1
|
Sun Q, Liu X, Gu Q, Sun Z, Wang H, Cao L, Xu Y, Li S, Yang B, Wei S, Lu J. Breaking the Conversion-Selectivity Trade-Off in Methanol Synthesis from CO 2 Using Dual Intimate Oxide/Metal Interfaces. J Am Chem Soc 2024; 146:28885-28894. [PMID: 39283721 DOI: 10.1021/jacs.4c09106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The selective hydrogenation of carbon dioxide (CO2) to value-added chemicals, e.g., methanol, using green hydrogen retrieved from renewable resources is a promising approach for CO2 emission reduction and carbon resource utilization. However, this process suffers from the competing side reaction of reverse water-gas shift (RWGS) and methanol decomposition, which often leads to a strong conversion-selectivity trade-off and thus a poor methanol yield. Here, we report that InOx coating of PdCu bimetallic nanoparticles (NPs) to construct intimate InOx/Cu and InOx/PdIn dual interfaces enables the break of conversion-selectivity trade-off by achieving ∼80% methanol selectivity at ∼20% CO2 conversion close to the thermodynamic limit, far superior to that of conventional metal catalysts with a single active metal/oxide interface. Comprehensive microscopic and spectroscopic characterization revealed that the InOx/PdIn interface favors the activation of CO2 to formate, while the adjacent InOx/Cu interface readily converts formate intermediates to methoxy species in tandem, which thus cooperatively boosts methanol production. These findings of dual-interface synergies via oxide coating of bimetallic NPs open a new avenue to the design of active and selective catalysts for advanced catalysis.
Collapse
Affiliation(s)
- Qimeng Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyu Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Laboratory, Suzhou, Jiangsu 215123, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Hengwei Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lina Cao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuxing Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shang Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Junling Lu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Laboratory, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Mikolaj P, Zamora Yusti B, Nyulászi L, Bakker JM, Höltzl T, Lang SM. CO 2 activation by copper oxide clusters: size, composition, and charge state dependence. Phys Chem Chem Phys 2024; 26:24126-24134. [PMID: 39253781 PMCID: PMC11385096 DOI: 10.1039/d4cp02651a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The interaction of CO2 with copper oxide clusters of different size, composition, and charge is investigated via infrared multiple-photon dissociation (IR-MPD) spectroscopy and density functional theory (DFT) calculations. Laser ablation of a copper target in the presence of an O2/He mixture leads to the preferred formation of oxygen-rich copper oxide cluster cations, CuxOy+ (y > x; x ≤ 8), while the anionic cluster distribution is dominated by stoichiometric (x = y) and oxygen-deficient (y < x; x ≤ 8) species. Subsequent reaction of the clusters with CO2 in a flow tube reactor results in the preferred formation of near-stoichiometric CuxOy(CO2)+/- complexes. IR-MPD spectroscopy of the formed complexes reveals the non-activated binding of CO2 to all cations while CO2 is activated by all anions. The great resemblance of spectra for all sizes investigated demonstrates that CO2 activation is largely independent of cluster size and Cu/O ratio but mainly determined by the cluster charge state. Comparison of the IR-MPD spectra with DFT calculations of the model systems Cu2O4(CO2)- and Cu3O4(CO2)- shows that CO2 activation exclusively results in the formation of a CO3 unit. Subsequent CO2 dissociation to CO appears to be unfavorable due to the instability of CO on the copper oxide clusters indicating that potential hydrogenation reactions will most likely proceed via formate or bicarbonate intermediates.
Collapse
Affiliation(s)
- Pavol Mikolaj
- Institute of Surface Chemistry and Catalysis, University of Ulm, Ulm 89069, Germany.
| | - Barbara Zamora Yusti
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegytem rkp. 3, Budapest-1111, Hungary
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegytem rkp. 3, Budapest-1111, Hungary
- HUN-REN-BME Computation Driven Chemistry research group, Műegytem rkp. 3, Budapest-1111, Hungary
| | - Joost M Bakker
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, 6525 ED, Nijmegen, The Netherlands
| | - Tibor Höltzl
- HUN-REN-BME Computation Driven Chemistry research group, Műegytem rkp. 3, Budapest-1111, Hungary
- Furukawa Electric Institute of Technology, Nanomaterials Science Group, Késmárk utca 28/A, Budapest 1158, Hungary.
| | - Sandra M Lang
- Institute of Surface Chemistry and Catalysis, University of Ulm, Ulm 89069, Germany.
| |
Collapse
|
3
|
Qin H, Zhang H, Wang X, Fan W. Mechanistic insights into CO 2 hydrogenation to methanol on Cu(110): unveiling energy linear relationships and enhancing performance strategies. Phys Chem Chem Phys 2024; 26:22739-22751. [PMID: 39162041 DOI: 10.1039/d4cp01969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The study of energy correlations in catalytic reactions plays a pivotal role in guiding catalyst development. This paper focuses on the investigation of energy linear relationships in methanol synthesis from CO2 hydrogenation on copper surfaces, systematically exploring energy parameters including activation energy, reaction energy and adsorption energy. A comparative analysis of the adsorption characteristics and reaction parameters in the formate, formic acid and reverse water-gas shift pathways is conducted, laying the data foundation for subsequent linear studies. Then, descriptors are extracted from electronic, energetic and structural information and further integrated using the sure independence screening and sparsifying operator (SISSO) method to establish an energy description paradigm characterized by interpretability and accuracy. Additionally, reactions are further categorized based on hydrogenation types to mitigate the adverse effects of redundant data points. Finally, the summarized reaction descriptors are extended to Cu-based alloy systems to highlight the rationality and transferability of the developed descriptors.
Collapse
Affiliation(s)
- Huang Qin
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hai Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xingzi Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Weidong Fan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Patil T, Naji A, Mondal U, Pandey I, Unnarkat A, Dharaskar S. Sustainable methanol production from carbon dioxide: advances, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44608-44648. [PMID: 38961021 DOI: 10.1007/s11356-024-34139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
The urgent need to address global carbon emissions and promote sustainable energy solutions has led to a growing interest in carbon dioxide (CO2) conversion technologies. Among these, the transformation of CO2 into methanol (MeOH) has gained prominence as an effective mitigation strategy. This review paper provides a comprehensive exploration of recent advances and applications in the direct utilization of CO2 for the synthesis of MeOH, encompassing various aspects from catalysts to market analysis, environmental impact, and future prospects. We begin by introducing the current state of CO2 mitigation strategies, highlighting the significance of carbon recycling through MeOH production. The paper delves into the chemistry and technology behind the conversion of CO2 into MeOH, encompassing key themes such as feedstock selection, material and energy supply, and the various conversion processes, including chemical, electrochemical, photochemical, and photoelectrochemical pathways. An in-depth analysis of heterogeneous and homogeneous catalysts for MeOH synthesis is provided, shedding light on the advantages and drawbacks of each. Furthermore, we explore diverse routes for CO2 hydrogenation into MeOH, emphasizing the technological advances and production processes associated with this sustainable transformation. As MeOH holds a pivotal role in a wide range of chemical applications and emerges as a promising transportation fuel, the paper explores its various chemical uses, transportation, storage, and distribution, as well as the evolving MeOH market. The environmental and energy implications of CO2 conversion to MeOH are discussed, including a thermodynamic analysis of the process and cost and energy evaluations for large-scale catalytic hydrogenation.
Collapse
Affiliation(s)
- Tushar Patil
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Arkan Naji
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Ujjal Mondal
- Sustainability Centre of Excellence, Larsen & Toubro Technology Services, Vadodara, Gujarat, 382426, India
| | - Indu Pandey
- Larsen & Toubro Technology Services, Larsen & Toubro Tech Park, Byatarayanapura, Bengaluru, Karnataka, 560092, India
| | - Ashish Unnarkat
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India
| | - Swapnil Dharaskar
- Centre for Sustainable Technologies, Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 390019, India.
| |
Collapse
|
5
|
Lu H, Yang D, Chen ZX. CO 2 Hydrogenation to CH 3OH on Metal-Doped TiO 2(110): Mechanisms, Strain Effect and a New Thermodynamic-Kinetic Relation. Chemphyschem 2024; 25:e202300608. [PMID: 38523075 DOI: 10.1002/cphc.202300608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Surface strain and linear thermodynamic-kinetic relation are interesting topics in catalysis. Development of low temperature methanol catalysts of high activity and selectivity is of particularly importance for conversion of CO2 to methanol. In the present paper CO2 hydrogenation to methanol on Znx@TiO2(110) (x=0-2) was explored using density functional calculations and microkinetic simulations. The reaction mechanisms on the three model systems were determined and it is shown that Zn2@TiO2(110) is the most active. The most favorable pathway on Zn2@TiO2(110) is identified and CO2+H to HCOO is found to be the rate-controlling step. It is demonstrated that there is a linear relation (named AEB relation) between the adsorption energies of the initial states and the barriers for the controlling step on the 18 systems studied. Calculations on strained surfaces show that the AEB relation exists within ±1 % strain. Sr2@TiO2(110) and -1 % strained CaZn and ZnCu doped TiO2(110) are potential good low temperature catalysts and deserve experimental testing.
