1
|
Guo D, Liu S, Sun Y. Who Can Help Me? Citizens' Help-Seeking on Weibo During the Shanghai Lockdown. Disaster Med Public Health Prep 2025; 18:e329. [PMID: 39749776 DOI: 10.1017/dmp.2024.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
OBJECTIVE In the context of the Omicron-induced lockdown in Shanghai, this paper investigated the appeals for assistance by citizens on Weibo, aiming to understand their principal challenges and immediate needs. METHODS This paper collected Weibo posts (N = 1040) containing the keyword "Shanghai Anti-epidemic Help" during the citywide lockdown. The online help requests from Shanghai citizens were analyzed across 7 dimensions, including the help sought, level of urgency, help recipient, the intended beneficiary of the help, expression, position, and emotion. RESULTS The study found that the most common requests for assistance were related to social isolation, specifically in the areas of home and community (34.81%), isolation (10.86%), and personal freedom (7.31%). Of all help requests, 11.83% were deemed very urgent. Most of the Weibo posts sent out a plea for help to Internet users (56.06%), primarily requesting help for themselves (26.25%) or their families (27.60%). CONCLUSIONS The study found that personal freedom, food, and medical care were the most frequently sought help from the public, and most of the public's positions and emotions were pessimistic. The relevant findings revealed the public's needs and status during the city closure, providing a reference for emergency preparedness in public health events or emergencies.
Collapse
Affiliation(s)
- Difan Guo
- School of Journalism and Communication, Beijing Normal University, Beijing100875, China
| | - Shaoqiang Liu
- School of Journalism and Communication, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Yao Sun
- School of Journalism and Communication, Shandong University, Jinan250100, China
| |
Collapse
|
2
|
Parua P, Ghosh S, Jana K, Seth A, Debnath B, Rout SK, Sarangi MK, Dash R, Halder J, Rajwar TK, Pradhan D, Rai VK, Dash P, Das C, Kar B, Ghosh G, Rath G. Therapeutic Potential of Neutralizing Monoclonal Antibodies (nMAbs) against SARS-CoV-2 Omicron Variant. Curr Pharm Des 2025; 31:753-773. [PMID: 39543801 DOI: 10.2174/0113816128334441241108050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The COVID-19 pandemic has spurred significant endeavors to devise treatments to combat SARS-CoV-2. A limited array of small-molecule antiviral drugs, specifically monoclonal antibodies and interferon therapy, have been sanctioned to treat COVID-19. These treatments typically necessitate administration within ten days of symptom onset. There have been reported reductions in the effectiveness of these medications due to mutations in non-structural protein genes, particularly against Omicron subvariants. This underscores the pressing requirement for healthcare systems to continually monitor pathogen variability and its impact on the efficacy of prevention and treatments. AIM This review aimed to comprehend the therapeutic benefits and recent progress of nMAbs for preventing and treating the Omicron variant of SARS-CoV-2. RESULTS AND DISCUSSION Neutralizing monoclonal antibodies (nMAbs) provide a treatment avenue for severely affected individuals, especially those at high risk for whom vaccination is not viable. With their specific epitope affinity, they pose no significant risk of severe adverse effects. The degree of reduction in neutralization varies significantly across different monoclonal antibodies and variant combinations. For instance, Sotrovimab maintained its neutralization effectiveness against Omicron BA.1, but exhibited diminished efficacy against BA.2, BA.4, BA.5, and BA.2.12.1. CONCLUSION Bebtelovimab has been observed to preserve its efficacy against all subtypes of the Omicron variant. Subsequently, WKS13, mAb-39, 19n01, F61-d2 cocktail, etc., have become effective. This review has highlighted the therapeutic implications of nMAbs in SARS-CoV-2 Omicron treatment and the progress of COVID-19 drug discovery.
Collapse
Affiliation(s)
- Pijus Parua
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Somnath Ghosh
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Koushik Jana
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Arnab Seth
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Biplab Debnath
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Saroj Kumar Rout
- LNK International, Inc., Hauppauge, New York-11788, United States
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow-226024, Uttar Pradesh, India
| | - Rasmita Dash
- Department of Pharmaceutics, School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar-752050, Odisha, India
| | - Jitu Halder
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Priyanka Dash
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
3
|
Esmaeilzadeh A, Ebrahimi F, Jahani Maleki A, Siahmansouri A. EG.5 (Eris) and BA.2.86 (Pirola) two new subvariants of SARS-CoV-2: a new face of old COVID-19. Infection 2024; 52:337-343. [PMID: 38170417 DOI: 10.1007/s15010-023-02146-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The World Health Organization announced the end of the Coronavirus Disease of 2019 (COVID-19) global health emergency on May 5, 2023. However, the reports from different countries indicate an elevation in the number of COVID-19-related hospitalizations and deaths through the last months. The subvariant XBB.1.5 (Kraken) was the cause of 49.1% of COVID-19 cases by the end of January 2023. Although, the subvariant EG.5 (Eris) has surpassed the XBB.1.5 recently. EG.5 is a close subvariant descending from XBB.1.9.2 subvariant of Omicron. EG.5.1 is a sublineage carrying two crucial spike mutations F456L and Q52H. Up to now, it is not well-established whether its infectivity, severity, and immune evasion have shown any change or not. Also, BA.2.86 another subvariant of Omicron descending from BA.2 bears over 30 mutations which could affect its infectivity and transmissibility. METHODS Scopus, PubMed, Google Scholar, and Google were searched with six keywords up to 20 November 2023 and highly reliable research and reports were selected to refer to in this article. PURPOSE This brief review aims to overview the most reliable data about EG.5 and BA.2.86 based on scientific evidence. CONCLUSION Based on the currently available data these two new subvariants have similar features with currently circulating variants of Omicron and are less immune evasive than ancestral SARS-CoV-2.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Corona Molecular Diagnosis Reference Laboratory, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Fereshteh Ebrahimi
- Student Research Committee, Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Armin Jahani Maleki
- Infectious Disease Department, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- Infectious Disease Department, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Mohapatra RK, Kandi V, Gaidhane AM, Zahiruddin QS, Rustagi S, Satapathy P, Mishra S, Tuglo LS. Global domination of the recently VoI-classified 'JN.1′ outcompeting other variants – Comparing the vaccines’ efficacy. CLINICAL INFECTION IN PRACTICE 2024; 22:100358. [DOI: 10.1016/j.clinpr.2024.100358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2025] Open
|
5
|
Yadav PD, Patil DY, Sahay RR, Shete AM, Mohandas S, Nair V. The impact of Omicron on the COVID-19 vaccines: A review. VACUNAS 2024; 25:274-284. [DOI: 10.1016/j.vacun.2024.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
El-Megharbel SM, Qahl SH, Albogami B, Hamza RZ. Chemical and spectroscopic characterization of (Artemisinin/Querctin/ Zinc) novel mixed ligand complex with assessment of its potent high antiviral activity against SARS-CoV-2 and antioxidant capacity against toxicity induced by acrylamide in male rats. PeerJ 2024; 12:e15638. [PMID: 38188145 PMCID: PMC10768679 DOI: 10.7717/peerj.15638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
