1
|
Ocampo CMM, Villaraza AJL. A Gd(III)-labelled self-assembling peptide as a potential pH-responsive MRI contrast agent. Dalton Trans 2024; 53:14971-14974. [PMID: 39189442 DOI: 10.1039/d4dt01773k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A marine-derived peptide labelled with a Gd(III)-chelate was found to self-assemble depending on the solution pH, accompanied by changes in T1-relaxivity (r1) values when in the dispersed or self-assembled form. Such pH-responsive behavior can be advantageous in the development of macromolecular magnetic resonance imaging (MRI) contrast agents which monitor the tissue physiology.
Collapse
|
2
|
MRI Contrast Agents in Glycobiology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238297. [PMID: 36500389 PMCID: PMC9735696 DOI: 10.3390/molecules27238297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Molecular recognition involving glycoprotein-mediated interactions is ubiquitous in both normal and pathological natural processes. Therefore, visualization of these interactions and the extent of expression of the sugars is a challenge in medical diagnosis, monitoring of therapy, and drug design. Here, we review the literature on the development and validation of probes for magnetic resonance imaging using carbohydrates either as targeting vectors or as a target. Lectins are important targeting vectors for carbohydrate end groups, whereas selectins, the asialoglycoprotein receptor, sialic acid end groups, hyaluronic acid, and glycated serum and hemoglobin are interesting carbohydrate targets.
Collapse
|
3
|
Meng Q, Wu M, Shang Z, Zhang Z, Zhang R. Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Suzuki AZ, Sakano T, Sasaki H, Watahiki R, Sone M, Horikawa K, Furuta T. Design and synthesis of gene-directed caged cyclic nucleotides exhibiting cell type selectivity. Chem Commun (Camb) 2021; 57:5630-5633. [PMID: 34018507 DOI: 10.1039/d1cc01405f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We designed a new caging group that can be photoactivated only in the presence of a non-endogenous enzyme when exposed to 405 nm light. Because cells or tissues can be genetically tagged by an exogenously expressed enzyme, this novel method can serve as a strategy for adding targeting abilities to photocaged compounds.
Collapse
Affiliation(s)
- Akinobu Z Suzuki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Taichi Sakano
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Hirona Sasaki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Rei Watahiki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Kazuki Horikawa
- Department of Optical Imaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto Cho, Tokushima City, Tokushima 770-8503, Japan
| | - Toshiaki Furuta
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| |
Collapse
|
5
|
Gao S, Zhao L, Fan Z, Kodibagkar VD, Liu L, Wang H, Xu H, Tu M, Hu B, Cao C, Zhang Z, Yu JX. In Situ Generated Novel 1H MRI Reporter for β-Galactosidase Activity Detection and Visualization in Living Tumor Cells. Front Chem 2021; 9:709581. [PMID: 34336792 PMCID: PMC8321238 DOI: 10.3389/fchem.2021.709581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
For wide applications of the lacZ gene in cellular/molecular biology, small animal investigations, and clinical assessments, the improvement of noninvasive imaging approaches to precisely assay gene expression has garnered much attention. In this study, we investigate a novel molecular platform in which alizarin 2-O-β-d-galactopyranoside AZ-1 acts as a lacZ gene/β-gal responsive 1H-MRI probe to induce significant 1H-MRI contrast changes in relaxation times T 1 and T 2 in situ as a concerted effect for the discovery of β-gal activity with the exposure of Fe3+. We also demonstrate the capability of this strategy for detecting β-gal activity with lacZ-transfected human MCF7 breast and PC3 prostate cancer cells by reaction-enhanced 1H-MRI T 1 and T 2 relaxation mapping.
Collapse
Affiliation(s)
- Shuo Gao
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Lei Zhao
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhiqiang Fan
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Vikram D. Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Hanqin Wang
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Hong Xu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Mingli Tu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Bifu Hu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Chuanbin Cao
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhenjian Zhang
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Jian-Xin Yu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
6
|
Wellm V, Groebner J, Heitmann G, Sönnichsen FD, Herges R. Towards Photoswitchable Contrast Agents for Absolute 3D Temperature MR Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vanessa Wellm
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| | - Jens Groebner
- Department of Electrical Engineering and Information Technology South Westphalian University of Applied Sciences Bahnhofsallee 5 58507 Luedenscheid Germany
| | - Gernot Heitmann
- IWS Innovations- und Wissenstrategien GmbH Aviares Research Network Deichstraße 25 20459 Hamburg Germany
| | - Frank D. Sönnichsen
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| |
Collapse
|
7
|
Wellm V, Groebner J, Heitmann G, Sönnichsen FD, Herges R. Towards Photoswitchable Contrast Agents for Absolute 3D Temperature MR Imaging. Angew Chem Int Ed Engl 2021; 60:8220-8226. [PMID: 33606332 PMCID: PMC8048480 DOI: 10.1002/anie.202015851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/27/2022]
Abstract
Temperature can be used as clinical marker for tissue metabolism and the detection of inflammations or tumors. The use of magnetic resonance imaging (MRI) for monitoring physiological parameters like the temperature noninvasively is steadily increasing. In this study, we present a proof-of-principle study of MRI contrast agents (CA) for absolute and concentration independent temperature imaging. These CAs are based on azoimidazole substituted NiII porphyrins, which can undergo Light-Driven Coordination-Induced Spin State Switching (LD-CISSS) in solution. Monitoring the fast first order kinetic of back isomerisation (cis to trans) with standard clinical MR imaging sequences allows the determination of half-lives, that can be directly translated into absolute temperatures. Different temperature responsive CAs were successfully tested as prototypes in methanol-based gels and created temperature maps of gradient phantoms with high spatial resolution (0.13×0.13×1.1 mm) and low temperature errors (<0.22 °C). The method is sufficiently fast to record the temperature flow from a heat source as a film.
