1
|
Chowdhury MRH, Oladun C, Ariyasingha NM, Samoilenko A, Bawardi T, Burueva DB, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Shi Z, Luo K, Tan S, Gelovani JG, Koptyug IV, Goodson BM, Chekmenev EY. Rapid lung ventilation MRI using parahydrogen-induced polarization of propane gas. Analyst 2024. [PMID: 39530397 PMCID: PMC11563306 DOI: 10.1039/d4an01029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Proton-hyperpolarized contrast agents are attractive because they can be imaged on virtually any clinical MRI scanner, which is typically equipped to scan only protons rather than heteronuclei (i.e., anything besides protons, e.g., 13C, 15N, 129Xe, 23Na, etc.). Even though the lifetime of the proton spin hyperpolarization is only a few seconds, it is sufficient for inhalation and scanning of proton-hyperpolarized gas media. We demonstrate the utility of producing hyperpolarized propane gas via heterogeneous parahydrogen-induced polarization for the purpose of ventilation imaging in an excised rabbit lung model. The magnetization of protons in hyperpolarized propane gas is similar to that of tissue water protons, making it possible to rapidly perform lung ventilation imaging with a 0.35 T clinical MRI scanner. Here, we demonstrate the feasibility of rapid (2 s) lung ventilation MRI in excised rabbit lungs using hyperpolarized propane gas with a 1 × 1 mm2 pixel size using a 50 mm slice thickness, and a 1.7 × 1.7 mm2 pixel size using a 9 mm slice thickness.
Collapse
Affiliation(s)
- Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Clementinah Oladun
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Tarek Bawardi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Dudari B Burueva
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Oleg G Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Kehuan Luo
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
- United Arab Emirates University, Al Ain, United Arab Emirates
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| |
Collapse
|
2
|
Gao H, Duan L, Fan W, Yuan L, Huang J, Zhang K, Cai Z, Quan W. Accelerating T 1 relaxation time measurements of noble gas using transverse low-frequency square-wave magnetic field modulation. OPTICS LETTERS 2024; 49:6229-6232. [PMID: 39485454 DOI: 10.1364/ol.540385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
The longitudinal relaxation time (T1) of noble gas nuclear spins is a critical parameter for evaluating the performance of an atomic comagnetometer, significantly influencing the signal-to-noise ratio of the system. Traditional measurement techniques, such as the free induction decay method combined with the spin growth technique (FIDSG), are time-consuming for gases with extended T1 durations, such as 21Ne, and are prone to substantial environmental variability. Here, we propose the transverse low-frequency square-wave magnetic field modulation (LSMM) method for the rapid measurement of T1. The experiment indicates that the LSMM significantly condenses the measurement time to 19.2% of the original, thereby diminishing the robustness demands of the system. Although a minor discrepancy of up to 3 min (or 1.3%) exists between LSMM and FIDSG results, the LSMM method provides strong support for calibrating the performance of comagnetometer cells and conducting various nuclear spin polarization experiments, thereby improving efficiency and reducing energy loss.
Collapse
|
3
|
Ariyasingha NM, Samoilenko A, Chowdhury MRH, Nantogma S, Oladun C, Birchall JR, Bawardi T, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Shi Z, Luo K, Tan S, Koptyug IV, Goodson BM, Chekmenev EY. Developing Hyperpolarized Butane Gas for Ventilation Lung Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:698-710. [PMID: 39483636 PMCID: PMC11523004 DOI: 10.1021/cbmi.4c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/03/2024]
Abstract
NMR hyperpolarization dramatically improves the detection sensitivity of magnetic resonance through the increase in nuclear spin polarization. Because of the sensitivity increase by several orders of magnitude, additional applications have been unlocked, including imaging of gases in physiologically relevant conditions. Hyperpolarized 129Xe gas recently received FDA approval as the first inhalable gaseous MRI contrast agent for clinical functional lung imaging of a wide range of pulmonary diseases. However, production and utilization of hyperpolarized 129Xe gas faces a number of translational challenges including the high cost and complexity of contrast agent production and imaging using proton-only (i.e., conventional) clinical MRI scanners, which are typically not suited to scan 129Xe nuclei. As a solution to circumvent the translational challenges of hyperpolarized 129Xe, we have recently demonstrated the feasibility of a simple and cheap process for production of proton-hyperpolarized propane gas contrast agent using ultralow-cost disposable production equipment and demonstrated the feasibility of lung ventilation imaging using hyperpolarized propane gas in excised pig lungs. However, previous pilot studies have concluded that the hyperpolarized state of propane gas decays very fast with an exponential decay T 1 constant of ∼0.8 s at 1 bar (physiologically relevant pressure); moreover, the previously reported production rates were too slow for potential clinical utilization. Here, we investigate the feasibility of high-capacity production of hyperpolarized butane gas via heterogeneous parahydrogen-induced polarization using Rh nanoparticle-based catalyst utilizing butene gas as a precursor for parahydrogen pairwise addition. We demonstrate a remarkable result: the lifetime of the hyperpolarized state can be nearly doubled compared to that of propane (T 1 of ∼1.6 s and long-lived spin-state T S of ∼3.8 s at clinically relevant 1 bar pressure). Moreover, we demonstrate a production speed of up to 0.7 standard liters of hyperpolarized gas per second. These two synergistic developments pave the way to biomedical utilization of proton-hyperpolarized gas media for ventilation imaging. Indeed, here we demonstrate the feasibility of phantom imaging of hyperpolarized butane gas in Tedlar bags and also the feasibility of subsecond 2D ventilation gas imaging in excised rabbit lungs with 1.6 × 1.6 mm2 in-plane resolution using a clinical MRI scanner. The demonstrated results have the potential to revolutionize functional pulmonary imaging with a simple and inexpensive on-demand production of proton-hyperpolarized gas contrast media, followed by visualization on virtually any MRI scanner, including emerging bedside low-field MRI scanner technology.
Collapse
Affiliation(s)
- Nuwandi M. Ariyasingha
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Shiraz Nantogma
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Clementinah Oladun
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Jonathan R. Birchall
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Tarek Bawardi
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G. Salnikov
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M. Kovtunova
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov
Institute of Catalysis SB RAS, 5 Acad, Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I. Bukhtiyarov
- Boreskov
Institute of Catalysis SB RAS, 5 Acad, Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Zhongjie Shi
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Kehuan Luo
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Sidhartha Tan
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Igor V. Koptyug
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- School
of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
Hermsmeier R, Tscherbul TV. Highly Spin-Polarized Molecules via Collisional Microwave Pumping. PHYSICAL REVIEW LETTERS 2024; 133:173001. [PMID: 39530814 DOI: 10.1103/physrevlett.133.173001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
We propose a general technique to produce cold spin-polarized molecules in the electronic states of Σ symmetry, in which rotationally excited levels are first populated by coherent microwave excitation, and then allowed to spin flip and relax via collisional quenching, which populates a single final spin state. The steady-state spin polarization is maximized in the regime, where collisional slip-flipping transitions in the ground rotational manifold (N=0) are suppressed by a factor of ≥10 compared to those in the first rotationally excited manifold (N=1), as generally expected for Σ-state molecules at temperatures below the rotational spacing between the N=0 and N=1 manifolds. We theoretically demonstrate the high selectivity of the technique for ^{13}C^{16}O molecules immersed in a cold buffer gas of helium atoms, achieving a high degree (≥95%) of nuclear spin polarization at 1 K.
