1
|
Hata Y, Serizawa T. Nanoarchitectonics of cello-oligosaccharides: A route toward artificial nanocelluloses. Adv Colloid Interface Sci 2025; 336:103361. [PMID: 39642432 DOI: 10.1016/j.cis.2024.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Colloidal cellulose nanoparticles, or nanocelluloses, are derived from natural cellulose sources in a top-down manner via physical and/or chemical treatments that extract naturally occurring cellulose nanostructures. Naturally derived nanocelluloses have been successfully commercialized in various fields, and their potential is still being widely explored in materials science. Moreover, recent advances in nanoarchitectonics of low-molecular-weight cellulose, or cello-oligosaccharides, have opened new avenues for developing "artificial nanocelluloses". Artificial nanocelluloses composed of cello-oligosaccharides synthesized via enzymatic oligomerization or solid-phase glycan synthesis technology are termed "synthetic nanocelluloses". These nanostructures are abiotically constructed in a bottom-up manner at the molecular level via self-assembly of cello-oligosaccharides in vitro. Modulation of the assembly process and molecular design provides control over the molecular alignment, nanomorphology, and surface functionality of artificial nanocelluloses. This review summarizes recent research progress in artificial nanocelluloses, from the preparation and self-assembly of cello-oligosaccharides to their potential applications.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
2
|
Evans ST, Tizzard GJ, Field RA, Miller GJ. Towards the synthesis of a 2-deoxy-2-fluoro-d-mannose building block and characterisation of an unusual 2-S-phenyl anomeric pyridinium triflate salt via 1 → 2 S-migration. Carbohydr Res 2024; 545:109275. [PMID: 39341003 DOI: 10.1016/j.carres.2024.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Regio- and stereo-selective synthetic routes to 2-deoxy-2-fluoro-d-mannose building blocks are often experimentally challenging when using Selectfluor with the corresponding glycal. We targeted a late-stage method to introduce fluorine in a stereospecific manner using inversion via a triflate. Accordingly, synthesis of a conventionally protected 2-deoxy-2-fluoro-d-mannose β-thioglycoside donor, directly applicable to oligosaccharide synthesis, was attempted using C2-triflate inversion of the corresponding d-glucoside with TBAF. Unexpectedly, an anomeric pyridinium salt was isolated when attempting to form the C2-triflate using Tf2O in pyridine. Indicatively, this proceeds via a 1 → 2 S-migration delivering a 1,2-trans product with α-d-manno configuration and the anomeric pyridinium in a pseudo-equatorial position. The structure of this unexpected intermediate was confirmed in the solid-state using X-ray crystallography. Omission of the pyridine solvent led to dimer formation. Switching the aglycone to an O-para-methoxyphenyl enabled smooth C2 inversion to the desired 2-deoxy-2-fluoro d-mannose system, suitably equipped for further anomeric manipulation.
