1
|
Abstract
Fatty acid-binding proteins (FABPs) are small lipid-binding proteins abundantly expressed in tissues that are highly active in fatty acid (FA) metabolism. Ten mammalian FABPs have been identified, with tissue-specific expression patterns and highly conserved tertiary structures. FABPs were initially studied as intracellular FA transport proteins. Further investigation has demonstrated their participation in lipid metabolism, both directly and via regulation of gene expression, and in signaling within their cells of expression. There is also evidence that they may be secreted and have functional impact via the circulation. It has also been shown that the FABP ligand binding repertoire extends beyond long-chain FAs and that their functional properties also involve participation in systemic metabolism. This article reviews the present understanding of FABP functions and their apparent roles in disease, particularly metabolic and inflammation-related disorders and cancers.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States;
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, Facultad de Ciencias Médicas, La Plata, Argentina;
| |
Collapse
|
2
|
Ruan ML, Liu Y, Zhang C, Mao X, Hu D, Lok CN, Yam JWP, Che CM. Dihydroartemisinin engages liver fatty acid binding protein and suppresses metastatic hepatocellular carcinoma growth. Chem Commun (Camb) 2023; 59:2747-2750. [PMID: 36757177 DOI: 10.1039/d3cc00265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Dihydroartemisinin non-covalently binds liver fatty acid binding protein (FABP1) with micromolar affinity, acts as a FABP1-dependent peroxisome proliferator-activated receptor alpha agonist and inhibits metastatic hepatocellular carcinoma growth.
Collapse
Affiliation(s)
- Mei-Ling Ruan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.,State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chunlei Zhang
- State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, P. R. China
| | - Xiaowen Mao
- Department of Pathology, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Di Hu
- State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, P. R. China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, P. R. China
| | - Judy Wai Ping Yam
- Department of Pathology, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, P. R. China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
3
|
Role of AMPK-SREBP Signaling in Regulating Fatty Acid Binding-4 (FABP4) Expression following Ethanol Metabolism. BIOLOGY 2022; 11:biology11111613. [PMID: 36358315 PMCID: PMC9687530 DOI: 10.3390/biology11111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Fatty acid binding protein-4 (FABP4) is not normally expressed in the liver but is induced in alcohol-dependent liver disease (ALD)). This study sought to identify mechanisms whereby ethanol (EtOH) metabolism alters triglyceride accumulation and FABP4 production. Human hepatoma cells which were stably transfected to express alcohol dehydrogenase (ADH) or cytochrome P4502E1 (CYP2E1) were exposed to EtOH in the absence/presence of inhibitors of ADH (4-methylpyrazole) or CYP2E1 (chlormethiazole). Cells were analyzed for free fatty acid (FFA) content and FABP4 mRNA, then culture medium assayed for FABP4 levels. Cell lysates were analyzed for AMP-activated protein kinase-α (AMPKα), Acetyl-CoA carboxylase (ACC), sterol regulatory element binding protein-1c (SREBP-1c), and Lipin-1β activity and localization in the absence/presence of EtOH and pharmacological inhibitors. CYP2E1-EtOH metabolism led to increased FABP4 mRNA/protein expression and FFA accumulation. Analysis of signaling pathway activity revealed decreased AMPKα activation and increased nuclear-SREBP-1c localization following CYP2E1-EtOH metabolism. The role of AMPKα-SREBP-1c in regulating CYP2E1-EtOH-dependent FFA accumulation and increased FABP4 was confirmed using pharmacological inhibitors and over-expression of AMPKα. Inhibition of ACC or Lipin-1β failed to prevent FFA accumulation or changes in FABP4 mRNA expression or protein secretion. These data suggest that CYP2E1-EtOH metabolism inhibits AMPKα phosphorylation to stimulate FFA accumulation and FABP4 protein secretion via an SREBP-1c dependent mechanism.
Collapse
|
4
|
Lu Y, Yang GZ, Yang D. Effects of ligand binding on dynamics of fatty acid binding protein and interactions with membranes. Biophys J 2022; 121:4024-4032. [PMID: 36196055 PMCID: PMC9675020 DOI: 10.1016/j.bpj.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Intracellular transport of fatty acids involves binding of ligands to their carrier fatty acid binding proteins (FABPs) and interactions of ligand-free and -bound FABPs with membranes. Previous studies focused on ligand-free FABPs. Here, our amide hydrogen exchange data showed that oleic acid binding to human intestinal FABP (hIFABP) stabilizes the protein, most likely through enhancing the hydrogen-bonding network, and induces rearrangement of sidechains even far away from the ligand binding site. Using NMR relaxation techniques, we found that the ligand binding affects not only conformational exchanges between major and minor states but also the affinity of hIFABP to nanodiscs. Analyses of the relaxation and amide exchange data suggested that two minor native-like states existing in both ligand-free and -bound hIFABPs originate from global "breathing" motions, while one minor native-like state comes from local motions. The amide hydrogen exchange data also indicated that helix αII undergoes local unfolding through which ligands can exit from the binding cavity.