A novel Artemisinin/Quercetin/Zinc (Art/Q/Zn) mixed ligand complex was synthesized, tested for its antiviral activity against coronavirus (SARS-CoV-2), and investigated for its effect against toxicity and oxidative stress induced by acrylamide (Acy), which develops upon cooking starchy foods at high temperatures. The synthesized complex was chemically characterized by performing elemental analysis, conductance measurements, FT-IR, UV, magnetic measurements, and XRD. The morphological surface of the complex Art/Q/Zn was investigated using scanning and transmission electron microscopy (SEM and TEM) and energy dispersive X-ray analysis (XRD). The in vitro antiviral activity of the complex Art/Q/Zn against SARS-CoV-2 and its in vivo activity against Acy-induced toxicity in hepatic and pulmonary tissues were analyzed. An experimental model was used to evaluate the beneficial effects of the novel Art/Q/Zn novel complex on lung and liver toxicities of Acy. Forty male rats were randomly divided into four groups: control, Acy (500 mg/Kg), Art/Q/Zn (30 mg/kg), and a combination of Acy and Art/Q/Zn. The complex was orally administered for 30 days. Hepatic function and inflammation marker (CRP), tumor necrosis factor, interleukin-6 (IL-6), antioxidant enzyme (CAT, SOD, and GPx), marker of oxidative stress (MDA), and blood pressure levels were investigated. Histological and ultrastructure alterations and caspase-3 variations (immunological marker) were also investigated. FT-IR spectra revealed that Zn (II) is able to chelate through C=O and C-OH (Ring II) which are the carbonyl oxygen atoms of the quercetin ligand and carbonyl oxygen atom C=O of the Art ligand, forming Art/Q/Zn complex with the chemical formula [Zn(Q)(Art)(Cl)(H2O)2]⋅3H2O. The novel complex exhibited a potent anti-SARS-CoV-2 activity even at a low concentration (IC50 = 10.14 µg/ml) and was not cytotoxic to the cellular host (CC50 = 208.5 µg/ml). Art/Q/Zn may inhibit the viral replication and binding to the angiotensin-converting enzyme-2 (ACE2) receptor and the main protease inhibitor (MPro), thereby inhibiting the activity of SARS-CoV-2 and this proved by the molecular dynamics simulation. It alleviated Acy hepatic and pulmonary toxicity by improving all biochemical markers. Therefore, it can be concluded that the novel formula Art/Q/Zn complex is an effective antioxidant agent against the oxidative stress series, and it has high inhibitory effect against SARS-CoV-2.
Collapse
Affiliation(s)
- Samy M. El-Megharbel
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Bander Albogami
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Reham Z. Hamza
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
7
|
Mohapatra RK, Mishra S, Kandi V, Branda F, Ansari A, Rabaan AA, Kudrat‐E‐Zahan M. Analyzing the emerging patterns of SARS-CoV-2 Omicron subvariants for the development of next-gen vaccine: An observational study. Health Sci Rep 2023; 6:e1596. [PMID: 37867789 PMCID: PMC10584996 DOI: 10.1002/hsr2.1596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Background and Aim Understanding the prevalence and impact of SARS-CoV-2 variants has assumed paramount importance. This study statistically analyzed to effectively track the emergence and spread of the variants and highlights the importance of such investigations in developing potential next-gen vaccine to combat the continuously emerging Omicron subvariants. Methods Transmission fitness advantage and effective reproductive number (R e) of epidemiologically relevant SARS-CoV-2 sublineages through time during the study period based on the GISAID data were estimated. Results The analyses covered the period from January to June 2023 around an array of sequenced samples. The dominance of the XBB variant strain, accounting for approximately 57.63% of the cases, was identified during the timeframe. XBB.1.5 exhibited 37.95% prevalence rate from March to June 2023. Multiple variants showed considerable global influence throughout the study, as sporadically documented. Notably, the XBB variant demonstrated an estimated relative 28% weekly growth advantage compared with others. Numerous variants were resistant to the over-the-counter vaccines and breakthrough infections were reported. Similarly, the efficacy of mAB-based therapy appeared limited. However, it's important to underscore the perceived benefits of these preventive and therapeutic measures were restricted to specific variants. Conclusion Given the observed trends, a comprehensive next-gen vaccine coupled with an advanced vaccination strategy could be a potential panacea in the fight against the pandemic. The findings suggest that targeted vaccine development could be an effective strategy to prevent infections. The study also highlights the need of global collaborations to rapidly develop and distribute the vaccines to ensure global human health.
Collapse
Affiliation(s)
| | - Snehasish Mishra
- School of Biotechnology, Campus‐11KIIT Deemed‐to‐be‐UniversityBhubaneswarOdishaIndia
| | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Francesco Branda
- Department of Computer Science, Modeling, Electronics and Systems Engineering (DIMES)University of CalabriaRendeItaly
| | - Azaj Ansari
- Department of ChemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Ali A. Rabaan
- Molecular Diagnostic LaboratoryJohns Hopkins Aramco HealthcareDhahranSaudi Arabia
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
- Department of Public Health and NutritionThe University of HaripurHaripurPakistan
| | | |
Collapse
|
8
|
Hu S, Wang N, Chen S, Zhang H, Wang C, Ma W, Zhang X, Wu Y, Lv Y, Xue Z, Bai H, Ge S, He H, Lu W, Zhang T, Ding Y, Liu R, Han S, Zhan Y, Zhan G, Guo Z, Zhang Y, Lu J, Gao J, Jia Q, Wang Y, Wang H, Lu S, Jin T, Chiu S, He L. Harringtonine: A more effective antagonist for Omicron variant. Biochem Pharmacol 2023; 213:115617. [PMID: 37211174 PMCID: PMC10195862 DOI: 10.1016/j.bcp.2023.115617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Fusion with host cell membrane is the main mechanism of infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we propose that a new strategy to screen small-molecule antagonists blocking SARS-CoV-2 membrane fusion. Using cell membrane chromatography (CMC), we found that harringtonine (HT) simultaneously targeted SARS-CoV-2 S protein and host cell surface TMPRSS2 expressed by the host cell, and subsequently confirmed that HT can inhibit membrane fusion. HT effectively blocked SARS-CoV-2 original strain entry with the IC50 of 0.217 μM, while the IC50 in delta variant decreased to 0.101 μM, the IC50 in Omicron BA.1 variant was 0.042 μM. Due to high transmissibility and immune escape, Omicron subvariant BA.5 has become the dominant strain of the SARS-CoV-2 virus and led to escalating COVID-19 cases, however, against BA.5, HT showed a surprising effectiveness. The IC50 in Omicron BA.5 was even lower than 0.0019 μM. The above results revealed the effect of HT on Omicron is very significant. In summary, we characterize HT as a small-molecule antagonist by direct targeting on the Spike protein and TMPRSS2.
Collapse
Affiliation(s)
- Shiling Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shaohong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huajun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Zhuoyin Xue
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Haoyun Bai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Ge
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Huaizhen He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Wen Lu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tao Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Rui Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yingzhuan Zhan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Guanqun Zhan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Zengjun Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yongjing Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jiayu Lu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yuejin Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Hongliang Wang
- Department of pathogen biology and immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shemin Lu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Tengchuan Jin
- Division of Life Sciences and Medicine, University of Sciences and Technology of China, Hefei, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Sciences and Technology of China, Hefei, China.