Collapse
Affiliation(s)
- Sean T Evans
- Centre for Glycoscience and Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry and Chemical Engineering, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Robert A Field
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Gavin J Miller
- Centre for Glycoscience and Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
3
|
Shah S, Lai J, Basuli F, Martinez-Orengo N, Patel R, Turner ML, Wang B, Shi ZD, Sourabh S, Peiravi M, Lyndaker A, Liu S, Seyedmousavi S, Williamson PR, Swenson RE, Hammoud DA. Development and preclinical validation of 2-deoxy 2-[ 18F]fluorocellobiose as an Aspergillus-specific PET tracer. Sci Transl Med 2024; 16:eadl5934. [PMID: 39141701 DOI: 10.1126/scitranslmed.adl5934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
The global incidence of invasive fungal infections (IFIs) has increased over the past few decades, mainly in immunocompromised patients, and is associated with high mortality and morbidity. Aspergillus fumigatus is one of the most common and deadliest IFI pathogens. Major hurdles to treating fungal infections remain the lack of rapid and definitive diagnosis, including the frequent need for invasive procedures to provide microbiological confirmation, and the lack of specificity of structural imaging methods. To develop an Aspergillus-specific positron emission tomography (PET) imaging agent, we focused on fungal-specific sugar metabolism. We radiolabeled cellobiose, a disaccharide known to be metabolized by Aspergillus species, and synthesized 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB) by enzymatic conversion of 2-deoxy-2-[18F]fluoroglucose ([18F]FDG) with a radiochemical yield of 60 to 70%, a radiochemical purity of >98%, and 1.5 hours of synthesis time. Two hours after [18F]FCB injection in A. fumigatus pneumonia as well as A. fumigatus, bacterial, and sterile inflammation myositis mouse models, retained radioactivity was only seen in foci with live A. fumigatus infection. In vitro testing confirmed production of β-glucosidase enzyme by A. fumigatus and not by bacteria, resulting in hydrolysis of [18F]FCB into glucose and [18F]FDG, the latter being retained by the live fungus. The parent molecule was otherwise promptly excreted through the kidneys, resulting in low background radioactivity and high target-to-nontarget ratios at A. fumigatus infectious sites. We conclude that [18F]FCB is a promising and clinically translatable Aspergillus-specific PET tracer.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Jianhao Lai
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Neysha Martinez-Orengo
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Reema Patel
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Mitchell L Turner
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Benjamin Wang
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Suman Sourabh
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Morteza Peiravi
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Anna Lyndaker
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Sichen Liu
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20852, USA
| | | | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), NIAID, NIH, Bethesda, MD 20852, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| |
Collapse
|
4
|
Pylkkänen R, Maaheimo H, Liljeström V, Mohammadi P, Penttilä M. Glycoside Phosphorylase Catalyzed Cellulose and β-1,3-Glucan Synthesis Using Chromophoric Glycosyl Acceptors. Biomacromolecules 2024; 25:5048-5057. [PMID: 39025475 PMCID: PMC11322998 DOI: 10.1021/acs.biomac.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Glycoside phosphorylases are enzymes that are frequently used for polysaccharide synthesis. Some of these enzymes have broad substrate specificity, enabling the synthesis of reducing-end-functionalized glucan chains. Here, we explore the potential of glycoside phosphorylases in synthesizing chromophore-conjugated polysaccharides using commercially available chromophoric model compounds as glycosyl acceptors. Specifically, we report cellulose and β-1,3-glucan synthesis using 2-nitrophenyl β-d-glucopyranoside, 4-nitrophenyl β-d-glucopyranoside, and 2-methoxy-4-(2-nitrovinyl)phenyl β-d-glucopyranoside with Clostridium thermocellum cellodextrin phosphorylase and Thermosipho africanus β-1,3-glucan phosphorylase as catalysts. We demonstrate activity for both enzymes with all assayed chromophoric acceptors and report the crystallization-driven precipitation and detailed structural characterization of the synthesized polysaccharides, i.e., their molar mass distributions and various structural parameters, such as morphology, fibril diameter, lamellar thickness, and crystal form. Our results provide insights for the studies of chromophore-conjugated low molecular weight polysaccharides, glycoside phosphorylases, and the hierarchical assembly of crystalline cellulose and β-1,3-glucan.