Collapse
Affiliation(s)
- Yimei Lu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Gabriel Zhang Yang
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Toke O. Structural and Dynamic Determinants of Molecular Recognition in Bile Acid-Binding Proteins. Int J Mol Sci 2022; 23:505. [PMID: 35008930 PMCID: PMC8745080 DOI: 10.3390/ijms23010505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders in bile acid transport and metabolism have been related to a number of metabolic disease states, atherosclerosis, type-II diabetes, and cancer. Bile acid-binding proteins (BABPs), a subfamily of intracellular lipid-binding proteins (iLBPs), have a key role in the cellular trafficking and metabolic targeting of bile salts. Within the family of iLBPs, BABPs exhibit unique binding properties including positive binding cooperativity and site-selectivity, which in different tissues and organisms appears to be tailored to the local bile salt pool. Structural and biophysical studies of the past two decades have shed light on the mechanism of bile salt binding at the atomic level, providing us with a mechanistic picture of ligand entry and release, and the communication between the binding sites. In this review, we discuss the emerging view of bile salt recognition in intestinal- and liver-BABPs, with examples from both mammalian and non-mammalian species. The structural and dynamic determinants of the BABP-bile-salt interaction reviewed herein set the basis for the design and development of drug candidates targeting the transcellular traffic of bile salts in enterocytes and hepatocytes.
Collapse
Affiliation(s)
- Orsolya Toke
- Laboratory for NMR Spectroscopy, Structural Research Centre, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
| |
Collapse
|
6
|
Martin GG, Landrock D, McIntosh AL, Milligan S, Landrock KK, Kier AB, Mackie J, Schroeder F. High Glucose and Liver Fatty Acid Binding Protein Gene Ablation Differentially Impact Whole Body and Liver Phenotype in High-Fat Pair-Fed Mice. Lipids 2020; 55:309-327. [PMID: 32314395 DOI: 10.1002/lipd.12238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
Ad libitum-fed diets high in fat and carbohydrate (especially fructose) induce weight gain, obesity, and nonalcoholic fatty liver disease (NAFLD) in humans and animal models. However, interpretation is complicated since ad libitum feeding of such diets induces hyperphagia and upregulates expression of liver fatty acid binding protein (L-FABP)-a protein intimately involved in fatty acid and glucose regulation of lipid metabolism. Wild-type (WT) and L-fabp gene ablated (LKO) mice were pair-fed either high-fat diet (HFD) or high-fat/high-glucose diet (HFGD) wherein total carbohydrate was maintained constant but the proportion of glucose was increased at the expense of fructose. In LKO mice, the pair-fed HFD increased body weight and lean tissue mass (LTM) but had no effect on fat tissue mass (FTM) or hepatic fatty vacuolation as compared to pair-fed WT counterparts. These LKO mice exhibited upregulation of hepatic proteins in fatty acid uptake and cytosolic transport (caveolin and sterol carrier protein-2), but lower hepatic fatty acid oxidation (decreased serum β-hydroxybutyrate). LKO mice pair-fed HFGD also exhibited increased body weight; however, these mice had increased FTM, not LTM, and increased hepatic fatty vacuolation as compared to pair-fed WT counterparts. These LKO mice also exhibited upregulation of hepatic proteins in fatty acid uptake and cytosolic transport (caveolin and acyl-CoA binding protein, but not sterol carrier protein-2), but there was no change in hepatic fatty acid oxidation (serum β-hydroxybutyrate) as compared to pair-fed WT counterparts.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - John Mackie
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| |
Collapse
|
7
|
Martin GG, Landrock D, Dangott LJ, McIntosh AL, Kier AB, Schroeder F. Human Liver Fatty Acid Binding Protein-1 T94A Variant, Nonalcohol Fatty Liver Disease, and Hepatic Endocannabinoid System. Lipids 2019; 53:27-40. [PMID: 29488637 DOI: 10.1002/lipd.12008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022]
Abstract
Hepatic endocannabinoids (EC) and their major binding/"chaperone" protein (i.e., liver fatty acid binding protein-1 [FABP1]) are associated with development of nonalcoholic fatty liver (NAFLD) in animal models and humans. Since expression of the highly prevalent human FABP1 T94A variant induces serum lipid accumulation, it is important to determine its impact on hepatic lipid accumulation and the EC system. This issue was addressed in livers from human subjects expressing only wild-type (WT) FABP1 T94T (TT genotype) or T94A variant (TC or CC genotype). WT FABP1 males had lower total lipids (both neutral cholesteryl esters, triacylglycerols) and phospholipids than females. WT FABP1 males' lower lipids correlated with lower levels of the N-acylethanolamide DHEA and 2-monoacylglycerols (2-MAG) (2-OG, 2-PG). T94A expression in males increased the hepatic total lipids (triacylglycerol, cholesteryl ester), which is consistent with their higher level of CB1-potentiating 2-OG and lower antagonistic EPEA. In contrast, in females, T94A expression did not alter the total lipids, neutral lipids, or phospholipids, which is attributable to the higher cannabinoid receptor-1 (CB1) agonist arachidonoylethanolamide (AEA) and its CB1-potentiator OEA being largely offset by reduced potentiating 2-OG and increased antagonistic EPEA. Taken together, these findings indicate that T94A-induced alterations in the hepatic EC system contribute at least in part to the hepatic accumulation of lipids associated with NAFLD, especially in males.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA
| |
Collapse
|
8
|
Huang H, McIntosh AL, Martin GG, Dangott LJ, Kier AB, Schroeder F. Structural and Functional Interaction of Δ 9-Tetrahydrocannabinol with Liver Fatty Acid Binding Protein (FABP1). Biochemistry 2018; 57:6027-6042. [PMID: 30232874 DOI: 10.1021/acs.biochem.8b00744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although serum Δ9-tetrahydrocannabinol (Δ9-THC) undergoes rapid hepatic clearance and metabolism, almost nothing is known regarding the mechanism(s) whereby this highly lipophilic phytocannabinoid is transported for metabolism/excretion. A novel NBD-arachidonoylethanolamide (NBD-AEA) fluorescence displacement assay showed that liver fatty acid binding protein (FABP1), the major hepatic endocannabinoid (EC) binding protein, binds the first major metabolite of Δ9-THC (Δ9-THC-OH) as well as Δ9-THC itself. Circular dichroism (CD) confirmed that not only Δ9-THC and Δ9-THC-OH but also downstream metabolites Δ9-THC-COOH and Δ9-THC-CO-glucuronide directly interact with FABP1. Δ9-THC and metabolite interaction differentially altered the FABP1 secondary structure, increasing total α-helix (all), decreasing total β-sheet (Δ9-THC-COOH, Δ9-THC-CO-glucuronide), increasing turns (Δ9-THC-OH, Δ9-THC-COOH, Δ9-THC-CO-glucuronide), and decreasing unordered structure (Δ9-THC, Δ9-THC-OH). Cultured primary hepatocytes from wild-type (WT) mice took up and converted Δ9-THC to the above metabolites. Fabp1 gene ablation (LKO) dramatically increased hepatocyte accumulation of Δ9-THC and even more so its primary metabolites Δ9-THC-OH and Δ9-THC-COOH. Concomitantly, rtPCR and Western blotting indicated that LKO significantly increased Δ9-THC's ability to regulate downstream nuclear receptor transcription of genes important in both EC ( Napepld > Daglb > Dagla, Naaa, Cnr1) and lipid ( Cpt1A > Fasn, FATP4) metabolism. Taken together, the data indicated that FABP1 may play important roles in Δ9-THC uptake and elimination as well as Δ9-THC induction of genes regulating hepatic EC levels and downstream targets in lipid metabolism.
Collapse
Affiliation(s)
- Huan Huang
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| | - Avery L McIntosh
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| | - Gregory G Martin
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| | - Lawrence J Dangott
- Protein Chemistry Laboratory , Texas A&M University , College Station , Texas 77843-2128 , United States
| | - Ann B Kier
- Department of Pathobiology , Texas A&M University , College Station , Texas 77843-4467 , United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843-4466 , United States
| |
Collapse
|
9
|
Martin GG, Huang H, McIntosh AL, Kier AB, Schroeder F. Endocannabinoid Interaction with Human FABP1: Impact of the T94A Variant. Biochemistry 2017; 56:5147-5159. [DOI: 10.1021/acs.biochem.7b00647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, Texas 77843-4467, United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, United States
| |
Collapse
|
10
|
D'Onofrio M, Zanzoni S, Munari F, Monaco HL, Assfalg M, Capaldi S. The long variant of human ileal bile acid-binding protein associated with colorectal cancer exhibits sub-cellular localization and lipid binding behaviour distinct from those of the common isoform. Biochim Biophys Acta Gen Subj 2017; 1861:2315-2324. [PMID: 28689989 DOI: 10.1016/j.bbagen.2017.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/09/2017] [Accepted: 07/05/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ileal bile acid-binding protein, IBABP, participates in the intracellular trafficking of bile salts and influences their signaling activities. The recently discovered variant, IBABP-L, bearing an N-terminal 49-amino acid extension, was found to be associated with colorectal cancer and to protect cancer cells from the cytotoxic effects of deoxycholate. However, the precise function and the molecular properties of this variant are currently unknown. METHODS Bioinformatics tools and confocal microscopy were used to investigate the sub-cellular localization of IBABP-L; protein dynamics, ligand binding and interaction with membrane models were studied by 2D NMR and fluorescence spectroscopy. RESULTS Based on sub-cellular localization experiments we conclude that IBABP-L is targeted to the secretory pathway by a 24-residue signal peptide and, upon its cleavage, the mature protein is constitutively released into the extracellular space. Site-resolved NMR experiments indicated the distinct preference of primary and secondary bile salts to form either heterotypic or homotypic complexes with IBABP-L. The presence of the relatively dynamic N-terminal extension, originating only subtle conformational perturbations in the globular domain, was found to influence binding site occupation in IBABP-L as compared to IBABP. Even more pronounced differences were found in the tendency of the two variants to associate with phospholipid bilayers. CONCLUSIONS IBABP-L exhibits different sub-cellular localization, ligand-binding properties and membrane interaction propensity compared to the canonical short isoform. GENERAL SIGNIFICANCE Our results constitute an essential first step towards an understanding of the role of IBABP-L in bile salt trafficking and signaling under healthy and pathological conditions.
