimized pyrrolysyl-tRNA synthetase/tRNACUA expression system, with optimized tRNA expression for mammalian cells. In addition, we engineer eRF1, that normally terminates translation on all three stop codons, to provide a substantial increase in unnatural amino acid incorporation in response to the UAG codon without increasing readthrough of other stop codons. By combining the optimized pyrrolysyl-tRNA synthetase/tRNACUA expression system and an engineered eRF1, we increase the yield of protein bearing unnatural amino acids at a single site 17- to 20-fold. Using the optimized system, we produce proteins containing unnatural amino acids with comparable yields to a protein produced from a gene that does not contain a UAG stop codon. Moreover, the optimized system increases the yield of protein, incorporating an unnatural amino acid at three sites, from unmeasurably low levels up to 43% of a no amber stop control. Our approach may enable the efficient production of site-specifically modified therapeutic proteins, and the quantitative replacement of targeted cellular proteins with versions bearing unnatural amino acids that allow imaging or synthetic regulation of protein function.
Collapse
Affiliation(s)
- Wolfgang H Schmied
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | | | | | | |
Collapse
|
35
|
Yanagisawa T, Umehara T, Sakamoto K, Yokoyama S. Expanded Genetic Code Technologies for Incorporating Modified Lysine at Multiple Sites. Chembiochem 2014; 15:2181-7. [DOI: 10.1002/cbic.201402266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 01/08/2023]
|
36
|
Yanagisawa T, Takahashi M, Mukai T, Sato S, Wakamori M, Shirouzu M, Sakamoto K, Umehara T, Yokoyama S. Multiple Site-Specific Installations ofNε-Monomethyl-L-Lysine into Histone Proteins by Cell-Based and Cell-Free Protein Synthesis. Chembiochem 2014; 15:1830-8. [DOI: 10.1002/cbic.201402291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Indexed: 12/12/2022]
|
37
|
Lammers C, Hahn LE, Neumann H. Optimized plasmid systems for the incorporation of multiple different unnatural amino acids by evolved orthogonal ribosomes. Chembiochem 2014; 15:1800-4. [PMID: 24890611 DOI: 10.1002/cbic.201402033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Indexed: 02/01/2023]
Abstract
Incorporation of multiple different unnatural amino acids into the same polypeptide remains a significant challenge. Orthogonal ribosomes, which are evolvable as they direct the translation of a single dedicated orthogonal mRNA, can provide an avenue to produce such polypeptides routinely. Recent advances in engineering orthogonal ribosomes have created a prototype system to enable genetically encoded introduction of two different functional groups, albeit with limited efficiency. Here, we systematically investigated the limiting factors of this system by using assays to measure the levels and activities of individual components; we identified Methanosarcina barkeri PylRS as a limiting factor for protein yield. Balancing the expression levels of individual components significantly improved growth rate and protein yield. This optimization of the system is likely to increase the scope of evolved orthogonal ribosome-mediated incorporation of multiple different unnatural amino acids.
Collapse
Affiliation(s)
- Christoph Lammers
- Free Floater (Junior) Research Group "Applied Synthetic Biology", Institute for Microbiology and Genetics, Georg-August University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany)
| | | | | |
Collapse
|
38
|
Schmidt MJ, Summerer D. Genetic code expansion as a tool to study regulatory processes of transcription. Front Chem 2014; 2:7. [PMID: 24790976 PMCID: PMC3982524 DOI: 10.3389/fchem.2014.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/07/2014] [Indexed: 12/19/2022] Open
Abstract
The expansion of the genetic code with non-canonical amino acids (ncAA) enables the chemical and biophysical properties of proteins to be tailored, inside cells, with a previously unattainable level of precision. A wide range of ncAA with functions not found in canonical amino acids have been genetically encoded in recent years and have delivered insights into biological processes that would be difficult to access with traditional approaches of molecular biology. A major field for the development and application of novel ncAA-functions has been transcription and its regulation. This is particularly attractive, since advanced DNA sequencing- and proteomics-techniques continue to deliver vast information on these processes on a global level, but complementing methodologies to study them on a detailed, molecular level and in living cells have been comparably scarce. In a growing number of studies, genetic code expansion has now been applied to precisely control the chemical properties of transcription factors, RNA polymerases and histones, and this has enabled new insights into their interactions, conformational changes, cellular localizations and the functional roles of posttranslational modifications.
Collapse
Affiliation(s)
- Moritz J Schmidt
- Department of Chemistry, Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz Konstanz, Germany
| | - Daniel Summerer
- Department of Chemistry, Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz Konstanz, Germany
| |
Collapse
|