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Zheng J, Hong W, Zhou C, Hong D, Yan H, Shen Y. A retrospective analysis of factors associated with the length of hospital stay in COVID-19 patients treated with Nirmatrelvir / Ritonavir. Front Pharmacol 2023; 14:1146938. [PMID: 37342588 PMCID: PMC10277610 DOI: 10.3389/fphar.2023.1146938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Objectives: This study reviewed factors influencing the length of hospital stay in adult inpatients with confirmed Coronavirus disease (COVID-19) who were treated with Nirmatrelvir/Ritonavir. Methods: We did a retrospective analysis of data from a cohort of inpatients with confirmed diagnosis of Omicron variant of SARS-CoV-2 infection who were treated with Nirmatrelvir/Ritonavir. We included patients who were treated from 13th March 2022 to 6th May 2022 in various in-patient treatment units in Quanzhou, Fujian Province, China. The primary study outcome was the length of hospital stay. Secondary study outcome was viral elimination defined as negative for ORF1ab and N genes [cycle threshold (Ct) value ≥35 in real-time PCR], according to local guidelines. Hazard ratios (HR) of event outcomes were analyzed using Multivariate Cox regression models. Results: We studied 31 inpatients with high risk for severe COVID-19 who were treated with Nirmatrelvir/Ritonavir. We found that inpatients with shorter length of hospital stay (≤17 days) were mostly females with lower body mass index (BMI) and Charlson Comorbidity Index (CCI) index. Their treatment regimen with Nirmatrelvir/Ritonavir was started within 5 days of diagnosis (p < 0.05). Multivariate Cox regression indicated that inpatients starting treatment of Nirmatrelvir/Ritonavir within 5 days had a shorter length of hospital stay (HR 3.573, p = 0.004) and had a faster clearance of viral load (HR 2.755, p = 0.043). Conclusion: This study assumes relevance during the Omicron BA.2 epidemic as our findings suggest that early treatment with Nirmatrelvir/Ritonavir within 5 days of diagnosis (≤5 days) was highly effective in shortening the length of hospital stay and faster viral load clearance.
Collapse
Affiliation(s)
- Jiantao Zheng
- Department of Emergency, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Wencong Hong
- Department of Respiratory and Critical Care Medicine, The Hospital of Nanan City, Nanan, China
| | - Chanjuan Zhou
- Department of Geriatrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Donghuang Hong
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hong Yan
- Department of Emergency, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yanghui Shen
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
10
|
Song D, Deng Q, Chen H. What can traditional plant therapy do in the face of Covid-19? Examples from traditional Chinese medicine. Afr Health Sci 2023; 23:56-66. [PMID: 38223591 PMCID: PMC10782358 DOI: 10.4314/ahs.v23i2.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Background Until June 2022, more than 540.9 million people had been diagnosed with COVID-19, and the pandemic had claimed more than six million lives worldwide. Two years after fighting the virus, we faced a more uncertain position. SARS-CoV-2 is constantly mutating and reappears regularly, particularly with Omicron variants showing high genetic variation and immune escape mechanisms. The efficacy and duration of protection of existing vaccines against new variants of SARS-CoV-2 remains uncertain. The world needs time to develop new variant-specific drugs, including monoclonal topics, vaccines, and other antiviral drugs, to fight the epidemic. Objective The aim of this study was to illustrate the scientific, effective and systematic nature of three classical prescriptions of traditional Chinese medicine (TCM) for the treatment of COVID-19 through comparison of disease symptoms, diagnostic process, and treatment methods and evidence-based and pharmacological studies. Methods We analysed the "Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia" (Version 9) made by China, "WHO-2019-nCoV-therapeutics", "Therapeutic Guidelines" published by Australian Therapeutic Guidelines Limited, "Shanghan Lun (Treatise on Febrile Diseases)", "Jinkui Yaolue (Golden Chamber Synopsis), and "Wenyi Lun (The Epidemic Febrile Disease)". We manually retrieved the dictionary of traditional Chinese medicine (Version II). In addition, we searched the Wiley online library, National Center for Biotechnology Information (NCBI), VIP, WHO website, and China National Knowledge Infrastructure (CNKI) for relevant literature from 2001 to 2022. We searched the original plants, ingredients, pharmacology, functions and indications, usage and dosage, drug efficacy, literature sources, and conduct an evidence-based studies. We quantified the strength of pharmacological action to show the pertinence of disease development. Results We found that the diagnosis and treatment of pulmonary infection caused by epidemic disease in TCM classics is consistent with the diagnostic process of modern medical therapeutic guidelines. The three classic prescriptions have significant symptomatic therapeutic effects on the respiratory, gastrointestinal, urinary and hematological symptoms of the clinical manifestations of COVID-19. It was found that the herbal functional group of Houpo (Cortex Magnoliae Officinalis), Chaihu (Radix Bupleuri), Cangzhu (Rhizoma Atractylodis), Qianghuo (Notopterygii Rhizoma et Radix), etc showed strong anti-inflammatory activity and had a positive effect on treating and preventing the outbreaks of systemic inflammatory factors. Conclusion TCM can obtain obvious curative effect in symptomatic treatment, has strong anti-inflammatory effect, and can effectively reduce symptoms and patients' pain.
Collapse
Affiliation(s)
- Dandan Song
- Department of Pharmacy, Shaoxing Seventh People's Hospital, Shaoxing, Zhejiang, China
| | - Qian Deng
- Department of Pharmacy, Shaoxing Seventh People's Hospital, Shaoxing, Zhejiang, China
| | - Hualiang Chen
- Department of Pharmacy, Shaoxing Seventh People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
11
|
Kim SH, Kearns FL, Rosenfeld MA, Votapka L, Casalino L, Papanikolas M, Amaro RE, Freeman R. SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101346. [PMID: 37077408 PMCID: PMC10080732 DOI: 10.1016/j.xcrp.2023.101346] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Viral variants of concern continue to arise for SARS-CoV-2, potentially impacting both methods for detection and mechanisms of action. Here, we investigate the effect of an evolving spike positive charge in SARS-CoV-2 variants and subsequent interactions with heparan sulfate and the angiotensin converting enzyme 2 (ACE2) in the glycocalyx. We show that the positively charged Omicron variant evolved enhanced binding rates to the negatively charged glycocalyx. Moreover, we discover that while the Omicron spike-ACE2 affinity is comparable to that of the Delta variant, the Omicron spike interactions with heparan sulfate are significantly enhanced, giving rise to a ternary complex of spike-heparan sulfate-ACE2 with a large proportion of double-bound and triple-bound ACE2. Our findings suggest that SARS-CoV-2 variants evolve to be more dependent on heparan sulfate in viral attachment and infection. This discovery enables us to engineer a second-generation lateral-flow test strip that harnesses both heparin and ACE2 to reliably detect all variants of concern, including Omicron.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Lane Votapka
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Micah Papanikolas
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| |
Collapse
|
12
|
SARS-CoV-2 Vaccines, Vaccine Development Technologies, and Significant Efforts in Vaccine Development during the Pandemic: The Lessons Learned Might Help to Fight against the Next Pandemic. Vaccines (Basel) 2023; 11:vaccines11030682. [PMID: 36992266 DOI: 10.3390/vaccines11030682] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
We are currently approaching three years since the beginning of the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 has caused extensive disruptions in everyday life, public health, and the global economy. Thus far, the vaccine has worked better than expected against the virus. During the pandemic, we experienced several things, such as the virus and its pathogenesis, clinical manifestations, and treatments; emerging variants; different vaccines; and the vaccine development processes. This review describes how each vaccine has been developed and approved with the help of modern technology. We also discuss critical milestones during the vaccine development process. Several lessons were learned from different countries during the two years of vaccine research, development, clinical trials, and vaccination. The lessons learned during the vaccine development process will help to fight the next pandemic.