Collapse
Affiliation(s)
- Robert Pylkkänen
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Hannu Maaheimo
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
| | - Ville Liljeström
- Nanomicroscopy
Center, OtaNano, Aalto University, FI-00076 AALTO, Finland
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
| | - Merja Penttilä
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 AALTO, Finland
| |
Collapse
|
5
|
Basuli F, Shi J, Shah S, Lai J, Hammoud DA, Swenson RE. Fully Automated Cassette-Based Synthesis of 2-Deoxy-2-[ 18F]Fluorocellobiose Using Trasis AllInOne Module. J Labelled Comp Radiopharm 2024; 67:308-313. [PMID: 38982015 DOI: 10.1002/jlcr.4116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Due to the continuous rise in global incidence and severity of invasive fungal infections (IFIs), particularly among immunocompromised and immunodeficient patients, there is an urgent demand for swift and accurate fungal pathogen diagnosis. Therefore, the need for fungal-specific positron emission tomography (PET) imaging agents that can detect the infection in the early stages is increasing. Cellobiose, a disaccharide, is readily metabolized by fungal pathogens such as Aspergillus species. Recently, our group reported fluorine-18 labeled cellobiose, 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB), for specific imaging of Aspergillus infection. The positive imaging findings with very low background signal on delayed imaging make this ligand a promising fungal-specific imaging ligand. Inspired by this result, the decision was made to automate the radiolabeling procedure for better reproducibility and to facilitate clinical translation. A Trasis AllInOne (Trasis AIO) automated module was used for this purpose. The reagent vials contain commercially available 2-deoxy-2-[18F]fluoroglucose ([18F]FDG), glucose-1-phosphate, and enzyme (cellobiose phosphorylase). A Sep-Pak cartridge was used to purify the tracer. The overall radiochemical yield was 50%-70% (n = 6, decay corrected) in 75-min synthesis time with a radiochemical purity of > 98%. This is a highly reliable protocol to produce current good manufacturing practice (cGMP)-compliant [18F]FCB for clinical PET imaging.
Collapse
Affiliation(s)
- Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jianhao Lai
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
7
|
Kuperman OA, de Andrade P, Sui X, Maria R, Kaplan-Ashiri I, Jiang Q, Terlier T, Kirkensgaard JJK, Field RA, Natalio F. Harnessing precursor-directed biosynthesis with glucose derivatives to access cotton fibers with enhanced physical properties. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101963. [PMID: 38798901 PMCID: PMC11112985 DOI: 10.1016/j.xcrp.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Cotton ovule in vitro cultures are a promising platform for exploring biofabrication of fibers with tailored properties. When the ovules' growth medium is supplemented with chemically synthesized cellulose precursors, it results in their integration into the developing fibers, thereby tailoring their end properties. Here, we report the feeding of synthetic glucosyl phosphate derivative, 6-deoxy-6-fluoro-glucose-1-phosphate (6F-Glc-1P) to cotton ovules growing in vitro, demonstrating the metabolic incorporation of 6F-Glc into the fibers with enhanced mechanical properties and moisture-retention capacity while emphasizing the role of molecular hierarchical architecture in defining functional characteristics and mechanical properties. This incorporation strategy bypasses the early steps of conventional metabolic pathways while broadening the range of functionalities that can be employed to customize fiber end properties. Our approach combines materials science, chemistry, and plant sciences to illustrate the innovation required to find alternative solutions for sustainable production of functional cotton fibers with enhanced and emergent properties.
Collapse
Affiliation(s)
- Ofir Aharon Kuperman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Peterson de Andrade
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, Manchester, UK
| | - XiaoMeng Sui
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Qixiang Jiang
- Institute for Materials Chemistry & Research, Polymer and Composite Engineering Group (PaCE), Universität Wien, Vienna, Austria
| | - Tanguy Terlier
- SIMS laboratory, Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Jacob Judas Kain Kirkensgaard
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert A. Field
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, Manchester, UK
- Iceni Glycoscience Ltd, Norwich Research Park, UK
| | - Filipe Natalio
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Hribernik N, Vargová D, Dal Colle MCS, Lim JH, Fittolani G, Yu Y, Fujihara J, Ludwig K, Seeberger PH, Ogawa Y, Delbianco M. Controlling the Assembly of Cellulose-Based Oligosaccharides through Sequence Modifications. Angew Chem Int Ed Engl 2023; 62:e202310357. [PMID: 37823670 DOI: 10.1002/anie.202310357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Peptides and nucleic acids with programmable sequences are widely explored for the production of tunable, self-assembling functional materials. Herein we demonstrate that the primary sequence of oligosaccharides can be designed to access materials with tunable shapes and properties. Synthetic cellulose-based oligomers were assembled into 2D or 3D rod-like crystallites. Sequence modifications within the oligosaccharide core influenced the molecular packing and led to the formation of square-like assemblies based on the rare cellulose IVII allomorph. In contrast, modifications at the termini generated elongated aggregates with tunable surfaces, resulting in self-healing supramolecular hydrogels.
