1
|
Jayasinghe L, Wei J, Kim J, Lineberry E, Yang P. Particle on a Rod: Surface-Tethered Catalyst on CdS Nanorods for Enzymatically Active Nicotinamide Cofactor Generation. NANO LETTERS 2024; 24:13269-13276. [PMID: 39401012 DOI: 10.1021/acs.nanolett.4c03528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The photochemical generation of nicotinamide cofactor 1,4-NADH, facilitated by inorganic photosensitizers, emerges as a promising model system for investigating charge transfer phenomena at the interface of semiconductors and bacteria, with implications for enhancing photosynthetic biohybrid systems (PBSs). However, extant semiconductor nanocrystal model systems suffer from achieving optimal conversion efficiency under visible light. This study investigates quasi-one-dimensional CdS nanorods as superior light absorbers, surface modified with catalyst Cp*Rh(4,4'-COOH-bpy)Cl2 to produce enzymatically active NADH. This model subsystem facilitates easy product isolation and achieves a turnover frequency (TOF) of 175 h-1, one of the highest efficiencies reported for inorganic photosensitizer-based nicotinamide cofactor generation. Charge transfer kinetics, fundamental for catalytic solar energy conversion, range from 106 to 108 s-1 for this system highlighting the superior electron transfer capabilities of NRs. This model ensures efficient cofactor production and offers critical insights into advancing systems that mimic natural photosynthesis for sustainable solar-to-chemical synthesis.
Collapse
Affiliation(s)
- Lihini Jayasinghe
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jiaxi Wei
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jinhyun Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Elizabeth Lineberry
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nano Science Institute, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Qiao L, Zhang J, Jiang Y, Ma B, Chen H, Gao P, Zhang P, Wang A, Sheldon RA. Near-infrared light-driven asymmetric photolytic reduction of ketone using inorganic-enzyme hybrid biocatalyst. Int J Biol Macromol 2024; 264:130612. [PMID: 38447845 DOI: 10.1016/j.ijbiomac.2024.130612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Effective photolytic regeneration of the NAD(P)H cofactor in enzymatic reductions is an important and elusive goal in biocatalysis. It can, in principle, be achieved using a near-infrared light (NIR) driven artificial photosynthesis system employing H2O as the sacrificial reductant. To this end we utilized TiO2/reduced graphene quantum dots (r-GQDs), combined with a novel rhodium electron mediator, to continuously supply NADPH in situ for aldo-keto reductase (AKR) mediated asymmetric reductions under NIR irradiation. This upconversion system, in which the Ti-O-C bonds formed between r-GQDs and TiO2 enabled efficient interfacial charge transfer, was able to regenerate NADPH efficiently in 64 % yield in 105 min. Based on this, the pharmaceutical intermediate (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol was obtained, in 84 % yield and 99.98 % ee, by reduction of the corresponding ketone. The photo-enzymatic system is recyclable with a polymeric electron mediator, which maintained 66 % of its original catalytic efficiency and excellent enantioselectivity (99.9 % ee) after 6 cycles.
Collapse
Affiliation(s)
- Li Qiao
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jing Zhang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yongjian Jiang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Bianqin Ma
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Haomin Chen
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Peng Gao
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Pengfei Zhang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Anming Wang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa; Department of Biotechnology, Section BOC, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
3
|
Schreier MR, Pfund B, Steffen DM, Wenger OS. Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes. Inorg Chem 2023; 62:7636-7643. [PMID: 36731131 DOI: 10.1021/acs.inorgchem.2c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nicotinamide adenine nucleotide (NADH) is involved in many biologically relevant redox reactions, and the photochemical regeneration of its oxidized form (NAD+) under physiological conditions is of interest for combined photo- and biocatalysis. Here, we demonstrate that tri-anionic, water-soluble variants of typically very lipophilic iridium(III) complexes can photo-catalyze the reduction of an NAD+ mimic in a comparatively efficient manner. In combination with a well-known rhodium co-catalyst to facilitate regioselective reactions, these iridium(III) photo-reductants outcompete the commonly used [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) photosensitizer in water by up to 1 order of magnitude in turnover frequency. This improved reactivity is attributable to the strong excited-state electron donor properties and the good chemical robustness of the tri-anionic iridium(III) sensitizers, combined with their favorable Coulombic interaction with the di-cationic rhodium co-catalyst. Our findings seem relevant in the greater context of photobiocatalysis, for which access to strong, efficient, and robust photoreductants with good water solubility can be essential.