Collapse
|
5
|
Eills J, Mitchell MW, Rius IM, Tayler MCD. Live magnetic observation of parahydrogen hyperpolarization dynamics. Proc Natl Acad Sci U S A 2024; 121:e2410209121. [PMID: 39405351 PMCID: PMC11513942 DOI: 10.1073/pnas.2410209121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
Hyperpolarized nuclear spins in molecules exhibit high magnetization that is unachievable by classical polarization techniques, making them widely used as sensors in physics, chemistry, and medicine. The state of a hyperpolarized material, however, is typically only studied indirectly and with partial destruction of magnetization, due to the nature of conventional detection by resonant-pickup NMR spectroscopy or imaging. Here, we establish atomic magnetometers with sub-pT sensitivity as an alternative modality to detect in real time the complex dynamics of hyperpolarized materials without disturbing or interrupting the magnetogenesis process. As an example of dynamics that are impossible to detect in real time by conventional means, we examine parahydrogen-induced 1H and 13C magnetization during adiabatic eigenbasis transformations at [Formula: see text]T-field avoided crossings. Continuous but nondestructive magnetometry reveals previously unseen spin dynamics, fidelity limits, and magnetization backaction effects. As a second example, we apply magnetometry to observe the chemical-exchange-driven 13C hyperpolarization of [1-13C]-pyruvate-the most important spin tracer for clinical metabolic imaging. The approach can be readily combined with other high-sensitivity magnetometers and is applicable to a broader range of general observation scenarios involving production, transport, and systems interaction of hyperpolarized compounds.
Collapse
Affiliation(s)
- James Eills
- Institute for Bioengineering of Catalonia, Barcelona08028, Spain
| | - Morgan W. Mitchell
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona08860, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona08010, Spain
| | - Irene Marco Rius
- Institute for Bioengineering of Catalonia, Barcelona08028, Spain
| | - Michael C. D. Tayler
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona08860, Spain
| |
Collapse
|
6
|
Zhang Z, Li H, Xiao S, Zhou Q, Liu S, Zhou X, Fan L. Hyperpolarized Gas Imaging in Lung Diseases: Functional and Artificial Intelligence Perspective. Acad Radiol 2024; 31:4203-4216. [PMID: 38233260 DOI: 10.1016/j.acra.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Pathophysiologic changes in lung diseases are often accompanied by changes in ventilation and gas exchange. Comprehensive evaluation of lung function cannot be obtained through chest X-ray and computed tomography. Proton-based lung MRI is particularly challenging due to low proton density within the lung tissue. In this review, we discuss an emerging technology--hyperpolarized gas MRI with inhaled 129Xe, which provides functional and microstructural information and has the potential as a clinical tool for detecting the early stage and progression of certain lung diseases. We review the hyperpolarized 129Xe MRI studies in patients with a range of pulmonary diseases, including chronic obstructive pulmonary disease, asthma, cystic fibrosis, pulmonary hypertension, radiation-induced lung injury and interstitial lung disease, and the applications of artificial intelligence were reviewed as well.
Collapse
Affiliation(s)
- Ziwei Zhang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, People's Republic of China (Z.Z., S.L., L.F.)
| | - Haidong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (H.L., S.X., X.Z.)
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (H.L., S.X., X.Z.)
| | - Qian Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.)
| | - Shiyuan Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, People's Republic of China (Z.Z., S.L., L.F.)
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (H.L., S.X., X.Z.)
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, People's Republic of China (Z.Z., S.L., L.F.).
| |
Collapse
|
7
|
Ariyasingha NM, Chowdhury MRH, Samoilenko A, Salnikov OG, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Shi Z, Luo K, Tan S, Koptyug IV, Goodson BM, Chekmenev EY. Toward Lung Ventilation Imaging Using Hyperpolarized Diethyl Ether Gas Contrast Agent. Chemistry 2024; 30:e202304071. [PMID: 38381807 PMCID: PMC11065616 DOI: 10.1002/chem.202304071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Hyperpolarized 129Xe gas was FDA-approved as an inhalable contrast agent for magnetic resonance imaging of a wide range of pulmonary diseases in December 2022. Despite the remarkable success in clinical research settings, the widespread clinical translation of HP 129Xe gas faces two critical challenges: the high cost of the relatively low-throughput hyperpolarization equipment and the lack of 129Xe imaging capability on clinical MRI scanners, which have narrow-bandwidth electronics designed only for proton (1H) imaging. To solve this translational grand challenge of gaseous hyperpolarized MRI contrast agents, here we demonstrate the utility of batch-mode production of proton-hyperpolarized diethyl ether gas via heterogeneous pairwise addition of parahydrogen to ethyl vinyl ether. An approximately 0.1-liter bolus of hyperpolarized diethyl ether gas was produced in 1 second and injected in excised rabbit lungs. Lung ventilation imaging was performed using sub-second 2D MRI with up to 2×2 mm2 in-plane resolution using a clinical 0.35 T MRI scanner without any modifications. This feasibility demonstration paves the way for the use of inhalable diethyl ether as a gaseous contrast agent for pulmonary MRI applications using any clinical MRI scanner.
Collapse
Affiliation(s)
- Nuwandi M Ariyasingha
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Anna Samoilenko
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya Street, Novosibirsk, 630090, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3 A Institutskaya Street, Novosibirsk, 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3 A Institutskaya Street, Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr, Novosibirsk, 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr, Novosibirsk, 630090, Russia
| | - Zhongjie Shi
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Kehuan Luo
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Sidhartha Tan
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya Street, Novosibirsk, 630090, Russia
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL-62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| |
Collapse
|
8
|
Barskiy DA. Molecules, Up Your Spins! Molecules 2024; 29:1821. [PMID: 38675641 PMCID: PMC11052189 DOI: 10.3390/molecules29081821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are indispensable tools in science and medicine, offering insights into the functions of biological processes [...].
Collapse
Affiliation(s)
- Danila A. Barskiy
- Institut für Physik, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany;
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| |
Collapse
|
9
|
Nantogma S, Chowdhury MRH, Kabir MSH, Adelabu I, Joshi SM, Samoilenko A, de Maissin H, Schmidt AB, Nikolaou P, Chekmenev YA, Salnikov OG, Chukanov NV, Koptyug IV, Goodson BM, Chekmenev EY. MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition. Anal Chem 2024; 96:4171-4179. [PMID: 38358916 PMCID: PMC10939749 DOI: 10.1021/acs.analchem.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll "Matryoshka") that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02-75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from -12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P13C = 17%), [1-13C]ketoisocaproate (P13C = 18%), [15N3]metronidazole (P15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Mohammad S. H. Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Sameer M. Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Henri de Maissin
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Andreas B. Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | | | | | - Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
10
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
11
|
MacCulloch K, Browning A, Bedoya DOG, McBride SJ, Abdulmojeed MB, Dedesma C, Goodson BM, Rosen MS, Chekmenev EY, Yen YF, TomHon P, Theis T. Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1- 13C]pyruvate in vivo. JOURNAL OF MAGNETIC RESONANCE OPEN 2023; 16-17:100129. [PMID: 38090022 PMCID: PMC10715622 DOI: 10.1016/j.jmro.2023.100129] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however in vivo detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected in vivo, specifically using hyperpolarized [1-13C]pyruvate. Biocompatible formulations of hyperpolarized [1-13C]pyruvate in, both, methanol-water mixtures, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was also observed as minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe, and scalable molecular imaging.