Collapse
|
13
|
Mohapatra RK, Verma S, Kandi V, Sarangi AK, Seidel V, Das SN, Behera A, Tuli HS, Sharma AK, Dhama K. The SARS‐CoV‐2 Omicron Variant and its Multiple Sub‐lineages: Transmissibility, Vaccine Development, Antiviral Drugs, Monoclonal Antibodies, and Strategies for Infection Control – a Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202201380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Ranjan K. Mohapatra
- Department of Chemistry Government College of Engineering Keonjhar 758002 Odisha India
| | - Sarika Verma
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute Bhopal MP 462026 India
- Academy of council Scientific and Industrial Research - Advanced Materials and Processes Research Institute (AMPRI) Hoshangabad Road Bhopal (M.P) 462026 India
| | - Venkataramana Kandi
- Department of Microbiology Prathima Institute of Medical Sciences Karimnagar 505417 Telangana India
| | - Ashish K. Sarangi
- Department of Chemistry School of Applied Sciences Centurion University of Technology and Management Odisha India
| | - Veronique Seidel
- Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow G4 0RE United Kingdom
| | - Subrata Narayan Das
- Department of Mining Engineering Government College of Engineering Keonjhar 758002 Odisha India
| | - Ajit Behera
- Department of Metallurgical & Materials Engineering National Institute of Technology Rourkela 769008 India
| | - Hardeep Singh Tuli
- Department of Biotechnology Maharishi MarkandeshwarEngineering College Maharishi MarkandeshwarDeemed to be University, Mullana Ambala, 133207 Haryana India
| | - Ashwani K. Sharma
- Department of Chemistry Government Digvijay (Autonomous) Post-Graduate College Rajnandgaon (C.G. India
| | - Kuldeep Dhama
- Division of Pathology ICAR-Indian Veterinary Research Institute Bareilly
| |
Collapse
|
14
|
Yusharyahya SN, Japranata VV, Jonlean R, Legiawati L, Astriningrum R. Cutaneous manifestations in elderly patients with confirmed coronavirus disease 2019 and the disease outcomes: A systematic review. J Dermatol 2023; 50:679-691. [PMID: 36680396 DOI: 10.1111/1346-8138.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
Cutaneous manifestations in coronavirus disease 2019 (COVID-19) patients may possess prognostic value for identifying potentially severe cases. This systematic review investigated whether dermatological features are associated with COVID-19 outcomes in elderly patients. Literature retrieval was conducted on May 11, 2022, from databases, hand-searching, and tracing citations. Following selection against eligibility criteria, the remaining records were evaluated utilizing the National Heart, Lung, and Blood Institute Study Quality Assessment Tool or Newcastle-Ottawa Scale. The pooled individual data were subsequently analyzed using the Cochran-Mantel-Haenszel test to calculate the odds ratio (ORs) and confidence intervals (CIs) for the severity and mortality of each skin lesion type. We incorporated 70 articles, including 180 and 117 entries, with information regarding disease severity and mortality. Further analysis revealed that vascular type was the skin lesion most frequently noticed in confirmed COVID-19 elderly patients (46.2%) and was associated with an increased risk of developing advanced disease (OR 7.32, 95% CI 3.39-15.81) and the ensuing termination (OR 5.73, 95% CI 2.46-13.36). The converse phenomenon was observed in maculopapular type (severity OR 0.27, 95% CI 0.14-0.52; mortality OR 0.10, 95% CI 0.03-0.36). In conclusion, skin manifestations may predict COVID-19 severity and mortality in the senior group.
Collapse
Affiliation(s)
- Shannaz Nadia Yusharyahya
- Division of Geriatric Dermatology, Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia-dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | | | - Lili Legiawati
- Division of Geriatric Dermatology, Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia-dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Rinadewi Astriningrum
- Division of Geriatric Dermatology, Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia-dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
15
|
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20:6. [PMID: 36627683 PMCID: PMC9831023 DOI: 10.1186/s12985-023-01968-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ying Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
16
|
Xu C, Wang J, Yu L, Sui X, Wu Q. Omicron subvariant BA.5 is highly contagious but containable: Successful experience from Macau. Front Public Health 2023; 10:1029171. [PMID: 36703829 PMCID: PMC9871629 DOI: 10.3389/fpubh.2022.1029171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Due to its high transmissibility and immune escape, Omicron subvariant BA.5 has become the dominant strain of the SARS-CoV-2 virus and led to escalating COVID-19 cases, how to cope with it becomes an urgent issue. A BA.5 infection surge burst out on 18 June 2022 and brought an unprecedented challenge to Macau, the most densely populated region worldwide. This study aimed to analyze the characteristics of this outbreak and summarize the useful anti-epidemic measures and experiences during this outbreak. Methods All data were obtained from the Government Portal of Macao SAR (https://www.gov.mo), and the Special Webpage Against Epidemics, the Macao Health Bureau (www.ssm.gov.mo). An epidemiologic study was performed to analyze epidemic outcomes, including the infection rate, the proportion of symptomatic cases, the case fatality ratio (CFR), etc. Data were analyzed using SPSS Version 20. A p-value <0.05 was considered statistically significant. The anti-epidemic measures and experience were reviewed and summarized. Results The BA.5 outbreak resulted in 1,821 new cases, which was significantly more than the cumulative cases of the previous variants of COVID-19 in Macau. The symptomatic cases accounted for 38.71% of the total cases, which was higher than that of the previous variants. After 6-week concerted efforts, Macau effectively controlled the outbreak, with an infection rate of 0.27%, which was much lower than many BA.5-attacked regions. The CFR was approximately 0.86%, which was not statistically different from that of previous variants. Six victims were chronically ill senior elders and their vaccination rate was much lower than the average level. Macau took a comprehensive anti-epidemic strategy to win a quick victory against BA.5, especially the "relatively static" strategy that was first formulated and applied by Macau for the management of the COVID-19 pandemic. Successful experience showed that although BA.5 was highly contagious, it could be contained by comprehensive anti-epidemic measures, including adequate anti-epidemic preparation, herd immunity through vaccination, repeated mass nucleic acid tests and rapid antigen tests, KN-95 mask mandate, the "relatively static" strategy, precise prevention and control, epidemiological investigation and tracing, and traditional Chinese medicine treatment, etc. Discussion In Macau, compared with the previous subvariants, BA.5 is associated with increased transmissibility and a higher proportion of symptomatic cases, however, the risk of death remains similar, and the infection rate is much lower than that in many other BA.5-attacked regions. BA.5 is highly contagious but still containable, Macau's experience may offer hints for the regions experiencing the BA.5 waves to choose or adjust a more rational anti-epidemic strategy.