Collapse
Affiliation(s)
- Mariapina D'Onofrio
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Serena Zanzoni
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Francesca Munari
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Hugo L Monaco
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michael Assfalg
- Biomolecular NMR Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Stefano Capaldi
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
11
|
D'Onofrio M, Barracchia CG, Bortot A, Munari F, Zanzoni S, Assfalg M. Molecular differences between human liver fatty acid binding protein and its T94A variant in their unbound and lipid-bound states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1152-1159. [PMID: 28668637 DOI: 10.1016/j.bbapap.2017.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 01/12/2023]
Abstract
Liver fatty acid binding protein (L-FABP) is an abundant cytosolic protein playing a central role in intracellular lipid trafficking. The L-FABP T94A variant, originating from one of the most common polymorphisms in the FABP family, is associated with several lipid-related disorders. However, the molecular factors that determine the observed functional differences are currently unknown. In our work, we performed a high resolution comparative molecular analysis of L-FABP T94T and L-FABP T94A in their unbound states and in the presence of representative ligands of the fatty acid and bile acid classes. We collected residue-resolved NMR spectral fingerprints of the two variants, and compared secondary structures, backbone dynamics, side chain arrangements, binding site occupation, and intermolecular contacts. We found that threonine to alanine replacement did not result in strongly perturbed structural and dynamic features, although differences in oleic acid binding by the two variants were detected. Based on chemical shift perturbations at sites distant from position 94 and on differences in intermolecular contacts, we suggest that long-range communication networks in L-FABP propagate the effect of amino acid substitution at sites relevant for ligand binding or biomolecular recognition.
Collapse
Affiliation(s)
| | | | - Andrea Bortot
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Francesca Munari
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
12
|
Zanzoni S, Pagano K, D'Onofrio M, Assfalg M, Ciambellotti S, Bernacchioni C, Turano P, Aime S, Ragona L, Molinari H. Unsaturated Long-Chain Fatty Acids Are Preferred Ferritin Ligands That Enhance Iron Biomineralization. Chemistry 2017; 23:9879-9887. [PMID: 28489257 DOI: 10.1002/chem.201701164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Indexed: 12/20/2022]
Abstract
Ferritin is a ubiquitous nanocage protein, which can accommodate up to thousands of iron atoms inside its cavity. Aside from its iron storage function, a new role as a fatty acid binder has been proposed for this protein. The interaction of apo horse spleen ferritin (HoSF) with a variety of lipids has been here investigated through NMR spectroscopic ligand-based experiments, to provide new insights into the mechanism of ferritin-lipid interactions, and the link with iron mineralization. 1D 1 H, diffusion (DOSY) and saturation-transfer difference (STD) NMR experiments provided evidence for a stronger interaction of ferritin with unsaturated fatty acids compared to saturated fatty acids, detergents, and bile acids. Mineralization assays showed that oleate c aused the most efficient increase in the initial rate of iron oxidation, and the highest formation of ferric species in HoSF. The comprehension of the factors inducing a faster biomineralization is an issue of the utmost importance, given the association of ferritin levels with metabolic syndromes, such as insulin resistance and diabetes, characterized by fatty acid concentration dysregulation. The human ferritin H-chain homopolymer (HuHF), featuring ferroxidase activity, was also tested for its fatty acid binding capabilities. Assays show that oleate can bind with high affinity to HuHF, without altering the reaction rates at the ferroxidase site.