Collapse
Affiliation(s)
- Huili Lu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuai Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Cai Y, Michiels R, De Luca F, Neyts E, Tu X, Bogaerts A, Gerrits N. Improving Molecule-Metal Surface Reaction Networks Using the Meta-Generalized Gradient Approximation: CO 2 Hydrogenation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:8611-8620. [PMID: 38835935 PMCID: PMC11145648 DOI: 10.1021/acs.jpcc.4c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Density functional theory is widely used to gain insights into molecule-metal surface reaction networks, which is important for a better understanding of catalysis. However, it is well-known that generalized gradient approximation (GGA) density functionals (DFs), most often used for the study of reaction networks, struggle to correctly describe both gas-phase molecules and metal surfaces. Also, GGA DFs typically underestimate reaction barriers due to an underestimation of the self-interaction energy. Screened hybrid GGA DFs have been shown to reduce this problem but are currently intractable for wide usage. In this work, we use a more affordable meta-GGA (mGGA) DF in combination with a nonlocal correlation DF for the first time to study and gain new insights into a catalytically important surface reaction network, namely, CO2 hydrogenation on Cu. We show that the mGGA DF used, namely, rMS-RPBEl-rVV10, outperforms typical GGA DFs by providing similar or better predictions for metals and molecules, as well as molecule-metal surface adsorption and activation energies. Hence, it is a better choice for constructing molecule-metal surface reaction networks.
Collapse
Affiliation(s)
- Yuxiang Cai
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp, Wilrijk BE-2610, Belgium
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Roel Michiels
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp, Wilrijk BE-2610, Belgium
| | - Federica De Luca
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp, Wilrijk BE-2610, Belgium
- Department
of ChiBioFarAM (Industrial Chemistry), ERIC aisbl and INSTM/CASPE, University of Messina, V.le F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Erik Neyts
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp, Wilrijk BE-2610, Belgium
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Annemie Bogaerts
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp, Wilrijk BE-2610, Belgium
| | - Nick Gerrits
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp, Wilrijk BE-2610, Belgium
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| |
Collapse
|
7
|
Jensen S, Mammen MHR, Hedevang M, Li Z, Lammich L, Lauritsen JV. Visualizing the gas-sensitive structure of the CuZn surface in methanol synthesis catalysis. Nat Commun 2024; 15:3865. [PMID: 38719827 PMCID: PMC11079032 DOI: 10.1038/s41467-024-48168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Methanol formation over Cu/ZnO catalysts is linked with a catalytically active phase created by contact between Cu nanoparticles and Zn species whose chemical and structural state depends on reaction conditions. Herein, we use variable-temperature scanning tunneling microscopy at elevated pressure conditions combined with X-ray photoelectron spectroscopy measurements to investigate the surface structures and chemical states that evolve when a CuZn/Cu(111) surface alloy is exposed to reaction gas mixtures. In CO2 hydrogenation conditions, Zn stays embedded in the CuZn surface, but once CO gas is added to the mixture, the Zn segregates onto the Cu surface. The Zn segregation is CO-induced, and establishes a new dynamic state of the catalyst surface where Zn is continually exchanged at the Cu surface. Candidates for the migrating few-atom Zn clusters are further identified in time-resolved imaging series. The findings point to a significant role of CO affecting the distribution of Zn in the multiphasic ZnO/CuZn/Cu catalysts.
Collapse
Affiliation(s)
- Sigmund Jensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Mathias H R Mammen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Martin Hedevang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Zheshen Li
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| | - Lutz Lammich
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
8
|
Beck A, Newton MA, van de Water LGA, van Bokhoven JA. The Enigma of Methanol Synthesis by Cu/ZnO/Al 2O 3-Based Catalysts. Chem Rev 2024; 124:4543-4678. [PMID: 38564235 DOI: 10.1021/acs.chemrev.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The activity and durability of the Cu/ZnO/Al2O3 (CZA) catalyst formulation for methanol synthesis from CO/CO2/H2 feeds far exceed the sum of its individual components. As such, this ternary catalytic system is a prime example of synergy in catalysis, one that has been employed for the large scale commercial production of methanol since its inception in the mid 1960s with precious little alteration to its original formulation. Methanol is a key building block of the chemical industry. It is also an attractive energy storage molecule, which can also be produced from CO2 and H2 alone, making efficient use of sequestered CO2. As such, this somewhat unusual catalyst formulation has an enormous role to play in the modern chemical industry and the world of global economics, to which the correspondingly voluminous and ongoing research, which began in the 1920s, attests. Yet, despite this commercial success, and while research aimed at understanding how this formulation functions has continued throughout the decades, a comprehensive and universally agreed upon understanding of how this material achieves what it does has yet to be realized. After nigh on a century of research into CZA catalysts, the purpose of this Review is to appraise what has been achieved to date, and to show how, and how far, the field has evolved. To do so, this Review evaluates the research regarding this catalyst formulation in a chronological order and critically assesses the validity and novelty of various hypotheses and claims that have been made over the years. Ultimately, the Review attempts to derive a holistic summary of what the current body of literature tells us about the fundamental sources of the synergies at work within the CZA catalyst and, from this, suggest ways in which the field may yet be further advanced.
Collapse
Affiliation(s)
- Arik Beck
- Institute for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Mark A Newton
- Institute for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | | | - Jeroen A van Bokhoven
- Institute for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
9
|
Sun S, Higham MD, Zhang X, Catlow CRA. Multiscale Investigation of the Mechanism and Selectivity of CO 2 Hydrogenation over Rh(111). ACS Catal 2024; 14:5503-5519. [PMID: 38660604 PMCID: PMC11036393 DOI: 10.1021/acscatal.3c05939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
CO2 hydrogenation over Rh catalysts comprises multiple reaction pathways, presenting a wide range of possible intermediates and end products, with selectivity toward either CO or methane being of particular interest. We investigate in detail the reaction mechanism of CO2 hydrogenation to the single-carbon (C1) products on the Rh(111) facet by performing periodic density functional theory (DFT) calculations and kinetic Monte Carlo (kMC) simulations, which account for the adsorbate interactions through a cluster expansion approach. We observe that Rh readily facilitates the dissociation of hydrogen, thus contributing to the subsequent hydrogenation processes. The reverse water-gas shift (RWGS) reaction occurs via three different reaction pathways, with CO hydrogenation to the COH intermediate being a key step for CO2 methanation. The effects of temperature, pressure, and the composition ratio of the gas reactant feed are considered. Temperature plays a pivotal role in determining the surface coverage and adsorbate composition, with competitive adsorption between CO and H species influencing the product distribution. The observed adlayer configurations indicate that the adsorbed CO species are separated by adsorbed H atoms, with a high ratio of H to CO coverage on the Rh(111) surface being essential to promote CO2 methanation.
Collapse
Affiliation(s)
- Shijia Sun
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Michael D. Higham
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, Harwell, Oxon OX11 0FA, United Kingdom
| | - Xingfan Zhang
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - C. Richard A. Catlow
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, Harwell, Oxon OX11 0FA, United Kingdom
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 1AT, United
Kingdom
| |
Collapse
|
10
|
Kordus D, Widrinna S, Timoshenko J, Lopez Luna M, Rettenmaier C, Chee SW, Ortega E, Karslioglu O, Kühl S, Roldan Cuenya B. Enhanced Methanol Synthesis from CO 2 Hydrogenation Achieved by Tuning the Cu-ZnO Interaction in ZnO/Cu 2O Nanocube Catalysts Supported on ZrO 2 and SiO 2. J Am Chem Soc 2024; 146:8677-8687. [PMID: 38472104 PMCID: PMC10979448 DOI: 10.1021/jacs.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The nature of the Cu-Zn interaction and especially the role of Zn in Cu/ZnO catalysts used for methanol synthesis from CO2 hydrogenation are still debated. Migration of Zn onto the Cu surface during reaction results in a Cu-ZnO interface, which is crucial for the catalytic activity. However, whether a Cu-Zn alloy or a Cu-ZnO structure is formed and the transformation of this interface under working conditions demand further investigation. Here, ZnO/Cu2O core-shell cubic nanoparticles with various ZnO shell thicknesses, supported on SiO2 or ZrO2 were prepared to create an intimate contact between Cu and ZnO. The evolution of the catalyst's structure and composition during and after the CO2 hydrogenation reaction were investigated by means of operando spectroscopy, diffraction, and ex situ microscopy methods. The Zn loading has a direct effect on the oxidation state of Zn, which, in turn, affects the catalytic performance. High Zn loadings, resulting in a stable ZnO catalyst shell, lead to increased methanol production when compared to Zn-free particles. Low Zn loadings, in contrast, leading to the presence of metallic Zn species during reaction, showed no significant improvement over the bare Cu particles. Therefore, our work highlights that there is a minimum content of Zn (or optimum ZnO shell thickness) needed to activate the Cu catalyst. Furthermore, in order to minimize catalyst deactivation, the Zn species must be present as ZnOx and not metallic Zn or Cu-Zn alloy, which is undesirably formed during the reaction when the precatalyst ZnO overlayer is too thin.
Collapse
Affiliation(s)
- David Kordus
- Department
of Physics, Ruhr-University Bochum, 44780 Bochum, Germany
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195 Berlin, Germany
| | - Simon Widrinna
- Department
of Physics, Ruhr-University Bochum, 44780 Bochum, Germany
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195 Berlin, Germany
| | - Janis Timoshenko
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195 Berlin, Germany
| | - Mauricio Lopez Luna
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195 Berlin, Germany
| | - Clara Rettenmaier
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195 Berlin, Germany
| | - See Wee Chee
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195 Berlin, Germany
| | - Eduardo Ortega
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195 Berlin, Germany
| | - Osman Karslioglu
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195 Berlin, Germany
| | - Stefanie Kühl
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
11
|
Cho J, Medina A, Saih I, Il Choi J, Drexler M, Goddard WA, Alamgir FM, Jang SS. 2D Metal/Graphene and 2D Metal/Graphene/Metal Systems for Electrocatalytic Conversion of CO 2 to Formic Acid. Angew Chem Int Ed Engl 2024; 63:e202320268. [PMID: 38271278 DOI: 10.1002/anie.202320268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
Efficiently transforming CO2 into renewable energy sources is crucial for decarbonization efforts. Formic acid (HCOOH) holds great promise as a hydrogen storage compound due to its high hydrogen density, non-toxicity, and stability under ambient conditions. However, the electrochemical reduction of CO2 (CO2 RR) on conventional carbon black-supported metal catalysts faces challenges such as low stability through dissolution and agglomeration, as well as suffering from high overpotentials and the necessity to overcome the competitive hydrogen evolution reaction (HER). In this study, we modify the physical/chemical properties of metal surfaces by depositing metal monolayers on graphene (M/G) to create highly active and stable electrocatalysts. Strong covalent bonding between graphene and metal is induced by the hybridization of sp and d orbitals, especially the sharpd z 2 ${{d}_{{z}^{2}}}$ ,d y z ${{d}_{yz}}$ , andd x z ${{d}_{xz}}$ orbitals of metals near the Fermi level, playing a decisive role. Moreover, charge polarization on graphene in M/G enables the deposition of another thin metallic film, forming metal/graphene/metal (M/G/M) structures. Finally, evaluating overpotentials required for CO2 reduction to HCOOH, CO, and HER, we find that Pd/G, Pt/G/Ag, and Pt/G/Au exhibit excellent activity and selectivity toward HCOOH production. Our novel 2D hybrid catalyst design methodology may offer insights into enhanced electrochemical reactions through the electronic mixing of metal and other p-block elements.