Collapse
Affiliation(s)
- Mirjam R Schreier
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland.,National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland
| | - Debora M Steffen
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland.,National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
4
|
Li S, Shi J, Liu S, Li W, Chen Y, Shan H, Cheng Y, Wu H, Jiang Z. Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Zedler L, Wintergerst P, Mengele AK, Müller C, Li C, Dietzek-Ivanšić B, Rau S. Outpacing conventional nicotinamide hydrogenation catalysis by a strongly communicating heterodinuclear photocatalyst. Nat Commun 2022; 13:2538. [PMID: 35534473 PMCID: PMC9085789 DOI: 10.1038/s41467-022-30147-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Unequivocal assignment of rate-limiting steps in supramolecular photocatalysts is of utmost importance to rationally optimize photocatalytic activity. By spectroscopic and catalytic analysis of a series of three structurally similar [(tbbpy)2Ru-BL-Rh(Cp*)Cl]3+ photocatalysts just differing in the central part (alkynyl, triazole or phenazine) of the bridging ligand (BL) we are able to derive design strategies for improved photocatalytic activity of this class of compounds (tbbpy = 4,4´-tert-butyl-2,2´-bipyridine, Cp* = pentamethylcyclopentadienyl). Most importantly, not the rate of the transfer of the first electron towards the RhIII center but rather the rate at which a two-fold reduced RhI species is generated can directly be correlated with the observed photocatalytic formation of NADH from NAD+. Interestingly, the complex which exhibits the fastest intramolecular electron transfer kinetics for the first electron is not the one that allows the fastest photocatalysis. With the photocatalytically most efficient alkynyl linked system, it is even possible to overcome the rate of thermal NADH formation by avoiding the rate-determining β-hydride elimination step. Moreover, for this photocatalyst loss of the alkynyl functionality under photocatalytic conditions is identified as an important deactivation pathway.
Collapse
Affiliation(s)
- Linda Zedler
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Pascal Wintergerst
- Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexander K Mengele
- Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Carolin Müller
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Chunyu Li
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
- Leibniz Institute of Photonic Technology Jena, Department Functional Interfaces, Albert-Einstein-Straße 9, 07745, Jena, Germany.
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743, Jena, Germany.
| | - Sven Rau
- Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
7
|
Yin Y, Wang R, Zhang J, Luo Z, Xiao Q, Xie T, Pei X, Gao P, Wang A. Efficiently Enantioselective Hydrogenation Photosynthesis of ( R)-1-[3,5-Bis(trifluoromethyl)phenyl] ethanol over a CLEs-TiO 2 Bioinorganic Hybrid Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41454-41463. [PMID: 34431298 DOI: 10.1021/acsami.1c11050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Engineering of biological pathways with man-made materials provides inspiring blueprints for sustainable drug production. (R)-1-[3,5-Bis(trifluoromethyl)phenyl]ethanol [(R)-3,5-BTPE], as an important artificial chiral intermediate for complicated pharmaceutical drugs and biologically active molecules, is often synthesized through a hydrogenation reaction of 3,5-bis(trifluoromethyl)acetophenone (3,5-BTAP), in which enantioselectivity and sufficient active hydrogen are the key to restricting the reaction. In this work, a biohybrid photocatalytic hydrogenation system based on an artificial cross-linked enzymes (CLEs)-TiO2-Cp*Rh(bpy) photoenzyme is developed through a bottom-up engineering strategy. Here, TiO2 nanotubes in the presence of Cp*Rh(bpy) are used to transform NADP+ to NADPH during the formation of chiral alcohol intermediates from the catalytic reduction of a ketone substrate by alcohol dehydrogenase CLEs. Hydrogen and electrons, provided by water and photocatalytic systems, respectively, are transferred to reduce NADP+ to NADPH via [Cp*Rh(bpy)(H2O)]2+. With the resulting NADPH, [(R)-3,5-BTPE] is synthesized using our efficient CLEs obtained from the cell lysate by nonstandard amino acid modification. Through this biohybrid photocatalytic system, the photoenzyme-catalyzed combined reductive synthesis of [(R)-3,5-BTPE] has a yield of 41.2% after reaction for 24 h and a very high enantiomeric excess value (>99.99%). In the case of reuse, this biohybrid system retained nearly 95% of its initial catalytic activity for synthesizing the above chiral alcohol. The excellent reusability of the CLEs and TiO2 nanotubes hybrid catalytic materials highlights the environmental friendliness of (R)-3,5-BTPE production.