Collapse
Affiliation(s)
- Serena Zanzoni
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| | - Mariapina D'Onofrio
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Silvia Ciambellotti
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Caterina Bernacchioni
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Paola Turano
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Silvio Aime
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, Università di Torino, Torino, Italy.,IBB-CNR-UOS, Università di Torino, Torino, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| |
Collapse
|
13
|
Huang H, McIntosh AL, Martin GG, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kier AB, Schroeder F. FABP1: A Novel Hepatic Endocannabinoid and Cannabinoid Binding Protein. Biochemistry 2016; 55:5243-55. [PMID: 27552286 DOI: 10.1021/acs.biochem.6b00446] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endocannabinoids (ECs) and cannabinoids are very lipophilic molecules requiring the presence of cytosolic binding proteins that chaperone these molecules to intracellular targets. While three different fatty acid binding proteins (FABP3, -5, and -7) serve this function in brain, relatively little is known about how such hydrophobic ECs and cannabinoids are transported within the liver. The most prominent hepatic FABP, liver fatty acid binding protein (FABP1 or L-FABP), has high affinity for arachidonic acid (ARA) and ARA-CoA, suggesting that FABP1 may also bind ARA-derived ECs (AEA and 2-AG). Indeed, FABP1 bound ECs with high affinity as shown by displacement of FABP1-bound fluorescent ligands and by quenching of FABP1 intrinsic tyrosine fluorescence. FABP1 also had high affinity for most non-ARA-containing ECs, FABP1 inhibitors, EC uptake/hydrolysis inhibitors, and phytocannabinoids and less so for synthetic cannabinoid receptor (CBR) agonists and antagonists. The physiological impact was examined with liver from wild-type (WT) versus FABP1 gene-ablated (LKO) male mice. As shown by liquid chromatography and mass spectrometry, FABP1 gene ablation significantly increased hepatic levels of AEA, 2-AG, and 2-OG. These increases were not due to increased protein levels of EC synthetic enzymes (NAPEPLD and DAGL) or a decreased level of EC degradative enzyme (FAAH) but correlated with complete loss of FABP1, a decreased level of SCP2 (8-fold less prevalent than FABP1, but also binds ECs), and a decreased level of degradative enzymes (NAAA and MAGL). These data indicated that FABP1 not only is the most prominent endocannabinoid and cannabinoid binding protein but also impacts hepatic endocannabinoid levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shengrong Li
- Avanti Polar Lipids , 700 Industrial Park Drive, Alabaster, Alabama 35007-9105, United States
| | | | | |
Collapse
|
14
|
Pérez Santero S, Favretto F, Zanzoni S, Chignola R, Assfalg M, D'Onofrio M. Effects of macromolecular crowding on a small lipid binding protein probed at the single-amino acid level. Arch Biochem Biophys 2016; 606:99-110. [DOI: 10.1016/j.abb.2016.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/16/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022]
|
15
|
Martin GG, Chung S, Landrock D, Landrock KK, Huang H, Dangott LJ, Peng X, Kaczocha M, Seeger DR, Murphy EJ, Golovko MY, Kier AB, Schroeder F. FABP-1 gene ablation impacts brain endocannabinoid system in male mice. J Neurochem 2016; 138:407-22. [PMID: 27167970 PMCID: PMC4961623 DOI: 10.1111/jnc.13664] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
Liver fatty acid-binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid-binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as oleoyl ethanolamide (OEA), PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* as a result of compensatory up-regulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid-binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. Fatty acid-binding protein-1 (FABP-1) is not detectable in brain but instead is highly expressed in liver. The possibility that FABP1 outside the central nervous system may regulate brain endocannabinoids arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) was examined in wild-type (WT) and FABP-1 null (LKO) male mice. LKO increased brain levels of arachidonic acid-containing endocannabinoids (AEA, 2-AG), correlating with increased free and total arachidonic acid in brain and serum. Read the Editorial Highlight for this article on page 371.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Sarah Chung
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Kerstin K. Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Lawrence J. Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128
| | - Xiaoxue Peng
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794
| | - Drew R. Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Eric J. Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| |
Collapse
|
16
|
Wang J, Bie J, Ghosh S. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile. J Lipid Res 2016; 57:1712-9. [PMID: 27381048 DOI: 10.1194/jlr.m069682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination.
Collapse
Affiliation(s)
- Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| | - Jinghua Bie
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298
| |
Collapse
|
17
|
Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kaczocha M, Murphy EJ, Atshaves BP, Kier AB. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids 2016; 51:655-76. [PMID: 27117865 PMCID: PMC5408584 DOI: 10.1007/s11745-016-4155-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA.