Collapse
Affiliation(s)
- Vanessa Wellm
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| | - Jens Groebner
- Department of Electrical Engineering and Information TechnologySouth Westphalian University of Applied SciencesBahnhofsallee 558507LuedenscheidGermany
| | - Gernot Heitmann
- IWS Innovations- und Wissenstrategien GmbHAviares Research NetworkDeichstraße 2520459HamburgGermany
| | - Frank D. Sönnichsen
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| | - Rainer Herges
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| |
Collapse
|
8
|
Magnetic Resonance Imaging Agents. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Abstract
Tyrosinase is a key enzyme that has long been considered as a biomarker for melanoma as it catalyzes the oxidation of tyrosine and l-DOPA in melanogenesis. Recent studies also suggest a link between tyrosinase activity and Parkinson's disease; however, the mechanism of tyrosinase-mediated melanin formation in the brain is poorly understood. To better understand this connection, more advanced tools for the detection of tyrosinase in the brain are required. Herein, we successfully designed and synthesized a tyrosinase-targeting Gd(iii)-based MR contrast agent Tyr-GBCA 1. Tyr-GBCA 1 was synthesized by linking m-hydroxyphenyl to Gd-DOTA via a self-immolative linker. Tyr-GBCA 1 shows a 21% increase in the T1 relaxation rate (R1) in the presence of tyrosinase in artificial cerebral spinal fluid. Furthermore, Tyr-GBCA 1 is unreactive to hydrogen peroxide, which is a potential interferent in oxidation-based tyrosinase sensing systems. The reaction mechanism of the probe was studied by electrospray ionization (ESI) mass spectrometry and supports the cleavage of a reaction site.
Collapse
Affiliation(s)
- Hyewon Seo
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | | |
Collapse
|
10
|
Lilley LM, Kamper S, Caldwell M, Chia ZK, Ballweg D, Vistain L, Krimmel J, Mills TA, MacRenaris K, Lee P, Waters EA, Meade TJ. Self-Immolative Activation of β-Galactosidase-Responsive Probes for In Vivo MR Imaging in Mouse Models. Angew Chem Int Ed Engl 2020; 59:388-394. [PMID: 31750611 PMCID: PMC6923588 DOI: 10.1002/anie.201909933] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Our lab has developed a new series of self-immolative MR agents for the rapid detection of enzyme activity in mouse models expressing β-galactosidase (β-gal). We investigated two molecular architectures to create agents that detect β-gal activity by modulating the coordination of water to GdIII . The first is an intermolecular approach, wherein we designed several structural isomers to maximize coordination of endogenous carbonate ions. The second involves an intramolecular mechanism for q modulation. We incorporated a pendant coordinating carboxylate ligand with a 2, 4, 6, or 8 carbon linker to saturate ligand coordination to the GdIII ion. This renders the agent ineffective. We show that one agent in particular (6-C pendant carboxylate) is an extremely effective MR reporter for the detection of enzyme activity in a mouse model expressing β-gal.
Collapse
Affiliation(s)
- Laura M Lilley
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Sarah Kamper
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Michael Caldwell
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Zer Keen Chia
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - David Ballweg
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Luke Vistain
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Jeffrey Krimmel
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Teresa Anne Mills
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Keith MacRenaris
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Paul Lee
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Emily Alexandria Waters
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208-3113, USA
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, 60208-3113, USA
| |
Collapse
|
11
|
Lilley LM, Kamper S, Caldwell M, Chia ZK, Ballweg D, Vistain L, Krimmel J, Mills TA, MacRenaris K, Lee P, Waters EA, Meade TJ. Self‐Immolative Activation of β‐Galactosidase‐Responsive Probes for In Vivo MR Imaging in Mouse Models. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Laura M. Lilley
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Sarah Kamper
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Michael Caldwell
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Zer Keen Chia
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - David Ballweg
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Luke Vistain
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Jeffrey Krimmel
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Teresa Anne Mills
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Keith MacRenaris
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | - Paul Lee
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
| | | | - Thomas J. Meade
- Departments of Chemistry Molecular Biosciences, Neurobiology, and Radiology Northwestern University Evanston IL 60208-3113 USA
- Center for Advanced Molecular Imaging Northwestern University Evanston IL 60208-3113 USA
| |
Collapse
|