Collapse
Affiliation(s)
- Cong Xu
- Faculty of Chinese Medicine, University Hospital, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jue Wang
- Faculty of Chinese Medicine, University Hospital, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Lili Yu
- Faculty of Chinese Medicine, University Hospital, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China,*Correspondence: Lili Yu ✉
| | - Xinbing Sui
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China,Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China,Xinbing Sui ✉
| | - Qibiao Wu
- Faculty of Chinese Medicine, University Hospital, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China,Zhuhai Macau University of Science and Technology (MUST) Science and Technology Research Institute, Zhuhai, Guangdong, China,Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangzhou, China,Qibiao Wu ✉
| |
Collapse
|
17
|
Chatterjee S, Bhattacharya M, Nag S, Dhama K, Chakraborty C. A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses 2023; 15:167. [PMID: 36680207 PMCID: PMC9866114 DOI: 10.3390/v15010167] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The COVID-19 pandemic has created significant concern for everyone. Recent data from many worldwide reports suggest that most infections are caused by the Omicron variant and its sub-lineages, dominating all the previously emerged variants. The numerous mutations in Omicron's viral genome and its sub-lineages attribute it a larger amount of viral fitness, owing to the alteration of the transmission and pathophysiology of the virus. With a rapid change to the viral structure, Omicron and its sub-variants, namely BA.1, BA.2, BA.3, BA.4, and BA.5, dominate the community with an ability to escape the neutralization efficiency induced by prior vaccination or infections. Similarly, several recombinant sub-variants of Omicron, namely XBB, XBD, and XBF, etc., have emerged, which a better understanding. This review mainly entails the changes to Omicron and its sub-lineages due to it having a higher number of mutations. The binding affinity, cellular entry, disease severity, infection rates, and most importantly, the immune evading potential of them are discussed in this review. A comparative analysis of the Delta variant and the other dominating variants that evolved before Omicron gives the readers an in-depth understanding of the landscape of Omicron's transmission and infection. Furthermore, this review discusses the range of neutralization abilities possessed by several approved antiviral therapeutic molecules and neutralizing antibodies which are functional against Omicron and its sub-variants. The rapid evolution of the sub-variants is causing infections, but the broader aspect of their transmission and neutralization has not been explored. Thus, the scientific community should adopt an elucidative approach to obtain a clear idea about the recently emerged sub-variants, including the recombinant variants, so that effective neutralization with vaccines and drugs can be achieved. This, in turn, will lead to a drop in the number of cases and, finally, an end to the pandemic.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| |
Collapse
|
18
|
Zhou Y, Zhi H, Teng Y. The outbreak of SARS-CoV-2 Omicron lineages, immune escape, and vaccine effectivity. J Med Virol 2023; 95:e28138. [PMID: 36097349 PMCID: PMC9538491 DOI: 10.1002/jmv.28138] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
As of November 2021, several SARS-CoV-2 variants appeared and became dominant epidemic strains in many countries, including five variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron defined by the World Health Organization during the COVID-19 pandemic. As of August 2022, Omicron is classified into five main lineages, BA.1, BA.2, BA.3, BA.4, BA.5 and some sublineages (BA.1.1, BA.2.12.1, BA.2.11, BA.2.75, BA.4.6) (https://www.gisaid.org/). Compared to the previous VOCs (Alpha, Beta, Gamma, and Delta), all the Omicron lineages have the most highly mutations in the spike protein, and with 50 mutations accumulated throughout the genome. Early data indicated that Omicron BA.2 sublineage had higher infectivity and more immune escape than the early wild-type (WT) strain, the previous VOCs, and BA.1. Recently, global surveillance data suggest a higher transmissibility of BA.4/BA.5 than BA.1, BA.1.1 and BA.2, and BA.4/BA.5 is becoming dominant strain in many countries globally.
Collapse
Affiliation(s)
- Yongbing Zhou
- Department of Clinical Laboratory, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huilin Zhi
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Teng
- Department of Clinical Laboratory, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Wan EYF, Mok AHY, Yan VKC, Chan CIY, Wang B, Lai FTT, Chui CSL, Li X, Wong CKH, Lau CS, Wong ICK, Chan EWY. Effectiveness of BNT162b2 and CoronaVac vaccinations against SARS-CoV-2 omicron infection in people aged 60 years or above: a case-control study. J Travel Med 2022; 29:6761907. [PMID: 36250571 PMCID: PMC9619717 DOI: 10.1093/jtm/taac119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND In view of limited evidence that specifically addresses vaccine effectiveness (VE) in the older population, this study aims to evaluate the real-world effectiveness of BNT162b2 and CoronaVac in older adults during the Omicron BA.2 outbreak. METHODS This case-control study analyzed data available between January and March 2022 from the electronic health databases in Hong Kong and enrolled individuals aged 60 or above. Each case was matched with up to 10 controls by age, sex, index date and Charlson Comorbidity Index for the four outcomes (COVID-19 infection, COVID-19-related hospitalization, severe complications, and all-cause mortality) independently. Conditional logistic regression was conducted to evaluate VE of BNT162b2 and CoronaVac against COVID-19-related outcomes within 28 days after COVID-19 infection among participants stratified by age groups (60-79, ≥80 years old). RESULTS A dose-response relationship between the number of vaccine doses received and protection against severe or fatal disease was observed. Highest VE (95% CI) against COVID-19 infection was observed in individuals aged ≥80 who received three doses of BNT162b2 [75.5% (73.1-77.7%)] or three doses of CoronaVac [53.9% (51.0-56.5%)] compared to those in the younger age group who received three doses of BNT162b2 [51.1% (49.9-52.4%)] or three doses of CoronaVac [2.0% (-0.1-4.1%)]. VE (95% CI) was higher for other outcomes, reaching 91.9% (89.4-93.8%) and 86.7% (84.3-88.8%) against COVID-19-related hospitalization; 85.8% (61.2-94.8%) and 89.8% (72.4-96.3%) against COVID-19-related severe complications; and 96.4% (92.9-98.2%) and 95.0% (92.1-96.8%) against COVID-19-related mortality after three doses of BNT162b2 and CoronaVac in older vaccine recipients, respectively. A similar dose-response relationship was established in younger vaccine recipients and after stratification by sex and Charlson Comorbidity Index. CONCLUSION Both BNT162b2 and CoronaVac vaccination were effective in protecting older adults against COVID-19 infection and COVID-19-related severe outcomes amidst the Omicron BA.2 pandemic, and VE increased further with the third dose.