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Dr., Alabaster, AL, 35007-9105, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics and Chemistry, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| |
Collapse
|
18
|
Martin GG, Landrock D, Landrock KK, Howles PN, Atshaves BP, Kier AB, Schroeder F. Relative contributions of L-FABP, SCP-2/SCP-x, or both to hepatic biliary phenotype of female mice. Arch Biochem Biophys 2015; 588:25-32. [PMID: 26541319 PMCID: PMC4683591 DOI: 10.1016/j.abb.2015.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/20/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
Both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed to function in hepatobiliary bile acid metabolism/accumulation. To begin to address this issue, the impact of ablating L-FABP (LKO) or SCP-2/SCP-x (DKO) individually or both together (TKO) was examined in female mice. Biliary bile acid levels were decreased in LKO, DKO, and TKO mice; however, hepatic bile acid concentration was decreased in LKO mice only. In contrast, biliary phospholipid level was decreased only in TKO mice, while biliary cholesterol levels were unaltered regardless of phenotype. The loss of either or both genes increased hepatic expression of the major bile acid synthetic enzymes (CYP7A1 and/or CYP27A1). Loss of L-FABP and/or SCP-2/SCP-x genes significantly altered the molecular composition of biliary bile acids, but not the proportion of conjugated/unconjugated bile acids or overall bile acid hydrophobicity index. These data suggested that L-FABP was more important in hepatic retention of bile acids, while SCP-2/SCP-x more broadly affected biliary bile acid and phospholipid levels.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA.
| |
Collapse
|
19
|
Klipsic D, Landrock D, Martin GG, McIntosh AL, Landrock KK, Mackie JT, Schroeder F, Kier AB. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation. Am J Physiol Gastrointest Liver Physiol 2015; 309:G387-99. [PMID: 26113298 PMCID: PMC4556946 DOI: 10.1152/ajpgi.00460.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/22/2015] [Indexed: 01/31/2023]
Abstract
While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males. DKO-induced steatosis in control-fed wild-type (WT) mice was associated with 1) loss of SCP-2; 2) upregulation of liver fatty acid binding protein (L-FABP); 3) increased mRNA and/or protein levels of sterol regulatory element binding proteins (SREBP1 and SREBP2) as well as increased expression of target genes of cholesterol synthesis (Hmgcs1 and Hmgcr) and fatty acid synthesis (Acc1 and Fas); and 4) cholesteryl ester accumulation was also associated with increased acyl-CoA cholesterol acyltransferase-2 (ACAT2) in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, apolipoprotein B (ApoB), MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to the endoplasmic reticulum for SREBP regulation, making more available for cholesteryl ester synthesis, for cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism.
Collapse
Affiliation(s)
- Devon Klipsic
- Department of Pathobiology, Texas A&M University, College Station, Texas; and
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, Texas; and
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - John T Mackie
- Department of Pathobiology, Texas A&M University, College Station, Texas; and
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, Texas; and
| |
Collapse
|
20
|
Favretto F, Ceccon A, Zanzoni S, D'Onofrio M, Ragona L, Molinari H, Assfalg M. The unique ligand binding features of subfamily-II iLBPs with respect to bile salts and related drugs. Prostaglandins Leukot Essent Fatty Acids 2015; 95:1-10. [PMID: 25468388 DOI: 10.1016/j.plefa.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/20/2014] [Indexed: 11/28/2022]
Abstract
Intracellular lipid binding proteins (iLBPs) are a family of evolutionarily related small cytoplasmic proteins implicated in the transcellular transport of lipophilic ligands. Subfamily-II iLBPs include the liver fatty acid binding protein (L-FABP), and the ileal and the liver and ileal bile acid binding proteins (L-BABP and I-BABP). Atomic-level investigations during the past 15-20 years have delivered relevant information on bile acid binding by this protein group, revealing unique features including binding cooperativity, promiscuity, and site selectivity. Using NMR spectroscopy and other biophysical techniques, our laboratories have contributed to an understanding of the molecular determinants of some of these properties and their generality among proteins from different animal species. We focused especially on formation of heterotypic complexes, considering the mixed compositions of physiological bile acid pools. Experiments performed with synthetic bile acid derivatives showed that iLBPs could act as targets for cell-specific contrast agents and, more generally, as effective carriers of amphiphilic drugs. This review collects the major findings related to bile salt interactions with iLBPs aiming to provide keys for a deeper understanding of protein-mediated intracellular bile salt trafficking.