Collapse
Affiliation(s)
- Jinwon Cho
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Arturo Medina
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Ines Saih
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Ji Il Choi
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Matthew Drexler
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Faisal M Alamgir
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Seung Soon Jang
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| |
Collapse
|
12
|
Alves GAS, Pacholik G, Pollitt S, Wagner T, Rameshan R, Rameshan C, Föttinger K. Mn-promoted MoS 2 catalysts for CO 2 hydrogenation: enhanced methanol selectivity due to MoS 2/MnO x interfaces. Catal Sci Technol 2024; 14:1138-1147. [PMID: 38449728 PMCID: PMC10913851 DOI: 10.1039/d3cy01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Considering the alarming scenario of climate change, CO2 hydrogenation to methanol is considered a key process for phasing out fossil fuels by means of CO2 utilization. In this context, MoS2 catalysts have recently shown to be promising catalysts for this reaction, especially in the presence of abundant basal-plane sulfur vacancies and due to synergistic mechanisms with other phases. In this work, Mn-promoted MoS2 prepared by a hydrothermal method presents considerable selectivity for CO2 hydrogenation to methanol in comparison with pure MoS2 and other promoters such as K and Co. Interestingly, if CO is used as a carbon source for the reaction, methanol production is remarkably lower, which suggests the absence of a CO intermediate during CO2 hydrogenation to methanol. After optimization of synthesis parameters, a methanol selectivity of 64% is achieved at a CO2 conversion of 2.8% under 180 °C. According to material characterization by X-ray Diffraction and X-ray Absorption, the Mn promoter is present mainly in the form of MnO and MnCO3 phases, with the latter undergoing convertion to MnO upon H2 pretreatment. However, following exposure to reaction conditions, X-ray photoelectron spectroscopy suggests that higher oxidation states of Mn may be present at the surface, suggesting that the improved catalytic activity for CO2 hydrogenation to methanol arises from a synergy between MoS2 and MnOx at the catalyst surface.
Collapse
Affiliation(s)
- Gustavo A S Alves
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC/01 1060 Vienna Austria
| | - Gernot Pacholik
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC/01 1060 Vienna Austria
| | - Stephan Pollitt
- Paul Scherrer Institut (PSI) Forschungsstrasse 111 5232 Villigen Switzerland
| | - Tobias Wagner
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC/01 1060 Vienna Austria
| | - Raffael Rameshan
- Chair of Physical Chemistry, Montanuniversität Leoben Franz-Josef-Straße 18 8700 Leoben Austria
| | - Christoph Rameshan
- Chair of Physical Chemistry, Montanuniversität Leoben Franz-Josef-Straße 18 8700 Leoben Austria
| | - Karin Föttinger
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC/01 1060 Vienna Austria
| |
Collapse
|
13
|
Kumari S, Alexandrova AN, Sautet P. Nature of Zirconia on a Copper Inverse Catalyst Under CO 2 Hydrogenation Conditions. J Am Chem Soc 2023; 145:26350-26362. [PMID: 37977567 DOI: 10.1021/jacs.3c09947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The growing concern over the escalating levels of anthropogenic CO2 emissions necessitates effective strategies for its conversion to valuable chemicals and fuels. In this research, we embark on a comprehensive investigation of the nature of zirconia on a copper inverse catalyst under the conditions of CO2 hydrogenation to methanol. We employ density functional theory calculations in combination with the Grand Canonical Basin Hopping method, enabling an exploration of the free energy surface including a variable amount of adsorbates within the relevant reaction conditions. Our focus centers on a model three-atom Zr cluster on a Cu(111) surface decorated with various OH, O, and formate ligands, noted Zr3Ox (OH)y (HCOO)z/Cu(111), revealing major changes in the active site induced by various reaction parameters such as the gas pressure, temperature, conversion levels, and CO2/H2 feed ratios. Through our analysis, we have unveiled insights into the dynamic behavior of the catalyst. Specifically, under reaction conditions, we observe a large number of composition and structures with similar free energy for the catalyst, with respect to changing the type, number, and binding sites of adsorbates, suggesting that the active site should be regarded as a statistical ensemble of diverse structures that interconvert.
Collapse
Affiliation(s)
- Simran Kumari
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90094, United States
| |
Collapse
|
14
|
Zhou H, Docherty SR, Phongprueksathat N, Chen Z, Bukhtiyarov AV, Prosvirin IP, Safonova OV, Urakawa A, Copéret C, Müller CR, Fedorov A. Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu-Zn/SiO 2 Catalysts for the Hydrogenation of CO 2 to Methanol. JACS AU 2023; 3:2536-2549. [PMID: 37772188 PMCID: PMC10523371 DOI: 10.1021/jacsau.3c00319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
The direct synthesis of methanol via the hydrogenation of CO2, if performed efficiently and selectively, is potentially a powerful technology for CO2 mitigation. Here, we develop an active and selective Cu-Zn/SiO2 catalyst for the hydrogenation of CO2 by introducing copper and zinc onto dehydroxylated silica via surface organometallic chemistry and atomic layer deposition, respectively. At 230 °C and 25 bar, the optimized catalyst shows an intrinsic methanol formation rate of 4.3 g h-1 gCu-1 and selectivity to methanol of 83%, with a space-time yield of 0.073 g h-1 gcat-1 at a contact time of 0.06 s g mL-1. X-ray absorption spectroscopy at the Cu and Zn K-edges and X-ray photoelectron spectroscopy studies reveal that the CuZn alloy displays reactive metal support interactions; that is, it is stable under H2 atmosphere and unstable under conditions of CO2 hydrogenation, indicating that the dealloyed structure contains the sites promoting methanol synthesis. While solid-state nuclear magnetic resonance studies identify methoxy species as the main stable surface adsorbate, transient operando diffuse reflectance infrared Fourier transform spectroscopy indicates that μ-HCOO*(ZnOx) species that form on the Cu-Zn/SiO2 catalyst are hydrogenated to methanol faster than the μ-HCOO*(Cu) species that are found in the Zn-free Cu/SiO2 catalyst, supporting the role of Zn in providing a higher activity in the Cu-Zn system.
Collapse
Affiliation(s)
- Hui Zhou
- Department
of Mechanical and Process Engineering, ETH
Zürich, CH-8092 Zürich, Switzerland
- Department
of Energy and Power Engineering, Tsinghua
University, 100084 Beijing, China
| | - Scott R. Docherty
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Nat Phongprueksathat
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| | - Zixuan Chen
- Department
of Mechanical and Process Engineering, ETH
Zürich, CH-8092 Zürich, Switzerland
| | - Andrey V. Bukhtiyarov
- Synchrotron
Radiation Facility SKIF, Boreskov Institute
of Catalysis SB RAS, 630559 Kol’tsovo, Russia
| | | | | | - Atsushi Urakawa
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Christoph R. Müller
- Department
of Mechanical and Process Engineering, ETH
Zürich, CH-8092 Zürich, Switzerland
| | - Alexey Fedorov
- Department
of Mechanical and Process Engineering, ETH
Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
15
|
Zhou S, Ma W, Anjum U, Kosari M, Xi S, Kozlov SM, Zeng HC. Strained few-layer MoS 2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO 2 hydrogenation to methanol. Nat Commun 2023; 14:5872. [PMID: 37735457 PMCID: PMC10514200 DOI: 10.1038/s41467-023-41362-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
In-plane sulfur vacancies (Sv) in molybdenum disulfide (MoS2) were newly unveiled for CO2 hydrogenation to methanol, whereas edge Sv were found to facilitate methane formation. Thus, selective exposure and activation of basal plane is crucial for methanol synthesis. Here, we report a mesoporous silica-encapsulated MoS2 catalysts with fullerene-like structure and atomic copper (Cu/MoS2@SiO2). The main approach is based on a physically constrained topologic conversion of molybdenum dioxide (MoO2) to MoS2 within silica. The spherical curvature enables the generation of strain and Sv in inert basal plane. More importantly, fullerene-like structure of few-layer MoS2 can selectively expose in-plane Sv and reduce the exposure of edge Sv. After promotion by atomic copper, the resultant Cu/MoS2@SiO2 exhibits stable specific methanol yield of 6.11 molMeOH molMo-1 h-1 with methanol selectivity of 72.5% at 260 °C, much superior to its counterparts lacking the fullerene-like structure and copper decoration. The reaction mechanism and promoting role of copper are investigated by in-situ DRIFTS and in-situ XAS. Theoretical calculations demonstrate that the compressive strain facilitates Sv formation and CO2 hydrogenation, while tensile strain accelerates the regeneration of active sites, rationalizing the critical role of strain.