Collapse
Affiliation(s)
- Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | - David O. Guarin Bedoya
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen J. McBride
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | | | - Carlos Dedesma
- Vizma Life Sciences Inc., Chapel Hill, NC, 27514, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Matthew S. Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
- Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yi-Fen Yen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Patrick TomHon
- Vizma Life Sciences Inc., Chapel Hill, NC, 27514, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
- Department of Physics, North Carolina State University, Raleigh, NC 27606, USA
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
12
|
Ariyasingha NM, Samoilenko A, Birchall JR, Chowdhury MRH, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Zhu DC, Qian C, Bradley M, Gelovani JG, Koptyug IV, Goodson BM, Chekmenev EY. Ultra-Low-Cost Disposable Hand-Held Clinical-Scale Propane Gas Hyperpolarizer for Pulmonary Magnetic Resonance Imaging Sensing. ACS Sens 2023; 8:3845-3854. [PMID: 37772716 PMCID: PMC10902876 DOI: 10.1021/acssensors.3c01369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Hyperpolarized magnetic resonance imaging (MRI) contrast agents are revolutionizing the field of biomedical imaging. Hyperpolarized Xe-129 was recently FDA approved as an inhalable MRI contrast agent for functional lung imaging sensing. Despite success in research settings, modern Xe-129 hyperpolarizers are expensive (up to $1M), large, and complex to site and operate. Moreover, Xe-129 sensing requires specialized MRI hardware that is not commonly available on clinical MRI scanners. Here, we demonstrate that proton-hyperpolarized propane gas can be produced on demand using a disposable, hand-held, clinical-scale hyperpolarizer via parahydrogen-induced polarization, which relies on parahydrogen as a source of hyperpolarization. The device consists of a heterogeneous catalytic reactor connected to a gas mixture storage can containing pressurized hyperpolarization precursors: propylene and parahydrogen (10 bar total pressure). Once the built-in flow valve of the storage can is actuated, the precursors are ejected from the can into a reactor, and a stream of hyperpolarized propane gas is ejected from the reactor. Robust operation of the device is demonstrated for producing proton sensing polarization of 1.2% in a wide range of operational pressures and gas flow rates. We demonstrate that the propylene/parahydrogen gas mixture can retain potency for days in the storage can with a monoexponential decay time constant of 6.0 ± 0.5 days, which is limited by the lifetime of the parahydrogen singlet spin state in the storage container. The utility of the produced sensing agent is demonstrated for phantom imaging on a 3 T clinical MRI scanner located 100 miles from the agent/device preparation site and also for ventilation imaging of excised pig lungs using a 0.35 T clinical MRI scanner. The cost of the device components is less than $35, which we envision can be reduced to less than $5 for mass-scale production. The hyperpolarizer device can be reused, recycled, or disposed.
Collapse
Affiliation(s)
- Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Jonathan R Birchall
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - David C Zhu
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Michael Bradley
- Division of Laboratory Animal Resources, Wayne State University, Detroit, Michigan 48202, United States
| | - Juri G Gelovani
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Siriraj Hospital Mahidol University, 10700, Bangkok, Thailand
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
13
|
Molway MJ, Bales-Shaffer L, Ranta K, Ball J, Sparling E, Prince M, Cocking D, Basler D, Murphy M, Kidd BE, Gafar AT, Porter J, Albin K, Rosen MS, Chekmenev EY, Michael Snow W, Barlow MJ, Goodson BM. Dramatic improvement in the "Bulk" hyperpolarization of 131Xe via spin exchange optical pumping probed using in situ low-field NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107521. [PMID: 37487304 DOI: 10.1016/j.jmr.2023.107521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
We report on hyperpolarization of quadrupolar (I=3/2) 131Xe via spin-exchange optical pumping. Observations of the 131Xe polarization dynamics via in situ low-field NMR show that the estimated alkali-metal/131Xe spin-exchange rates can be large enough to compete with 131Xe spin relaxation. 131Xe polarization up to 7.6±1.5% was achieved in ∼8.5×1020 spins-a ∼100-fold improvement in the total spin angular momentum-potentially enabling various applications, including: measurement of spin-dependent neutron-131Xe s-wave scattering; sensitive searches for time-reversal violation in neutron-131Xe interactions beyond the Standard Model; and surface-sensitive pulmonary MRI.
Collapse
Affiliation(s)
- Michael J Molway
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Liana Bales-Shaffer
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Kaili Ranta
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - James Ball
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Eleanor Sparling
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Mia Prince
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Daniel Cocking
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Dustin Basler
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Megan Murphy
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Bryce E Kidd
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Abdulbasit Tobi Gafar
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Justin Porter
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Kierstyn Albin
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Matthew S Rosen
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston 02129, MA, USA; Department of Physics, Harvard University, Cambridge 02138, MA, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit 48202, MI, USA; Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia
| | - W Michael Snow
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Michael J Barlow
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA.
| |
Collapse
|
14
|
Put P, Alcicek S, Bondar O, Bodek Ł, Duckett S, Pustelny S. Detection of pyridine derivatives by SABRE hyperpolarization at zero field. Commun Chem 2023; 6:131. [PMID: 37349558 DOI: 10.1038/s42004-023-00928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool used in modern science and technology. Its novel incarnation, based on measurements of NMR signals without external magnetic fields, provides direct access to intramolecular interactions based on heteronuclear scalar J-coupling. The uniqueness of these interactions makes each zero-field NMR spectrum distinct and useful in chemical fingerprinting. However, the necessity of heteronuclear coupling often results in weak signals due to the low abundance of certain nuclei (e.g., 15N). Hyperpolarization of such compounds may solve the problem. In this work, we investigate molecules with natural isotopic abundance that are polarized using non-hydrogenative parahydrogen-induced polarization. We demonstrate that spectra of hyperpolarized naturally abundant pyridine derivatives can be observed and uniquely identified whether the same substituent is placed at a different position of the pyridine ring or different constituents are placed at the same position. To do so, we constructed an experimental system using a home-built nitrogen vapor condenser, which allows for consistent long-term measurements, crucial for identifying naturally abundant hyperpolarized molecules at a concentration level of ~1 mM. This opens avenues for future chemical detection of naturally abundant compounds using zero-field NMR.
Collapse
Affiliation(s)
- Piotr Put
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, Kraków, 30-348, Poland.
| | - Seyma Alcicek
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, Kraków, 30-348, Poland.
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, 60528, Germany.
| | - Oksana Bondar
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, Kraków, 30-348, Poland
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Łukasz Bodek
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, Kraków, 30-348, Poland
| | - Simon Duckett
- Centre for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington, YO10 5NY, UK
| | - Szymon Pustelny
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, Kraków, 30-348, Poland
| |
Collapse
|
15
|
Kagawa A, Kusumi R, Nagase R, Morishita Y, Miyanishi K, Takeda K, Kitagawa M, Negoro M. Triplet-DNP in magnetically oriented microcrystal arrays. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 351:107439. [PMID: 37084519 DOI: 10.1016/j.jmr.2023.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
We explore dynamic nuclear polarization using electron spins in the photo-excited triplet state (Triplet-DNP) in magnetically oriented microcrystal arrays (MOMAs) of pentacene-doped p-terphenyl, in which the individual crystallites are magnetically aligned and UV-cured. In contrast to the conventional approach to Triplet-DNP in powder, which suffers from reduced nuclear polarization due to the averaged electron polarization and the broadening of electron-spin resonance, Triplet-DNP of the MOMAs offers as high dynamic polarization as that attainable in single-crystals. In the case of pentacene-doped p-terphenyl, the enhanced 1H polarization in the one-dimensional MOMA, prepared simply by leaving the suspension in a stationary magnetic field before UV curation, can be higher than that attainable in the powder sample by an order of magnitude and comparable to that in single crystals and in the three-dimensional MOMA made using a modulational rotating field. Triplet-DNP of the MOMAs may find potential applications, such as the polarization of the co-doped target molecules and dissolution experiments.
