1
|
Wu Z, Herok C, Friedrich A, Engels B, Marder TB, Hudson ZM. Impurities in Arylboronic Esters Induce Persistent Afterglow. J Am Chem Soc 2024; 146:31507-31517. [PMID: 39499625 DOI: 10.1021/jacs.4c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Several recent reports suggest that arylboronic esters can exhibit room temperature phosphorescence (RTP), an optical property that is desirable for applications in security printing, oxygen sensing, and bioimaging. These findings challenged the fundamental notion that heavy elements or changes in orbital symmetry were required for intersystem crossing to occur in organic compounds. As we had not observed long afterglow in the many arylboronic esters we had synthesized over many years, we suspected that the RTP observed in these systems had a simpler explanation: the materials reported were impure. Herein, we synthesized 12 arylboronic esters that were previously reported to show RTP, and carefully purified them by column chromatography, recrystallization, and sublimation. We re-examined their photophysical properties alongside single-crystal X-ray diffraction analysis and detailed theoretical studies. While 4 of the 12 compounds showed long afterglows as crude products, none of them showed persistent RTP after careful purification. We also successfully isolated the impurity 4-amino-3,5-bis(pinacolatoboryl)benzonitrile (2), identifying it as the impurity responsible for inducing delayed fluorescence in 3,5-bis(pinacolatoboryl)benzonitrile (1). Doping 1 with 1.0 mol % 2 led to a persistent afterglow with a lifetime of 67 ms, which is mediated by a dimer charge transfer state. Our findings call for a re-examination of previous studies reporting RTP from arylboronic esters, highlight the importance of careful purification in photophysical research, and provide a practical strategy for designing organic materials with a long afterglow.
Collapse
Affiliation(s)
- Zhu Wu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christoph Herok
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Réant BL, Whitehead GFS, Mehta M. Zintl Clusters as a Platform for Lewis Acid Catalysis. Inorg Chem 2024; 63:20117-20125. [PMID: 38814137 PMCID: PMC11523240 DOI: 10.1021/acs.inorgchem.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Clusters of the main group elements phosphorus and arsenic, commonly categorized as Zintl clusters, have been known for over a century. And, only now is the application of these systems as catalysts for organic synthesis being investigated. In this work, boranes are tethered via an aliphatic linker to Zintl-based clusters and their Lewis acidity is examined experimentally, by the Gutmann-Beckett test and competency in the hydroborative reduction of six organic substrates, as well as computationally, by fluoride ion affinity and hydride ion affinity methods. The effects of tuning the aliphatic linker length, substituents at the boron, and changing the cluster from a seven-atom phosphorus system to a seven-atom arsenic system on reactivity are studied.
Collapse
Affiliation(s)
- Benjamin
L. L. Réant
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - George F. S. Whitehead
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Meera Mehta
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
3
|
Xiang L, Wang J, Matler A, Ye Q. Structure-constraint induced increase in Lewis acidity of tris( ortho-carboranyl)borane and selective complexation with Bestmann ylides. Chem Sci 2024:d4sc06144f. [PMID: 39397822 PMCID: PMC11465496 DOI: 10.1039/d4sc06144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
The Lewis acidity of tris(ortho-carboranyl)borane has been slightly increased by mimicking the structural evolution from triarylborane to 9-aryl-9-borafluorene. The o-carborane-based analogue (C2B10H10)2B(C2B10H11), obtained via salt elimination between LiC2B10H11 and (C2B10H10)2BBr, has been fully characterized. Gutmann-Beckett and computational fluoride/hydride ion affinity (FIA/HIA) studies have confirmed the increase in Lewis acidity, which is attributable to structural constraint imposed by the CC-coupling between two carboranyl groups. Selective complexation of (C2B10H10)2B(C2B10H11) with Bestmann ylides R3PCCO (R = Ph, Cy) has been achieved, enabling further conversion into the zwitterionic phospholium salt through NHC-catalyzed proton transfer.