Collapse
Affiliation(s)
- Shenghui Zhou
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Wenrui Ma
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Uzma Anjum
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore.
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore.
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore.
| |
Collapse
|
16
|
Shirvani R, Bartik A, Alves GAS, Garcia de Otazo Hernandez D, Müller S, Föttinger K, Steiger MG. Nitrogen recovery from low-value biogenic feedstocks via steam gasification to methylotrophic yeast biomass. Front Bioeng Biotechnol 2023; 11:1179269. [PMID: 37362211 PMCID: PMC10289294 DOI: 10.3389/fbioe.2023.1179269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Carbon and nitrogen are crucial elements for life and must be efficiently regenerated in a circular economy. Biomass streams at the end of their useful life, such as sewage sludge, are difficult to recycle even though they contain organic carbon and nitrogen components. Gasification is an emerging technology to utilize such challenging waste streams and produce syngas that can be further processed into, e.g., Fischer-Tropsch fuels, methane, or methanol. Here, the objective is to investigate if nitrogen can be recovered from product gas cleaning in a dual fluidized bed (DFB) after gasification of softwood pellets to form yeast biomass. Yeast biomass is a protein-rich product, which can be used for food and feed applications. An aqueous solution containing ammonium at a concentration of 66 mM was obtained and by adding other nutrients it enables the growth of the methylotrophic yeast Komagataella phaffii to form 6.2 g.L-1 dry yeast biomass in 3 days. To further integrate the process, it is discussed how methanol can be obtained from syngas by chemical catalysis, which is used as a carbon source for the yeast culture. Furthermore, different gas compositions derived from the gasification of biogenic feedstocks including sewage sludge, bark, and chicken manure are evaluated for their ability to yield methanol and yeast biomass. The different feedstocks are compared based on their potential to yield methanol and ammonia, which are required for the generation of yeast biomass. It was found that the gasification of bark and chicken manure yields a balanced carbon and nitrogen source for the formation of yeast biomass. Overall, a novel integrated process concept based on renewable, biogenic feedstocks is proposed connecting gasification with methanol synthesis to enable the formation of protein-rich yeast biomass.
Collapse
Affiliation(s)
- Roghayeh Shirvani
- Research Group Biochemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- Doctoral College CO2Refinery, Faculty of Technical Chemistry, TU Wien, Vienna, Austria
| | - Alexander Bartik
- Doctoral College CO2Refinery, Faculty of Technical Chemistry, TU Wien, Vienna, Austria
- Research group Industrial Plant Engineering and Application of Digital Methods, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Gustavo A. S. Alves
- Doctoral College CO2Refinery, Faculty of Technical Chemistry, TU Wien, Vienna, Austria
- Research Group Technical Catalysis, Institute of Materials Chemistry, TU Wien, Vienna, Austria
| | | | - Stefan Müller
- Doctoral College CO2Refinery, Faculty of Technical Chemistry, TU Wien, Vienna, Austria
- Research group Industrial Plant Engineering and Application of Digital Methods, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Karin Föttinger
- Doctoral College CO2Refinery, Faculty of Technical Chemistry, TU Wien, Vienna, Austria
- Research Group Technical Catalysis, Institute of Materials Chemistry, TU Wien, Vienna, Austria
| | - Matthias G. Steiger
- Research Group Biochemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- Doctoral College CO2Refinery, Faculty of Technical Chemistry, TU Wien, Vienna, Austria
| |
Collapse
|
17
|
Alli YA, Oladoye PO, Ejeromedoghene O, Bankole OM, Alimi OA, Omotola EO, Olanrewaju CA, Philippot K, Adeleye AS, Ogunlaja AS. Nanomaterials as catalysts for CO 2 transformation into value-added products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161547. [PMID: 36642279 DOI: 10.1016/j.scitotenv.2023.161547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Carbon dioxide (CO2) is the most important greenhouse gas (GHG), accounting for 76% of all GHG emissions. The atmospheric CO2 concentration has increased from 280 ppm in the pre-industrial era to about 418 ppm, and is projected to reach 570 ppm by the end of the 21st century. In addition to reducing CO2 emissions from anthropogenic activities, strategies to adequately address climate change must include CO2 capture. To promote circular economy, captured CO2 should be converted to value-added materials such as fuels and other chemical feedstock. Due to their tunable chemistry (which allows them to be selective) and high surface area (which allows them to be efficient), engineered nanomaterials are promising for CO2 capturing and/or transformation. This work critically reviewed the application of nanomaterials for the transformation of CO2 into various fuels, like formic acid, carbon monoxide, methanol, and ethanol. We discussed the literature on the use of metal-based nanomaterials, inorganic/organic nanocomposites, as well as other routes suitable for CO2 conversion such as the electrochemical, non-thermal plasma, and hydrogenation routes. The characteristics, steps, mechanisms, and challenges associated with the different transformation technologies were also discussed. Finally, we presented a section on the outlook of the field, which includes recommendations for how to continue to advance the use of nanotechnology for conversion of CO2 to fuels.
Collapse
Affiliation(s)
- Yakubu Adekunle Alli
- Laboratoire de Chimie de Coordination du CNRS, UPR8241, Universite´ de Toulouse, UPS, INPT, Toulouse cedex 4 F-31077, France; Department of Chemical Sciences, Faculty of Science and Computing, Ahman Pategi University, Km 3, Patigi-Kpada Road, Patigi, Kwara State 243105, Nigeria.
| | - Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, 211189 Nanjing, Jiangsu Province, PR China
| | | | - Oyekunle Azeez Alimi
- Research Center for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| | | | - Clement Ajibade Olanrewaju
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Karine Philippot
- Laboratoire de Chimie de Coordination du CNRS, UPR8241, Universite´ de Toulouse, UPS, INPT, Toulouse cedex 4 F-31077, France
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | | |
Collapse
|
18
|
Posada-Pérez S, Vidal-López A, Solà M, Poater A. 2D carbon nitride as a support with single Cu, Ag, and Au atoms for carbon dioxide reduction reaction. Phys Chem Chem Phys 2023; 25:8574-8582. [PMID: 36883855 PMCID: PMC10277901 DOI: 10.1039/d3cp00392b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The electrochemical conversion of CO2 into value-added chemicals is an important approach to recycling CO2. In this work, we have combined the most efficient metal catalysts for this reaction, namely Cu, Ag, and Au, as single-atom particles dispersed on a two-dimensional carbon nitride support, with the aim of exploring their performance in the CO2 reduction reaction. Here, we report density functional theory computations showing the effect of single metal-atom particles on the support. We found that bare carbon nitride needed a high overpotential to overcome the energy barrier for the first proton-electron transfer, while the second transfer was exergonic. The deposition of single metal atoms enhances the catalytic activity of the system as the first proton-electron transfer is favored in terms of energy, although strong binding energies were found for CO adsorption on Cu and Au single atoms. Our theoretical interpretations are consistent with the experimental evidence that the competitive H2 generation is favored due to the strong CO binding energies. Our computational study paves the road to finding suitable metals that catalyze the first proton-electron transfer in the carbon dioxide reduction reaction and produce reaction intermediates with moderate binding energies, promoting a spillover to the carbon nitride support and thereby serving as bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Sergio Posada-Pérez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Anna Vidal-López
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
19
|
Tu W, Ren P, Li Y, Yang Y, Tian Y, Zhang Z, Zhu M, Chin YHC, Gong J, Han YF. Gas-Dependent Active Sites on Cu/ZnO Clusters for CH 3OH Synthesis. J Am Chem Soc 2023; 145:8751-8756. [PMID: 36943737 DOI: 10.1021/jacs.2c13784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
This study describes an instantaneously gas-induced dynamic transition of an industrial Cu/ZnO/Al2O3 catalyst. Cu/ZnO clusters become "alive" and lead to a promotion in reaction rate by almost one magnitude, in response to the variation of the reactant components. The promotional changes are functions of either CO2-to-CO or H2O-to-H2 ratio which determines the oxygen chemical potential thus drives Cu/ZnO clusters to undergo reconstruction and allows the maximum formation of Cu-Zn2+ sites for CH3OH synthesis.
Collapse
Affiliation(s)
- Weifeng Tu
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Pengchao Ren
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanjie Li
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yongpeng Yang
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Tian
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhou Zhang
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ya-Huei Cathy Chin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yi-Fan Han
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Kubas D, Semmel M, Salem O, Krossing I. Is Direct DME Synthesis Superior to Methanol Production in Carbon Dioxide Valorization? From Thermodynamic Predictions to Experimental Confirmation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Affiliation(s)
- Dustin Kubas
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Malte Semmel
- Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg, Germany
| | - Ouda Salem
- Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Chen Z, Liu Z, Xu X. Accurate descriptions of molecule-surface interactions in electrocatalytic CO 2 reduction on the copper surfaces. Nat Commun 2023; 14:936. [PMID: 36807556 PMCID: PMC9941474 DOI: 10.1038/s41467-023-36695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Copper-based catalysts play a pivotal role in many industrial processes and hold a great promise for electrocatalytic CO2 reduction reaction into valuable chemicals and fuels. Towards the rational design of catalysts, the growing demand on theoretical study is seriously at odds with the low accuracy of the most widely used functionals of generalized gradient approximation. Here, we present results using a hybrid scheme that combines the doubly hybrid XYG3 functional and the periodic generalized gradient approximation, whose accuracy is validated against an experimental set on copper surfaces. A near chemical accuracy is established for this set, which, in turn, leads to a substantial improvement for the calculated equilibrium and onset potentials as against the experimental values for CO2 reduction to CO on Cu(111) and Cu(100) electrodes. We anticipate that the easy use of the hybrid scheme will boost the predictive power for accurate descriptions of molecule-surface interactions in heterogeneous catalysis.