Collapse
Affiliation(s)
- Akinori Kagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan.
| | - Ryosuke Kusumi
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba 305-8687, Japan; Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba 305-8687, Japan.
| | - Rintarou Nagase
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yuki Morishita
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Koichiro Miyanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan
| | - Kazuyuki Takeda
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Kitagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan
| | - Makoto Negoro
- Center for Quantum Information and Quantum Biology, Osaka University, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| |
Collapse
|
16
|
Saul P, Schröder L, Schmidt AB, Hövener JB. Nanomaterials for hyperpolarized nuclear magnetic resonance and magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1879. [PMID: 36781151 DOI: 10.1002/wnan.1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 02/15/2023]
Abstract
Nanomaterials play an important role in the development and application of hyperpolarized materials for magnetic resonance imaging (MRI). In this context they can not only act as hyperpolarized materials which are directly imaged but also play a role as carriers for hyperpolarized gases and catalysts for para-hydrogen induced polarization (PHIP) to generate hyperpolarized substrates for metabolic imaging. Those three application possibilities are discussed, focusing on carbon-based materials for the directly imaged particles. An overview over recent developments in all three fields is given, including the early developments in each field as well as important steps towards applications in MRI, such as making the initially developed methods more biocompatible and first imaging experiments with spatial resolution in either phantoms or in vivo studies. Focusing on the important features nanomaterials need to display to be applicable in the MRI context, a wide range of different approaches to that extent is covered, giving the reader a general idea of different possibilities as well as recent developments in those different fields of hyperpolarized magnetic resonance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Philip Saul
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Leif Schröder
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andreas B Schmidt
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
17
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|
18
|
Gyton M, Royle CG, Beaumont SK, Duckett SB, Weller AS. Mechanistic Insights into Molecular Crystalline Organometallic Heterogeneous Catalysis through Parahydrogen-Based Nuclear Magnetic Resonance Studies. J Am Chem Soc 2023; 145:2619-2629. [PMID: 36688560 PMCID: PMC9896567 DOI: 10.1021/jacs.2c12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The heterogeneous solid-gas reactions of crystals of [Rh(L2)(propene)][BArF4] (1, L2 = tBu2PCH2CH2PtBu2) with H2 and propene, 1-butene, propyne, or 1-butyne are explored by gas-phase nuclear magnetic resonance (NMR) spectroscopy under batch conditions at 25 °C. The temporal evolution of the resulting parahydrogen-induced polarization (PHIP) effects measures catalytic flux and thus interrogates the efficiency of catalytic pairwise para-H2 transfer, speciation changes in the crystalline catalyst at the molecular level, and allows for high-quality single-scan 1H, 13C NMR gas-phase spectra for the products to be obtained, as well as 2D-measurements. Complex 1 reacts with H2 to form dimeric [Rh(L2)(H)(μ-H)]2[BArF4]2 (4), as probed using EXAFS; meanwhile, a single-crystal of 1 equilibrates NMR silent para-H2 with its NMR active ortho isomer, contemporaneously converting into 4, and 1 and 4 each convert para-H2 into ortho-H2 at different rates. Hydrogenation of propene using 1 and para-H2 results in very high initial polarization levels in propane (>85%). Strong PHIP was also detected in the hydrogenation products of 1-butene, propyne, and 1-butyne. With propyne, a competing cyclotrimerization deactivation process occurs to afford [Rh(tBu2PCH2CH2PtBu2)(1,3,4-Me3C6H3)][BArF4], while with 1-butyne, rapid isomerization of 1-butyne occurs to give a butadiene complex, which then reacts with H2 more slowly to form catalytically active 4. Surprisingly, the high PHIP hydrogenation efficiencies allow hyperpolarization effects to be seen when H2 is taken directly from a regular cylinder at 25 °C. Finally, changing the chelating phosphine to Cy2PCH2CH2PCy2 results in initial high polarization efficiencies for propene hydrogenation, but rapid quenching of the catalyst competes to form the zwitterion [Rh(Cy2PCH2CH2PCy2){η6-(CF3)2(C6H3)}BArF3].
Collapse
Affiliation(s)
- Matthew
R. Gyton
- Department
of Chemistry, University of York, York YO10 5DD, U.K.,Centre
for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Cameron G. Royle
- Department
of Chemistry, University of York, York YO10 5DD, U.K.,Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Simon K. Beaumont
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Simon B. Duckett
- Department
of Chemistry, University of York, York YO10 5DD, U.K.,Centre
for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.,
| | - Andrew S. Weller
- Department
of Chemistry, University of York, York YO10 5DD, U.K.,
| |
Collapse
|
19
|
Kharbanda Y, Urbańczyk M, Zhivonitko VV, Mailhiot S, Kettunen MI, Telkki VV. Sensitive, Efficient and Portable Analysis of Molecular Exchange Processes by Hyperpolarized Ultrafast NMR. Angew Chem Int Ed Engl 2022; 61:e202203957. [PMID: 35499690 PMCID: PMC9400989 DOI: 10.1002/anie.202203957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/08/2022]
Abstract
Molecular exchange processes are ubiquitous in nature. Here, we introduce a method to analyze exchange processes by using low-cost, portable, single-sided NMR instruments. The inherent magnetic field inhomogeneity of the single-sided instruments is exploited to achieve diffusion contrast of exchange sites and spatial encoding of 2D data. This so-called ultrafast diffusion exchange spectroscopy method shortens the experiment time by two to four orders of magnitude. Furthermore, because full 2D data are measured in a single scan (in a fraction of a second), the sensitivity of the experiment can be improved by several orders of magnitude using so-called nuclear spin hyperpolarization methods (in this case, dissolution dynamic nuclear polarization). As the first demonstration of the feasibility of the method in various applications, we show that the method enables quantification of intra- and extracellular exchange of water in a yeast cell suspension.
Collapse
Affiliation(s)
| | - Mateusz Urbańczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Sarah Mailhiot
- NMR Research Unit, University of Oulu, Oulu, 90540, Finland
| | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
20
|
Kharbanda Y, Urbańczyk M, Zhivonitko VV, Mailhiot S, Kettunen MI, Telkki V. Sensitive, Efficient and Portable Analysis of Molecular Exchange Processes by Hyperpolarized Ultrafast NMR. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mateusz Urbańczyk
- Institute of Physical Chemistry Polish Academy of Sciences Warsaw Poland
| | | | | | - Mikko I. Kettunen
- Kuopio Biomedical Imaging Unit A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | | |
Collapse
|
21
|
Buntkowsky G, Theiss F, Lins J, Miloslavina YA, Wienands L, Kiryutin A, Yurkovskaya A. Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Adv 2022; 12:12477-12506. [PMID: 35480380 PMCID: PMC9039419 DOI: 10.1039/d2ra01346k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) are analytical and diagnostic tools that are essential for a very broad field of applications, ranging from chemical analytics, to non-destructive testing of materials and the investigation of molecular dynamics, to in vivo medical diagnostics and drug research. One of the major challenges in their application to many problems is the inherent low sensitivity of magnetic resonance, which results from the small energy-differences of the nuclear spin-states. At thermal equilibrium at room temperature the normalized population difference of the spin-states, called the Boltzmann polarization, is only on the order of 10-5. Parahydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, which has widespread applications in Chemistry, Physics, Biochemistry, Biophysics, and Medical Imaging. PHIP creates its signal-enhancements by means of a reversible (SABRE) or irreversible (classic PHIP) chemical reaction between the parahydrogen, a catalyst, and a substrate. Here, we first give a short overview about parahydrogen-based hyperpolarization techniques and then review the current literature on method developments and applications of various flavors of the PHIP experiment.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Franziska Theiss
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Jonas Lins
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Laura Wienands
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Alexey Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| | - Alexandra Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| |
Collapse
|
22
|
Jayapaul J, Komulainen S, Zhivonitko VV, Mareš J, Giri C, Rissanen K, Lantto P, Telkki VV, Schröder L. Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics. Nat Commun 2022; 13:1708. [PMID: 35361759 PMCID: PMC8971460 DOI: 10.1038/s41467-022-29249-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
Guest capture and release are important properties of self-assembling nanostructures. Over time, a significant fraction of guests might engage in short-lived states with different symmetry and stereoselectivity and transit frequently between multiple environments, thereby escaping common spectroscopy techniques. Here, we investigate the cavity of an iron-based metal organic polyhedron (Fe-MOP) using spin-hyperpolarized 129Xe Chemical Exchange Saturation Transfer (hyper-CEST) NMR. We report strong signals unknown from previous studies that persist under different perturbations. On-the-fly delivery of hyperpolarized gas yields CEST signatures that reflect different Xe exchange kinetics from multiple environments. Dilute pools with ~ 104-fold lower spin numbers than reported for directly detected hyperpolarized nuclei are readily detected due to efficient guest turnover. The system is further probed by instantaneous and medium timescale perturbations. Computational modeling indicates that these signals originate likely from Xe bound to three Fe-MOP diastereomers (T, C3, S4). The symmetry thus induces steric effects with aperture size changes that tunes selective spin manipulation as it is employed in CEST MRI agents and, potentially, impacts other processes occurring on the millisecond time scale.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | | | | | - Jiří Mareš
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology (MIPT), University of Oulu, 90014, Oulu, Finland
| | - Chandan Giri
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Perttu Lantto
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland.
| | | | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Pilot Quality-Assurance Study of a Third-Generation Batch-Mode Clinical-Scale Automated Xenon-129 Hyperpolarizer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041327. [PMID: 35209116 PMCID: PMC8879294 DOI: 10.3390/molecules27041327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
Abstract
We present a pilot quality assurance (QA) study of a clinical-scale, automated, third-generation (GEN-3) 129Xe hyperpolarizer employing batch-mode spin-exchange optical pumping (SEOP) with high-Xe densities (50% natural abundance Xe and 50% N2 in ~2.6 atm total pressure sourced from Nova Gas Technologies) and rapid temperature ramping enabled by an aluminum heating jacket surrounding the 0.5 L SEOP cell. 129Xe hyperpolarization was performed over the course of 700 gas loading cycles of the SEOP cell, simulating long-term hyperpolarized contrast agent production in a clinical lung imaging setting. High levels of 129Xe polarization (avg. %PXe = 51.0% with standard deviation σPXe = 3.0%) were recorded with fast 129Xe polarization build-up time constants (avg. Tb = 25.1 min with standard deviation σTb = 3.1 min) across the first 500 SEOP cell refills, using moderate temperatures of 75 °C. These results demonstrate a more than 2-fold increase in build-up rate relative to previously demonstrated results in a comparable QA study on a second-generation (GEN-2) 129Xe hyperpolarizer device, with only a minor reduction in maximum achievable %PXe and with greater consistency over a larger number of SEOP cell refill processes at a similar polarization lifetime duration (avg. T1 = 82.4 min, standard deviation σT1 = 10.8 min). Additionally, the effects of varying SEOP jacket temperatures, distribution of Rb metal, and preparation and operation of the fluid path are quantified in the context of device installation, performance optimization and maintenance to consistently produce high 129Xe polarization values, build-up rates (Tb as low as 6 min) and lifetimes over the course of a typical high-throughput 129Xe polarization SEOP cell life cycle. The results presented further demonstrate the significant potential for hyperpolarized 129Xe contrast agent in imaging and bio-sensing applications on a clinical scale.
Collapse
|
24
|
Zakharov DO, Chernichenko K, Sorochkina K, Yang S, Telkki V, Repo T, Zhivonitko VV. Parahydrogen-Induced Polarization in Hydrogenation Reactions Mediated by a Metal-Free Catalyst. Chemistry 2022; 28:e202103501. [PMID: 34928532 PMCID: PMC9303582 DOI: 10.1002/chem.202103501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/28/2022]
Abstract
We report nuclear spin hyperpolarization of various alkenes achieved in alkyne hydrogenations with parahydrogen over a metal-free hydroborane catalyst (HCAT). Being an intramolecular frustrated Lewis pair aminoborane, HCAT utilizes a non-pairwise mechanism of H2 transfer to alkynes that normally prevents parahydrogen-induced polarization (PHIP) from being observed. Nevertheless, the specific spin dynamics in catalytic intermediates leads to the hyperpolarization of predominantly one hydrogen in alkene. PHIP enabled the detection of important HCAT-alkyne-H2 intermediates through substantial 1 H, 11 B and 15 N signal enhancement and allowed advanced characterization of the catalytic process.
Collapse
Affiliation(s)
| | - Konstantin Chernichenko
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
- Present address: Discovery, Product Development & Supply (DPDS)Janssen Pharmaceutical Companies of Johnson & JohnsonTurnhoutseweg 302340BeerseBelgium
| | - Kristina Sorochkina
- NMR Research UnitUniversity of OuluP.O. Box 300090014OuluFinland
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| | - Shengjun Yang
- NMR Research UnitUniversity of OuluP.O. Box 300090014OuluFinland
| | | | - Timo Repo
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| | | |
Collapse
|
25
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
26
|
New aspects of parahydrogen-induced polarization for C2—C3 hydrocarbons using metal complexes. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
28
|
Blanchard JW, Ripka B, Suslick BA, Gelevski D, Wu T, Münnemann K, Barskiy DA, Budker D. Towards large-scale steady-state enhanced nuclear magnetization with in situ detection. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1208-1215. [PMID: 33826170 DOI: 10.1002/mrc.5161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Signal amplification by reversible exchange (SABRE) boosts NMR signals of various nuclei enabling new applications spanning from magnetic resonance imaging to analytical chemistry and fundamental physics. SABRE is especially well positioned for continuous generation of enhanced magnetization on a large scale; however, several challenges need to be addressed for accomplishing this goal. Specifically, SABRE requires (i) a specialized catalyst capable of reversible H2 activation and (ii) physical transfer of the sample from the point of magnetization generation to the point of detection (e.g., a high-field or a benchtop nuclear magnetic resonance [NMR] spectrometer). Moreover, (iii) continuous parahydrogen bubbling accelerates solvent (e.g., methanol) evaporation, thereby limiting the experimental window to tens of minutes per sample. In this work, we demonstrate a strategy to rapidly generate the best-to-date precatalyst (a compound that is chemically modified in the course of the reaction to yield the catalyst) for SABRE, [Ir(IMes)(COD)Cl] (IMes = 1,3-bis-[2,4,6-trimethylphenyl]-imidazol-2-ylidene; COD = cyclooctadiene) via a highly accessible synthesis. Second, we measure hyperpolarized samples using a home-built zero-field NMR spectrometer and study the field dependence of hyperpolarization directly in the detection apparatus, eliminating the need to physically move the sample during the experiment. Finally, we prolong the measurement time and reduce evaporation by presaturating parahydrogen with the solvent vapor before bubbling into the sample. These advancements extend opportunities for exploring SABRE hyperpolarization by researchers from various fields and pave the way to producing large quantities of hyperpolarized material for long-lasting detection of SABRE-derived nuclear magnetization.
Collapse
Affiliation(s)
- John W Blanchard
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, Mainz, Germany
- NVision Imaging Technologies GmbH, Ulm, Germany
| | - Barbara Ripka
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Benjamin A Suslick
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dario Gelevski
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Teng Wu
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kerstin Münnemann
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Mechanical Engineering and Process Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Danila A Barskiy
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Dmitry Budker
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University of Mainz, Mainz, Germany
- Department of Physics, University of California, Berkeley, California, USA
| |
Collapse
|
29
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
30
|
Jiang W, Peng Q, Sun H, Zhang Q, Huang C, Cao S, Wang X, Chen Z. Determining the enantioselectivity of asymmetric hydrogenation through parahydrogen-induced hyperpolarization. J Chem Phys 2021; 155:161101. [PMID: 34717365 DOI: 10.1063/5.0067959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Asymmetric hydrogenation plays an essential role for both academic research and industry to produce enantiomeric pure chiral molecules. Although nuclear magnetic resonance (NMR) is powerful in determining the yields of hydrogenation, it is still challenging to use NMR for chirality-related analysis. Herein, we applied parahydrogen-induced hyperpolarization (PHIP) NMR to determine the enantioselectivity of asymmetric hydrogenation and the absolute chirality of products. We hyperpolarized two types of unsaturated amino acid precursors, i.e., methyl-α-acetoamido cinnamate and (E)-ethyl 3-acetamidobut-2-enoate. Hydrogenation of prochiral substrates with parahydrogen gave temporary hyperpolarized diastereoisomers, which exhibit different PHIP patterns distinguishable in 1H NMR. After assigning the NMR peaks by density functional theory calculations, we simulated the PHIP patterns of all the possible temporary hyperpolarized diastereoisomers and unambiguously assigned the chirality of the products and the enantioselectivity of asymmetric hydrogenation. Our work demonstrates the application and potential of PHIP in revealing the mechanism of asymmetric hydrogenation.