Collapse
Affiliation(s)
- Nives Hribernik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Marlene C S Dal Colle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jia Hui Lim
- Univ. Grenoble Alpes CNRS, CERMAV, 38000, Grenoble, France
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yang Yu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Junki Fujihara
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Kai Ludwig
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yu Ogawa
- Univ. Grenoble Alpes CNRS, CERMAV, 38000, Grenoble, France
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
9
|
Keenan T, Hatton NE, Porter J, Vendeville JB, Wheatley DE, Ghirardello M, Wahart AJC, Ahmadipour S, Walton J, Galan MC, Linclau B, Miller GJ, Fascione MA. Reverse thiophosphorylase activity of a glycoside phosphorylase in the synthesis of an unnatural Manβ1,4GlcNAc library. Chem Sci 2023; 14:11638-11646. [PMID: 37920340 PMCID: PMC10619541 DOI: 10.1039/d3sc04169g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
β-Mannosides are ubiquitous in nature, with diverse roles in many biological processes. Notably, Manβ1,4GlcNAc a constituent of the core N-glycan in eukaryotes was recently identified as an immune activator, highlighting its potential for use in immunotherapy. Despite their biological significance, the synthesis of β-mannosidic linkages remains one of the major challenges in glycoscience. Here we present a chemoenzymatic strategy that affords a series of novel unnatural Manβ1,4GlcNAc analogues using the β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase, BT1033. We show that the presence of fluorine in the GlcNAc acceptor facilitates the formation of longer β-mannan-like glycans. We also pioneer a "reverse thiophosphorylase" enzymatic activity, favouring the synthesis of longer glycans by catalysing the formation of a phosphorolysis-stable thioglycoside linkage, an approach that may be generally applicable to other phosphorylases.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Natasha E Hatton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jack Porter
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | | | - David E Wheatley
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Alice J C Wahart
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Sanaz Ahmadipour
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Julia Walton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Bruno Linclau
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
- Department of Organic and Macromolecular Chemistry, Ghent University Campus Sterre, Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
10
|
Dolan JP, Benckendorff CM, Field RA, Miller GJ. Fluorinated nucleosides, nucleotides and sugar nucleotides. Future Med Chem 2023; 15:1111-1114. [PMID: 37466090 DOI: 10.4155/fmc-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Affiliation(s)
- Jonathan P Dolan
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Caecilie Mm Benckendorff
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
11
|
Dal Colle MCS, Fittolani G, Delbianco M. Synthetic Approaches to Break the Chemical Shift Degeneracy of Glycans. Chembiochem 2022; 23:e202200416. [PMID: 36005282 PMCID: PMC10087674 DOI: 10.1002/cbic.202200416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Indexed: 01/25/2023]
Abstract
NMR spectroscopy is the leading technique for determining glycans' three-dimensional structure and dynamic in solution as well as a fundamental tool to study protein-glycan interactions. To overcome the severe chemical shift degeneracy of these compounds, synthetic probes carrying NMR-active nuclei (e. g., 13 C or 19 F) or lanthanide tags have been proposed. These elegant strategies permitted to simplify the complex NMR analysis of unlabeled analogues, shining light on glycans' conformational aspects and interaction with proteins. Here, we highlight some key achievements in the synthesis of specifically labeled glycan probes and their contribution towards the fundamental understanding of glycans.