Collapse
Affiliation(s)
- Libo Xiang
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Junyi Wang
- Department of Chemistry, Southern University of Science and Technology 518055 Shenzhen P. R. China
| | - Alexander Matler
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Qing Ye
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
4
|
Kikura T, Taura Y, Aramaki Y, Ooi T. p-Diarylboryl Halothiophenols as Multifunctional Catalysts via Photoactive Intramolecular Frustrated Lewis Pairs. J Am Chem Soc 2024; 146:20425-20431. [PMID: 38973719 DOI: 10.1021/jacs.4c06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
p-Diarylboryl halothiophenols are developed and unequivocally characterized. Their photophysical properties and catalytic performance are unveiled by experimental and theoretical investigations. This novel class of triarylboranes behaves as a Brønsted acid to generate the corresponding borylthiophenolate that can absorb visible light to undergo intramolecular charge transfer to form a radical pair consisting of a boron radical anion and thiyl radical, which acts as a single-electron reductant while engaging in hydrogen atom transfer to regenerate the parent borylthiophenol. The synthetic relevance of this mode of action is demonstrated by the establishment of unique catalysis that integrates three different yet tunable functions in a single catalytic cycle, thereby allowing borylthiophenols to solely promote the assembly of sterically congested 1,2-diols and 1,2-aminoalcohol derivatives via radical-radical cross-coupling.
Collapse
Affiliation(s)
- Takeru Kikura
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yuya Taura
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshitaka Aramaki
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
5
|
Hisata Y, Washio T, Takizawa S, Ogoshi S, Hoshimoto Y. In-silico-assisted derivatization of triarylboranes for the catalytic reductive functionalization of aniline-derived amino acids and peptides with H 2. Nat Commun 2024; 15:3708. [PMID: 38714662 PMCID: PMC11076482 DOI: 10.1038/s41467-024-47984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 05/10/2024] Open
Abstract
Cheminformatics-based machine learning (ML) has been employed to determine optimal reaction conditions, including catalyst structures, in the field of synthetic chemistry. However, such ML-focused strategies have remained largely unexplored in the context of catalytic molecular transformations using Lewis-acidic main-group elements, probably due to the absence of a candidate library and effective guidelines (parameters) for the prediction of the activity of main-group elements. Here, the construction of a triarylborane library and its application to an ML-assisted approach for the catalytic reductive alkylation of aniline-derived amino acids and C-terminal-protected peptides with aldehydes and H2 is reported. A combined theoretical and experimental approach identified the optimal borane, i.e., B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2, which exhibits remarkable functional-group compatibility toward aniline derivatives in the presence of 4-methyltetrahydropyran. The present catalytic system generates H2O as the sole byproduct.
Collapse
Affiliation(s)
- Yusei Hisata
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takashi Washio
- Department of Reasoning for Intelligence and Artificial Intelligence Research Center, SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Shinobu Takizawa
- Department of Synthetic Organic Chemistry and Artificial Intelligence Research Center, SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
- Division of Applied Chemistry, Center for Future Innovation (CFi), Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects. Chem Soc Rev 2024; 53:1624-1692. [PMID: 38168795 DOI: 10.1039/d3cs00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
7
|
Turnbull D, Légaré MA. Rapid, iterative syntheses of unsymmetrical di- and triarylboranes from crystalline aryldifluoroboranes. Chem Sci 2023; 14:14256-14261. [PMID: 38098724 PMCID: PMC10717494 DOI: 10.1039/d3sc05071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
A one-pot procedure to synthesise aryldifluoroboranes, ArBF2, from bench-stable arylsilanes is presented. These ArBF2 react conveniently with aryllithium reagents to form unsymmetrical ArAr'BF and BArAr'Ar'' in high yield. Examples of all three classes of borane have been characterised crystallographically, allowing for elucidation of geometric and crystal packing trends in crystalline ArBF2.
Collapse
Affiliation(s)
- Douglas Turnbull
- Department of Chemistry, McGill University Otto Maass Chemistry Building, 801 Rue Sherbrooke O Montreal Quebec Canada H3A 0B8
| | - Marc-André Légaré
- Department of Chemistry, McGill University Otto Maass Chemistry Building, 801 Rue Sherbrooke O Montreal Quebec Canada H3A 0B8
| |
Collapse
|
8
|
Akram MO, Martin CD, Dutton JL. The Effect of Carborane Substituents on the Lewis Acidity of Boranes. Inorg Chem 2023; 62:13495-13504. [PMID: 37560972 DOI: 10.1021/acs.inorgchem.3c01872] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The Lewis acidity of primary, secondary, and tertiary boranes with phenyl, pentafluorophenyl, and all three isomers of the C-substituted icosahedral carboranes (ortho, meta, and para) was investigated by computing their fluoride, hydride, and ammonia affinities as well as their global electrophilicity indices and LUMO energies. From these calculations, it was determined that the substituent effects on the Lewis acidity of these boranes follow the trend of ortho-carborane > meta-carborane > para-carborane > C6F5 > C6H5.