12
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 905] [Impact Index Per Article: 150.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
13
|
Zhang Y, Xiong J, Shen D, Xia W, Yu J, Zhang Y, Yang J, Hu S, Wan Y, Wen H, Ye H, Liu Y. Tunable luminescence evolution and energy transfer behavior of Na3Sc2(PO4)3:Ce3+/Tb3+/Eu3+ phosphors. RSC Adv 2019; 9:1270-1277. [PMID: 35518000 PMCID: PMC9059669 DOI: 10.1039/c8ra07827k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 01/05/2023] Open
Abstract
A series of color-tunable emitting Na3Sc2(PO4)3:Ce3+/Tb3+/Eu3+ (NSPO) phosphors were prepared by a combination of hydrothermal synthesis and low temperature calcination. The phase structure, photoluminescence and energy transfer properties of the samples were studied in detail. The tunable colors were obtained by co-doping the Tb3+ ions into the NSPO:Ce3+ or NSPO:Eu3+ phosphors with varying concentrations. Under UV excitation, the energy transfers from Tb3+ to Eu3+ in the NSPO host occurred mainly via a dipole–dipole mechanism, and the critical distances of the ion pairs (Rc) was calculated to be 17.94 Å by the quenching concentration method. And that, the emission colors of the NSPO:Tb3+,Eu3+ phosphors could be adjusted from green through yellow to red because of the energy transfer from Tb3+ to Eu3+. Based on its good photoluminescence properties and abundant emission colors, the NSPO:Ce3+/Tb3+/Eu3+ phosphors might be promising as potential candidates for solid-state lighting and display fields. A series of color-tunable emitting Na3Sc2(PO4)3:Ce3+/Tb3+/Eu3+ (NSPO) phosphors were prepared by a combination of hydrothermal synthesis and low temperature calcination.![]()
Collapse
Affiliation(s)
- Yufeng Zhang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Jie Xiong
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Dingyi Shen
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Wenpeng Xia
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Jie Yu
- Academic Affairs Office
- Southwest University
- Chongqing 400715
- China
| | - Yanfei Zhang
- School of Mechanical & Automotive Engineering
- Qilu University of Technology
- Jinan 250061
- China
| | - Jun Yang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Shanshan Hu
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Yuxin Wan
- Chongqing Songshuqiao Middle School
- Chongqing 401147
- China
| | - Haili Wen
- Chongqing Songshuqiao Middle School
- Chongqing 401147
- China
| | - Hang Ye
- Chongqing Songshuqiao Middle School
- Chongqing 401147
- China
| | - Yucan Liu
- Chongqing Songshuqiao Middle School
- Chongqing 401147
- China
| |
Collapse
|
14
|
Burke HM, Gunnlaugsson T, Scanlan EM. Glycosylated lanthanide cyclen complexes as luminescent probes for monitoring glycosidase enzyme activity. Org Biomol Chem 2018; 14:9133-9145. [PMID: 27722625 DOI: 10.1039/c6ob01712f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of synthetic chemical probes for the detection of enzymes is extremely important for biological, medicinal, and industrial applications. Here we report the synthesis of an array of novel glycosylated Tb(iii) complexes, their photophysical properties in solution, and their ability to function as luminescent probes for observing glycosidase enzyme activity in real time. Our initial studies into the application of these complexes for the detection of the Concanavalin A (ConA) lectin is also reported, highlighting the broad scope of these novel chemical probes.
Collapse
Affiliation(s)
- Helen M Burke
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
15
|
Real-time imaging of intestinal bacterial β-glucuronidase activity by hydrolysis of a fluorescent probe. Sci Rep 2017; 7:3142. [PMID: 28600512 PMCID: PMC5466677 DOI: 10.1038/s41598-017-03252-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
Intestinal bacterial β-glucuronidase (βG) hydrolyzes glucuronidated metabolites to their toxic form in intestines, resulting in intestinal damage. The development of a method to inhibit βG is thus important but has been limited by the difficulty of directly assessing enzyme activity in live animals. Here, we utilized a fluorescent probe, fluorescein di-β-D-glucuronide (FDGlcU), to non-invasively image the intestinal bacterial βG activity in nude mice. In vitro cell-based assays showed that the detection limit is 104 colony-forming units/well of βG-expressing bacteria, and that 7.81 ng/mL of FDGlcU is enough to generate significant fluorescent signal. In whole-body optical images of nude mice, the maximum fluorescence signal for βG activity in intestines was detected 3 hours after gavage with FDGlcU. Following pretreatment with a bacterial βG inhibitor, the fluorescence signal was significantly reduced in abdomens and excised intestines images. For a 4-day antibiotic treatment to deplete intestinal bacteria, the FDGlcU-based images showed that the βG activity was decreased by 8.5-fold on day 4 and then gradually increased after treatment stopped. The results suggested that FDGlcU-based imaging revealed the in vitro and in vivo activity of intestinal bacterial βG, which would facilitate pharmacodynamic studies of specific bacterial βG inhibitors in animal studies.