Collapse
Affiliation(s)
- Zheng Chen
- grid.8547.e0000 0001 0125 2443Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Zhangyun Liu
- grid.8547.e0000 0001 0125 2443Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, 200433, Shanghai, People's Republic of China. .,Hefei National Laboratory, 230088, Hefei, P. R. China.
| |
Collapse
|
22
|
Kordus D, Jelic J, Lopez Luna M, Divins NJ, Timoshenko J, Chee SW, Rettenmaier C, Kröhnert J, Kühl S, Trunschke A, Schlögl R, Studt F, Roldan Cuenya B. Shape-Dependent CO 2 Hydrogenation to Methanol over Cu 2O Nanocubes Supported on ZnO. J Am Chem Soc 2023; 145:3016-3030. [PMID: 36716273 PMCID: PMC9912329 DOI: 10.1021/jacs.2c11540] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hydrogenation of CO2 to methanol over Cu/ZnO-based catalysts is highly sensitive to the surface composition and catalyst structure. Thus, its optimization requires a deep understanding of the influence of the pre-catalyst structure on its evolution under realistic reaction conditions, including the formation and stabilization of the most active sites. Here, the role of the pre-catalyst shape (cubic vs spherical) in the activity and selectivity of ZnO-supported Cu nanoparticles was investigated during methanol synthesis. A combination of ex situ, in situ, and operando microscopy, spectroscopy, and diffraction methods revealed drastic changes in the morphology and composition of the shaped pre-catalysts under reaction conditions. In particular, the rounding of the cubes and partial loss of the (100) facets were observed, although such motifs remained in smaller domains. Nonetheless, the initial pre-catalyst structure was found to strongly affect its subsequent transformation in the course of the CO2 hydrogenation reaction and activity/selectivity trends. In particular, the cubic Cu particles displayed an increased activity for methanol production, although at the cost of a slightly reduced selectivity when compared to similarly sized spherical particles. These findings were rationalized with the help of density functional theory calculations.
Collapse
Affiliation(s)
- David Kordus
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany,Department
of Physics, Ruhr University Bochum, 44780Bochum, Germany
| | - Jelena Jelic
- Institute
of Catalysis Research and Technology, Karlsruher
Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Mauricio Lopez Luna
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Núria J. Divins
- Department
of Physics, Ruhr University Bochum, 44780Bochum, Germany
| | - Janis Timoshenko
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - See Wee Chee
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Clara Rettenmaier
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Jutta Kröhnert
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Stefanie Kühl
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Annette Trunschke
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Robert Schlögl
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Felix Studt
- Institute
of Catalysis Research and Technology, Karlsruher
Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany,Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany,
| | - Beatriz Roldan Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany,
| |
Collapse
|
23
|
A Specific Defect Type of Cu Active Site to Suppress Water-Gas-Shift Reaction in Syngas Conversion to Methanol over Cu Catalysts. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Nabi AG, Aman-ur-Rehman, Hussain A, Chass GA, Di Tommaso D. Optimal Icosahedral Copper-Based Bimetallic Clusters for the Selective Electrocatalytic CO 2 Conversion to One Carbon Products. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:87. [PMID: 36615997 PMCID: PMC9823659 DOI: 10.3390/nano13010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/12/2023]
Abstract
Electrochemical CO2 reduction reactions can lead to high value-added chemical and materials production while helping decrease anthropogenic CO2 emissions. Copper metal clusters can reduce CO2 to more than thirty different hydrocarbons and oxygenates yet they lack the required selectivity. We present a computational characterization of the role of nano-structuring and alloying in Cu-based catalysts on the activity and selectivity of CO2 reduction to generate the following one-carbon products: carbon monoxide (CO), formic acid (HCOOH), formaldehyde (H2C=O), methanol (CH3OH) and methane (CH4). The structures and energetics were determined for the adsorption, activation, and conversion of CO2 on monometallic and bimetallic (decorated and core@shell) 55-atom Cu-based clusters. The dopant metals considered were Ag, Cd, Pd, Pt, and Zn, located at different coordination sites. The relative binding strength of the intermediates were used to identify the optimal catalyst for the selective CO2 conversion to one-carbon products. It was discovered that single atom Cd or Zn doping is optimal for the conversion of CO2 to CO. The core@shell models with Ag, Pd and Pt provided higher selectivity for formic acid and formaldehyde. The Cu-Pt and Cu-Pd showed lowest overpotential for methane formation.
Collapse
Affiliation(s)
- Azeem Ghulam Nabi
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Department of Physics, University of Gujrat, Jalalpur Jattan Road, Gujrat 50700, Pakistan
- Theoretical Physics Division, Pakistan Institute of Nuclear Science& Technology (PINSTECH), Nilore, Islamabad 45650, Pakistan
| | - Aman-ur-Rehman
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Department of Nuclear Engineering, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Center for Mathematical Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Akhtar Hussain
- Theoretical Physics Division, Pakistan Institute of Nuclear Science& Technology (PINSTECH), Nilore, Islamabad 45650, Pakistan
| | - Gregory A. Chass
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Chemistry, McMaster University, Hamilton, ON L8S 4L8, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Devis Di Tommaso
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
25
|
Ortner N, Zhao D, Mena H, Weiß J, Lund H, Bartling S, Wohlrab S, Armbruster U, Kondratenko EV. Revealing Origins of Methanol Selectivity Loss in CO 2 Hydrogenation over CuZn-Containing Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nils Ortner
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Dan Zhao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Hesham Mena
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Jana Weiß
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Henrik Lund
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Udo Armbruster
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | | |
Collapse
|
26
|
To AT, Arellano-Treviño MA, Nash CP, Ruddy DA. Direct synthesis of branched hydrocarbons from CO2 over composite catalysts in a single reactor. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Müller A, Comas-Vives A, Copéret C. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO x hydrogenation according to ab initio atomistic thermodynamics. Chem Sci 2022; 13:13442-13458. [PMID: 36507169 PMCID: PMC9685501 DOI: 10.1039/d2sc03107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
The direct hydrogenation of CO or CO2 to methanol, a highly vivid research area in the context of sustainable development, is typically carried out with Cu-based catalysts. Specific elements (so-called promoters) improve the catalytic performance of these systems under a broad range of reaction conditions (from pure CO to pure CO2). Some of these promoters, such as Ga and Zn, can alloy with Cu and their role remains a matter of debate. In that context, we used periodic DFT calculations on slab models and ab initio thermodynamics to evaluate both metal alloying and surface formation by considering multiple surface facets, different promoter concentrations and spatial distributions as well as adsorption of several species (O*, H*, CO* and ) for different gas phase compositions. Both Ga and Zn form an fcc-alloy with Cu due to the stronger interaction of the promoters with Cu than with themselves. While the Cu-Ga-alloy is more stable than the Cu-Zn-alloy at low promoter concentrations (<25%), further increasing the promoter concentration reverses this trend, due to the unfavoured Ga-Ga-interactions. Under CO2 hydrogenation conditions, a substantial amount of O* can adsorb onto the alloy surfaces, resulting in partial dealloying and oxidation of the promoters. Therefore, the CO2 hydrogenation conditions are actually rather oxidising for both Ga and Zn despite the large amount of H2 present in the feedstock. Thus, the growth of a GaO x /ZnO x overlayer is thermodynamically preferred under reaction conditions, enhancing CO2 adsorption, and this effect is more pronounced for the Cu-Ga-system than for the Cu-Zn-system. In contrast, under CO hydrogenation conditions, fully reduced and alloyed surfaces partially covered with H* and CO* are expected, with mixed CO/CO2 hydrogenation conditions resulting in a mixture of reduced and oxidised states. This shows that the active atmosphere tunes the preferred state of the catalyst, influencing the catalytic activity and stability, indicating that the still widespread image of a static catalyst under reaction conditions is insufficient to understand the complex interplay of processes taking place on a catalyst surface under reaction conditions, and that dynamic effects must be considered.
Collapse
Affiliation(s)
- Andreas Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| | - Aleix Comas-Vives
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Departament de Química, Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Catalonia Spain
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| |
Collapse
|
28
|
Salomone F, Bonura G, Frusteri F, Castellino M, Fontana M, Chiodoni AM, Russo N, Pirone R, Bensaid S. Physico-Chemical Modifications Affecting the Activity and Stability of Cu-Based Hybrid Catalysts during the Direct Hydrogenation of Carbon Dioxide into Dimethyl-Ether. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7774. [PMID: 36363366 PMCID: PMC9657723 DOI: 10.3390/ma15217774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The direct hydrogenation of CO2 into dimethyl-ether (DME) has been studied in the presence of ferrierite-based CuZnZr hybrid catalysts. The samples were synthetized with three different techniques and two oxides/zeolite mass ratios. All the samples (calcined and spent) were properly characterized with different physico-chemical techniques for determining the textural and morphological nature of the catalytic surface. The experimental campaign was carried out in a fixed bed reactor at 2.5 MPa and stoichiometric H2/CO2 molar ratio, by varying both the reaction temperature (200-300 °C) and the spatial velocity (6.7-20.0 NL∙gcat-1∙h-1). Activity tests evidenced a superior activity of catalysts at a higher oxides/zeolite weight ratio, with a maximum DME yield as high as 4.5% (58.9 mgDME∙gcat-1∙h-1) exhibited by the sample prepared by gel-oxalate coprecipitation. At lower oxide/zeolite mass ratios, the catalysts prepared by impregnation and coprecipitation exhibited comparable DME productivity, whereas the physically mixed sample showed a high activity in CO2 hydrogenation but a low selectivity toward methanol and DME, ascribed to a minor synergy between the metal-oxide sites and the acid sites of the zeolite. Durability tests highlighted a progressive loss in activity with time on stream, mainly associated to the detrimental modifications under the adopted experimental conditions.