Collapse
Affiliation(s)
- Manjur O Akram
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, Texas 76798, United States
| | - Caleb D Martin
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, Texas 76798, United States
| | - Jason L Dutton
- La Trobe University, Department of Chemistry, La Trobe Institute for Molecular Science, Melbourne, Victoria 3086,Australia
| |
Collapse
|
9
|
Zhang Y, Zhang X, Yan Q. Synthesis, Structure, and Properties of Monodispersed and Highly Luminescent Organoborane Oligomers. J Org Chem 2023. [PMID: 37467361 DOI: 10.1021/acs.joc.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Organoborane oligomers with well-defined molecular structures and high luminescence are scarce, among which those with boron not used as bridging atoms are even more so. Here, a series of well-defined ethynyl-linked or butadiynyl-linked conjugated organoborane oligomers with high fluorescence quantum yield and extinction coefficient (i.e., high brightness) were prepared by coupling different building blocks featuring dithienooxadiborepine moieties. Single crystal structures of hexyl modified dithienooxadiborepine (1a-hex) and hexyl-modified butadiynyl-linked conjugated dimer (D2-hex) not only verified the identity of the molecular structures but also revealed that the introduction of the hexyl chains distorted the molecular structures due to steric hindrance. Optical measurements showed that the absorption and emission maxima of the six oligomeric molecules bathochromic shifted with increasing numbers of repeating units. Molecules without hexyl chains emit efficient fluorescence upon photoexcitation, and the fluorescence quantum efficiency of the ethynyl-linked conjugated dimer (D1) is close to unity. Theoretical calculation results using density functional theory methods are consistent with the single crystal data, allowing a better understanding of the spectral properties. Such results indicate that the method is efficient for expanding small organoborane molecules into π-conjugated oligomers, which can be used to modulate to emit different colors with high efficiency.
Collapse
Affiliation(s)
- Yumei Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinnan Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qifan Yan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
10
|
Zhang J, Wei R, Ren C, Liu LL, Wu L. Si-B Functional Group Exchange Reaction Enabled by a Catalytic Amount of BH 3: Scope, Mechanism, and Application. J Am Chem Soc 2023. [PMID: 37411027 DOI: 10.1021/jacs.3c05625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Functional group exchanges based on single-bond transformation are rare and challenging. In this regard, functional group exchange reactions of hydrosilanes proved to be more problematic. This is because this exchange requires the cleavage of the C-Si bond, while the Si-H bond is relatively easily activated for hydrosilanes. Herein, we report the first Si-B functional group exchange reactions of hydrosilanes with hydroboranes simply enabled by BH3 as a catalyst. Our methodology works for various aryl and alkyl hydrosilanes and different hydroboranes with the tolerance of general functional groups (up to 115 examples). Control experiments and density functional theory (DFT) studies reveal a distinct reaction pathway that involves consecutive C-Si/B-H and C-B/B-H σ-bond metathesis. Further investigations of using more readily available chlorosilanes, siloxane, fluorosilane, and silylborane for Si-B functional group exchanges, Ge-B functional group exchanges, and depolymerizative Si-B exchanges of polysilanes are also demonstrated. Moreover, the regeneration of MeSiH3 from polymethylhydrosiloxane (PMHS) is achieved. Notably, the formal hydrosilylation of a wide range of alkenes with SiH4 and MeSiH3 to selectively produce (chiral)trihydrosilanes and (methyl)dihydrosilanes is realized using inexpensive and readily available PhSiH3 and PhSiH2Me as gaseous SiH4 and MeSiH3 surrogates.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rui Wei
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Chunping Ren
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Liu Leo Liu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
11
|
Kawashiro M, Mori T, Ito M, Ando N, Yamaguchi S. Photodissociative Modules that Control Dual-Emission Properties in Donor-π-Acceptor Organoborane Fluorophores. Angew Chem Int Ed Engl 2023; 62:e202303725. [PMID: 37014627 DOI: 10.1002/anie.202303725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Donor-π-acceptor fluorophores that consist of an electron-donating amino group and an electron-accepting triarylborane moiety generally exhibit substantial solvatochromism in their fluorescence while retaining high fluorescence quantum yields even in polar media. Herein, we report a new family of this compound class, which bears ortho-P(=X)R2 -substituted phenyl groups (X=O or S) as a photodissociative module. The P=X moiety that intramolecularly coordinates to the boron atom undergoes dissociation in the excited state, giving rise to dual emission from the corresponding tetra- and tricoordinate boron species. The susceptibility of the systems to photodissociation depends on the coordination ability of the P=O and P=S moieties, whereby the latter facilitates dissociation. The intensity ratios of the dual emission bands are sensitive to environmental parameters, including temperature, solution polarity, and the viscosity of the medium. Moreover, precise tuning of the P(=X)R2 group and the electron-donating amino moiety led to single-molecule white emission in solution.