Collapse
Affiliation(s)
- Marlene C. S. Dal Colle
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
12
|
Gabrielli V, Baretta R, Pilot R, Ferrarini A, Frasconi M. Insights into the Gelation Mechanism of Metal-Coordinated Hydrogels by Paramagnetic NMR Spectroscopy and Molecular Dynamics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Valeria Gabrielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Roberto Baretta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Roberto Pilot
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Consorzio INSTM, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Alberta Ferrarini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
13
|
Fittolani G, Djalali S, Chaube MA, Tyrikos-Ergas T, Dal Colle MCS, Grafmüller A, Seeberger PH, Delbianco M. Deoxyfluorination tunes the aggregation of cellulose and chitin oligosaccharides and highlights the role of specific hydroxyl groups in the crystallization process. Org Biomol Chem 2022; 20:8228-8235. [DOI: 10.1039/d2ob01601j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using synthetic oligosaccharides, we examined how deoxyfluorination (site and pattern) impact the solubility and aggregation of cellulose and chitin oligomers.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Surusch Djalali
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Manishkumar A. Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Marlene C. S. Dal Colle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Andrea Grafmüller
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Zhong C, Nidetzky B. Precision synthesis of reducing-end thiol-modified cellulose enabled by enzyme selection. Polym J 2021. [DOI: 10.1038/s41428-021-00599-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractEnzyme-catalyzed iterative β-1,4-glycosylation of β-glycosides is promising for bottom-up polymerization of reducing-end-modified cello-oligosaccharide chains. Self-assembly of the chains from solution yields crystalline nanocellulose materials with properties that are tunable by the glycoside group used. Cellulose chains with a reducing-end thiol group are of interest to install a controllable pattern of site-selective modifications into the nanocellulose material. Selection of the polymerizing enzyme (cellodextrin phosphorylase; CdP) was pursued here to enhance the synthetic precision of β-1-thio-glucose conversion to generate pure “1-thio-cellulose” (≥95%) unencumbered by plain (unlabeled) cellulose resulting from enzymatic side reactions. The CdP from Clostridium stercorarium (CsCdP) was 21 times more active on β-1-thio-glucose (0.17 U/mg; 45 °C) than the CdP from Clostridium cellulosi (CcCdP), and it lacked hydrolase activity, which is substantial in CcCdP, against the α-d-glucose 1-phosphate donor substrate. The combination of these enzyme properties indicated that CsCdP is a practical catalyst for 1-thio-cellulose synthesis directly from β-1-thio-glucose (8 h; 25 mol% yield) that does not require a second enzyme (cellobiose phosphorylase), which was essential when using the less selective CcCdP. The 1-thio-cellulose chains had an average degree of polymerization of ∼10 and were assembled into highly crystalline cellulose II crystallinity material.
Collapse
|
15
|
Gabrielli V, Muñoz-García JC, Pergolizzi G, de Andrade P, Khimyak YZ, Field RA, Angulo J. Molecular Recognition of Natural and Non-Natural Substrates by Cellodextrin Phosphorylase from Ruminiclostridium Thermocellum Investigated by NMR Spectroscopy. Chemistry 2021; 27:15688-15698. [PMID: 34436794 PMCID: PMC9293210 DOI: 10.1002/chem.202102039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/08/2022]
Abstract
β‐1→4‐Glucan polysaccharides like cellulose, derivatives and analogues, are attracting attention due to their unique physicochemical properties, as ideal candidates for many different applications in biotechnology. Access to these polysaccharides with a high level of purity at scale is still challenging, and eco‐friendly alternatives by using enzymes in vitro are highly desirable. One prominent candidate enzyme is cellodextrin phosphorylase (CDP) from Ruminiclostridium thermocellum, which is able to yield cellulose oligomers from short cellodextrins and α‐d‐glucose 1‐phosphate (Glc‐1‐P) as substrates. Remarkably, its broad specificity towards donors and acceptors allows the generation of highly diverse cellulose‐based structures to produce novel materials. However, to fully exploit this CDP broad specificity, a detailed understanding of the molecular recognition of substrates by this enzyme in solution is needed. Herein, we provide a detailed investigation of the molecular recognition of ligands by CDP in solution by saturation transfer difference (STD) NMR spectroscopy, tr‐NOESY and protein‐ligand docking. Our results, discussed in the context of previous reaction kinetics data in the literature, allow a better understanding of the structural basis of the broad binding specificity of this biotechnologically relevant enzyme.