Collapse
|
16
|
|
17
|
Mono- and dinuclear gadolinium(III) complexes of tris(4-carboxy-3-benzyl-3-azabutyl) amine: Synthesis and relaxation properties. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.12.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Wang Y, Song R, Guo K, Meng Q, Zhang R, Kong X, Zhang Z. A gadolinium(iii) complex based dual-modal probe for MRI and fluorescence sensing of fluoride ions in aqueous medium and in vivo. Dalton Trans 2016; 45:17616-17623. [DOI: 10.1039/c6dt02229d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel Gd(iii) complex based dual-modal probe, Gd(TTA)3-DPPZ was designed and assembled for the simultaneous fluoride ion in aqueous media and in vivo.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Renfeng Song
- Ansteel Mining Engineering Corporation
- Anshan
- P. R. China
| | - Ke Guo
- Ansteel Mining Engineering Corporation
- Anshan
- P. R. China
| | - Qingtao Meng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Run Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
- Australian Institute for Bioengineering and Nanotechnology
| | - Xiangfeng Kong
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| |
Collapse
|
19
|
Kuźnik N, Wyskocka M. Iron(III) Contrast Agent Candidates for MRI: a Survey of the Structure-Effect Relationship in the Last 15 Years of Studies. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501166] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Yoshioka K, Komatsu T, Nakada A, Onagi J, Kuriki Y, Kawaguchi M, Terai T, Ueno T, Hanaoka K, Nagano T, Urano Y. Identification of Tissue-Restricted Bioreaction Suitable for in Vivo Targeting by Fluorescent Substrate Library-Based Enzyme Discovery. J Am Chem Soc 2015; 137:12187-90. [DOI: 10.1021/jacs.5b05884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Toru Komatsu
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | | | | | | | | | | - Yasuteru Urano
- CREST, Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
21
|
Burke HM, Gunnlaugsson T, Scanlan EM. Recent advances in the development of synthetic chemical probes for glycosidase enzymes. Chem Commun (Camb) 2015; 51:10576-88. [PMID: 26051717 DOI: 10.1039/c5cc02793d] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of synthetic glycoconjugates as chemical probes for the detection of glycosidase enzymes has resulted in the development of a range of useful chemical tools with applications in glycobiology, biotechnology, medical and industrial research. Critical to the function of these probes is the preparation of substrates containing a glycosidic linkage that when activated by a specific enzyme or group of enzymes, irreversibly releases a reporter molecule that can be detected. Starting from the earliest examples of colourimetric probes, increasingly sensitive and sophisticated substrates have been reported. In this review we present an overview of the recent advances in this field, covering an array of strategies including chromogenic and fluorogenic substrates, lanthanide complexes, gels and nanoparticles. The applications of these substrates for the detection of various glycosidases and the scope and limitations for each approach are discussed.
Collapse
Affiliation(s)
- Helen M Burke
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | | | | |
Collapse
|
22
|
Dommaschk M, Peters M, Gutzeit F, Schütt C, Näther C, Sönnichsen FD, Tiwari S, Riedel C, Boretius S, Herges R. Photoswitchable Magnetic Resonance Imaging Contrast by Improved Light-Driven Coordination-Induced Spin State Switch. J Am Chem Soc 2015; 137:7552-5. [PMID: 25914182 DOI: 10.1021/jacs.5b00929] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present a fully reversible and highly efficient on-off photoswitching of magnetic resonance imaging (MRI) contrast with green (500 nm) and violet-blue (435 nm) light. The contrast change is based on intramolecular light-driven coordination-induced spin state switch (LD-CISSS), performed with azopyridine-substituted Ni-porphyrins. The relaxation time of the solvent protons in 3 mM solutions of the azoporphyrins in DMSO was switched between 3.5 and 1.7 s. The relaxivity of the contrast agent changes by a factor of 6.7. No fatigue or side reaction was observed, even after >100,000 switching cycles in air at room temperature. Electron-donating substituents at the pyridine improve the LD-CISSS in two ways: better photostationary states are achieved, and intramolecular binding is enhanced.
Collapse
Affiliation(s)
- Marcel Dommaschk
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Morten Peters
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Florian Gutzeit
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Christian Schütt
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Christian Näther
- ‡Institut für Anorganische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 6/7, 24098 Kiel, Germany
| | - Frank D Sönnichsen
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Sanjay Tiwari
- §Clinic for Radiology and Neuroradiology, Arnold Heller Straße 3, 24105 Kiel, Germany
| | - Christian Riedel
- §Clinic for Radiology and Neuroradiology, Arnold Heller Straße 3, 24105 Kiel, Germany
| | - Susann Boretius
- §Clinic for Radiology and Neuroradiology, Arnold Heller Straße 3, 24105 Kiel, Germany
| | - Rainer Herges
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| |
Collapse
|
23
|
van Duijnhoven SMJ, Robillard MS, Langereis S, Grüll H. Bioresponsive probes for molecular imaging: concepts and in vivo applications. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:282-308. [PMID: 25873263 DOI: 10.1002/cmmi.1636] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/24/2015] [Accepted: 02/03/2015] [Indexed: 12/30/2022]
Abstract
Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecular imaging probes, known as bioresponsive molecular probes, has been developed. These probes generally benefit from signal enhancement at the site of interaction with its target. There are mainly two classes of bioresponsive imaging probes. The first class consists of probes that show direct activation of the imaging label (from "off" to "on" state) and have been applied in optical imaging and magnetic resonance imaging (MRI). The other class consists of probes that show specific retention of the imaging label at the site of target interaction and these probes have found application in all different imaging modalities, including photoacoustic imaging and nuclear imaging. In this review, we present a comprehensive overview of bioresponsive imaging probes in order to discuss the various molecular imaging strategies. The focus of the present article is the rationale behind the design of bioresponsive molecular imaging probes and their potential in vivo application for the detection of endogenous molecular targets in pathologies such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Sander M J van Duijnhoven
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Marc S Robillard
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Holger Grüll
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
24
|
Broome AM, Ramamurthy G, Lavik K, Liggett A, Kinstlinger I, Basilion J. Optical imaging of targeted β-galactosidase in brain tumors to detect EGFR levels. Bioconjug Chem 2015; 26:660-8. [PMID: 25775241 DOI: 10.1021/bc500597y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.