Collapse
Affiliation(s)
- Youcheng Yin
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Ru Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Jing Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhiyuan Luo
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Qinjie Xiao
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Peng Gao
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
8
|
Yang N, Tian Y, Zhang M, Peng X, Li F, Li J, Li Y, Fan B, Wang F, Song H. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnol Adv 2021; 54:107808. [PMID: 34324993 DOI: 10.1016/j.biotechadv.2021.107808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022]
Abstract
Enzymes catalyse target reactions under mild conditions with high efficiency, as well as excellent regional-, stereo-, and enantiomeric selectivity. Photocatalysis utilises sustainable and environment-friendly light power to realise efficient chemical conversion. By combining the interdisciplinary advantages of photo- and enzymatic catalysis, the photocatalyst-enzyme hybrid systems have proceeded various light-driven biotransformation with high efficiency under environmentally benign conditions, thus, attracting unparalleled focus during the last decades. It has also been regarded as a promising pathway towards green chemistry utilising ubiquitous solar energy. This systematic review gives insight into this research field by classifying the existing photocatalyst-enzyme hybrid systems into three sections based on different hybridizing modes between photo- and enzymatic catalysis. Furthermore, existing challenges and proposed strategies are discussed within this context. The first system summarised is the cofactor-mediated hybrid system, in which natural/artificial cofactors act as reducing equivalents that connect photocatalysts with enzymes for light-driven enzymatic biotransformation. Second, the direct contact-based photocatalyst-enzyme hybrid systems are described, including two different kinds of electron exchange sites on the enzyme molecules. Third, some cases where photocatalysts and enzymes are integrated into a reaction cascade with specific intermediates will be discussed in the following chapter. Finally, we provide perspective concerning the future of this field.
Collapse
Affiliation(s)
- Nan Yang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yao Tian
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Mai Zhang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiting Peng
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Feng Li
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| | - Hao Song
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
9
|
Research Progress on Catalytic Water Splitting Based on Polyoxometalate/Semiconductor Composites. Catalysts 2021. [DOI: 10.3390/catal11040524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, due to the impact of global warming, environmental pollution, and the energy crisis, international attention and demand for clean energy are increasing. Hydrogen energy is recognized as one of the clean energy sources. Water is considered as the largest potential supplier of hydrogen energy. However, artificial catalytic water splitting for hydrogen and oxygen evolution has not been widely used due to its high energy consumption and high cost during catalytic cracking. Therefore, the exploitation of photocatalysts, electrocatalysts, and photo-electrocatalysts for rapid, cost effective, and reliable water splitting is essentially needed. Polyoxometalates (POMs) are regarded as the potential candidates for water splitting catalysis. In addition to their excellent catalytic properties and reversibly redox activities, POMs can also modify semiconductors to overcome their shortcomings, and improve photoelectric conversion efficiency and photocatalytic activity, which has attracted more and more attention in the field of photoelectric water splitting catalysis. In this review, we summarize the latest applications of POMs and semiconductor composites in the field of photo-electrocatalysis (PEC) for hydrogen and oxygen evolution by catalytic water splitting in recent years and take the latest applications of POMs and semiconductor composites in photocatalysis for water splitting. In the conclusion section, the challenges and strategies of photocatalytic and PEC water-splitting by POMs and semiconductor composites are discussed.
Collapse
|
10
|
Abstract
The biological process of photosynthesis was critical in catalyzing the oxygenation of Earth’s atmosphere 2.5 billion years ago, changing the course of development of life on Earth. Recently, the fields of applied and synthetic photosynthesis have utilized the light-driven protein–pigment supercomplexes central to photosynthesis for the photocatalytic production of fuel and other various valuable products. The reaction center Photosystem I is of particular interest in applied photosynthesis due to its high stability post-purification, non-geopolitical limitation, and its ability to generate the greatest reducing power found in nature. These remarkable properties have been harnessed for the photocatalytic production of a number of valuable products in the applied photosynthesis research field. These primarily include photocurrents and molecular hydrogen as fuels. The use of artificial reaction centers to generate substrates and reducing equivalents to drive non-photoactive enzymes for valuable product generation has been a long-standing area of interest in the synthetic photosynthesis research field. In this review, we cover advances in these areas and further speculate synthetic and applied photosynthesis as photocatalysts for the generation of valuable products.