Collapse
Affiliation(s)
- Fabio Salomone
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Giuseppe Bonura
- Consiglio Nazionale delle Ricerche-Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano” (CNR-ITAE), Via Santa Lucia Sopra Contesse 5, 98126 Messina, Italy
| | - Francesco Frusteri
- Consiglio Nazionale delle Ricerche-Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano” (CNR-ITAE), Via Santa Lucia Sopra Contesse 5, 98126 Messina, Italy
| | - Micaela Castellino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Fontana
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
| | | | - Nunzio Russo
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Raffaele Pirone
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Samir Bensaid
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
29
|
Mockenhaupt B, Özcan F, Dalebout R, Mangelsen S, Machowski T, de Jongh PE, Behrens M. Cu‐Co/ZnAl
2
O
4
Catalysts for CO Conversion to Higher Alcohols Synthesized from Co‐Precipitated Hydrotalcite Precursors. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin Mockenhaupt
- University of Duisburg-Essen Inorganic Chemistry Universitätsstraße 7 45141 Essen Germany
- University of Kiel Inorganic Chemistry Max-Eyth-Straße 2 24118 Kiel Germany
| | - Fatih Özcan
- University of Duisburg-Essen Institute for Combustion and Gas Dynamics – Particle Science and Technology Carl-Benz-Straße 199 47057 Duisburg Germany
| | - Remco Dalebout
- Utrecht University Materials Chemistry and Catalysis Universiteitsweg 99 3584 CG Utrecht Netherlands
| | | | - Thomas Machowski
- University of Duisburg-Essen Inorganic Chemistry Universitätsstraße 7 45141 Essen Germany
| | - Petra E. de Jongh
- Utrecht University Materials Chemistry and Catalysis Universiteitsweg 99 3584 CG Utrecht Netherlands
| | - Malte Behrens
- University of Duisburg-Essen Inorganic Chemistry Universitätsstraße 7 45141 Essen Germany
- University of Kiel Inorganic Chemistry Max-Eyth-Straße 2 24118 Kiel Germany
| |
Collapse
|
30
|
Dalebout R, Barberis L, Visser NL, van der Hoeven JES, van der Eerden AMJ, Stewart JA, Meirer F, de Jong KP, de Jongh PE. Manganese Oxide as a Promoter for Copper Catalysts in CO 2 and CO Hydrogenation. ChemCatChem 2022; 14:e202200451. [PMID: 36605570 PMCID: PMC9804442 DOI: 10.1002/cctc.202200451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/19/2022] [Indexed: 01/07/2023]
Abstract
In this work, we discuss the role of manganese oxide as a promoter in Cu catalysts supported on graphitic carbon during hydrogenation of CO2 and CO. MnOx is a selectivity modifier in an H2/CO2 feed and is a highly effective activity promoter in an H2/CO feed. Interestingly, the presence of MnOx suppresses the methanol formation from CO2 (TOF of 0.7 ⋅ 10-3 s-1 at 533 K and 40 bar) and enhances the low-temperature reverse water-gas shift reaction (TOF of 5.7 ⋅ 10-3 s-1) with a selectivity to CO of 87 %C. Using time-resolved XAS at high temperatures and pressures, we find significant absorption of CO2 to the MnO, which is reversed if CO2 is removed from the feed. This work reveals fundamental differences in the promoting effect of MnOx and ZnOx and contributes to a better understanding of the role of reducible oxide promoters in Cu-based hydrogenation catalysts.
Collapse
Affiliation(s)
- Remco Dalebout
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Laura Barberis
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Nienke L. Visser
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Jessi E. S. van der Hoeven
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Ad M. J. van der Eerden
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Joseph A. Stewart
- TotalEnergies OneTech BelgiumZone industrielle CB-7181SeneffeBelgium
| | - Florian Meirer
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Krijn P. de Jong
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Petra E. de Jongh
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
31
|
Perret L, Lacerda de Oliveira Campos B, Herrera Delgado K, Zevaco TA, Neumann A, Sauer J. CO
x
Fixation to Elementary Building Blocks: Anaerobic Syngas Fermentation vs. Chemical Catalysis. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lukas Perret
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | | | - Karla Herrera Delgado
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Thomas A. Zevaco
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Anke Neumann
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences 2 – Technical Biology 76131 Karlsruhe Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
32
|
Barberis L, Hakimioun AH, Plessow PN, Visser NL, Stewart JA, Vandegehuchte BD, Studt F, de Jongh PE. Competition between reverse water gas shift reaction and methanol synthesis from CO 2: influence of copper particle size. NANOSCALE 2022; 14:13551-13560. [PMID: 36000554 DOI: 10.1039/d2nr02612k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting CO2 into value-added chemicals and fuels, such as methanol, is a promising approach to limit the environmental impact of human activities. Conventional methanol synthesis catalysts have shown limited efficiency and poor stability in a CO2/H2 mixture. To design improved catalysts, crucial for the effective utilization of CO2, an in-depth understanding of the active sites and reaction mechanism is desired. The catalytic performance of a series of carbon-supported Cu catalysts, with Cu particle sizes in the range of 5 to 20 nm, was evaluated under industrially relevant temperature and pressure, i.e. 260 °C and 40 bar(g). The CO2 hydrogenation reaction exhibited clear particle size effects up to 13 nm particles, with small nanoparticles having the lower activity, but higher methanol selectivity. MeOH and CO formation showed a different size-dependence. The TOFCO increased from 1.9 × 10-3 s-1 to 9.4 × 10-3 s-1 with Cu size increasing from 5 nm to 20 nm, while the TOFMeOH was size-independent (8.4 × 10-4 s-1 on average). The apparent activation energies for MeOH and CO formation were size-independent with values of 63 ± 7 kJ mol-1 and 118 ± 6 kJ mol-1, respectively. Hence the size dependence was ascribed to a decrease in the fraction of active sites suitable for CO formation with decreasing particle size. Theoretical models and DFT calculations showed that the origin of the particle size effect is most likely related to the differences in formate coverage for different Cu facets whose abundancy depends on particle size. Hence, the CO2 hydrogenation reaction is intrinsically sensitive to the Cu particle size.
Collapse
Affiliation(s)
- Laura Barberis
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Amir H Hakimioun
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Philipp N Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Nienke L Visser
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | | | | | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Petra E de Jongh
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
33
|
Halim H, Morikawa Y. Elucidation of Cu-Zn Surface Alloying on Cu(997) by Machine-Learning Molecular Dynamics. ACS PHYSICAL CHEMISTRY AU 2022; 2:430-447. [PMID: 36855689 PMCID: PMC9955186 DOI: 10.1021/acsphyschemau.2c00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cu-Zn surface alloy has been extensively involved in the investigation of the true active site of Cu/ZnO/Al2O3, the industrial catalyst for methanol synthesis which remains under controversy. The challenge lies in capturing the interplay between the surface and reaction under operating conditions, which can be overcome given that the explicit dynamics of the system is known. To provide a better understanding of the dynamic of Cu-Zn surface at the atomic level, the structure and the formation process of the Cu-Zn surface alloy on Cu(997) were investigated by machine-learning molecular dynamics (MD). Gaussian process regression aided with on-the-fly learning was employed to build the force field used in the MD. The simulation reveals atomistic details of the alloying process, that is, the incorporation of deposited Zn adatoms to the Cu substrate. The surface alloying is found to start at upper and lower terraces near the step edge, which emphasize the role of steps and kinks in the alloying. The incorporation of Zn at the middle terrace was found at the later stage of the simulation. The rationalization of alloying behavior was performed based on statistics and barriers of various elementary events that occur during the simulation. It was observed that the alloying scheme at the upper terrace is dominated by the confinement of Zn step adatoms by other adatoms, highlighting the importance of step fluctuations in the alloying process. On the other hand, the alloying scheme at the lower terrace is dominated by direct exchange between the Zn step adatom and the Cu atom underneath. The alloying at the middle terrace is dominated by the wave deposition mechanism and deep confinement of Zn adatoms. The short propagation of alloyed Zn in the middle terrace was observed to proceed by means of indirect exchange instead of local exchange as proposed in the previous scanning tunneling microscopy (STM) observation. The comparison of migration rate and activation energies to the result of STM observation is also made. We have found that at a certain distance from the surface, the STM tip significantly affects the elementary events such as vacancy formation and direct exchange.
Collapse
Affiliation(s)
- Harry
H. Halim
- Department
of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka565-0871, Japan
| | - Yoshitada Morikawa
- Department
of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka565-0871, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
- Research
Center for Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka565-0871, Japan
| |
Collapse
|
34
|
Chen X, Zhang W, Huang W. CO hydrogenation on stepped Cu and CuZn alloy surfaces: Competition between methanol synthesis and methanation pathways. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
A Detailed Process and Techno-Economic Analysis of Methanol Synthesis from H2 and CO2 with Intermediate Condensation Steps. Processes (Basel) 2022. [DOI: 10.3390/pr10081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to increase the typically low equilibrium CO2 conversion to methanol using commercially proven technology, the addition of two intermediate condensation units between reaction steps is evaluated in this work. Detailed process simulations with heat integration and techno-economic analyses of methanol synthesis from green H2 and captured CO2 are presented here, comparing the proposed process with condensation steps with the conventional approach. In the new process, a CO2 single-pass conversion of 53.9% was achieved, which is significantly higher than the conversion of the conventional process (28.5%) and its equilibrium conversion (30.4%). Consequently, the total recycle stream flow was halved, which reduced reactant losses in the purge stream and the compression work of the recycle streams, lowering operating costs by 4.8% (61.2 M€·a−1). In spite of the additional number of heat exchangers and flash drums related to the intermediate condensation units, the fixed investment costs of the improved process decreased by 22.7% (94.5 M€). This was a consequence of the increased reaction rates and lower recycle flows, reducing the required size of the main equipment. Therefore, intermediate condensation steps are beneficial for methanol synthesis from H2/CO2, significantly boosting CO2 single-pass conversion, which consequently reduces both the investment and operating costs.