Collapse
Affiliation(s)
- Midori Kawashiro
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Tatsuya Mori
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masato Ito
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
12
|
Murali AC, Nayak P, Nayak S, Das S, Senanayak SP, Venkatasubbaiah K. Boron-Thioketonates: A New Class of S,O-Chelated Boranes as Acceptors in Optoelectronic Devices. Angew Chem Int Ed Engl 2023; 62:e202216871. [PMID: 36650612 DOI: 10.1002/anie.202216871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Development of new n-type semiconductors with tunable band gap and dielectric constant has significant implication in dissociating bound charge carrier relevant for demonstrating high performance optoelectronic devices. Boron-β-thioketonates (MTDKB), analogues to boron-β-diketonates containing a sulfur atom in the framework of β-diketones were synthesized. Bulk transport measurement exhibited an outstanding bulk electron mobility of ≈0.003 cm2 V-1 s-1 , which is among the best values reported till date in these class of semiconducting materials and correspondingly a single junction photo responsivity of upto 6 mA W-1 was obtained. This new family of O,S-chelated boron compounds exhibited luminescence in the far red/near-infrared region. The remarkable red shift of 89 nm (fluorescence) observed for 4 a in comparison with analogues boron-β-diketonate signifies the importance of sulfur in these molecules. MTDKBs with amine functionality have also been investigated as an ON/OFF fluorescent sensor.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Shashwat Nayak
- School of Physical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Sabyasachi Das
- School of Physical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Satyaprasad P Senanayak
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India.,School of Physical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India.,Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| |
Collapse
|
13
|
Shi Y, Zeng Y, Kucheryavy P, Yin X, Zhang K, Meng G, Chen J, Zhu Q, Wang N, Zheng X, Jäkle F, Chen P. Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Light-Induced Fluorescence to Phosphorescence Switching. Angew Chem Int Ed Engl 2022; 61:e202213615. [PMID: 36287039 DOI: 10.1002/anie.202213615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Ultralong afterglow emissions due to room-temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light-emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom-free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well-known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo-responsive RTP materials. The intramolecular LP M1BNM not only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals of M1BNM also undergo rapid photochromic switching. As a result, unusual emission switching from short-lived fluorescence to long-lived phosphorescence (rad-M1BNM, τRTP =232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Pavel Kucheryavy
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jinfa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Qian Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| |
Collapse
|
14
|
Tian G, Chen JF, Zhang K, Shi Y, Li C, Yin X, Liu K, Chen P. Applying the B/N Lewis Pair Approach to Access Fusion-Expanded Binaphthyl-Based Chiral Analogues. Inorg Chem 2022; 61:15315-15319. [PMID: 36135458 DOI: 10.1021/acs.inorgchem.2c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein describe the synthesis of two axially chiral systems (HBN and BBN) by the incorporation of B centers into binaphthyl derivatives (HPy and BPy). Heteroatom-doped chiral polycyclic aromatic hydrocarbons were thus formed by fusion of the azaboroles to binaphthyls with the formation of B-N dative bonds. The resulting B-N Lewis pairs that serve as attractive fluorophores enabled modulation of the chiroptical properties both in solution and in the solid state.
Collapse
Affiliation(s)
- Guoqing Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| |
Collapse
|
15
|
Ferger M, Roger C, Köster E, Rauch F, Lorenzen S, Krummenacher I, Friedrich A, Košćak M, Nestić D, Braunschweig H, Lambert C, Piantanida I, Marder TB. Electron-Rich EDOT Linkers in Tetracationic bis-Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity. Chemistry 2022; 28:e202201130. [PMID: 35647673 PMCID: PMC9543662 DOI: 10.1002/chem.202201130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/03/2022]
Abstract
Three novel tetracationic bis-triarylboranes with 3,4-ethylenedioxythiophene (EDOT) linkers, and their neutral precursors, showed significant red-shifted absorption and emission compared to their thiophene-containing analogues, with one of the EDOT-derivatives emitting in the NIR region. Only the EDOT-linked trixylylborane tetracation was stable in aqueous solution, indicating that direct attachment of a thiophene or even 3-methylthiophene to the boron atom is insufficient to provide hydrolytic stability in aqueous solution. Further comparative analysis of the EDOT-linked trixylylborane tetracation and its bis-thiophene analogue revealed efficient photo-induced singlet oxygen production, with the consequent biological implications. Thus, both analogues bind strongly to ds-DNA and BSA, very efficiently enter living human cells, accumulate in several different cytoplasmic organelles with no toxic effect but, under intense visible light irradiation, they exhibit almost instantaneous and very strong cytotoxic effects, presumably attributed to singlet oxygen production. Thus, both compounds are intriguing theranostic agents, whose intracellular and probably intra-tissue location can be monitored by strong fluorescence, allowing switching on of the strong bioactivity by well-focused visible light.