Collapse
Affiliation(s)
- Valeria Gabrielli
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Juan C Muñoz-García
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Giulia Pergolizzi
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich, NR4 7TH, UK
| | - Peterson de Andrade
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich, NR4 7TH, UK.,Present address, Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich, NR4 7TH, UK.,Present address, Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Jesús Angulo
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012, Seville, Spain.,Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092, Sevilla, Spain
| |
Collapse
|
16
|
Bulmer GS, de Andrade P, Field RA, van Munster JM. Recent advances in enzymatic synthesis of β-glucan and cellulose. Carbohydr Res 2021; 508:108411. [PMID: 34392134 PMCID: PMC8425183 DOI: 10.1016/j.carres.2021.108411] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Bottom-up synthesis of β-glucans such as callose, fungal β-(1,3)(1,6)-glucan and cellulose, can create the defined compounds that are needed to perform fundamental studies on glucan properties and develop applications. With the importance of β-glucans and cellulose in high-profile fields such as nutrition, renewables-based biotechnology and materials science, the enzymatic synthesis of such relevant carbohydrates and their derivatives has attracted much attention. Here we review recent developments in enzymatic synthesis of β-glucans and cellulose, with a focus on progress made over the last five years. We cover the different types of biocatalysts employed, their incorporation in cascades, the exploitation of enzyme promiscuity and their engineering, and reaction conditions affecting the production as well as in situ self-assembly of (non)functionalised glucans. The recent achievements in the application of glycosyl transferases and β-1,4- and β-1,3-glucan phosphorylases demonstrate the high potential and versatility of these biocatalysts in glucan synthesis in both industrial and academic contexts.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jolanda M van Munster
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Scotland's Rural College, Edinburgh, UK.
| |
Collapse
|
17
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
18
|
Nigmatullin R, de Andrade P, Harniman R, Field RA, Eichhorn SJ. Postsynthesis Self- And Coassembly of Enzymatically Produced Fluorinated Cellodextrins and Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9215-9221. [PMID: 34297578 DOI: 10.1021/acs.langmuir.1c01389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of new functional materials and devices substantially relies on self-assembly of hierarchical structures. Formation of 2D platelets is known in the enzymatic synthesis of cellulose-like polymers. Here we demonstrate the feasibility of postsynthesis assembly of novel fluorinated cellodextrins. Highly ordered 2D structures of large lateral dimensions, unattainable in the polymerization process, can be formed because of postsynthesis assembly of the cellodextrins. These cellodextrins were also involved in coassembly with cellulose nanocrystals (CNCs) leading to hybrid systems. The hybrid architectures obtained depend on the content of fluorine atoms in the fluorinated cellodextrins. Monofluorinated cellodextrins coassemble with CNCs into a nanoweb, while multifluorinated cellodextrins assemble around the CNCs.