Collapse
Affiliation(s)
- Eric Yuk Fai Wan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anna Hoi Ying Mok
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent Ka Chun Yan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cheyenne I Ying Chan
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Boyuan Wang
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Francisco Tsz Tsun Lai
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Celine Sze Ling Chui
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xue Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Carlos King Ho Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chak Sing Lau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ian Chi Kei Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK.,Aston Pharmacy School, Aston University, Birmingham, UK.,Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Esther Wai Yin Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
20
|
Mohapatra RK, Mahal A, Kutikuppala LVS, Pal M, Kandi V, Sarangi AK, Obaidullah AJ, Mishra S. Renewed global threat by the novel SARS-CoV-2 variants ‘XBB, BF.7, BQ.1, BA.2.75, BA.4.6’: A discussion. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.1077155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
|
21
|
Kumar N, Kaushik R, Singh A, Uversky VN, Zhang KYJ, Sahu U, Bhatia S, Sanyal A. Bayesian Molecular Dating Analyses Combined with Mutational Profiling Suggest an Independent Origin and Evolution of SARS-CoV-2 Omicron BA.1 and BA.2 Sub-Lineages. Viruses 2022; 14:2764. [PMID: 36560768 PMCID: PMC9788409 DOI: 10.3390/v14122764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing evolution of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in the recent emergence of a highly divergent variant of concern (VOC) defined as Omicron or B.1.1.529. This VOC is of particular concern because it has the potential to evade most therapeutic antibodies and has undergone a sustained genetic evolution, resulting in the emergence of five distinct sub-lineages. However, the evolutionary dynamics of the initially identified Omicron BA.1 and BA.2 sub-lineages remain poorly understood. Herein, we combined Bayesian phylogenetic analysis, mutational profiling, and selection pressure analysis to track the virus's genetic changes that drive the early evolutionary dynamics of the Omicron. Based on the Omicron dataset chosen for the improved temporal signals and sampled globally between November 2021 and January 2022, the most recent common ancestor (tMRCA) and substitution rates for BA.1 were estimated to be that of 18 September 2021 (95% highest posterior density (HPD), 4 August-22 October 2021) and 1.435 × 10-3 (95% HPD = 1.021 × 10-3 - 1.869 × 10-3) substitution/site/year, respectively, whereas 3 November 2021 (95% highest posterior density (HPD) 26 September-28 November 2021) and 1.074 × 10-3 (95% HPD = 6.444 × 10-4 - 1.586 × 10-3) substitution/site/year were estimated for the BA.2 sub-lineage. The findings of this study suggest that the Omicron BA.1 and BA.2 sub-lineages originated independently and evolved over time. Furthermore, we identified multiple sites in the spike protein undergoing continued diversifying selection that may alter the neutralization profile of BA.1. This study sheds light on the ongoing global genomic surveillance and Bayesian molecular dating analyses to better understand the evolutionary dynamics of the virus and, as a result, mitigate the impact of emerging variants on public health.
Collapse
Affiliation(s)
- Naveen Kumar
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Rahul Kaushik
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi P.O. Box 3692, United Arab Emirates
- Center for Biosystems Dynamics Research, Laboratory for Structural Bioinformatics, Yokohama 230-0045, Japan
| | - Ashutosh Singh
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Federal Research Center ‘Pushchino, Scientific Center for Biological Research of the Russian Academy of Sciences’, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kam Y. J. Zhang
- Center for Biosystems Dynamics Research, Laboratory for Structural Bioinformatics, Yokohama 230-0045, Japan
| | - Upasana Sahu
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Sandeep Bhatia
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Aniket Sanyal
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| |
Collapse
|
22
|
Xu R, Wang W, Zhang W. As the SARS-CoV-2 virus evolves, should Omicron subvariant BA.2 be subjected to quarantine, or should we learn to live with it? Front Public Health 2022; 10:1039123. [PMID: 36504951 PMCID: PMC9730036 DOI: 10.3389/fpubh.2022.1039123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
It has been nearly 35 months since the COVID-19 outbreak. The pathogen SARS-CoV-2 has evolved into several variants. Among them, Omicron is the fifth variant of concern which have rapidly spread globally during the past 8 months. Omicron variant shows different characteristics from previous variants, which is highly infectious, highly transmissible, minimally pathogenic, vaccine and antibody tolerant; however, it is less likely to cause severe illness, resulting in fewer deaths. Omicron has evolved into five main lineages, including BA.1, BA.2, BA.3, BA.4, and BA.5. Before BA.5, Omicron BA.2 sublineage was the dominant strain all over the world for several months. The experience of prevention and treatment against BA.2 is worth studying and learning for overcoming other Omicron subvariants. Although the Omicron subvariant BA.2 is significantly less severe than that caused by ancestral strains, it is still far more dangerous than influenza, and its long-term sequelae are unknown. Effective treatments are currently limited; therefore, effective defense may be the key to controlling the epidemic today, rather than just "living with" the virus.
Collapse
Affiliation(s)
- Ren Xu
- Pulmonary and Critical Care Medicine Department, First Hospital of Jilin University, Changchun, China
| | - Wanning Wang
- Nephrology Department, First Hospital of Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Atari N, Kliker L, Zuckerman N, Elkader BA, Weiss-Ottolenghi Y, Mendelson E, Kreiss Y, Regev-Yochay G, Mandelboim M. Omicron BA.2.75 variant is efficiently neutralised following BA.1 and BA.5 breakthrough infection in vaccinated individuals, Israel, June to September 2022. Euro Surveill 2022; 27. [PMID: 36330820 PMCID: PMC9635020 DOI: 10.2807/1560-7917.es.2022.27.44.2200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We evaluated neutralising antibody titres against wild type (WT) SARS-CoV-2 and four Omicron variants (BA.1, BA.2, BA.5 and BA.2.75) in fully vaccinated (three doses of Comirnaty vaccine) healthcare workers (HCW) in Israel who had breakthrough BA.1/BA5 infections. Omicron breakthrough infections in vaccinated individuals resulted in increased neutralising antibodies against the WT and Omicron variants compared with vaccinated uninfected HCW. HCW who recovered from BA.1 or BA.5 infections showed similar neutralising antibodies levels against BA.2.75.
Collapse
Affiliation(s)
- Nofar Atari
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
| | - Limor Kliker
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
| | - Neta Zuckerman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
| | - Bayan Abd Elkader
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Ella Mendelson
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Gili Regev-Yochay
- Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Michal Mandelboim
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
24
|
Berno G, Fabeni L, Matusali G, Gruber CEM, Rueca M, Giombini E, Garbuglia AR. SARS-CoV-2 Variants Identification: Overview of Molecular Existing Methods. Pathogens 2022; 11:1058. [PMID: 36145490 PMCID: PMC9504725 DOI: 10.3390/pathogens11091058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of COVID-19 pandemic the Real Time sharing of genome sequences of circulating virus supported the diagnostics and surveillance of SARS-CoV-2 and its transmission dynamics. SARS-CoV-2 straightaway showed its tendency to mutate and adapt to the host, culminating in the emergence of variants; so it immediately became of crucial importance to be able to detect them quickly but also to be able to monitor in depth the changes on the whole genome to early identify the new possibly emerging variants. In this scenario, this manuscript aims to provide an overview of the existing methods for the identification of SARS-CoV-2 variants (from rapid method based on identification of one or more specific mutations to Whole Genome sequencing approach-WGS), taking into account limitations, advantages and applications of them in the field of diagnosis and surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy
| |
Collapse
|
25
|
Sánchez-Morales L, Sánchez-Vizcaíno JM, Pérez-Sancho M, Domínguez L, Barroso-Arévalo S. The Omicron (B.1.1.529) SARS-CoV-2 variant of concern also affects companion animals. Front Vet Sci 2022; 9:940710. [PMID: 36032286 PMCID: PMC9411866 DOI: 10.3389/fvets.2022.940710] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
The emergence of the Omicron variant (B.1. 1.529) has brought with it an increase in the incidence of SARS-CoV-2 disease. However, there is hardly any data on its incidence in companion animals. We have detected the presence of this new variant in domestic animals (dogs and cats) living with infected owners in Spain. None of the RT-qPCR positive animals (10.13%) presented any clinical signs and the viral loads detected were low. In addition, the shedding of viral RNA lasted a short period of time in the positive animals. Infection with this variant of concern (VOC) was confirmed by RT-qPCR and sequencing. These outcomes suggest a lower virulence of this variant in infected cats and dogs. They also demonstrate the transmission from infected humans to domestic animals and highlight the importance of active surveillance as well as genomic research to detect the presence of VOCs or mutations associated with animal hosts.