Collapse
Affiliation(s)
- Matthias Ferger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Chantal Roger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Eva Köster
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Rauch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Marta Košćak
- Division of Organic Chemistry and BiochemistryRuđer Bošković InstituteBijenicka c. 5410000ZagrebCroatia
| | - Davor Nestić
- Division of Molecular BiologyRuđer Bošković InstituteBijenicka c. 5410000ZagrebCroatia
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Christoph Lambert
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Piantanida
- Division of Organic Chemistry and BiochemistryRuđer Bošković InstituteBijenicka c. 5410000ZagrebCroatia
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
16
|
Shao X, Liu M, Liu J, Wang L. A Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angew Chem Int Ed Engl 2022; 61:e202205893. [DOI: 10.1002/anie.202205893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Xingxin Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Mengyu Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
17
|
Sakai M, Mori M, Hirai M, Ando N, Yamaguchi S. Planarized Phenyldithienylboranes: Effects of the Bridging Moieties and π‐Extension on the Photophysical Properties and Lewis Acidity. Chemistry 2022; 28:e202200728. [DOI: 10.1002/chem.202200728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Mika Sakai
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Masayoshi Mori
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Masato Hirai
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| | - Naoki Ando
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
18
|
Shao X, Liu M, Liu J, Wang L. Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xingxin Shao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Mengyu Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Jun Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences State Key Labortory of Polymer Physics and Chemistry 5625 Renmin Street 130022 Changchun CHINA
| | - Lixiang Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| |
Collapse
|
19
|
Wech F, Gellrich U. In Situ Formation of an Efficient Catalyst for the Semihydrogenation of Alkynes from Imidazolone and BH 3. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felix Wech
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Urs Gellrich
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| |
Collapse
|
20
|
Yoshino J, Kawaguchi S, Takata S, Hayashi N. Triarylboranes Bearing a Benzimidazole or Quinoline Ring Attached to the Boron Atom: Synthesis, π-Conjugation, and Fluorescence. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Turkoglu G, Ozturk T. Fluorescent small molecules with alternating triarylamine-substituted selenophenothiophene and triarylborane: synthesis, photophysical properties and anion sensing studies. Dalton Trans 2022; 51:2715-2725. [PMID: 35080223 DOI: 10.1039/d1dt03681e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two novel D-π-A fluorophores based on selenopheno[3,2-b]thiophene, possessing triphenylamine and 4,4'-dimethoxytriphenylamine units as donors and dimesitylborane as an acceptor, linked through a π-conjugated thiophene spacer (BTPAST and BOMeTPAST, respectively) were synthesized. Their photophysical properties were investigated in both solution and the state of aggregation and compared to those of their corresponding donor parts, having no dimesitylborane units (TPAST and OMeTPAST). All the compounds displayed large Stokes shifts between 100 and 140 nm with positive solvatochromism in solvents having different polarities. While BTPAST displayed both aggregation induced emission (AIE) and twisted intramolecular charge transfer (TICT) characteristics, the others preponderated with TICT effects. The sensing abilities of BTPAST and BOMeTPAST towards different anions were studied. Both exhibited chromogenic and fluorogenic responses to small anions such as fluoride and cyanide, for which the detection limits were found to be 0.12 and 2.43 ppm with BTPAST and 0.59 and 0.92 ppm with BOMeTPAST, respectively. These results provide guidance for the development of novel fused selenophenothiophene sensors in the field of anion sensing.