Collapse
Affiliation(s)
- Ann-Marie Broome
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Gopal Ramamurthy
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kari Lavik
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexander Liggett
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ian Kinstlinger
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - James Basilion
- †Department of Radiology and Radiological Sciences, ‡Center of Biomedical Imaging, and §Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States.,∥Department of Biomedical Engineering, ⊥Case Center for Imaging Research, and #The NFCR Center for Molecular Imaging, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
25
|
Li K, Zhang Y, Li X, Shang M, Lian H, Lin J. Tunable blue-green emission and energy transfer properties in β-Ca3(PO4)2:Eu2+, Tb3+ phosphors with high quantum efficiencies for UV-LEDs. Dalton Trans 2015; 44:4683-92. [DOI: 10.1039/c4dt03720k] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Eu2+ and Tb3+ singly-doped and co-doped β-Ca3(PO4)2 phosphors have been synthesized. The emission color can be tuned from blue to green by adjusting the Eu2+/Tb3+ concentration ratio, showing their potential applications in UV-pumped wLEDs.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yang Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuejiao Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Mengmeng Shang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Hongzhou Lian
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
26
|
Iwaki S, Hokamura K, Ogawa M, Takehara Y, Muramatsu Y, Yamane T, Hirabayashi K, Morimoto Y, Hagisawa K, Nakahara K, Mineno T, Terai T, Komatsu T, Ueno T, Tamura K, Adachi Y, Hirata Y, Arita M, Arai H, Umemura K, Nagano T, Hanaoka K. A design strategy for small molecule-based targeted MRI contrast agents: their application for detection of atherosclerotic plaques. Org Biomol Chem 2014; 12:8611-8. [DOI: 10.1039/c4ob01270d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Affiliation(s)
- Marie C. Heffern
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Lauren M. Matosziuk
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
28
|
Xue S, Qiao J, Jiang J, Hubbard K, White N, Wei L, Li S, Liu ZR, Yang JJ. Design of ProCAs (protein-based Gd(3+) MRI contrast agents) with high dose efficiency and capability for molecular imaging of cancer biomarkers. Med Res Rev 2014; 34:1070-99. [PMID: 24615853 DOI: 10.1002/med.21313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic resonance imaging (MRI) is the leading imaging technique for disease diagnostics, providing high resolution, three-dimensional images noninvasively. MRI contrast agents are designed to improve the contrast and sensitivity of MRI. However, current clinically used MRI contrast agents have relaxivities far below the theoretical upper limit, which largely prevent advancing molecular imaging of biomarkers with desired sensitivity and specificity. This review describes current progress in the development of a new class of protein-based MRI contrast agents (ProCAs) with high relaxivity using protein design to optimize the parameters that govern relaxivity. Further, engineering with targeting moiety allows these contrast agents to be applicable for molecular imaging of prostate cancer biomarkers by MRI. The developed protein-based contrast agents also exhibit additional in vitro and in vivo advantages for molecular imaging of disease biomarkers, such as high metal-binding stability and selectivity, reduced toxicity, proper blood circulation time, and higher permeability in tumor tissue in addition to improved relaxivities.
Collapse
Affiliation(s)
- Shenghui Xue
- Departments of Chemistry and Biology, Georgia State University, Atlanta, Georgia; Center for Diagnostics & Therapeutics (CDT), Georgia State University, Atlanta, Georgia; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hafezi W, Hoerr V. In vivo visualization of encephalitic lesions in herpes simplex virus type 1 (HSV-1) infected mice by magnetic resonance imaging (MRI). Methods Mol Biol 2013; 1064:253-65. [PMID: 23996263 DOI: 10.1007/978-1-62703-601-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Herpes simplex encephalitis (HSE) is one of the most severe viral infections affecting the temporal lobes of the brain. Despite the improvements in diagnosis and antiviral drug treatment, one third of all patients fail to respond to therapy or subsequently suffer neurological relapse and develop long term neurological damage. Magnetic resonance imaging (MRI) is among the appropriate noninvasive tools for early diagnosis of viral central nervous system (CNS) infections. In this chapter we introduce a mouse model for HSE and describe a MRI protocol to characterize the pathogenesis of HSE over time.
Collapse
Affiliation(s)
- Wali Hafezi
- Institute of Medical Microbiology Clinical Virology, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
30
|
Keliris A, Mamedov I, Hagberg GE, Logothetis NK, Scheffler K, Engelmann J. A smart (19) F and (1) H MRI probe with self-immolative linker as a versatile tool for detection of enzymes. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 7:478-83. [PMID: 22821882 DOI: 10.1002/cmmi.1470] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Here we report on a dual-modal (19) F and (1) H MRI paramagnetic probe with a self-immolative linker, Gd-DOMF-Gal. The enzymatic conversion of this probe by β-galactosidase resulted in a simultaneous turning on of the fluorine signal and changed ability of the Gd(3+) complex to modulate the (1) H MR signal intensity of the surrounding water molecules. A versatile imaging platform for monitoring a variety of enzymes by (19) F and (1) H MRI using this molecular design is proposed.
