• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4609572)   Today's Articles (11168)   Subscriber (49378)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Kang S, Kim JK, Kim H, Son YH, Chang J, Kim J, Kim DW, Lee JM, Kwon HJ. Local Structures of Ex-Solved Nanoparticles Identified by Machine-Learned Potentials. NANO LETTERS 2024;24:4224-4232. [PMID: 38557115 DOI: 10.1021/acs.nanolett.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
2
Cheng Q, Yao X, Ou L, Hu Z, Zheng L, Li G, Morlanes N, Cerrillo JL, Castaño P, Li X, Gascon J, Han Y. Highly Efficient and Stable Methane Dry Reforming Enabled by a Single-Site Cationic Ni Catalyst. J Am Chem Soc 2023;145:25109-25119. [PMID: 37947830 DOI: 10.1021/jacs.3c04581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
3
Xie J, Olsbye U. The Oxygenate-Mediated Conversion of COx to Hydrocarbons─On the Role of Zeolites in Tandem Catalysis. Chem Rev 2023;123:11775-11816. [PMID: 37769023 PMCID: PMC10603784 DOI: 10.1021/acs.chemrev.3c00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 09/30/2023]
4
Wolf M, de Oliveira AL, Taccardi N, Maisel S, Heller M, Khan Antara S, Søgaard A, Felfer P, Görling A, Haumann M, Wasserscheid P. Dry reforming of methane over gallium-based supported catalytically active liquid metal solutions. Commun Chem 2023;6:224. [PMID: 37853170 PMCID: PMC10584823 DOI: 10.1038/s42004-023-01018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/02/2023] [Indexed: 10/20/2023]  Open
5
Kohse-Höinghaus K. Combustion, Chemistry, and Carbon Neutrality. Chem Rev 2023;123:5139-5219. [PMID: 37031400 DOI: 10.1021/acs.chemrev.2c00828] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
6
Gold and Ceria Modified NiAl Hydrotalcite Materials as Catalyst Precursors for Dry Reforming of Methane. Catalysts 2023. [DOI: 10.3390/catal13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]  Open
7
Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure. Nat Commun 2023;14:1435. [PMID: 36918553 PMCID: PMC10015045 DOI: 10.1038/s41467-023-36982-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]  Open
8
Shirsath AB, Mokashi M, Lott P, Müller H, Pashminehazar R, Sheppard T, Tischer S, Maier L, Grunwaldt JD, Deutschmann O. Soot Formation in Methane Pyrolysis Reactor: Modeling Soot Growth and Particle Characterization. J Phys Chem A 2023;127:2136-2147. [PMID: 36848592 DOI: 10.1021/acs.jpca.2c06878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
9
Kwon Y, Eichler JE, Floto ME, Smith LA, Satkoski AM, Mullins CB. A study of refractory carbon deposits on Ni/Al 2 O 3 catalysts for dry reforming of methane. ChemistrySelect 2023. [DOI: 10.1002/slct.202203734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
10
Shevchenko E, Park AHA, Sun S, Zhang T. Introduction to CO2 capture and conversion. NANOSCALE 2023;15:855-858. [PMID: 36546352 DOI: 10.1039/d2nr90219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
11
Study of the Synthetic Approach Influence in Ni/CeO2-Based Catalysts for Methane Dry Reforming. REACTIONS 2022. [DOI: 10.3390/reactions3040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]  Open
12
Peng W, Li Z, Liu B, Qiu P, Yan D, Jia L, Li J. Enhanced activity and stability of Ce-doped PrCrO3-supported nickel catalyst for dry reforming of methane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
13
Haug L, Thurner C, Bekheet MF, Bischoff B, Gurlo A, Kunz M, Sartory B, Penner S, Klötzer B. Zirconium Carbide Mediates Coke‐Resistant Methane Dry Reforming on Nickel‐Zirconium Catalysts. Angew Chem Int Ed Engl 2022;61:e202213249. [PMID: 36379010 PMCID: PMC10100075 DOI: 10.1002/anie.202213249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 11/16/2022]
14
Haug L, Thurner C, Bekheet MF, Bischoff B, Gurlo A, Kunz M, Sartory B, Penner S, Klötzer B. Zirkonkarbid ermöglicht verkokungsresistente Methan‐Trockenreformierung auf Nickel‐Zirkon‐Katalysatoren. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
15
Fritsch C, Titus J, Roussière T, Lizandara‐Pueyo C, Müller R, Gläser R, Schunk SA. Structure‐Property Relations of Nickel and Cobalt Substituted Yttrium Aluminum Garnets as Catalyst Materials for Dry Reforming of Methane. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