Collapse
|
11
|
Lee C, Jeon D, Park J, Lee W, Park J, Kang SJ, Kim Y, Ryu J. Tetraruthenium Polyoxometalate as an Atom-Efficient Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Catalyst and Its Application in Seawater Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32689-32697. [PMID: 32589016 DOI: 10.1021/acsami.0c07225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although development and utilization of efficient catalysts with earth-abundant and cheap elements are desired, precious noble metal-based catalysts are still widely used and studied due to the urgent need to address energy and environmental issues. Polyoxometalates (POMs) can be excellent candidates in this context. In this study, we found that oxo-bridged tetraruthenium polyoxometalate (RuPOM) exhibits excellent electrocatalytic activity for both oxygen evolution and reduction reactions (OER and ORR) with minimal use of noble metal elements and can be used for the development of efficient seawater batteries (SWBs). The deposition of RuPOM on a desired electrode with conducting carbon Ketjen black (KB) by the simple slurry coating method imparted bifunctional OER/ORR activity to the underlying electrode. Although the mass activity was similar, RuPOM/KB mixtures exhibited superior activity even compared to commercially available Pt/C when comparing the activity per noble metal element. Based on these findings, we employed RuPOM to develop efficient SWBs. RuPOM significantly lowered the charging potential and increased the discharging potential of SWBs, which are related to OER and ORR, respectively. This study can provide insights into the development of POM-based electrocatalysts and their application in energy storage and conversion devices.
Collapse
Affiliation(s)
- Cheolmin Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Dasom Jeon
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jehee Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Wonsuk Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jaehyun Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Seok Ju Kang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Youngsik Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
12
|
Kim U, Cho Y, Jeon D, Kim Y, Park S, Seo J, Lee J, Oh NK, Lee G, Ryu J, Yang C, Park H. Zwitterionic Conjugated Surfactant Functionalization of Graphene with pH-Independent Dispersibility: An Efficient Electron Mediator for the Oxygen Evolution Reaction in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906635. [PMID: 32072771 DOI: 10.1002/smll.201906635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/30/2019] [Indexed: 06/10/2023]
Abstract
The functionalization of graphene has been extensively used as an effective route for modulating the surface property of graphene, and enhancing the dispersion stability of graphene in aqueous solutions via functionalization has been widely investigated to expand its use for various applications across a range of fields. Herein, an effective approach is described for enhancing the dispersibility of graphene in aqueous solutions at different pH levels via non-covalent zwitterion functionalization. The results show that a surfactant with electron-deficient carbon atoms in its backbone structure and large π-π interactive area enables strong interactions with graphene, and the zwitterionic side terminal groups of the molecule support the dispersibility of graphene in various pH conditions. Experimental and computational studies confirm that perylene diimide amino N-oxide (PDI-NO) allows efficient functionalization and pH-independent dispersion of graphene enabled by hydration repulsion effects induced by PDI-NO. The PDI-NO functionalized graphene is successfully used in the oxygen evolution reaction as an electron mediator for boosting the electrocatalytic activity of a Ru-based polyoxometalate catalyst in an acidic medium. The proposed strategy is expected to bring significant advances in producing highly dispersible graphene in aqueous medium with pH-independent stability, thus broadening the application range of graphene.
Collapse
Affiliation(s)
- Ungsoo Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yongjoon Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dasom Jeon
- Department of Energy Engineering, Emergent Hydrogen Technology R&D Center, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Yongchul Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sanghyeon Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jihyung Seo
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Junghyun Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Nam Khen Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, Emergent Hydrogen Technology R&D Center, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyesung Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
13
|
|
14
|
Bae S, Kim H, Jeon D, Ryu J. Catalytic Multilayers for Efficient Solar Water Oxidation through Catalyst Loading and Surface-State Passivation of BiVO 4 Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7990-7999. [PMID: 30757899 DOI: 10.1021/acsami.8b20785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We studied the kinetics of photoelectrochemical (PEC) water oxidation using a model photoanode BiVO4 modified with various water oxidation catalysts (WOCs) by electrochemical impedance spectroscopy. In particular, we prepared BiVO4 photoanodes with catalytic multilayers (CMs), where cationic polyelectrolytes and anionic polyoxometalate (POM) WOCs were assembled in a desired amount at a nanoscale precision, and compared their performance with those with well-known WOCs such as cobalt phosphate (CoPi) and NiOOH. Our comparative kinetics analysis suggested that the deposition of the CMs improved the kinetics of both the photogenerated charge carrier separation/transport in bulk BiVO4 due to passivation of surface recombination centers and water oxidation at the electrode/electrolyte interface due to deposition of efficient molecular WOCs. On the contrary, the conventional WOCs were mostly effective in the former and less effective in the latter, which is consistent with previous reports. These findings explain why the CMs exhibit an outstanding performance. We also found that separated charge carriers can be efficiently transported to POM WOCs via a hopping mechanism due to the delicate architecture of the CMs, which is reminiscent of natural photosynthetic systems. We believe that this study can not only broaden our understanding on the underlying mechanism of PEC water oxidation but also provide insights for the design and fabrication of novel electrochemical and PEC devices, including efficient water oxidation photoanodes.