Collapse
Affiliation(s)
- Aneta Keliris
- Department for High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Okada S, Mizukami S, Matsumura Y, Yoshioka Y, Kikuchi K. A nanospherical polymer as an MRI sensor without paramagnetic or superparamagnetic species. Dalton Trans 2013; 42:15864-7. [DOI: 10.1039/c3dt50378j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Yu JX, Kodibagkar VD, Liu L, Zhang Z, Liu L, Magnusson J, Liu Y. 19F-MRS/1H-MRI dual-function probe for detection of β-galactosidase activity. Chem Sci 2013. [DOI: 10.1039/c3sc21099e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Chen SH, Kuo YT, Singh G, Cheng TL, Su YZ, Wang TP, Chiu YY, Lai JJ, Chang CC, Jaw TS, Tzou SC, Liu GC, Wang YM. Development of a Gd(III)-based receptor-induced magnetization enhancement (RIME) contrast agent for β-glucuronidase activity profiling. Inorg Chem 2012; 51:12426-35. [PMID: 23116118 DOI: 10.1021/ic301827p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
β-Glucuronidase is a key lysosomal enzyme and is often overexpressed in necrotic tumor masses. We report here the synthesis of a pro receptor-induced magnetization enhancement (pro-RIME) magnetic resonance imaging (MRI) contrast agent ([Gd(DOTA-FPβGu)]) for molecular imaging of β-glucuronidase activity in tumor tissues. The contrast agent consists of two parts, a gadolinium complex and a β-glucuronidase substrate (β-d-glucopyranuronic acid). The binding association constant (KA) of [Gd(DOTA-FPβGu)] is 7.42 × 10(2), which is significantly lower than that of a commercially available MS-325 (KA = 3.0 × 10(4)) RIME contrast agent. The low KA value of [Gd(DOTA-FPβGu)] is due to the pendant β-d-glucopyranuronic acid moiety. Therefore, [Gd(DOTA-FPβGu)] can be used for detection of β-glucuronidase through RIME modulation. The detail mechanism of enzymatic activation of [Gd(DOTA-FPβGu)] was elucidated by LC-MS. The kinetics of β-glucuronidase catalyzed hydrolysis of [Eu(DOTA-FPβGu)] at pH 7.4 best fit the Miechalis-Menten kinetic mode with Km = 1.38 mM, kcat = 3.76 × 10(3), and kcat/Km = 2.72 × 10(3) M(-1) s(-1). The low Km value indicates high affinity of β-glucuronidase for [Gd(DOTA-FPβGu)] at physiological pH. Relaxometric studies revealed that T1 relaxivity of [Gd(DOTA-FPβGu)] changes in response to the concentration of β-glucuronidase. Consistent with the relaxometric studies, [Gd(DOTA-FPβGu)] showed significant change in MR image signal in the presence of β-glucuronidase and HSA. In vitro and in vivo MR images demonstrated appreciable differences in signal enhancement in the cell lines and tumor xenografts in accordance to their expression levels of β-glucuronidase.
Collapse
Affiliation(s)
- Shih-Hsien Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , 100 Shih-Chuan first Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hsieh V, Jasanoff A. Bioengineered probes for molecular magnetic resonance imaging in the nervous system. ACS Chem Neurosci 2012; 3:593-602. [PMID: 22896803 DOI: 10.1021/cn300059r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 01/20/2023] Open
Abstract
The development of molecular imaging probes has changed the nature of neurobiological research. Some of the most notable successes have involved the use of biological engineering techniques for the creation of fluorescent protein derivatives for optical imaging, but recent work has also led to a number of bioengineered probes for magnetic resonance imaging (MRI), the preeminent technique for noninvasive investigation of brain structure and function. Molecular MRI agents are beginning to be applied for experiments in the nervous system, where they have the potential to bridge from molecular to systems or organismic levels of analysis. Compared with canonical synthetic small molecule agents, biomolecular or semibiosynthetic MRI contrast agents offer special advantages due to their amenability to molecular engineering approaches, their properties in some cases as catalysts, and their specificity in targeting and ligand binding. Here, we discuss an expanding list of instances where biological engineering techniques have aided in the design of MRI contrast agents and reporter systems, examining both advantages and limitations of these types of probes for studies in the central nervous system.
Collapse
Affiliation(s)
- Vivian Hsieh
- Departments of Chemical Engineering, ‡Biological Engineering, §Brain & Cognitive Sciences, and ∥Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, United States
| | - Alan Jasanoff
- Departments of Chemical Engineering, ‡Biological Engineering, §Brain & Cognitive Sciences, and ∥Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Dhingra Verma K, Mishra A, Engelmann J, Beyerlein M, Maier ME, Logothetis NK. Magnetic-Field-Dependent 1H Relaxivity Behavior of Biotin/Avidin-Based Magnetic Resonance Imaging Probes. Chempluschem 2012. [DOI: 10.1002/cplu.201200064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
A new class of bioactivable self-immolative N,O-ligands. Eur J Med Chem 2012; 52:184-92. [DOI: 10.1016/j.ejmech.2012.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 12/31/2022]
|
37
|
Terai T, Ito H, Kikuchi K, Nagano T. Salicylic-Acid Derivatives as Antennae for Ratiometric Luminescent Probes Based on Lanthanide Complexes. Chemistry 2012; 18:7377-81. [DOI: 10.1002/chem.201200610] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Indexed: 12/20/2022]
|
38
|
Gianolio E, Stefania R, Di Gregorio E, Aime S. MRI Paramagnetic Probes for Cellular Labeling. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Is there a path beyond BOLD? Molecular imaging of brain function. Neuroimage 2012; 62:1208-15. [PMID: 22406355 DOI: 10.1016/j.neuroimage.2012.02.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/18/2012] [Accepted: 02/27/2012] [Indexed: 12/20/2022] Open
Abstract
The dependence of BOLD on neuro-vascular coupling leaves it many biological steps removed from direct monitoring of neural function. MRI based approaches have been developed aimed at reporting more directly on brain function. These include: manganese enhanced MRI as a surrogate for calcium ion influx; agents responsive to calcium concentrations; approaches to measure membrane potential; agents to measure neurotransmitters; and strategies to measure gene expression. This work has led to clever design of molecular imaging tools and many contributions to studies of brain function in animal models. However, a robust approach that has potential to get MRI closer to neurons in the human brain has not yet emerged.