Collapse
Affiliation(s)
- Lidia Sánchez-Morales
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - José M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
26
|
Mohapatra RK, Kandi V, Mishra S, Sarangi AK, Pradhan MK, Mohapatra PK, Behera A, Dhama K. Emerging novel sub-lineage BA.2.75: The next dominant omicron variant? Int J Surg 2022; 104:106835. [PMID: 35963574 DOI: 10.1016/j.ijsu.2022.106835] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, 758002, Odisha, India.
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, 505417, Telangana, India
| | - Snehasish Mishra
- School of Biotechnology, Campus-11, KIIT Deemed-to-be-University, Bhubaneswar, Odisha, 751024, India
| | - Ashish K Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Manoj Kumar Pradhan
- Department of Chemistry, Government College of Engineering, Keonjhar, 758002, Odisha, India
| | - Pranab K Mohapatra
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha, India
| | - Ajit Behera
- Department of Metallurgical & Materials Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
27
|
Shahapur PR, Shahapur R, Kandi V, Suvvari TK, Vadakedath S. Assessment of SARS-CoV-2 Infected Patients and Their Clinical Outcomes During the Third Wave in India: A Single-Center Observational Study. Cureus 2022; 14:e26807. [PMID: 35971342 PMCID: PMC9373877 DOI: 10.7759/cureus.26807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that emerged from the Chinese mainland has spread throughout the world affecting the normal lives of the people. Both developed and developing nations have been equally affected and coronavirus disease-19 (COVID-19) resulted in the death of millions of people worldwide. The virus is undergoing mutations and is evolving into variants that are responsible for wave after wave. This study was carried out to assess the clinical outcomes of people infected with the novel virus during the third wave of the COVID-19 pandemic in India. Methods The study was carried out between November 2021 and January 2022 and included 100 consecutive patients attending the hospital attached to the BLDE (Deemed to be University) Shri B.M. Patil Medical College, Bijapur, Karnataka, South India. All patients included in the study returned a positive report in a real-time polymerase chain reaction (RT-PCR). The patient details collected included age, sex, cycle threshold (Ct) values for envelope (E)/nucleocapsid (N), and Orf1b (open reading frame 1b) genes, hospitalization status, vaccine status, C-reactive protein (CRP), D-dimer, interleukin-6 (IL-6), and final clinical outcome. The data were entered into Microsoft Office Excel sheets, and statistical inferences were drawn using SPSS 24 (IBM Corp., Armonk, NY). Results Of the 100 patients included in the study, only 14 (14%) patients were vaccinated. The patient's mean age was 34.22±17.50. Among the vaccinated patients, the majority had taken COVISHIELD™ (85.71%) compared to COVAXIN® (14.29%). Only 14% of patients were symptomatic, and the mean Ct values among all the patients were 29.92±3.74 (E gene/N gene) and 27.6±4.78 (Orf1B gene). Eight (8%) patients were hospitalized, and all the patients recovered from the infection. Among the hospitalized patients, six (75%) were vaccinated. The mean age of the hospitalized patients was 43.8±14.25 years. The mean CRP, D-dimer, and IL-6 concentrations among the hospitalized patients were noted to be 22.375±16.58 mg/L, 654.325±577.24 ng/mL, and 5.075±2.15 ng/mL, respectively. Conclusion The study results demonstrate that despite unvaccinated status, most patients in the third wave had only suffered from asymptomatic infection. Moreover, people who developed a clinical infection and those who required hospitalization had an uneventful recovery irrespective of their vaccination status.
Collapse
|
28
|
Mohapatra RK, Kandi V, Sarangi AK, Verma S, Tuli HS, Chakraborty S, Chakraborty C, Dhama K. The recently emerged BA.4 and BA.5 lineages of Omicron and their global health concerns amid the ongoing wave of COVID-19 pandemic - Correspondence. Int J Surg 2022; 103:106698. [PMID: 35690362 PMCID: PMC9176102 DOI: 10.1016/j.ijsu.2022.106698] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/05/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, 758002, Odisha, India.
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, 505417, Telangana, India
| | - Ashish K Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Sarika Verma
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute, Bhopal, MP, 462026, India; Academy of Council Scientific and Industrial Research - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, M.P, 462026, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 133207, Haryana, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura, 799008, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
29
|
Mohapatra RK, Azam M, Mohapatra PK, Sarangi AK, Abdalla M, Perekhoda L, Yadav O, Al-Resayes SI, Jong-Doo K, Dhama K, Ansari A, Seidel V, Verma S, Raval MK. Computational studies on potential new anti-Covid-19 agents with a multi-target mode of action. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:102086. [PMID: 35582633 PMCID: PMC9101701 DOI: 10.1016/j.jksus.2022.102086] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
A compound that could inhibit multiple targets associated with SARS-CoV-2 infection would prove to be a drug of choice against the virus. Human receptor-ACE2, receptor binding domain (RBD) of SARS-CoV-2 S-protein, Papain-like protein of SARS-CoV-2 (PLpro), reverse transcriptase of SARS-CoV-2 (RdRp) were chosen for in silico study. A set of previously synthesized compounds (1-5) were docked into the active sites of the targets. Based on the docking score, ligand efficiency, binding free energy, and dissociation constants for a definite conformational position of the ligand, inhibitory potentials of the compounds were measured. The stability of the protein-ligand (P-L) complex was validated in silico by using molecular dynamics simulations using the YASARA suit. Moreover, the pharmacokinetic properties, FMO and NBO analysis were performed for ranking the potentiality of the compounds as drug. The geometry optimizations and electronic structures were investigated using DFT. As per the study, compound-5 has the best binding affinity against all four targets. Moreover, compounds 1, 3 and 5 are less toxic and can be considered for oral consumption.