Collapse
Affiliation(s)
- Sanghyun Bae
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hyunwoo Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Dasom Jeon
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| |
Collapse
|
15
|
Bae S, Jang JE, Lee HW, Ryu J. Tailored Assembly of Molecular Water Oxidation Catalysts on Photoelectrodes for Artificial Photosynthesis. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sanghyun Bae
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Ji-Eun Jang
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Hyun-Wook Lee
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
16
|
Meng J, Tian Y, Li C, Lin X, Wang Z, Sun L, Zhou Y, Li J, Yang N, Zong Y, Li F, Cao Y, Song H. A thiophene-modified doubleshell hollow g-C3N4 nanosphere boosts NADH regeneration via synergistic enhancement of charge excitation and separation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00180h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ATCN-DSCN enabled boosted NADH photo-regeneration and FDH-assisted CO2 reduction.
Collapse
|
17
|
Lee C, Jeon D, Bae S, Kim H, Han Y, Lee YW, Ryu J. Semiconducting Synthetic Melanin-Based Organic/Inorganic Hybrid Photoanodes for Solar Water Oxidation. CHEMSUSCHEM 2018; 11:3534-3541. [PMID: 29979491 DOI: 10.1002/cssc.201801135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/09/2018] [Indexed: 06/08/2023]
Abstract
We report the development of semiconducting melanin-based organic/inorganic hybrid photoanodes for solar water oxidation. Synthetic melanin thin-film incorporating polyoxometalate (POM) water oxidation catalysts (WOCs) are readily deposited on the surface of various n-type inorganic semiconductors (e.g., Fe2 O3 , BiVO4 , and TiO2 ) by electropolymerization. The deposition of melanin and POM hybrid (MP) thin-film results in the remarkably improved performance of an underlying semiconductor photoanode for solar water oxidation with a significantly increased photocurrent density and decreased onset potential for water oxidation through the formation of a melanin-based p-n heterojunction structure. We believe that this study can provide insights into the design and fabrication of various melanin-based optoelectronic devices by utilizing its unique physicochemical properties.
Collapse
Affiliation(s)
- Cheolmin Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Dasom Jeon
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Sanghyun Bae
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Hyunwoo Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Yujin Han
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Yang Woo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| |
Collapse
|
18
|
Son G, Lee SH, Wang D, Park CB. Thioflavin T-Amyloid Hybrid Nanostructure for Biocatalytic Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801396. [PMID: 30198161 DOI: 10.1002/smll.201801396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Amyloidogenic peptides can self-assemble into highly ordered nanostructures consisting of cross β-sheet-rich networks that exhibit unique physicochemical properties and high stability. Light-harvesting amyloid nanofibrils are constructed by employing insulin as a building block and thioflavin T (ThT) as a amyloid-specific photosensitizer. The ability of the self-assembled amyloid scaffold to accommodate and align ThT in high density on its surface allows for efficient energy transfer from the chromophores to the catalytic units in a similar way to natural photosystems. Insulin nanofibrils significantly enhance the photoactivity of ThT by inhibiting nonradiative conformational relaxation around the central CC bonds and narrowing the distance between ThT molecules that are bound to the β-sheet-rich amyloid structure. It is demonstrated that the ThT-amyloid hybrid nanostructure is suitable for biocatalytic solar-to-chemical conversion by integrating the light-harvesting amyloid module (for nicotinamide cofactor regeneration) with a redox biocatalytic module (for enzymatic reduction).
Collapse
Affiliation(s)
- Giyeong Son
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Ding Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
19
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiokatalyse: Aktivierung von Redoxenzymen durch direkten oder indirekten Transfer photoinduzierter Elektronen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710070] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Da Som Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Su Keun Kuk
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| |
Collapse
|
20
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Angew Chem Int Ed Engl 2018; 57:7958-7985. [PMID: 29194901 DOI: 10.1002/anie.201710070] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Biocatalytic transformation has received increasing attention in the green synthesis of chemicals because of the diversity of enzymes, their high catalytic activities and specificities, and mild reaction conditions. The idea of solar energy utilization in chemical synthesis through the combination of photocatalysis and biocatalysis provides an opportunity to make the "green" process greener. Oxidoreductases catalyze redox transformation of substrates by exchanging electrons at the enzyme's active site, often with the aid of electron mediator(s) as a counterpart. Recent progress indicates that photoinduced electron transfer using organic (or inorganic) photosensitizers can activate a wide spectrum of redox enzymes to catalyze fuel-forming reactions (e.g., H2 evolution, CO2 reduction) and synthetically useful reductions (e.g., asymmetric reduction, oxygenation, hydroxylation, epoxidation, Baeyer-Villiger oxidation). This Review provides an overview of recent advances in light-driven activation of redox enzymes through direct or indirect transfer of photoinduced electrons.