Collapse
|
40
|
Development of hypoxia-sensitive Gd3+-based MRI contrast agents. Bioorg Med Chem Lett 2012; 22:2798-802. [PMID: 22424977 DOI: 10.1016/j.bmcl.2012.02.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 11/21/2022]
Abstract
Hypoxia occurs in various diseases, including cancer, ischemia, and acute and chronic vascular diseases. Here we describe the design and synthesis of the first hypoxia-sensitive MRI contrast agents, SAGds. SAGds showed a pH-dependent r(1) relaxivity change associated with intramolecular chelation of the nitrogen atom of the sulfonamide moiety to the Gd(3+) center. There was a correlation between the pK(a) of the r(1) relaxivity change and the sum of the Hammett σ constants of substituents on the aromatic ring. Among the synthesized compounds, 4NO(2)2MeOSAGd was selectively reduced to the amine by rat liver microsomes under hypoxic conditions, resulting in a 1.8-fold increment of the r(1) relaxivity owing to the change in pK(a) of the arylsulfonamide moiety. This enhancement of the r(1) relaxivity could be clearly detected in T(1)-weighted MR images. Thus, 4NO(2)2MeOSAGd is a 'smart' MRI contrast agent for the detection of hypoxia under physiological conditions.
Collapse
|
41
|
Yu JX, Kodibagkar VD, Hallac RR, Liu L, Mason RP. Dual 19F/1H MR gene reporter molecules for in vivo detection of β-galactosidase. Bioconjug Chem 2012; 23:596-603. [PMID: 22352428 DOI: 10.1021/bc200647q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased emphasis on personalized medicine and novel therapies requires the development of noninvasive strategies for assessing biochemistry in vivo. The detection of enzyme activity and gene expression in vivo is potentially important for the characterization of diseases and gene therapy. Magnetic resonance imaging (MRI) is a particularly promising tool, since it is noninvasive and has no associated radioactivity, yet penetrates deep tissue. We now demonstrate a novel class of dual (1)H/(19)F nuclear magnetic resonance (NMR) lacZ gene reporter molecule to specifically reveal enzyme activity in human tumor xenografts growing in mice. We report the design, synthesis, and characterization of six novel molecules and evaluation of the most effective reporter in mice in vivo. Substrates show a single (19)F NMR signal and exposure to β-galactosidase induces a large (19)F NMR chemical shift response. In the presence of ferric ions, the liberated aglycone generates intense proton MRI T(2) contrast. The dual modality approach allows both the detection of substrate and the imaging of product enhancing the confidence in enzyme detection.
Collapse
Affiliation(s)
- Jian-Xin Yu
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
42
|
Yang CT, Chuang KH. Gd(iii) chelates for MRI contrast agents: from high relaxivity to “smart”, from blood pool to blood–brain barrier permeable. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00279e] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Dong D, Jing X, Zhang X, Hu X, Wu Y, Duan C. Gadolinium(III)–fluorescein complex as a dual modal probe for MRI and fluorescence zinc sensing. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Bhattacharya D, Panda A, Shil S, Goswami T, Misra A. A theoretical study on photomagnetic fluorescent protein chromophore coupled diradicals and their possible applications. Phys Chem Chem Phys 2012; 14:6905-13. [DOI: 10.1039/c2cp00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Chauvin T, Torres S, Rosseto R, Kotek J, Badet B, Durand P, Tóth E. Lanthanide(III) complexes that contain a self-immolative arm: potential enzyme responsive contrast agents for magnetic resonance imaging. Chemistry 2011; 18:1408-18. [PMID: 22213022 DOI: 10.1002/chem.201101779] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/21/2011] [Indexed: 11/11/2022]
Abstract
Enzyme-responsive MRI-contrast agents containing a "self-immolative" benzylcarbamate moiety that links the MRI-reporter lanthanide complex to a specific enzyme substrate have been developed. The enzymatic cleavage initiates an electronic cascade reaction that leads to a structural change in the Ln(III) complex, with a concomitant response in its MRI-contrast-enhancing properties. We synthesized and investigated a series of Gd(3+) and Yb(3+) complexes, including those bearing a self-immolative arm and a sugar unit as selective substrates for β-galactosidase; we synthesized complex LnL(1), its NH(2) amine derivatives formed after enzymatic cleavage, LnL(2), and two model compounds, LnL(3) and LnL(4). All of the Gd(3+) complexes synthesized have a single inner-sphere water molecule. The relaxivity change upon enzymatic cleavage is limited (3.68 vs. 3.15 mM(-1) s(-1) for complexes GdL(1) and GdL(2), respectively; 37 °C, 60 MHz), which prevents application of this system as an enzyme-responsive T(1) relaxation agent. Variable-temperature (17)O NMR spectroscopy and (1)H NMRD (nuclear magnetic relaxation dispersion) analysis were used to assess the parameters that determine proton relaxivity for the Gd(3+) complexes, including the water-exchange rate (k(ex)(298), varies in the range 1.5-3.9×10(6) s(-1)). Following the enzymatic reaction, the chelates contain an exocyclic amine that is not protonated at physiological pH, as deduced from pH-potentiometric measurements (log K(H)=5.12(±0.01) and 5.99(±0.01) for GdL(2) and GdL(3), respectively). The Yb(3+) analogues show a PARACEST effect after enzymatic cleavage that can be exploited for the specific detection of enzymatic activity. The proton-exchange rates were determined at various pH values for the amine derivatives by using the dependency of the CEST effect on concentration, saturation time, and saturation power. A concentration-independent analysis of the saturation-power-dependency data was also applied. All these different methods showed that the exchange rate of the amine protons of the Yb(III) complexes decreases with increasing pH value (for YbL(3), k(ex)=1300 s(-1) at pH 8.4 vs. 6000 s(-1) at pH 6.4), thereby resulting in a diminution of the observed CEST effect.