Collapse
Affiliation(s)
- Wenlong Jiang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Qiwei Peng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Huijun Sun
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Qi Zhang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Chengda Huang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Shuohui Cao
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Xinchang Wang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| |
Collapse
|
31
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized 129 Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021; 60:22126-22147. [PMID: 34018297 PMCID: PMC8478785 DOI: 10.1002/anie.202015200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/06/2022]
Abstract
Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4-8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin-exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as 129 Xe. Techniques based on hyperpolarized 129 Xe are poised to revolutionize clinical lung imaging, offering a non-ionizing, high-contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized 129 Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized 129 Xe to lung imaging and beyond.
Collapse
Affiliation(s)
- Alixander S Khan
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rebecca L Harvey
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan R Birchall
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems, 45101 Warp Drive, Sterling, VA, 20166, USA
| | | | | | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
- Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
32
|
Telkki VV, Urbańczyk M, Zhivonitko V. Ultrafast methods for relaxation and diffusion. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:101-120. [PMID: 34852922 DOI: 10.1016/j.pnmrs.2021.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Relaxation and diffusion NMR measurements offer an approach to studying rotational and translational motion of molecules non-invasively, and they also provide chemical resolution complementary to NMR spectra. Multidimensional experiments enable the correlation of relaxation and diffusion parameters as well as the observation of molecular exchange phenomena through relaxation or diffusion contrast. This review describes how to accelerate multidimensional relaxation and diffusion measurements significantly through spatial encoding. This so-called ultrafast Laplace NMR approach shortens the experiment time to a fraction and makes even single-scan experiments possible. Single-scan experiments, in turn, significantly facilitate the use of nuclear spin hyperpolarization methods to boost sensitivity. The ultrafast Laplace NMR method is also applicable with low-field, mobile NMR instruments, and it can be exploited in many disciplines. For example, it has been used in studies of the dynamics of fluids in porous materials, identification of intra- and extracellular metabolites in cancer cells, and elucidation of aggregation phenomena in atmospheric surfactant solutions.
Collapse
Affiliation(s)
| | - Mateusz Urbańczyk
- NMR Research Unit, University of Oulu, P.O. Box 3000, FIN-90014, Finland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | | |
Collapse
|
33
|
Pokochueva EV, Burueva DB, Salnikov OG, Koptyug IV. Heterogeneous Catalysis and Parahydrogen-Induced Polarization. Chemphyschem 2021; 22:1421-1440. [PMID: 33969590 DOI: 10.1002/cphc.202100153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Indexed: 01/11/2023]
Abstract
Parahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP. Various practical applications of HET-PHIP, both for catalytic studies and for potential production of hyperpolarized contrast agents for MRI, are described.
Collapse
Affiliation(s)
- Ekaterina V Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|
34
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Entwicklung molekularer Sonden für die hyperpolarisierte NMR‐Bildgebung im biologischen Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
- National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
35
|
Marreiros J, de Oliveira-Silva R, Iacomi P, Llewellyn PL, Ameloot R, Sakellariou D. Benchtop In Situ Measurement of Full Adsorption Isotherms by NMR. J Am Chem Soc 2021; 143:8249-8254. [PMID: 34043343 DOI: 10.1021/jacs.1c03716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Physisorption using gas or vapor probe molecules is the most common characterization technique for porous materials. The method provides textural information on the adsorbent as well as the affinity for a specific adsorbate, typically through equilibrium pressure measurements. Here, we demonstrate how low-field NMR can be used to measure full adsorption isotherms, and how by selectively measuring 1H spins of the adsorbed probe molecules, rather than those in the vapor phase, this "NMR-relaxorption" technique provides insights about local dynamics beyond what can be learned from physisorption alone. The potential of this double-barreled approach was illustrated for a set of microporous metal-organic frameworks (MOFs). For methanol adsorption in ZIF-8, the method identifies multiple guest molecules populations assigned to MeOH clusters in the pore center, MeOH bound at cage windows and to MeOH adsorption on defect sites. For UiO-66(Zr), the sequential pore filling is demonstrated and accurate pore topologies are directly obtained, and for MIL-53(Al), structural phase transitions are accurately detected and linked with two populations of dimeric chemical species localized to specific positions in the framework.
Collapse
Affiliation(s)
- João Marreiros
- cMACS, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium
| | | | - Paul Iacomi
- Aix-Marseille Univ., CNRS, MADIREL UMR 7246, 13397 Marseille, France
| | - Philip L Llewellyn
- Aix-Marseille Univ., CNRS, MADIREL UMR 7246, 13397 Marseille, France.,TOTAL SE, E&P, Centre Scientifique et Technique Jean Féger, 64000 Pau, France
| | - Rob Ameloot
- cMACS, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium
| | - Dimitrios Sakellariou
- cMACS, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
36
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized
129
Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alixander S. Khan
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Rebecca L. Harvey
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Jonathan R. Birchall
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
| | - Robert K. Irwin
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems 45101 Warp Drive Sterling VA 20166 USA
| | | | | | - Michael J. Barlow
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 Moscow 119991 Russia
| |
Collapse
|
37
|
He J, Zhang X, He Q, Guo H, Fan R. Synthesis of 15N-labeled heterocycles via the cleavage of C-N bonds of anilines and glycine- 15N. Chem Commun (Camb) 2021; 57:5442-5445. [PMID: 33949517 DOI: 10.1039/d1cc01734a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nitrogen replacement process that directly incorporates the 15N atom of glycine-15N into anilines was reported. The process involves a Csp2-N bond cleavage of anilines driven by dearomatization and a Csp3-N bond cleavage of glycine-15N driven by aromatization. A variety of 15N-labeled aromatic heterocycles can be prepared via this process.
Collapse
Affiliation(s)
- Jiwen He
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xingguo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qiuqin He
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Hao Guo
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China and Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Renhua Fan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
38
|
Ullah MS, Zhivonitko VV, Samoylenko A, Zhyvolozhnyi A, Viitala S, Kankaanpää S, Komulainen S, Schröder L, Vainio SJ, Telkki VV. Identification of extracellular nanoparticle subsets by nuclear magnetic resonance. Chem Sci 2021; 12:8311-8319. [PMID: 34221312 PMCID: PMC8221169 DOI: 10.1039/d1sc01402a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Exosomes are a subset of secreted lipid envelope-encapsulated extracellular vesicles (EVs) of 50-150 nm diameter that can transfer cargo from donor to acceptor cells. In the current purification protocols of exosomes, many smaller and larger nanoparticles such as lipoproteins, exomers and microvesicles are typically co-isolated as well. Particle size distribution is one important characteristics of EV samples, as it reflects the cellular origin of EVs and the purity of the isolation. However, most of the physicochemical analytical methods today cannot illustrate the smallest exosomes and other small particles like the exomers. Here, we demonstrate that diffusion ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) method enables the determination of a very broad distribution of extracellular nanoparticles, ranging from 1 to 500 nm. The range covers sizes of all particles included in EV samples after isolation. The method is non-invasive, as it does not require any labelling or other chemical modification. We investigated EVs secreted from milk as well as embryonic kidney and renal carcinoma cells. Western blot analysis and immuno-electron microscopy confirmed expression of exosomal markers such as ALIX, TSG101, CD81, CD9, and CD63 in the EV samples. In addition to the larger particles observed by nanoparticle tracking analysis (NTA) in the range of 70-500 nm, the DOSY distributions include a significant number of smaller particles in the range of 10-70 nm, which are visible also in transmission electron microscopy images but invisible in NTA. Furthermore, we demonstrate that hyperpolarized chemical exchange saturation transfer (Hyper-CEST) with 129Xe NMR indicates also the existence of smaller and larger nanoparticles in the EV samples, providing also additional support for DOSY results. The method implies also that the Xe exchange is significantly faster in the EV pool than in the lipoprotein/exomer pool.