Collapse
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
21
|
Fukuzumi S, Lee Y, Nam W. Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Graduate School of Science and Engineering Meijo University, Nagoya Aichi 468-8502 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
22
|
Jeon D, Kim H, Lee C, Han Y, Gu M, Kim BS, Ryu J. Layer-by-Layer Assembly of Polyoxometalates for Photoelectrochemical (PEC) Water Splitting: Toward Modular PEC Devices. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40151-40161. [PMID: 29099571 DOI: 10.1021/acsami.7b09416] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Artificial photosynthesis is considered one of the most promising solutions to modern energy and environmental crises. Considering that it is enabled by multiple components through a series of photoelectrochemical processes, the key to successful development of a photosynthetic device depends not only on the development of novel individual components but also on the rational design of an integrated photosynthetic device assembled from them. However, most studies have been dedicated to the development of individual components due to the lack of a general and simple method for the construction of the integrated device. In the present study, we report a versatile and simple method to prepare an efficient and stable photoelectrochemical device via controlled assembly and integration of functional components on the nanoscale using the layer-by-layer (LbL) assembly technique. As a proof of concept, we could successfully build a photoanode for solar water oxidation by depositing a thin film of diverse cationic polyelectrolytes and anionic polyoxometalate (molecular metal oxide) water oxidation catalysts on the surface of various photoelectrode materials (e.g., Fe2O3, BiVO4, and TiO2). It was found that the performance of photoanodes was significantly improved after the deposition in terms of stability as well as photocatalytic properties, regardless of types of photoelectrodes and polyelectrolytes employed. Considering the simplicity and versatile nature of LbL assembly techniques, our approach can contribute to the realization of artificial photosynthesis by enabling the design of novel photosynthetic devices.
Collapse
Affiliation(s)
- Dasom Jeon
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Hyunwoo Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Cheolmin Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Yujin Han
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Minsu Gu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| |
Collapse
|
23
|
Ni Y, Hollmann F. Artificial Photosynthesis: Hybrid Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 158:137-158. [PMID: 26987806 DOI: 10.1007/10_2015_5010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidoreductases are promising catalysts for organic synthesis. To sustain their catalytic cycles they require efficient supply with redox equivalents. Today classical biomimetic approaches utilizing natural electron supply chains prevail but artificial regeneration approaches bear the promise of simpler and more robust reaction schemes. Utilizing visible light can accelerate such artificial electron transport chains and even enable thermodynamically unfeasible reactions such as the use of water as reductant.This contribution critically summarizes the current state of the art in photoredoxbiocatalysis (i.e. light-driven biocatalytic oxidation and reduction reactions).
Collapse
Affiliation(s)
- Yan Ni
- Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
24
|
Product Selectivity in Homogeneous Artificial Photosynthesis Using [(bpy)Rh(Cp*)X]n+-Based Catalysts. INORGANICS 2017. [DOI: 10.3390/inorganics5020035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to the limited amount of fossil energy carriers, the storage of solar energy in chemical bonds using artificial photosynthesis has been under intensive investigation within the last decades. As the understanding of the underlying working principle of these complex systems continuously grows, more focus will be placed on a catalyst design for highly selective product formation. Recent reports have shown that multifunctional photocatalysts can operate with high chemoselectivity, forming different catalysis products under appropriate reaction conditions. Within this context [(bpy)Rh(Cp*)X]n+-based catalysts are highly relevant examples for a detailed understanding of product selectivity in artificial photosynthesis since the identification of a number of possible reaction intermediates has already been achieved.
Collapse
|
25
|
Abstract
The interaction between an electronically excited photocatalyst and an organic molecule can result in the genertion of a diverse array of reactive intermediates that can be manipulated in a variety of ways to result in synthetically useful bond constructions. This Review summarizes dual-catalyst strategies that have been applied to synthetic photochemistry. Mechanistically distinct modes of photocatalysis are discussed, including photoinduced electron transfer, hydrogen atom transfer, and energy transfer. We focus upon the cooperative interactions of photocatalysts with redox mediators, Lewis and Brønsted acids, organocatalysts, enzymes, and transition metal complexes.