Collapse
Affiliation(s)
- Thomas Chauvin
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Okada S, Mizukami S, Kikuchi K. Switchable MRI contrast agents based on morphological changes of pH-responsive polymers. Bioorg Med Chem 2011; 20:769-74. [PMID: 22206870 DOI: 10.1016/j.bmc.2011.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/26/2022]
Abstract
Magnetic resonance imaging (MRI) contrast agents are effective tools in both medical diagnosis and life science research. Various smart contrast agents have been developed for the visualization of biological phenomena. These contrast agents have molecular switches that increase or reduce MRI signal intensity in response to the target biological reaction. Therefore, novel approaches to the design of molecular switches for versatile in vivo studies using MRI are eagerly anticipated. Here, we report one such approach for the development of molecular switches based on morphological changes of pH-responsive polymers. We designed and synthesized three types of contrast agents based on a linear homopolymer or spherical copolymers with two different cross-linking degrees. The relaxivity measurements showed that these agents have molecular switches that respond to pH changes, and fluorescence studies indicated that these switches are based on the alteration of the molecular tumbling caused by pH-responsive morphological changes. As a result, the spherical polymers possess promising characteristics for the development of switchable MRI contrast agents.
Collapse
Affiliation(s)
- Satoshi Okada
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
47
|
Arena F, Singh JB, Gianolio E, Stefanìa R, Aime S. β-Gal gene expression MRI reporter in melanoma tumor cells. Design, synthesis, and in vitro and in vivo testing of a Gd(III) containing probe forming a high relaxivity, melanin-like structure upon β-Gal enzymatic activation. Bioconjug Chem 2011; 22:2625-35. [PMID: 22035020 DOI: 10.1021/bc200486j] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this work is to design and test an MRI probe (Gd-DOTAtyr-gal) able to report on the gene expression of β-galactosidase (β-Gal) in melanoma cells. The probe consists of a Gd-DOTA reporter bearing on its surface a tyrosine-galactose-pyranose functionality that, upon the release of the sugar moiety, readily transforms, in the presence of tyrosinase, into melanin oligomeric/polymeric mixture. The formation of Gd-DOTA-containing melanin oligomers and polymers is accompanied by a marked increase of the water proton relaxation rate. The steps involving the release of the galactose-pyranose group and the formation of the melanin-like structure have been carefully investigated in vitro by relaxometric and UV-vis measurements. Cellular uptake studies of Gd-DOTAtyr-gal by melanoma cells have shown that the probe enters the cells, and it appears not to be confined in endosomal vesicles. Using B16-F10LacZ transfected cells, the fast formation of paramagnetic melanin-Gd(III)-containing species has been assessed by the measurement of increased longitudinal relaxation rates of the cellular pellets suspensions. The in vitro results have been confirmed in in vivo MRI investigations on murine melanoma tumor bearing mice. Upon direct injection of Gd-DOTAtyr-gal, a good contrast is observed after 5 h post injection in B16-F10LacZ tumors, but not in B16-F10 tumors lacking the β-Gal enzyme. Gd-DOTAtyr-gal in combination with tyrosinase introduces a novel approach for the detection of β-Gal expression by MRI in vivo.
Collapse
Affiliation(s)
- Francesca Arena
- Centro di Imaging Molecolare, Dipartimento di Chimica IFM, Università degli Studi di Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
48
|
Frullano L, Caravan P. Strategies for the preparation of bifunctional gadolinium(III) chelators. Curr Org Synth 2011; 8:535-565. [PMID: 22375102 DOI: 10.2174/157017911796117250] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of gadolinium chelators that can be easily and readily linked to various substrates is of primary importance for the development high relaxation efficiency and/or targeted magnetic resonance imaging (MRI) contrast agents. Over the last 25 years a large number of bifunctional chelators have been prepared. For the most part, these compounds are based on ligands that are already used in clinically approved contrast agents. More recently, new bifunctional chelators have been reported based on complexes that show a more potent relaxation effect, faster complexation kinetics and in some cases simpler synthetic procedures. This review provides an overview of the synthetic strategies used for the preparation of bifunctional chelators for MRI applications.
Collapse
Affiliation(s)
- Luca Frullano
- Case Western Reserve University. 11100 Euclid Ave Cleveland, OH 44106
| | | |
Collapse
|
49
|
Keliris A, Ziegler T, Mishra R, Pohmann R, Sauer MG, Ugurbil K, Engelmann J. Synthesis and characterization of a cell-permeable bimodal contrast agent targeting β-galactosidase. Bioorg Med Chem 2011; 19:2529-40. [DOI: 10.1016/j.bmc.2011.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 02/05/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
50
|
Razgulin A, Ma N, Rao J. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem Soc Rev 2011; 40:4186-216. [DOI: 10.1039/c1cs15035a] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|