Collapse
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha 758002, India
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia
| | - Pranab K Mohapatra
- Department of Chemistry, C. V. Raman Global University, Bidyanagar, Mahura, Janla, Bhubaneswar, Odisha 752054, India
| | - Ashish K Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province 250012, PR China
| | - Lina Perekhoda
- Department of Medicinal Chemistry, National University of Pharmacy, Pushkinska Str. 53, Kharkiv 61002, Ukraine
| | - Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Saud I Al-Resayes
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia
| | - Kim Jong-Doo
- Buddhist Culture College, Dongguk University, Gyeongju-si, Gyeongsangbuk-do 780-714, South Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Sarika Verma
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute, Bhopal, MP 462026, India
- Academy of Council Scientific and Industrial Research - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, M.P 462026, India
| | - Mukesh K Raval
- Department of Chemistry, G. M. University, Sambalpur, Odisha, India
| |
Collapse
|
30
|
Peng J, Li Q, Dong J, Yuan G, Wang D. Case Report: The Experience of Managing a Moderate ARDS Caused by SARS-CoV-2 Omicron BA.2 Variant in Chongqing, China: Can We Do Better? Front Med (Lausanne) 2022; 9:921135. [PMID: 35755038 PMCID: PMC9218179 DOI: 10.3389/fmed.2022.921135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Background The severe coronavirus disease 2019 (COVID-19) pandemic is still raging worldwide, and the Omicron BA.2 variant has become the new circulating epidemic strain. However, our understanding of the Omicron BA.2 variant is still scarce. This report aims to present a case of a moderate acute respiratory distress syndrome (ARDS) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron BA.2 variant and to discuss some management strategies that may benefit this type of case. Case Presentation A 78-year-old man, who had four negative nucleic acid tests and a fifth positive, was admitted to our hospital. This patient was generally good upon admission and tested negative for anti-SARS-CoV-2 antibodies even after receiving two doses of the COVID-19 vaccine. On the 7th day of hospitalization, he developed a moderate ARDS. Improved inflammatory index and decreased oxygen index were primarily found in this patient, and a series of treatments, including anti-inflammation and oxygen therapies, were used. Then this patient's condition improved soon and reached two negative results of nucleic acid tests on the 18th day of hospitalization. Conclusion At-home COVID-19 rapid antigen test could be complementary to existing detection methods, and the third booster dose of COVID-19 vaccine may be advocated in the face of the omicron BA.2 variant. Anti-inflammatory and oxygen therapies are still essential treatments for ARDS patients infected with SARS-CoV-2 Omicron BA.2 variant.
Collapse
Affiliation(s)
- Junnan Peng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiaoli Li
- Department of Intensive Care Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Dong
- Department of Intensive Care Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Guodan Yuan
- Department of Intensive Care Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Tuli H, Bansal P, Sharma V, Mohapatra RK, Dhama K, Priti, Sharma AK. Targeting Omicron (B.1.1.529) SARS CoV-2 spike protein with selected phytochemicals: an in-silico approach for identification of potential drug. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2022; 10:396-404. [DOI: 10.18006/2022.10(2).396.404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
Abstract
Severe acute respiratory syndrome coronavirus -2 (S ARS-CoV-2) emerging variants particularly those of concern contain numerous mutations that influence the behavior and transmissibility of the virus and could adversely affect the efficacies of existing coronavirus disease 2019 (COVID-19) vaccines and immunotherapies. The emerging SARS-CoV-2 variants have resulted in different waves of the pandemic within the ongoing COVID-19 pandemic. On 26 November 2021 World Health Organization designated omicron (B.1.1.529) as the fifth variant of concern which was first reported from South Africa on November 24, 2021, and thereafter rapidly spread across the globe owing to its very high transmission rates along with impeding efficacies of existing vaccines and immunotherapies. Omicron contains more than 50 mutations with many mutations (26-32) in spike protein that might be associated with high transmissibility. Natural compounds particularly phytochemicals have been used since ancient times for the treatment of different diseases, and owing to their potent anti-viral properties have also been explored recently against COVID-19. In the present study, molecular docking of nine phytochemicals (Oleocanthal, Tangeritin, Coumarin, Malvidin, Glycitein, Piceatannol, Pinosylnin, Daidzein, and Naringenin) with omicron spike protein (7QNW (electron microscopy, resolution 2.40 Å) was done. The docking study revealed that selected ligands interact with the receptor with binding energy in the range of -6.2 to-7.0 kcal/mol. Pinosylnin showed the highest binding energy of -7.0 kcal/mol which may be used as potential ligands against omicron spike protein. Based on the docking studies, it was suggested that these phytochemicals are potential molecules to be tested against omicron SARS-CoV-2 and can be used to develop effective antiviral drugs.
Collapse
|
32
|
Lippi G, Favresse J, Gromiha MM, SoRelle JA, Plebani M, Henry BM. Ad interim recommendations for diagnosing SARS-CoV-2 infection by the IFCC SARS-CoV-2 variants working group. Clin Chem Lab Med 2022; 60:975-981. [PMID: 35452576 DOI: 10.1515/cclm-2022-0345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 12/28/2022]
Abstract
This document, endorsed by the IFCC Working Group on SARS-CoV-2 Variants, aims to update previous indications for diagnosing acute SARS-CoV-2 infection, taking into consideration the evidence that has emerged after the origin and spread of new lineages and sub-lineages of the virus characterized by mutated genetics and altered biochemical, biological and clinical characteristics. These indications encompass the use of different diagnostic strategies in specific clinical settings, such as high risk of SARS-CoV-2 infection (symptomatic patients), low risk of SARS-CoV-2 infection (asymptomatic subjects) at hospital admission/contact tracing, testing in asymptomatic subjects, in epidemiologic surveys and/or population screening, along with tentative indications for identification of new lineages and/or sub-lineages of SARS-CoV-2.
Collapse
Affiliation(s)
- Giuseppe Lippi
- IFCC SARS-CoV-2 Variants Working Group, Verona, Italy
- IFCC Task Force on COVID-19, Verona, Italy
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Julien Favresse
- IFCC SARS-CoV-2 Variants Working Group, Verona, Italy
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
| | - Michael M Gromiha
- IFCC SARS-CoV-2 Variants Working Group, Verona, Italy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Jeffrey A SoRelle
- IFCC SARS-CoV-2 Variants Working Group, Verona, Italy
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Plebani
- IFCC SARS-CoV-2 Variants Working Group, Verona, Italy
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Brandon M Henry
- IFCC SARS-CoV-2 Variants Working Group, Verona, Italy
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
33
|
Estrela PFN, dos Santos CA, Resende PC, Lima PM, da Silva TDSC, Saboia-Vahia L, Siqueira MM, Silveira-Lacerda EDP, Duarte GRM. Fast, low-cost and highly specific colorimetric RT-LAMP assays for inference of SARS-CoV-2 Omicron BA.1 and BA.2 lineages. Analyst 2022; 147:5613-5622. [DOI: 10.1039/d2an01625g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The RT-LAMP assays can quickly and cheaply infer and distinguish colorimetrically two lineages (BA.1 and BA.2) of the Omicron variant, enabling the rationalization of genetic sequencing.
Collapse
Affiliation(s)
- Paulo Felipe Neves Estrela
- Laboratório de Biomicrofluídica – Instituto de Química – Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Carlos Abelardo dos Santos
- Laboratório de Genética Molecular e Citogenética – Instituto de Ciências Biológicas – Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Reference Laboratory for COVID-19 (WHO), 21040-360, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Patricia Mayer Lima
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Reference Laboratory for COVID-19 (WHO), 21040-360, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Thauane dos Santos Correia da Silva
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Reference Laboratory for COVID-19 (WHO), 21040-360, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Leonardo Saboia-Vahia
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Reference Laboratory for COVID-19 (WHO), 21040-360, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ, Reference Laboratory for COVID-19 (WHO), 21040-360, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Laboratório de Genética Molecular e Citogenética – Instituto de Ciências Biológicas – Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | | |
Collapse
|