Collapse
Affiliation(s)
- Kazimer
L. Skubi
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Travis R. Blum
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tehshik P. Yoon
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Lan Q, Zhang ZM, Qin C, Wang XL, Li YG, Tan HQ, Wang EB. Highly Dispersed Polyoxometalate-Doped Porous Co 3 O 4 Water Oxidation Photocatalysts Derived from POM@MOF Crystalline Materials. Chemistry 2016; 22:15513-15520. [PMID: 27607355 DOI: 10.1002/chem.201602127] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 11/12/2022]
Abstract
Rational design of earth-abundant photocatalysts is an important issue for solar energy conversion and storage. Polyoxometalate (POM)@Co3 O4 composites doped with highly dispersive molecular metal-oxo clusters, synthesized by loading a single Keggin-type POM cluster into each confined space of a metal-organic framework (MOF), exhibit significantly improved photocatalytic activity in water oxidation compared to the pure MOF-derived nanostructure. The systematic synthesis of these composite nanocrystals allows the conditions to be tuned, and their respective water oxidation catalytic performance can be efficiently adjusted by varying the thermal treatment temperature and the feeding amount of the POM. This work not only provides a modular and tunable synthetic strategy for preparing molecular cluster@TM oxide (TM=transition metal) nanostructures, but also showcases a universal strategy that is applicable to design and construct multifunctional nanoporous metal oxide composite materials.
Collapse
Affiliation(s)
- Qing Lan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P.R. China
| | - Zhi-Ming Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P.R. China. .,Institute of New Energy Materials & Low Carbon Technology, School of Material Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China.
| | - Chao Qin
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P.R. China
| | - Xin-Long Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P.R. China.
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P.R. China
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P.R. China
| | - En-Bo Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P.R. China.
| |
Collapse
|
27
|
Liu ZJ, Wang XL, Qin C, Zhang ZM, Li YG, Chen WL, Wang EB. Polyoxometalate-assisted synthesis of transition-metal cubane clusters as artificial mimics of the oxygen-evolving center of photosystem II. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.12.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Köninger K, Gómez Baraibar Á, Mügge C, Paul CE, Hollmann F, Nowaczyk MM, Kourist R. Rekombinante Cyanobakterien für die asymmetrische Reduktion von C=C‐Bindungen mithilfe biokatalytischer Wasseroxidation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601200] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Katharina Köninger
- Nachwuchsgruppe Mikrobielle Biotechnologie Ruhr-Universität Bochum 44780 Bochum Deutschland
| | - Álvaro Gómez Baraibar
- Nachwuchsgruppe Mikrobielle Biotechnologie Ruhr-Universität Bochum 44780 Bochum Deutschland
| | - Carolin Mügge
- Nachwuchsgruppe Mikrobielle Biotechnologie Ruhr-Universität Bochum 44780 Bochum Deutschland
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Niederlande
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Niederlande
| | - Marc M. Nowaczyk
- Lehrstuhl Biochemie der Pflanzen Ruhr-Universität Bochum Deutschland
| | - Robert Kourist
- Nachwuchsgruppe Mikrobielle Biotechnologie Ruhr-Universität Bochum 44780 Bochum Deutschland
| |
Collapse
|
29
|
Köninger K, Gómez Baraibar Á, Mügge C, Paul CE, Hollmann F, Nowaczyk MM, Kourist R. Recombinant Cyanobacteria for the Asymmetric Reduction of C=C Bonds Fueled by the Biocatalytic Oxidation of Water. Angew Chem Int Ed Engl 2016; 55:5582-5. [PMID: 27029020 DOI: 10.1002/anie.201601200] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 02/04/2023]
Abstract
A recombinant enoate reductase was expressed in cyanobacteria and used for the light-catalyzed, enantioselective reduction of C=C bonds. The coupling of oxidoreductases to natural photosynthesis allows asymmetric syntheses fueled by the oxidation of water. Bypassing the addition of sacrificial cosubstrates as electron donors significantly improves the atom efficiency and avoids the formation of undesired side products. Crucial factors for product formation are the availability of NADPH and the amount of active enzyme in the cells. The efficiency of the reaction is comparable to typical whole-cell biotransformations in E. coli. Under optimized conditions, a solution of 100 mg prochiral 2-methylmaleimide was reduced to optically pure 2-methylsuccinimide (99 % ee, 80 % yield of isolated product). High product yields and excellent optical purities demonstrate the synthetic usefulness of light-catalyzed whole-cell biotransformations using recombinant cyanobacteria.