Collapse
Affiliation(s)
| | | | - Anatoliy Samoylenko
- Laboratory of Developmental Biology, Infotech Oulu, Oulu Center for Cell-Matrix Research, Kvantum Institute, Faculty of Biochemistry and Molecular Medicine Oulu Finland
| | - Artem Zhyvolozhnyi
- Laboratory of Developmental Biology, Infotech Oulu, Oulu Center for Cell-Matrix Research, Kvantum Institute, Faculty of Biochemistry and Molecular Medicine Oulu Finland
| | - Sirja Viitala
- Production Systems, Natural Resources Institute Finland (Luke) Jokioinen Finland
| | - Santeri Kankaanpää
- Production Systems, Natural Resources Institute Finland (Luke) Jokioinen Finland
| | | | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
- Division of Translational Molecular Imaging, German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Infotech Oulu, Oulu Center for Cell-Matrix Research, Kvantum Institute, Faculty of Biochemistry and Molecular Medicine Oulu Finland
| | | |
Collapse
|
39
|
Rayner PJ, Gillions JP, Hannibal VD, John RO, Duckett SB. Hyperpolarisation of weakly binding N-heterocycles using signal amplification by reversible exchange. Chem Sci 2021; 12:5910-5917. [PMID: 34168816 PMCID: PMC8179664 DOI: 10.1039/d0sc06907h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Signal Amplification by Reversible Exchange (SABRE) is a catalytic method for improving the detection of molecules by magnetic resonance spectroscopy. It achieves this by simultaneously binding the target substrate (sub) and para-hydrogen to a metal centre. To date, sterically large substrates are relatively inaccessible to SABRE due to their weak binding leading to catalyst destabilisation. We overcome this problem here through a simple co-ligand strategy that allows the hyperpolarisation of a range of weakly binding and sterically encumbered N-heterocycles. The resulting 1H NMR signal size is increased by up to 1400 times relative to their more usual Boltzmann controlled levels at 400 MHz. Hence, a significant reduction in scan time is achieved. The SABRE catalyst in these systems takes the form [IrX(H)2(NHC)(sulfoxide)(sub)] where X = Cl, Br or I. These complexes are shown to undergo very rapid ligand exchange and lower temperatures dramatically improve the efficiency of these SABRE catalysts.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Joseph P Gillions
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Valentin D Hannibal
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Richard O John
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
40
|
Birchall JR, Irwin RK, Chowdhury MRH, Nikolaou P, Goodson BM, Barlow MJ, Shcherbakov A, Chekmenev EY. Automated Low-Cost In Situ IR and NMR Spectroscopy Characterization of Clinical-Scale 129Xe Spin-Exchange Optical Pumping. Anal Chem 2021; 93:3883-3888. [PMID: 33591160 DOI: 10.1021/acs.analchem.0c04545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present on the utility of in situ nuclear magnetic resonance (NMR) and near-infrared (NIR) spectroscopic techniques for automated advanced analysis of the 129Xe hyperpolarization process during spin-exchange optical pumping (SEOP). The developed software protocol, written in the MATLAB programming language, facilitates detailed characterization of hyperpolarized contrast agent production efficiency based on determination of key performance indicators, including the maximum achievable 129Xe polarization, steady-state Rb-129Xe spin-exchange and 129Xe polarization build-up rates, 129Xe spin-relaxation rates, and estimates of steady-state Rb electron polarization. Mapping the dynamics of 129Xe polarization and relaxation as a function of SEOP temperature enables systematic optimization of the batch-mode SEOP process. The automated analysis of a typical experimental data set, encompassing ∼300 raw NMR and NIR spectra combined across six different SEOP temperatures, can be performed in under 5 min on a laptop computer. The protocol is designed to be robust in operation on any batch-mode SEOP hyperpolarizer device. In particular, we demonstrate the implementation of a combination of low-cost NIR and low-frequency NMR spectrometers (∼$1,100 and ∼$300 respectively, ca. 2020) for use in the described protocols. The demonstrated methodology will aid in the characterization of NMR hyperpolarization hardware in the context of SEOP and other hyperpolarization techniques for more robust and less expensive clinical production of HP 129Xe and other contrast agents.
Collapse
Affiliation(s)
- Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | | | | | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Anton Shcherbakov
- Smart-A, Perm, Perm Region 614000, Russia.,Custom Medical Systems (CMS) LTD, Nicosia 2312, Cyprus
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States.,Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
41
|
Joalland B, Ariyasingha NM, Younes HR, Nantogma S, Salnikov OG, Chukanov NV, Kovtunov KV, Koptyug IV, Gelovani JG, Chekmenev EY. Low-Flammable Parahydrogen-Polarized MRI Contrast Agents. Chemistry 2021; 27:2774-2781. [PMID: 33112442 PMCID: PMC8030530 DOI: 10.1002/chem.202004168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 01/13/2023]
Abstract
Many MRI contrast agents formed with the parahydrogen-induced polarization (PHIP) technique exhibit biocompatible profiles. In the context of respiratory imaging with inhalable molecular contrast agents, the development of nonflammable contrast agents would nonetheless be highly beneficial for the biomedical translation of this sensitive, high-throughput and affordable hyperpolarization technique. To this end, we assess the hydrogenation kinetics, the polarization levels and the lifetimes of PHIP hyperpolarized products (acids, ethers and esters) at various degrees of fluorine substitution. The results highlight important trends as a function of molecular structure that are instrumental for the design of new, safe contrast agents for in vivo imaging applications of the PHIP technique, with an emphasis on the highly volatile group of ethers used as inhalable anesthetics.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Hassan R Younes
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Oleg G Salnikov
- International Tomography Center SB RAS, Institutskaya St. 3A, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, Acad. Lavrentiev Prospekt 5, 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, Institutskaya St. 3A, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, Institutskaya St. 3A, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, Institutskaya St. 3A, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
42
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging. Angew Chem Int Ed Engl 2021; 60:14779-14799. [PMID: 32372551 DOI: 10.1002/anie.201915718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Nuclear hyperpolarization has emerged as a method to dramatically enhance the sensitivity of NMR spectroscopy. By application of this powerful tool, small molecules with stable isotopes have been used for highly sensitive biomedical molecular imaging. The recent development of molecular probes for hyperpolarized in vivo analysis has demonstrated the ability of this technique to provide unique metabolic and physiological information. This review presents a brief introduction of hyperpolarization technology, approaches to the rational design of molecular probes for hyperpolarized analysis, and examples of molecules that have met with success in vitro or in vivo.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
43
|
Zemerov SD, Lin Y, Dmochowski IJ. Monomeric Cryptophane with Record-High Xe Affinity Gives Insights into Aggregation-Dependent Sensing. Anal Chem 2021; 93:1507-1514. [PMID: 33356164 DOI: 10.1021/acs.analchem.0c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cryptophane host molecules provide ultrasensitive contrast agents for 129Xe NMR/MRI. To investigate key features of cryptophane-Xe sensing behavior, we designed a novel water-soluble cryptophane with a pendant hydrophobic adamantyl moiety, which has good affinity for a model receptor, beta-cyclodextrin (β-CD). Adamantyl-functionalized cryptophane-A (AFCA) was synthesized and characterized for Xe affinity, 129Xe NMR signal, and aggregation state at varying AFCA and β-CD concentrations. The Xe-AFCA association constant was determined by fluorescence quenching, KA = 114,000 ± 5000 M-1 at 293 K, which is the highest reported affinity for a cryptophane host in phosphate-buffered saline (pH 7.2). No hyperpolarized (hp) 129Xe NMR peak corresponding to AFCA-bound Xe was directly observed at high (100 μM) AFCA concentration, where small cryptophane aggregates were observed, and was only detected at low (15 μM) AFCA concentration, where the sensor remained fully monomeric in solution. Additionally, we observed no change in the chemical shift of AFCA-encapsulated 129Xe after β-CD binding to the adamantyl moiety and a concomitant lack of change in the size distribution of the complex, suggesting that a change in the aggregation state is necessary to elicit a 129Xe NMR chemical shift in cryptophane-based sensing. These results aid in further elucidating the recently discovered aggregation phenomenon, highlight limitations of cryptophane-based Xe sensing, and offer insights into the design of monomeric, high-affinity Xe sensors.
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yannan Lin
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
44
|
Kunth M, Witte C, Schröder L. Mapping of Absolute Host Concentration and Exchange Kinetics of Xenon Hyper-CEST MRI Agents. Pharmaceuticals (Basel) 2021; 14:79. [PMID: 33494166 PMCID: PMC7909792 DOI: 10.3390/ph14020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Xenon magnetic resonance imaging (MRI) provides excellent sensitivity through the combination of spin hyperpolarization and chemical exchange saturation transfer (CEST). To this end, molecular hosts such as cryptophane-A or cucurbit[n]urils provide unique opportunities to design switchable MRI reporters. The concentration determination of such xenon binding sites in samples of unknown dilution remains, however, challenging. Contrary to 1H CEST agents, an internal reference of a certain host (in this case, cryptophane-A) at micromolar concentration is already sufficient to resolve the entire exchange kinetics information, including an unknown host concentration and the xenon spin exchange rate. Fast echo planar imaging (EPI)-based Hyper-CEST MRI in combination with Bloch-McConnell analysis thus allows quantitative insights to compare the performance of different emerging ultra-sensitive MRI reporters.
Collapse
Affiliation(s)
- Martin Kunth
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
| | - Christopher Witte
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
- Translational Molecular Imaging, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Salnikov OG, Svyatova A, Kovtunova LM, Chukanov NV, Bukhtiyarov VI, Kovtunov KV, Chekmenev EY, Koptyug IV. Heterogeneous Parahydrogen-Induced Polarization of Diethyl Ether for Magnetic Resonance Imaging Applications. Chemistry 2021; 27:1316-1322. [PMID: 32881102 PMCID: PMC7855047 DOI: 10.1002/chem.202003638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/29/2020] [Indexed: 11/07/2022]
Abstract
Magnetic resonance imaging (MRI) with the use of hyperpolarized gases as contrast agents provides valuable information on lungs structure and function. While the technology of 129 Xe hyperpolarization for clinical MRI research is well developed, it requires the expensive equipment for production and detection of hyperpolarized 129 Xe. Herein we present the 1 H hyperpolarization of diethyl ether vapor that can be imaged on any clinical MRI scanner. 1 H nuclear spin polarization of up to 1.3 % was achieved using heterogeneous hydrogenation of ethyl vinyl ether with parahydrogen over Rh/TiO2 catalyst. Liquefaction of diethyl ether vapor proceeds with partial preservation of hyperpolarization and prolongs its lifetime by ≈10 times. The proof-of-principle 2D 1 H MRI of hyperpolarized diethyl ether was demonstrated with 0.1×1.1 mm2 spatial and 120 ms temporal resolution. The long history of use of diethyl ether for anesthesia is expected to facilitate the clinical translation of the presented approach.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| |
Collapse
|
46
|
Shapiro MG. Reporter Genes for Ultrasound and MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
47
|
Ariyasingha NM, Joalland B, Younes HR, Salnikov OG, Chukanov NV, Kovtunov KV, Kovtunova LM, Bukhtiyarov VI, Koptyug IV, Gelovani JG, Chekmenev EY. Parahydrogen-Induced Polarization of Diethyl Ether Anesthetic. Chemistry 2020; 26:13621-13626. [PMID: 32667687 PMCID: PMC7722203 DOI: 10.1002/chem.202002528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/05/2020] [Indexed: 12/29/2022]
Abstract
The growing interest in magnetic resonance imaging (MRI) for assessing regional lung function relies on the use of nuclear spin hyperpolarized gas as a contrast agent. The long gas-phase lifetimes of hyperpolarized 129 Xe make this inhalable contrast agent acceptable for clinical research today despite limitations such as high cost, low throughput of production and challenges of 129 Xe imaging on clinical MRI scanners, which are normally equipped with proton detection only. We report on low-cost and high-throughput preparation of proton-hyperpolarized diethyl ether, which can be potentially employed for pulmonary imaging with a nontoxic, simple, and sensitive overall strategy using proton detection commonly available on all clinical MRI scanners. Diethyl ether is hyperpolarized by pairwise parahydrogen addition to vinyl ethyl ether and characterized by 1 H NMR spectroscopy. Proton polarization levels exceeding 8 % are achieved at near complete chemical conversion within seconds, causing the activation of radio amplification by stimulated emission radiation (RASER) throughout detection. Although gas-phase T1 relaxation of hyperpolarized diethyl ether (at partial pressure of 0.5 bar) is very efficient, with T1 of ca. 1.2 second, we demonstrate that, at low magnetic fields, the use of long-lived singlet states created via pairwise parahydrogen addition extends the relaxation decay by approximately threefold, paving the way to bioimaging applications and beyond.
Collapse
Affiliation(s)
- Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Hassan R Younes
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Oleg G Salnikov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
48
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
49
|
Zemerov SD, Roose BW, Farenhem KL, Zhao Z, Stringer MA, Goldman AR, Speicher DW, Dmochowski IJ. 129Xe NMR-Protein Sensor Reveals Cellular Ribose Concentration. Anal Chem 2020; 92:12817-12824. [PMID: 32897053 PMCID: PMC7649717 DOI: 10.1021/acs.analchem.0c00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dysregulation of cellular ribose uptake can be indicative of metabolic abnormalities or tumorigenesis. However, analytical methods are currently limited for quantifying ribose concentration in complex biological samples. Here, we utilize the highly specific recognition of ribose by ribose-binding protein (RBP) to develop a single-protein ribose sensor detectable via a sensitive NMR technique known as hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST). We demonstrate that RBP, with a tunable ribose-binding site and further engineered to bind xenon, enables the quantitation of ribose over a wide concentration range (nM to mM). Ribose binding induces the RBP "closed" conformation, which slows Xe exchange to a rate detectable by hyper-CEST. Such detection is remarkably specific for ribose, with the minimal background signal from endogenous sugars of similar size and structure, for example, glucose or ribose-6-phosphate. Ribose concentration was measured for mammalian cell lysate and serum, which led to estimates of low-mM ribose in a HeLa cell line. This highlights the potential for using genetically encoded periplasmic binding proteins such as RBP to measure metabolites in different biological fluids, tissues, and physiologic states.
Collapse
Affiliation(s)
- Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Benjamin W. Roose
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Kelsey L. Farenhem
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Madison A. Stringer
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Aaron R. Goldman
- Proteomics and Metabolomics Facility, The Wistar Institute,
Philadelphia, PA 19104, USA
| | - David W. Speicher
- Proteomics and Metabolomics Facility, The Wistar Institute,
Philadelphia, PA 19104, USA
- Molecular and Cellular Oncogenesis Program, The Wistar
Institute, Philadelphia, PA 19104, USA
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Kovtunov KV, Koptyug IV, Fekete M, Duckett SB, Theis T, Joalland B, Chekmenev EY. Parawasserstoff‐induzierte Hyperpolarisation von Gasen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kirill V. Kovtunov
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Igor V. Koptyug
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Marianna Fekete
- Center for Hyperpolarization in Magnetic Resonance (CHyM) University of York Heslington York YO10 5NY UK
| | - Simon B. Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM) University of York Heslington York YO10 5NY UK
| | - Thomas Theis
- Department of Chemistry North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Baptiste Joalland
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit Michigan 48202 USA
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit Michigan 48202 USA
- Russian Academy of Sciences (RAS) Leninskiy Prospekt 14 Moscow 119991 Russland
| |
Collapse
|