Collapse
Affiliation(s)
- Filippo Favretto
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Alberto Ceccon
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Laura Ragona
- Institute for Macromolecular Studies, National Research Council, Via Bassini 15, Milan 20133, Italy
| | - Henriette Molinari
- Institute for Macromolecular Studies, National Research Council, Via Bassini 15, Milan 20133, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| |
Collapse
|
21
|
Huang H, McIntosh AL, Landrock KK, Landrock D, Storey SM, Martin GG, Gupta S, Atshaves BP, Kier AB, Schroeder F. Human FABP1 T94A variant enhances cholesterol uptake. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:946-55. [PMID: 25732850 DOI: 10.1016/j.bbalip.2015.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/09/2023]
Abstract
Although expression of the human liver fatty acid binding protein (FABP1) T94A variant alters serum lipoprotein cholesterol levels in human subjects, nothing is known whereby the variant elicits these effects. This issue was addressed by in vitro cholesterol binding assays using purified recombinant wild-type (WT) FABP1 T94T and T94A variant proteins and in cultured primary human hepatocytes expressing the FABP1 T94T (genotyped as TT) or T94A (genotyped as CC) proteins. The human FABP1 T94A variant protein had 3-fold higher cholesterol-binding affinity than the WT FABP1 T94T as shown by NBD-cholesterol fluorescence binding assays and by cholesterol isothermal titration microcalorimetry (ITC) binding assays. CC variant hepatocytes also exhibited 30% higher total FABP1 protein. HDL- and LDL-mediated NBD-cholesterol uptake was faster in CC variant than TT WT human hepatocytes. VLDL-mediated uptake of NBD-cholesterol did not differ between CC and TT human hepatocytes. The increased HDL- and LDL-mediated NBD-cholesterol uptake was not associated with any significant change in mRNA levels of SCARB1, LDLR, CETP, and LCAT encoding the key proteins in lipoprotein cholesterol uptake. Thus, the increased HDL- and LDL-mediated NBD-cholesterol uptake by CC hepatocytes may be associated with higher affinity of T94A protein for cholesterol and/or increased total T94A protein level.
Collapse
Affiliation(s)
- Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA
| | - Shipra Gupta
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| |
Collapse
|
22
|
Favretto F, Santambrogio C, D'Onofrio M, Molinari H, Grandori R, Assfalg M. Bile salt recognition by human liver fatty acid binding protein. FEBS J 2015; 282:1271-88. [PMID: 25639618 DOI: 10.1111/febs.13218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.
Collapse
|
23
|
Martin GG, Atshaves BP, Landrock KK, Landrock D, Storey SM, Howles PN, Kier AB, Schroeder F. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1130-43. [PMID: 25277800 PMCID: PMC4254959 DOI: 10.1152/ajpgi.00209.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/28/2014] [Indexed: 01/31/2023]
Abstract
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ann B Kier
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas;
| |
Collapse
|
24
|
Ceccon A, Lelli M, D’Onofrio M, Molinari H, Assfalg M. Dynamics of a Globular Protein Adsorbed to Liposomal Nanoparticles. J Am Chem Soc 2014; 136:13158-61. [DOI: 10.1021/ja507310m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alberto Ceccon
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Moreno Lelli
- Centre
de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon, CNRS/ENS Lyon/UCB Lyon 1, 69100 Villeurbanne, France
| | - Mariapina D’Onofrio
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Henriette Molinari
- Laboratorio
NMR, Istituto per lo Studio delle Macromolecole, CNR, Via Bassini 15, 20133 Milano, Italy
| | - Michael Assfalg
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
25
|
Ragona L, Pagano K, Tomaselli S, Favretto F, Ceccon A, Zanzoni S, D'Onofrio M, Assfalg M, Molinari H. The role of dynamics in modulating ligand exchange in intracellular lipid binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1268-78. [PMID: 24768771 DOI: 10.1016/j.bbapap.2014.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/29/2022]
Abstract
Lipids are essential for many biological processes and crucial in the pathogenesis of several diseases. Intracellular lipid-binding proteins (iLBPs) provide mobile hydrophobic binding sites that allow hydrophobic or amphipathic lipid molecules to penetrate into and across aqueous layers. Thus iLBPs mediate the lipid transport within the cell and participate to a spectrum of tissue-specific pathways involved in lipid homeostasis. Structural studies have shown that iLBPs' binding sites are inaccessible from the bulk, implying that substrate binding should involve a conformational change able to produce a ligand entry portal. Many studies have been reported in the last two decades on iLBPs indicating that their dynamics play a pivotal role in regulating ligand binding and targeted release. The ensemble of reported data has not been reviewed until today. This review is thus intended to summarize and possibly generalize the results up to now described, providing a picture which could help to identify the missing notions necessary to improve our understanding of the role of dynamics in iLBPs' molecular recognition. Such notions would clarify the chemistry of lipid binding to iLBPs and set the basis for the development of new drugs.