Collapse
Affiliation(s)
- Katharina Köninger
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Álvaro Gómez Baraibar
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Carolin Mügge
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | - Marc M Nowaczyk
- Chair of Plant Biochemistry, Ruhr-Universität Bochum, Germany
| | - Robert Kourist
- Junior Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| |
Collapse
|
30
|
Son EJ, Ko JW, Kuk SK, Choe H, Lee S, Kim JH, Nam DH, Ryu GM, Kim YH, Park CB. Sunlight-assisted, biocatalytic formate synthesis from CO2 and water using silicon-based photoelectrochemical cells. Chem Commun (Camb) 2016; 52:9723-6. [DOI: 10.1039/c6cc04661d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A silicon-based photoelectrochemical cell is developed to convert CO2 to formate with water as an electron donor by using formate dehydrogenase from Thiobacillus sp.
Collapse
Affiliation(s)
- Eun Jin Son
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Jong Wan Ko
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Hyunjun Choe
- Department of Chemical Engineering
- Kwangwoon University
- Seoul
- Republic of Korea
| | - Sumi Lee
- Department of Chemical Engineering
- Kwangwoon University
- Seoul
- Republic of Korea
| | - Jae Hong Kim
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Dong Heon Nam
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Gyeong Min Ryu
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Yong Hwan Kim
- Department of Chemical Engineering
- Kwangwoon University
- Seoul
- Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
31
|
Usuda Y, Hara Y, Kojima H. Toward Sustainable Amino Acid Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:289-304. [PMID: 27872964 DOI: 10.1007/10_2016_36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.
Collapse
Affiliation(s)
- Yoshihiro Usuda
- Institute for Innovation, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Yoshihiko Hara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzukicho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | - Hiroyuki Kojima
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzukicho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| |
Collapse
|
32
|
Maciá-Agulló JA, Corma A, Garcia H. Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes. Chemistry 2015; 21:10940-59. [DOI: 10.1002/chem.201406437] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Lim SI, Yoon S, Kim YH, Kwon I. Site-specific bioconjugation of an organometallic electron mediator to an enzyme with retained photocatalytic cofactor regenerating capacity and enzymatic activity. Molecules 2015; 20:5975-86. [PMID: 25853315 PMCID: PMC6272604 DOI: 10.3390/molecules20045975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 02/02/2023] Open
Abstract
Photosynthesis consists of a series of reactions catalyzed by redox enzymes to synthesize carbohydrates using solar energy. In order to take the advantage of solar energy, many researchers have investigated artificial photosynthesis systems mimicking the natural photosynthetic enzymatic redox reactions. These redox reactions usually require cofactors, which due to their high cost become a key issue when constructing an artificial photosynthesis system. Combining a photosensitizer and an Rh-based electron mediator (RhM) has been shown to photocatalytically regenerate cofactors. However, maintaining the high concentration of cofactors available for efficient enzymatic reactions requires a high concentration of the expensive RhM; making this process cost prohibitive. We hypothesized that conjugation of an electron mediator to a redox enzyme will reduce the amount of electron mediators necessary for efficient enzymatic reactions. This is due to photocatalytically regenerated NAD(P)H being readily available to a redox enzyme, when the local NAD(P)H concentration near the enzyme becomes higher. However, conventional random conjugation of RhM to a redox enzyme will likely lead to a substantial loss of cofactor regenerating capacity and enzymatic activity. In order to avoid this issue, we investigated whether bioconjugation of RhM to a permissive site of a redox enzyme retains cofactor regenerating capacity and enzymatic activity. As a model system, a RhM was conjugated to a redox enzyme, formate dehydrogenase obtained from Thiobacillus sp. KNK65MA (TsFDH). A RhM-containing azide group was site-specifically conjugated to p-azidophenylalanine introduced to a permissive site of TsFDH via a bioorthogonal strain-promoted azide-alkyne cycloaddition and an appropriate linker. The TsFDH-RhM conjugate exhibited retained cofactor regenerating capacity and enzymatic activity.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | - Sungho Yoon
- Department of Bio & Nano Chemistry, Kookmin University, 861-1 Jeoungnung-dong, Seongbuk-gu, Seoul 136-702, Korea.
| | - Yong Hwan Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Korea.
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea.
| |
Collapse
|