Collapse
Affiliation(s)
- Gulsen Turkoglu
- Department of Chemistry, Faculty of Science, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Turan Ozturk
- Department of Chemistry, Faculty of Science, Istanbul Technical University, Maslak, Istanbul 34469, Turkey. .,TUBITAK-UME, Chemistry Group Laboratories, PO Box 54, 41471, Gebze, Kocaeli, Turkey
| |
Collapse
|
22
|
Devillard M, Cordier M, Roisnel T, Dinoi C, Del Rosal I, Alcaraz G. Hydroboration of vinyl halides with mesitylborane: a direct access to (mesityl)(alkyl)haloboranes. Chem Commun (Camb) 2022; 58:1589-1592. [PMID: 35018926 DOI: 10.1039/d1cc06365k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct access to (mesityl)(alkyl)haloboranes (Mes(Alk)BX) (X = Br, Cl) from mesitylborane dimer and vinyl halides is presented. The involved hydroboration reaction results in the transfer of the halogen atom from the carbon of the starting material to the boron in the final product. The reactivity of the obtained Mes(Alk)BX has been evaluated for the synthesis of the bipyridyl boronium cations and 2-arylpyridine derived boron N^C-chelates. The formation mechanism of Mes(Alk)BX is apprended by DFT-calculations which shows that their formation involves two concomitant pathways derived from the regioslectivity of the hydroboration reaction.
Collapse
Affiliation(s)
- Marc Devillard
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
| | | | - Chiara Dinoi
- LPCNO, CNRS & INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Iker Del Rosal
- LPCNO, CNRS & INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Gilles Alcaraz
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
| |
Collapse
|
23
|
Luppi BT, Muralidharan AV, Ostermann N, Cheong IT, Ferguson MJ, Siewert I, Rivard E. Redox‐Active Heteroatom‐Functionalized Polyacetylenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bruno T. Luppi
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Abhishek V. Muralidharan
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Nils Ostermann
- University of Goettingen Institute of Inorganic Chemistry Tammannstrasse 4 37077 Goettingen Germany
| | - I T. Cheong
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Michael J. Ferguson
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Inke Siewert
- University of Goettingen Institute of Inorganic Chemistry Tammannstrasse 4 37077 Goettingen Germany
| | - Eric Rivard
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
24
|
Heavy main group element containing organometallic phosphorescent materials. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Luppi BT, Muralidharan AV, Ostermann N, Cheong IT, Ferguson MJ, Siewert I, Rivard E. Redox-Active Heteroatom-Functionalized Polyacetylenes. Angew Chem Int Ed Engl 2021; 61:e202114586. [PMID: 34826183 DOI: 10.1002/anie.202114586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/11/2022]
Abstract
The discovery of metallic conductivity in polyacetylene [-HC=CH-]n upon doping represents a landmark achievement. However, the insolubility of polyacetylene and a dearth of methods for its chemical modification have limited its widespread use. Here, we employ a ring-opening metathesis polymerization (ROMP) protocol to prepare functionalized polyacetylenes (fPAs) bearing: (1) electron-deficient boryl (-BR2 ) and phosphoryl (-P(O)R2 ) side chains; (2) electron-donating amino (-NR2 ) groups, and (3) ring-fused 1,2,3-triazolium units via strain-promoted Click chemistry. These functional groups render most of the fPAs soluble and can lead to intense light absorption across the visible to near-IR region. Also, the presence of redox-active boryl and amino groups leads to opposing near-IR optical responses upon (electro)chemical reduction or oxidation. Some of the resulting fPAs show greatly enhanced air stability when compared to known polyacetylenes. Lastly, these fPAs can be cross-linked to yield network materials with the full retention of optical properties.
Collapse
Affiliation(s)
- Bruno T Luppi
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Abhishek V Muralidharan
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Nils Ostermann
- University of Goettingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Goettingen, Germany
| | - I T Cheong
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Inke Siewert
- University of Goettingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Goettingen, Germany
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
26
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
27
|
Chen M, Wei J, Zhang Y, Wu L, Tan L, Shi S, Shi J, Ji L. 2,7-Carbazole Derived Organoboron Compounds: Synthesis and Molecular Fluorescence. Front Chem 2021; 9:754298. [PMID: 34746094 PMCID: PMC8568956 DOI: 10.3389/fchem.2021.754298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Triarylboranes have drawn much attention in OLEDs owing to their remarkable solid-state luminescence properties. Here two new A-D-A type compounds, 2,7-bis(dimesitylboryl)-N-ethyl-carbazole (BCz) using triarylborane as electron acceptor and carbazole as electron donor while 2,7-bis((4-(dimesitylboryl)phenyl)ethynyl)-9-ethyl-carbazole (BPACz) using phenylacetylene as extra conjugated bridge, have been synthesized and their photoluminescence related properties in various states have been investigated both experimentally and theoretically. Both compounds show blue emission with high quantum yields, being potential candidates for blue OLED materials.