Collapse
Affiliation(s)
- Laura Ragona
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy
| | - Katiuscia Pagano
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy
| | - Simona Tomaselli
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy
| | - Filippo Favretto
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alberto Ceccon
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Serena Zanzoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Mariapina D'Onofrio
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michael Assfalg
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Henriette Molinari
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy.
| |
Collapse
|
26
|
Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care 2014; 17:124-9. [PMID: 24500438 DOI: 10.1097/mco.0000000000000031] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study is to review recent evidence for the role of the cytosolic fatty acid binding proteins (FABPs) as central regulators of whole-body metabolic control. RECENT FINDINGS Dysregulated FABPs have been associated with a number of diseases, including obesity and nonalcoholic fatty liver disease (FABP1, FABP2, FABP4), cardiovascular risk (FABP3) and cancer (FABP5, FABP7). As underlying mechanisms become better understood, FABPs may represent novel biomarkers for therapeutic targets. In addition, the role of FABPs as important signalling molecules has also been highlighted in recent years; for example, FABP3 may act as a myokine, matching whole-body metabolism to muscular energy demands and FABP4 functions as an adipokine in regulating macrophage and adipocyte interactions during inflammation. SUMMARY In addition to their traditional role as fatty acid trafficking proteins, increasing evidence supports the role of FABPs as important controllers of global metabolism, with their dysregulation being linked to a host of metabolic diseases.
Collapse
Affiliation(s)
- Alfred E Thumser
- aDepartment of Biochemistry and Physiology bDepartment of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | |
Collapse
|
27
|
Martin GG, McIntosh AL, Huang H, Gupta S, Atshaves BP, Landrock KK, Landrock D, Kier AB, Schroeder F. The human liver fatty acid binding protein T94A variant alters the structure, stability, and interaction with fibrates. Biochemistry 2013; 52:9347-57. [PMID: 24299557 PMCID: PMC3930105 DOI: 10.1021/bi401014k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the human liver fatty acid binding protein (L-FABP) T94A variant arises from the most commonly occurring single-nucleotide polymorphism in the entire FABP family, there is a complete lack of understanding regarding the role of this polymorphism in human disease. It has been hypothesized that the T94A substitution results in the complete loss of ligand binding ability and function analogous to that seen with L-FABP gene ablation. This possibility was addressed using the recombinant human wild-type (WT) T94T and T94A variant L-FABP and cultured primary human hepatocytes. Nonconservative replacement of the medium-sized, polar, uncharged T residue with a smaller, nonpolar, aliphatic A residue at position 94 of the human L-FABP significantly increased the L-FABP α-helical structure content at the expense of β-sheet content and concomitantly decreased the thermal stability. T94A did not alter the binding affinities for peroxisome proliferator-activated receptor α (PPARα) agonist ligands (phytanic acid, fenofibrate, and fenofibric acid). While T94A did not alter the impact of phytanic acid and only slightly altered that of fenofibrate on the human L-FABP secondary structure, the active metabolite fenofibric acid altered the T94A secondary structure much more than that of the WT T94T L-FABP. Finally, in cultured primary human hepatocytes, the T94A variant exhibited a significantly reduced extent of fibrate-mediated induction of PPARα-regulated proteins such as L-FABP, FATP5, and PPARα itself. Thus, while the T94A substitution did not alter the affinity of the human L-FABP for PPARα agonist ligands, it significantly altered the human L-FABP structure, stability, and conformational and functional response to fibrate.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| | - Shipra Gupta
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Barbara P. Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Kerstin K. Landrock
- Department of Pathobiology, Texas A&M University, TVMC College Station, TX 77843-4467
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, TVMC College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| |
Collapse
|
28
|
Pagano K, Tomaselli S, Zanzoni S, Assfalg M, Molinari H, Ragona L. Bile acid binding protein: a versatile host of small hydrophobic ligands for applications in the fields of MRI contrast agents and bio-nanomaterials. Comput Struct Biotechnol J 2013; 6:e201303021. [PMID: 24688729 PMCID: PMC3962148 DOI: 10.5936/csbj.201303021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 01/02/2023] Open
Abstract
During the last decade a growing amount of evidence has been obtained, supporting the role of the beta-clamshell family of intracellular lipid binding proteins (iLBPs) not only in the translocation of lipophilic molecules but also in lipid mediated signalling and metabolism. Given the central role of lipids in physiological processes, it is essential to have detailed knowledge on their interactions with cognate binding proteins. Structural and dynamical aspects of the binding mechanisms have been widely investigated by means of NMR spectroscopy, docking and molecular dynamics simulation approaches. iLBPs share a stable beta-barrel fold, delimiting an internal cavity capable of promiscuous ligand binding and display significant flexibility at the putative ligand portal. These features make this class of proteins good scaffolds to build host-guest systems for applications in nanomedicine and nanomaterials.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Simona Tomaselli
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Serena Zanzoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| |
Collapse
|