Collapse
Affiliation(s)
- Rinat Nigmatullin
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
| | - Peterson de Andrade
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7TH, U.K
| | - Robert Harniman
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7TH, U.K
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
| |
Collapse
|
19
|
Zhong C, Zajki-Zechmeister K, Nidetzky B. Reducing end thiol-modified nanocellulose: Bottom-up enzymatic synthesis and use for templated assembly of silver nanoparticles into biocidal composite material. Carbohydr Polym 2021; 260:117772. [PMID: 33712130 DOI: 10.1016/j.carbpol.2021.117772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
Nanoparticle-polymer composites are important functional materials but structural control of their assembly is challenging. Owing to its crystalline internal structure and tunable nanoscale morphology, cellulose is promising polymer scaffold for templating such composite materials. Here, we show bottom-up synthesis of reducing end thiol-modified cellulose chains by iterative bi-enzymatic β-1,4-glycosylation of 1-thio-β-d-glucose (10 mM), to a degree of polymerization of ∼8 and in a yield of ∼41% on the donor substrate (α-d-glucose 1-phosphate, 100 mM). Synthetic cellulose oligomers self-assemble into highly ordered crystalline (cellulose allomorph II) material showing long (micrometers) and thin nanosheet-like morphologies, with thickness of 5-7 nm. Silver nanoparticles were attached selectively and well dispersed on the surface of the thiol-modified cellulose, in excellent yield (≥ 95%) and high loading efficiency (∼2.2 g silver/g thiol-cellulose). Examined against Escherichia coli and Staphylococcus aureus, surface-patterned nanoparticles show excellent biocidal activity. Bottom-up approach by chemical design to a functional cellulose nanocomposite is presented. Synthetic thiol-containing nanocellulose can expand the scope of top-down produced cellulose materials.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
| | - Krisztina Zajki-Zechmeister
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria.
| |
Collapse
|
20
|
de Andrade P, Muñoz‐García JC, Pergolizzi G, Gabrielli V, Nepogodiev SA, Iuga D, Fábián L, Nigmatullin R, Johns MA, Harniman R, Eichhorn SJ, Angulo J, Khimyak YZ, Field RA. Chemoenzymatic Synthesis of Fluorinated Cellodextrins Identifies a New Allomorph for Cellulose-Like Materials*. Chemistry 2021; 27:1374-1382. [PMID: 32990374 PMCID: PMC7898601 DOI: 10.1002/chem.202003604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Understanding the fine details of the self-assembly of building blocks into complex hierarchical structures represents a major challenge en route to the design and preparation of soft-matter materials with specific properties. Enzymatically synthesised cellodextrins are known to have limited water solubility beyond DP9, a point at which they self-assemble into particles resembling the antiparallel cellulose II crystalline packing. We have prepared and characterised a series of site-selectively fluorinated cellodextrins with different degrees of fluorination and substitution patterns by chemoenzymatic synthesis. Bearing in mind the potential disruption of the hydrogen-bond network of cellulose II, we have prepared and characterised a multiply 6-fluorinated cellodextrin. In addition, a series of single site-selectively fluorinated cellodextrins was synthesised to assess the structural impact upon the addition of one fluorine atom per chain. The structural characterisation of these materials at different length scales, combining advanced NMR spectroscopy and microscopy methods, showed that a 6-fluorinated donor substrate yielded multiply 6-fluorinated cellodextrin chains that assembled into particles presenting morphological and crystallinity features, and intermolecular interactions, that are unprecedented for cellulose-like materials.
Collapse
Affiliation(s)
- Peterson de Andrade
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Present address: Department of Chemistry and Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Juan C. Muñoz‐García
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Giulia Pergolizzi
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Iceni Diagnostics Ltd.Norwich Research Park Innovation CentreColney LaneNorwichNorfolkNR4 7GJUK
| | - Valeria Gabrielli
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | | | - Dinu Iuga
- Department of PhysicsUniversity of WarwickCoventryCV4 7ALUK
| | - László Fábián
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Rinat Nigmatullin
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | - Marcus A. Johns
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | | | - Stephen J. Eichhorn
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | - Jesús Angulo
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Yaroslav Z. Khimyak
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Robert A. Field
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Iceni Diagnostics Ltd.Norwich Research Park Innovation CentreColney LaneNorwichNorfolkNR4 7GJUK
- Present address: Department of Chemistry and Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| |
Collapse
|