16
Huang W, Wei C, Li Y, Zhang Y, Lin W. The role of Mo species in Ni-Mo catalysts for dry reforming of methane. Phys Chem Chem Phys 2022;24:21461-21469. [PMID: 36048173 DOI: 10.1039/d2cp02120j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
17
Ahn S, Littlewood P, Liu Y, Marks TJ, Stair PC. Stabilizing Supported Ni Catalysts for Dry Reforming of Methane by Combined La Doping and Al Overcoating Using Atomic Layer Deposition. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Kamsuwan T, Guntida A, Praserthdam P, Jongsomjit B. Differences in Deterioration Behaviors of Cu/ZnO/Al2O3 Catalysts with Different Cu Contents toward Hydrogenation of CO and CO2. ACS OMEGA 2022;7:25783-25797. [PMID: 35910179 PMCID: PMC9330176 DOI: 10.1021/acsomega.2c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
19
Enhanced coke resistance of boron-promoted Co/P/Al2O3 catalysts in dry reforming of methane. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
20
Chytil S, Li C, Lee WJ, Lødeng R, Holmen A, Blekkan EA, Burke N, Patel J. Experimental and Theoretical Studies on Water-Added Thermal Processing of Model Biosyngas for Improving Hydrogen Production and Restraining Soot Formation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
21
Dorofeeva NV, Kharlamova TS, La Parola V, Liotta LF, Vodyankina OV. Dry Reforming of Methane on Ni-Containing La2O3 and La2O3–Mn2O3 Catalysts: Effect of the Preparation Method. DOKLADY PHYSICAL CHEMISTRY 2022. [DOI: 10.1134/s0012501622600176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
22
Wang D, Littlewood P, Marks TJ, Stair PC, Weitz E. Coking Can Enhance Product Yields in the Dry Reforming of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
23
Quo Vadis Dry Reforming of Methane?—A Review on Its Chemical, Environmental, and Industrial Prospects. Catalysts 2022. [DOI: 10.3390/catal12050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
24
Kweon S, Kim YW, Bae J, Kim EJ, Park MB, Min HK. Nickel on two-dimensional ITQ-2 zeolite as a highly active catalyst for carbon dioxide reforming of methane. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
25
Prospects and Technical Challenges in Hydrogen Production through Dry Reforming of Methane. Catalysts 2022. [DOI: 10.3390/catal12040363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]  Open
26
Dry Reforming of Methane on NiCu and NiPd Model Systems: Optimization of Carbon Chemistry. Catalysts 2022. [DOI: 10.3390/catal12030311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]  Open
27
Cao P, Zhao H, Adegbite S, Lester E, Wu T. Vacuum-freeze drying assisted for the fabrication of a Nickel-Aluminium catalyst and its effects on the structure-reactivity in the catalytic dry reforming of methane. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
28
Monjur MS, Hasan MMF. Computer‐Aided Process Intensification of Natural gas to Methanol Process. AIChE J 2022. [DOI: 10.1002/aic.17622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
29
Bezerra DM, Ferreira GR, Assaf EM. Catalysts applied in biogas reforming: phases behavior study during the H2 reduction and dry reforming by in situ X-ray diffraction. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-021-00213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
30
Esakkimuthu S, Wang S, Abomohra AEF. CO2-Mediated Energy Conversion and Recycling. WASTE-TO-ENERGY 2022:379-409. [DOI: 10.1007/978-3-030-91570-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
31
Gioria E, Ingale P, Pohl F, Naumann d'Alnoncourt R, Thomas A, Rosowski F. Boosting the performance of Ni/Al2O3 for the reverse water gas shift reaction through formation of CuNi nanoalloys. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01585k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Torimoto M, Sekine Y. Effects of alloying for steam or dry reforming of methane: a review of recent studies. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00066k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Nikolaraki E, Goula G, Panagiotopoulou P, Taylor MJ, Kousi K, Kyriakou G, Kondarides DI, Lambert RM, Yentekakis IV. Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO2 Reforming of Methane. NANOMATERIALS 2021;11:nano11112880. [PMID: 34835645 PMCID: PMC8624188 DOI: 10.3390/nano11112880] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