Collapse
Affiliation(s)
- Minhui Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Juan Wei
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yufeng Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Lin Wu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Leibo Tan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Shanglong Shi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Junqing Shi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
28
|
Berger SM, Rühe J, Schwarzmann J, Phillipps A, Richard AK, Ferger M, Krummenacher I, Tumir LM, Ban Ž, Crnolatac I, Majhen D, Barišić I, Piantanida I, Schleier D, Griesbeck S, Friedrich A, Braunschweig H, Marder TB. Bithiophene-Cored, mono-, bis-, and tris-(Trimethylammonium)-Substituted, bis-Triarylborane Chromophores: Effect of the Number and Position of Charges on Cell Imaging and DNA/RNA Sensing. Chemistry 2021; 27:14057-14072. [PMID: 34327730 PMCID: PMC8518794 DOI: 10.1002/chem.202102308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/12/2022]
Abstract
The synthesis, photophysical, and electrochemical properties of selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores are presented along with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat1+ , Cat2+ , Cat(i)2+ , and Cat3+ . Comparison with the mono-triarylboranes reveals the large influence of the bridging unit on the properties of the bis-triarylboranes, especially those of the cationic compounds. Based on these preliminary investigations, the interactions of Cat1+ , Cat2+ , Cat(i)2+ , and Cat3+ with DNA, RNA, and DNApore were investigated in buffered solutions. The same compounds were investigated for their ability to enter and localize within organelles of human lung carcinoma (A549) and normal lung (WI38) cells showing that not only the number of charges but also their distribution over the chromophore influences interactions and staining properties.
Collapse
Affiliation(s)
- Sarina M Berger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jessica Rühe
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Schwarzmann
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Phillipps
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ann-Katrin Richard
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Ferger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lidija-Marija Tumir
- Division of Organic Chemistry and Biochemistry, Ruder Boskovic Institute, Bijenicka c. 54, 10000, Zagreb, Croatia
| | - Željka Ban
- Division of Organic Chemistry and Biochemistry, Ruder Boskovic Institute, Bijenicka c. 54, 10000, Zagreb, Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Ruder Boskovic Institute, Bijenicka c. 54, 10000, Zagreb, Croatia
| | - Dragomira Majhen
- Department of Molecular Biology, Laboratory for Cell Biology and Signaling, Ruder Boskovic Institute, Bijenicka c. 54, 10000, Zagreb, Croatia
| | - Ivan Barišić
- Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Wien, Austria
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruder Boskovic Institute, Bijenicka c. 54, 10000, Zagreb, Croatia
| | - Domenik Schleier
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stefanie Griesbeck
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
29
|
Jia X, Nitsch J, Wu Z, Friedrich A, Krebs J, Krummenacher I, Fantuzzi F, Braunschweig H, Moos M, Lambert C, Engels B, Marder TB. One- and two-electron reduction of triarylborane-based helical donor-acceptor compounds. Chem Sci 2021; 12:11864-11872. [PMID: 34659727 PMCID: PMC8442707 DOI: 10.1039/d1sc02409d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
One-electron chemical reduction of 10-(dimesitylboryl)-N,N-di-p-tolylbenzo[c]phenanthrene-4-amine (3-B(Mes)2-[4]helix-9-N(p-Tol)2) 1 and 13-(dimesitylboryl)-N,N-di-p-tolyldibenzo[c,g]phenanthrene-8-amine (3-B(Mes)2-[5]helix-12-N(p-Tol)2) 2 gives rise to monoanions with extensive delocalization over the annulated helicene rings and the boron p z orbital. Two-electron chemical reduction of 1 and 2 produces open-shell biradicaloid dianions with temperature-dependent population of the triplet states due to small singlet-triplet gaps. These results have been confirmed by single-crystal X-ray diffraction, EPR and UV/vis-NIR spectroscopy, and DFT calculations.
Collapse
Affiliation(s)
- Xiangqing Jia
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jörn Nitsch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
30
|
Ferger M, Berger SM, Rauch F, Schönitz M, Rühe J, Krebs J, Friedrich A, Marder TB. Synthesis of Highly Functionalizable Symmetrically and Unsymmetrically Substituted Triarylboranes from Bench-Stable Boron Precursors. Chemistry 2021; 27:9094-9101. [PMID: 33844337 PMCID: PMC8360097 DOI: 10.1002/chem.202100632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 02/04/2023]
Abstract
A novel and convenient methodology for the one-pot synthesis of sterically congested triarylboranes by using bench-stable aryltrifluoroborates as the boron source is reported. This procedure gives systematic access to symmetrically and unsymmetrically substituted triarylboranes of the types BAr2 Ar' and BArAr'Ar'', respectively. Three unsymmetrically substituted triarylboranes as well as their iridium-catalyzed C-H borylation products are reported. These borylated triarylboranes contain one to three positions that can subsequently be orthogonally functionalized in follow-up reactions, such as Suzuki-Miyaura cross-couplings or Sonogashira couplings.
Collapse
Affiliation(s)
- Matthias Ferger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sarina M. Berger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Rauch
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Markus Schönitz
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jessica Rühe
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Krebs
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
31
|
Berger SM, Ferger M, Marder TB. Synthetic Approaches to Triarylboranes from 1885 to 2020. Chemistry 2021; 27:7043-7058. [PMID: 33443314 PMCID: PMC8247992 DOI: 10.1002/chem.202005302] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/21/2022]
Abstract
In recent years, research in the fields of optoelectronics, anion sensors and bioimaging agents have been greatly influenced by novel compounds containing triarylborane motifs. Such compounds possess an empty p-orbital at boron which results in useful optical and electronic properties. Such a diversity of applications was not expected when the first triarylborane was reported in 1885. Synthetic approaches to triarylboranes underwent various changes over the following century, some of which are still used in the present day, such as the generally applicable routes developed by Krause et al. in 1922, or by Grisdale et al. in 1972 at Eastman Kodak. Some other developments were not pursued further after their initial reports, such as the synthesis of two triarylboranes bearing three different aromatic groups by Mikhailov et al. in 1958. This review summarizes the development of synthetic approaches to triarylboranes from their first report nearly 135 years ago to the present.
Collapse
Affiliation(s)
- Sarina M. Berger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Matthias Ferger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
32
|
Sugihara Y, Inai N, Taki M, Baumgartner T, Kawakami R, Saitou T, Imamura T, Yanai T, Yamaguchi S. Donor-acceptor-acceptor-type near-infrared fluorophores that contain dithienophosphole oxide and boryl groups: effect of the boryl group on the nonradiative decay. Chem Sci 2021; 12:6333-6341. [PMID: 34084431 PMCID: PMC8115064 DOI: 10.1039/d1sc00827g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of donor-π-acceptor (D-π-A) skeletons is an effective strategy for the design of fluorophores with red-shifted emission. In particular, the use of amino and boryl moieties as the electron-donating and -accepting groups, respectively, can produce dyes that exhibit high fluorescence and solvatochromism. Herein, we introduce a dithienophosphole P-oxide scaffold as an acceptor-spacer to produce a boryl- and amino-substituted donor-acceptor-acceptor (D-A-A) π-system. The thus obtained fluorophores exhibit emission in the near-infrared (NIR) region, while maintaining high fluorescence quantum yields even in polar solvents (e.g. λ em = 704 nm and Φ F = 0.69 in CH3CN). A comparison of these compounds with their formyl- or cyano-substituted counterparts demonstrated the importance of the boryl group for generating intense emission. The differences among these electron-accepting substituents were examined in detail using theoretical calculations, which revealed the crucial role of the boryl group in lowering the nonradiative decay rate constant by decreasing the non-adiabatic coupling in the internal conversion process. The D-A-A framework was further fine-tuned to improve the photostability. One of these D-A-A dyes was successfully used in bioimaging to visualize the blood vessels of Japanese medaka larvae and mouse brain.
Collapse
Affiliation(s)
- Yoshiaki Sugihara
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Naoto Inai
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Thomas Baumgartner
- Department of Chemistry, York University 4700 Keele St. Toronto ON M3J 1P3 Canada
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University Shitsukawa Toon City Ehime 791-0295 Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University Shitsukawa Toon City Ehime 791-0295 Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University Shitsukawa Toon City Ehime 791-0295 Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa Nagoya 464-8602 Japan .,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa Nagoya 464-8602 Japan .,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
33
|
Ferger M, Ban Ž, Krošl I, Tomić S, Dietrich L, Lorenzen S, Rauch F, Sieh D, Friedrich A, Griesbeck S, Kenđel A, Miljanić S, Piantanida I, Marder TB. Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs. Chemistry 2021; 27:5142-5159. [PMID: 33411942 PMCID: PMC8048639 DOI: 10.1002/chem.202005141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Indexed: 11/24/2022]
Abstract
We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.
Collapse
Affiliation(s)
- Matthias Ferger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Željka Ban
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Ivona Krošl
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Sanja Tomić
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Lena Dietrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Rauch
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Daniel Sieh
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stefanie Griesbeck
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Adriana Kenđel
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Snežana Miljanić
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Ivo Piantanida
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|