Collapse
|
36
|
Fayisa BA, Yang Y, Zhen Z, Wang MY, Lv J, Wang Y, Ma X. Engineered Chemical Utilization of CO 2 to Methanol via Direct and Indirect Hydrogenation Pathways: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Busha Assaba Fayisa
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Youwei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ziheng Zhen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mei-Yan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
37
|
Pan Y, Li N, Ran S, Wen D, Luo Q, Li K, Zhou Q. Efficient Catalysis for Low-Temperature CO Selective Catalytic Reduction over an Fe-Cu Bimetal Oxide Catalyst Supported on Amorphous SiO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuqing Pan
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Na Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shiyuan Ran
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Du Wen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qinlan Luo
- Joint International Center for CO2 Capture and Storage (iCCS), Hunan University, Changsha 410082, China
| | - Ke Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 138634 Singapore
| | - Qulan Zhou
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
38
|
Shi YF, Kang PL, Shang C, Liu ZP. Methanol Synthesis from CO 2/CO Mixture on Cu-Zn Catalysts from Microkinetics-Guided Machine Learning Pathway Search. J Am Chem Soc 2022; 144:13401-13414. [PMID: 35848119 DOI: 10.1021/jacs.2c06044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methanol synthesis on industrial Cu/ZnO/Al2O3 catalysts via the hydrogenation of CO and CO2 mixture, despite several decades of research, is still puzzling due to the nature of the active site and the role of CO2 in the feed gas. Herein, with the large-scale machine learning atomic simulation, we develop a microkinetics-guided machine learning pathway search to explore thousands of reaction pathways for CO2 and CO hydrogenations on thermodynamically favorable Cu-Zn surface structures, including Cu(111), Cu(211), and Zn-alloyed Cu(211) surfaces, from which the lowest energy pathways are identified. We find that Zn decorates at the step-edge at Cu(211) up to 0.22 ML under reaction conditions with the Zn-Zn dimeric sites being avoided. CO2 and CO hydrogenations occur exclusively at the step-edge of the (211) surface with up to 0.11 ML Zn coverage, where the low coverage of Zn (0.11 ML) does not much affect the reaction kinetics, but the higher coverages of Zn (0.22 ML) poison the catalyst. It is CO2 hydrogenation instead of CO hydrogenation that dominates methanol synthesis, agreeing with previous isotope experiments. While metallic steps are identified as the major active site, we show that the [-Zn-OH-Zn-] chains (cationic Zn) can grow on Cu(111) surfaces under reaction conditions, which suggests the critical role of CO in the mixed gas for reducing the cationic Zn and exposing metal sites for methanol synthesis. Our results provide a comprehensive picture on the dynamic coupling of the feed gas composition, the catalyst active site, and the reaction activity in this complex heterogeneous catalytic system.
Collapse
Affiliation(s)
- Yun-Fei Shi
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Pei-Lin Kang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institution, Shanghai 200030, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institution, Shanghai 200030, China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
39
|
Takeyasu K, Sawaki Y, Imabayashi T, Putra SEM, Halim HH, Quan J, Hamamoto Y, Hamada I, Morikawa Y, Kondo T, Fujitani T, Nakamura J. Hydrogenation of Formate Species Using Atomic Hydrogen on a Cu(111) Model Catalyst. J Am Chem Soc 2022; 144:12158-12166. [PMID: 35762507 DOI: 10.1021/jacs.2c02797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The reaction mechanism of the CH3OH synthesis by the hydrogenation of CO2 on Cu catalysts is unclear because of the challenge in experimentally detecting reaction intermediates formed by the hydrogenation of adsorbed formate (HCOOa). Thus, the objective of this study is to clarify the reaction mechanism of the CH3OH synthesis by establishing the kinetic natures of intermediates formed by the hydrogenation of adsorbed HCOOa on Cu(111). We exposed HCOOa on Cu(111) to atomic hydrogen at low temperatures of 200-250 K and observed the species using infrared reflection absorption (IRA) spectroscopy and temperature-programmed desorption (TPD) studies. In the IRA spectra, a new peak was observed upon the exposure of HCOOa on Cu(111) to atomic hydrogen at 200 K and was assigned to the adsorbed dioxymethylene (H2COOa) species. The intensity of the new peak gradually decreased with heating from 200 to 290 K, whereas the IR peaks representing HCOOa species increased correspondingly. In addition, small amounts of formaldehyde (HCHO), which were formed by the exposure of HCOOa species to atomic hydrogen, were detected in the TPD studies. Therefore, H2COOa is formed via hydrogenation by atomic hydrogen, which thermally decomposes at ∼250 K on Cu(111). We propose a potential diagram of the CH3OH synthesis via H2COOa from CO2 on Cu surfaces, with the aid of density functional theory calculations and literature data, in which the hydrogenation of bidentate HCOOa to H2COOa is potentially the rate-determining step and accounts for the apparent activation energy of the methanol synthesis from CO2 on Cu surfaces.
Collapse
Affiliation(s)
- Kotaro Takeyasu
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.,Tsukuba Research Centre for Energy and Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.,R&D Center for Zero CO2 Emission with Functional Materials, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yasutaka Sawaki
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takumi Imabayashi
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Septia Eka Marsha Putra
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Harry Handoko Halim
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jiamei Quan
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Institute for Physical Chemistry, Georg-August-University Goettingen, Tammannstrasse 6, Göttingen D-37077, Germany
| | - Yuji Hamamoto
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshitada Morikawa
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Research Center for Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takahiro Kondo
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.,Tsukuba Research Centre for Energy and Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.,R&D Center for Zero CO2 Emission with Functional Materials, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tadahiro Fujitani
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Azuma, Tsukuba, Ibaraki 305-0046, Japan
| | - Junji Nakamura
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.,Tsukuba Research Centre for Energy and Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.,R&D Center for Zero CO2 Emission with Functional Materials, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.,Mitsui Chemicals, Inc. - Carbon Neutral Energy Research Center (MCI-CNRC), International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| |
Collapse
|
40
|
Liu X, Luo J, Wang H, Huang L, Wang S, Li S, Sun Z, Sun F, Jiang Z, Wei S, Li WX, Lu J. In Situ Spectroscopic Characterization and Theoretical Calculations Identify Partially Reduced ZnO 1-x /Cu Interfaces for Methanol Synthesis from CO 2. Angew Chem Int Ed Engl 2022; 61:e202202330. [PMID: 35322514 DOI: 10.1002/anie.202202330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/16/2022]
Abstract
The active site of the industrial Cu/ZnO/Al2 O3 catalyst used in CO2 hydrogenation to methanol has been debated for decades. Grand challenges remain in the characterization of structure, composition, and chemical state, both microscopically and spectroscopically, and complete theoretical calculations are limited when it comes to describing the intrinsic activity of the catalyst over the diverse range of structures that emerge under realistic conditions. Here a series of inverse model catalysts of ZnO on copper hydroxide were prepared where the size of ZnO was precisely tuned from atomically dispersed species to nanoparticles using atomic layer deposition. ZnO decoration boosted methanol formation to a rate of 877 gMeOH kgcat -1 h-1 with ≈80 % selectivity at 493 K. High pressure in situ X-ray absorption spectroscopy demonstrated that the atomically dispersed ZnO species are prone to aggregate at oxygen-deficient ZnO ensembles instead of forming CuZn metal alloys. By modeling various potential active structures, density functional theory calculations and microkinetic simulations revealed that ZnO/Cu interfaces with oxygen vacancies, rather than stoichiometric interfaces, Cu and CuZn alloys were essential to catalytic activation.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Luo
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Hengwei Wang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Li Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Shasha Wang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Shang Li
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Fanfei Sun
- Shanghai Advanced Research Institute, Chinese Academy of Science, China Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai, 201204, China
| | - Zheng Jiang
- Shanghai Advanced Research Institute, Chinese Academy of Science, China Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai, 201204, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Wei-Xue Li
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Junling Lu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
41
|
Dalebout R, Barberis L, Totarella G, Turner SJ, La Fontaine C, de Groot FMF, Carrier X, van der Eerden AMJ, Meirer F, de Jongh PE. Insight into the Nature of the ZnO x Promoter during Methanol Synthesis. ACS Catal 2022; 12:6628-6639. [PMID: 35692251 PMCID: PMC9171830 DOI: 10.1021/acscatal.1c05101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/08/2022] [Indexed: 11/30/2022]
Abstract
Despite the great commercial relevance of zinc-promoted copper catalysts for methanol synthesis, the nature of the Cu-ZnO x synergy and the nature of the active Zn-based promoter species under industrially relevant conditions are still a topic of vivid debate. Detailed characterization of the chemical speciation of any promoter under high-pressure working conditions is challenging but specifically hampered by the large fraction of Zn spectator species bound to the oxidic catalyst support. We present the use of weakly interacting graphitic carbon supports as a tool to study the active speciation of the Zn promoter phase that is in close contact with the Cu nanoparticles using time-resolved X-ray absorption spectroscopy under working conditions. Without an oxidic support, much fewer Zn species need to be added for maximum catalyst activity. A 5-15 min exposure to 1 bar H2 at 543 K only slightly reduces the Zn(II), but exposure for several hours to 20 bar H2/CO and/or H2/CO/CO2 leads to an average Zn oxidation number of +(0.5-0.6), only slightly increasing to +0.8 in a 20 bar H2/CO2 feed. This means that most of the added Zn is in a zerovalent oxidation state during methanol synthesis conditions. The Zn average coordination number is 8, showing that this phase is not at the surface but surrounded by other metal atoms (whether Zn or Cu), and indicating that the Zn diffuses into the Cu nanoparticles under reaction conditions. The time scale of this process corresponds to that of the generally observed activation period for these catalysts. These results reveal the speciation of the relevant Zn promoter species under methanol synthesis conditions and, more generally, present the use of weakly interacting graphitic supports as an important strategy to avoid excessive spectator species, thereby allowing us to study the nature of relevant promoter species.
Collapse
Affiliation(s)
- Remco Dalebout
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Laura Barberis
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Giorgio Totarella
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Savannah J. Turner
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Camille La Fontaine
- Synchrotron
SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, Gif-sur-Yvette 91192 CEDEX, France
| | - Frank M. F. de Groot
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Xavier Carrier
- Laboratoire
de Réactivité de Surface, UMR CNRS 7197, Sorbonne Université, 4 place Jussieu, Paris 75252 CEDEX 05, France
| | - Ad M. J. van der Eerden
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Petra E. de Jongh
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
42
|
Behrendt G, Mockenhaupt B, Prinz N, Zobel M, Ras EJ, Behrens M. CO Hydrogenation to Methanol over Cu/MgO Catalysts and Their Synthesis from Amorphous Magnesian Georgeite Precursors. ChemCatChem 2022. [DOI: 10.1002/cctc.202200299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gereon Behrendt
- Universität Duisburg-Essen: Universitat Duisburg-Essen Inorganic Chemistry GERMANY
| | - Benjamin Mockenhaupt
- University of Duisburg-Essen: Universitat Duisburg-Essen Inorganic Chemistry GERMANY
| | - Nils Prinz
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen Institut für Kristallographie GERMANY
| | - Mirijam Zobel
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen Institut für Kristallographie GERMANY
| | - Erik-Jan Ras
- Avantium Technologies B.V. Avantium Technologies B.V. NETHERLANDS
| | - Malte Behrens
- Kiel University Institute of Inorganic Chemistry Max-Eyth-Str. 2 24118 Kiel GERMANY
| |
Collapse
|
43
|
Synthetic Routes to Crystalline Complex Metal Alkyl Carbonates and Hydroxycarbonates via Sol–Gel Chemistry—Perspectives for Advanced Materials in Catalysis. Catalysts 2022. [DOI: 10.3390/catal12050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metal alkoxides are easily available and versatile precursors for functional materials, such as solid catalysts. However, the poor solubility of metal alkoxides in organic solvents usually hinders their facile application in sol–gel processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. In our contribution we have therefore shown three different solubilization strategies for metal alkoxides, namely the derivatization, the hetero-metallization and CO2 insertion. The latter strategy leads to a stoichiometric insertion of CO2 into the metal–oxygen bond of the alkoxide and the subsequent formation of metal alkyl carbonates. These precursors can then be employed advantageously in sol–gel chemistry and, after controlled hydrolysis, result in chemically defined crystalline carbonates and hydroxycarbonates. Cu- and Zn-containing carbonates and hydroxycarbonates were used in an exemplary study for the synthesis of Cu/Zn-based bulk catalysts for methanol synthesis with a final comparable catalytic activity to commercial standard reference catalysts.
Collapse
|
44
|
Amann P, Klötzer B, Degerman D, Köpfle N, Götsch T, Lömker P, Rameshan C, Ploner K, Bikaljevic D, Wang HY, Soldemo M, Shipilin M, Goodwin CM, Gladh J, Halldin Stenlid J, Börner M, Schlueter C, Nilsson A. The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst. Science 2022; 376:603-608. [PMID: 35511988 DOI: 10.1126/science.abj7747] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The active chemical state of zinc (Zn) in a zinc-copper (Zn-Cu) catalyst during carbon dioxide/carbon monoxide (CO2/CO) hydrogenation has been debated to be Zn oxide (ZnO) nanoparticles, metallic Zn, or a Zn-Cu surface alloy. We used x-ray photoelectron spectroscopy at 180 to 500 millibar to probe the nature of Zn and reaction intermediates during CO2/CO hydrogenation over Zn/ZnO/Cu(211), where the temperature is sufficiently high for the reaction to rapidly turn over, thus creating an almost adsorbate-free surface. Tuning of the grazing incidence angle makes it possible to achieve either surface or bulk sensitivity. Hydrogenation of CO2 gives preference to ZnO in the form of clusters or nanoparticles, whereas in pure CO a surface Zn-Cu alloy becomes more prominent. The results reveal a specific role of CO in the formation of the Zn-Cu surface alloy as an active phase that facilitates efficient CO2 methanol synthesis.
Collapse
Affiliation(s)
- Peter Amann
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Bernhard Klötzer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - David Degerman
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Norbert Köpfle
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Thomas Götsch
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Patrick Lömker
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden.,Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christoph Rameshan
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/BC/01, 1060 Vienna, Austria
| | - Kevin Ploner
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Djuro Bikaljevic
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Hsin-Yi Wang
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Markus Soldemo
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Mikhail Shipilin
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Christopher M Goodwin
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Jörgen Gladh
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Joakim Halldin Stenlid
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Mia Börner
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Christoph Schlueter
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anders Nilsson
- Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
| |
Collapse
|
45
|
Al‐Qadri AA, Nasser GA, Galadima A, Muraza O. A Review on the Conversion of Synthetic Gas to LPG over Hybrid Nanostructure Zeolites Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202200042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ali. A. Al‐Qadri
- Department of Chemical Engineering King Fahd University of Petroleum and Minerals Dhahran, 31261 Saudi Arabia
- Galal A. Nasser Dr. Oki Muraza Interdisciplinary Research Center for Hydrogen and Energy Storage King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Galal A. Nasser
- Galal A. Nasser Dr. Oki Muraza Interdisciplinary Research Center for Hydrogen and Energy Storage King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Ahmad Galadima
- Office of the Vice Chancellor Federal University P.M.B. 1001 Gusau Zamfara State Nigeria
| | - Oki Muraza
- Galal A. Nasser Dr. Oki Muraza Interdisciplinary Research Center for Hydrogen and Energy Storage King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
46
|
Liu X, Luo J, Wang H, Huang L, Wang S, Li S, Sun Z, Sun F, Jiang Z, Wei S, Li W, Lu J. In Situ Spectroscopic Characterization and Theoretical Calculations Identify Partially Reduced ZnO
1−
x
/Cu Interfaces for Methanol Synthesis from CO
2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xinyu Liu
- Department of Chemical Physics Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei 230026 China
| | - Jie Luo
- Department of Chemical Physics Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei 230026 China
| | - Hengwei Wang
- Department of Chemical Physics Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei 230026 China
| | - Li Huang
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 China
| | - Shasha Wang
- Department of Chemical Physics Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei 230026 China
| | - Shang Li
- Department of Chemical Physics Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei 230026 China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 China
| | - Fanfei Sun
- Shanghai Advanced Research Institute Chinese Academy of Science China Shanghai Synchrotron Radiation Facility Zhangjiang National Laboratory Shanghai 201204 China
| | - Zheng Jiang
- Shanghai Advanced Research Institute Chinese Academy of Science China Shanghai Synchrotron Radiation Facility Zhangjiang National Laboratory Shanghai 201204 China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 China
| | - Wei‐Xue Li
- Department of Chemical Physics Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei 230026 China
| | - Junling Lu
- Department of Chemical Physics Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
47
|
García AC, Moral-Vico J, Abo Markeb A, Sánchez A. Conversion of Carbon Dioxide into Methanol Using Cu-Zn Nanostructured Materials as Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:999. [PMID: 35335812 PMCID: PMC8950516 DOI: 10.3390/nano12060999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Nowadays, there is a growing awareness of the great environmental impact caused by the enormous amounts of carbon dioxide emitted. Several alternatives exist to solve this problem, and one of them is the hydrogenation of carbon dioxide into methanol by using nanomaterials as catalysts. The aim of this alternative is to produce a value-added chemical, such as methanol, which is a cheaply available feedstock. The development of improved materials for this conversion reaction and a deeper study of the existing ones are important for obtaining higher efficiencies in terms of yield, conversion, and methanol selectivity, in addition to allowing milder reaction conditions in terms of pressure and temperature. In this work, the performance of copper, zinc, and zinc oxide nanoparticles in supported and unsupported bimetallic systems is evaluated in order to establish a comparison among the different materials according to their efficiency. For that, a packed bed reactor operating with a continuous gas flow is used. The obtained results indicate that the use of bimetallic systems combined with porous supports, such as zeolite and activated carbon, is beneficial, thus improving the performance of unsupported materials by four times.
Collapse
Affiliation(s)
- Anna Carrasco García
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (A.C.G.); (A.A.M.); (A.S.)
| | - Javier Moral-Vico
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (A.C.G.); (A.A.M.); (A.S.)
| | - Ahmad Abo Markeb
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (A.C.G.); (A.A.M.); (A.S.)
- Departament of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Antoni Sánchez
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (A.C.G.); (A.A.M.); (A.S.)
| |
Collapse
|
48
|
Zhang X, Kirilin AV, Rozeveld S, Kang JH, Pollefeyt G, Yancey DF, Chojecki A, Vanchura B, Blum M. Support Effect and Surface Reconstruction in In 2O 3/ m-ZrO 2 Catalyzed CO 2 Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueqiang Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Steve Rozeveld
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Joo H. Kang
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Glenn Pollefeyt
- Packaging & Specialty Plastics and Hydrocarbons R&D, Dow Benelux B.V., Terneuzen 4530 AA, The Netherlands
| | - David F. Yancey
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Adam Chojecki
- Core R&D, Dow Benelux B.V., Terneuzen 4530 AA, The Netherlands
| | - Britt Vanchura
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Monika Blum
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
49
|
The role of CO2 over different binary catalysts in methanol synthesis. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Sargeant E, Rodríguez P. Electrochemical conversion of CO
2
in non‐conventional electrolytes: Recent achievements and future challenges. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|