34
Franz R, Pinto D, Uslamin EA, Urakawa A, Pidko EA. Impact of Promoter Addition on the Regeneration of Ni/Al 2 O 3 Dry Reforming Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202101080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
35
Harte Röntgen‐Nanotomographie zur 3D‐Analyse der Verkokung in Nickel‐basierten Katalysatoren. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
36
Weber S, Batey D, Cipiccia S, Stehle M, Abel KL, Gläser R, Sheppard TL. Hard X-Ray Nanotomography for 3D Analysis of Coking in Nickel-Based Catalysts. Angew Chem Int Ed Engl 2021;60:21772-21777. [PMID: 34339595 PMCID: PMC8518723 DOI: 10.1002/anie.202106380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/13/2021] [Indexed: 12/24/2022]
37
He L, Li M, Li WC, Xu W, Wang Y, Wang YB, Shen W, Lu AH. Robust and Coke-free Ni Catalyst Stabilized by 1–2 nm-Thick Multielement Oxide for Methane Dry Reforming. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
38
Catalyst Deactivation by Carbon Deposition: The Remarkable Case of Nickel Confined by Atomic Layer Deposition. ChemCatChem 2021. [DOI: 10.1002/cctc.202100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
39
Yu YX, Yang J, Zhu KK, Sui ZJ, Chen D, Zhu YA, Zhou XG. High-Throughput Screening of Alloy Catalysts for Dry Methane Reforming. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04911] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
40
Performance Analysis of TiO2-Modified Co/MgAl2O4 Catalyst for Dry Reforming of Methane in a Fixed Bed Reactor for Syngas (H2, CO) Production. ENERGIES 2021. [DOI: 10.3390/en14113347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
41
Wolf M. Thermodynamic assessment of the stability of bulk and nanoparticulate cobalt and nickel during dry and steam reforming of methane. RSC Adv 2021;11:18187-18197. [PMID: 34046175 PMCID: PMC8132427 DOI: 10.1039/d1ra01856f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]  Open
42
Yang Y, Li YK, Zhao YX, Wei GP, Ren Y, Asmis KR, He SG. Catalytic Co-Conversion of CH4 and CO2 Mediated by Rhodium-Titanium Oxide Anions RhTiO2. Angew Chem Int Ed Engl 2021;60:13788-13792. [PMID: 33890352 PMCID: PMC8251526 DOI: 10.1002/anie.202103808] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 01/26/2023]
43
Yang Y, Li Y, Zhao Y, Wei G, Ren Y, Asmis KR, He S. Gemeinsame katalytische Umsetzung von CH 4 und CO 2 durch Rhodium‐Titanoxid‐Anionen RhTiO 2 −. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
44
Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]  Open
45
Shahnazi A, Firoozi S. Improving the catalytic performance of LaNiO3 perovskite by manganese substitution via ultrasonic spray pyrolysis for dry reforming of methane. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101455] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
46
González-Castaño M, Dorneanu B, Arellano-García H. The reverse water gas shift reaction: a process systems engineering perspective. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00478b] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
47
Tao L, Choksi TS, Liu W, Pérez-Ramírez J. Synthesizing High-Volume Chemicals from CO2 without Direct H2 Input. CHEMSUSCHEM 2020;13:6066-6089. [PMID: 32946662 DOI: 10.1002/cssc.202001604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Indexed: 06/11/2023]
48
Kohse-Höinghaus K. Combustion in the future: The importance of chemistry. PROCEEDINGS OF THE COMBUSTION INSTITUTE. INTERNATIONAL SYMPOSIUM ON COMBUSTION 2020;38:S1540-7489(20)30501-0. [PMID: 33013234 PMCID: PMC7518234 DOI: 10.1016/j.proci.2020.06.375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
49
Carbide-Modified Pd on ZrO2 as Active Phase for CO2-Reforming of Methane—A Model Phase Boundary Approach. Catalysts 2020. [DOI: 10.3390/catal10091000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA