1
|
Águila Ruiz-Sola M, Flori S, Yuan Y, Villain G, Sanz-Luque E, Redekop P, Tokutsu R, Küken A, Tsichla A, Kepesidis G, Allorent G, Arend M, Iacono F, Finazzi G, Hippler M, Nikoloski Z, Minagawa J, Grossman AR, Petroutsos D. Light-independent regulation of algal photoprotection by CO 2 availability. Nat Commun 2023; 14:1977. [PMID: 37031262 PMCID: PMC10082802 DOI: 10.1038/s41467-023-37800-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
Collapse
Affiliation(s)
- M Águila Ruiz-Sola
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - Serena Flori
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Yizhong Yuan
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Gaelle Villain
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Emanuel Sanz-Luque
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- University of Cordoba, Department of Biochemistry and Molecular Biology, Cordoba, Spain
| | - Petra Redekop
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Ryutaro Tokutsu
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Anika Küken
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Angeliki Tsichla
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Georgios Kepesidis
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Guillaume Allorent
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Marius Arend
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Fabrizio Iacono
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms Universität, 48143, Münster, Germany
| | - Zoran Nikoloski
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Jun Minagawa
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Arthur R Grossman
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | | |
Collapse
|
2
|
Zhu X, Liu Y, Yang P. Radial Spokes-A Snapshot of the Motility Regulation, Assembly, and Evolution of Cilia and Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028126. [PMID: 27940518 DOI: 10.1101/cshperspect.a028126] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Propulsive forces generated by cilia and flagella are used in events that are critical for the thriving of diverse eukaryotic organisms in their environments. Despite distinctive strokes and regulations, the majority of them adopt the 9+2 axoneme that is believed to exist in the last eukaryotic common ancestor. Only a few outliers have opted for a simpler format that forsakes the signature radial spokes and the central pair apparatus, although both are unnecessary for force generation or rhythmicity. Extensive evidence has shown that they operate as an integral system for motility control. Recent studies have made remarkable progress on the radial spoke. This review will trace how the new structural, compositional, and evolutional insights pose significant implications on flagella biology and, conversely, ciliopathy.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Yi Liu
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Pinfen Yang
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
3
|
Reactivation of flagellar motility in demembranated Leishmania reveals role of cAMP in flagellar wave reversal to ciliary waveform. Sci Rep 2016; 6:37308. [PMID: 27849021 PMCID: PMC5110981 DOI: 10.1038/srep37308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
The flagellum of parasitic trypanosomes is a multifunctional appendage essential for its viability and infectivity. However, the biological mechanisms that make the flagellum so dynamic remains unexplored. No method is available to access and induce axonemal motility at will to decipher motility regulation in trypanosomes. For the first time we report the development of a detergent-extracted/demembranated ATP-reactivated model for studying flagellar motility in Leishmania. Flagellar beat parameters of reactivated parasites were similar to live ones. Using this model we discovered that cAMP (both exogenous and endogenous) induced flagellar wave reversal to a ciliary waveform in reactivated parasites via cAMP-dependent protein kinase A. The effect was reversible and highly specific. Such an effect of cAMP on the flagellar waveform has never been observed before in any organism. Flagellar wave reversal allows parasites to change direction of swimming. Our findings suggest a possible cAMP-dependent mechanism by which Leishmania responds to its surrounding microenvironment, necessary for its survival. Our demembranated-reactivated model not only serves as an important tool for functional studies of flagellated eukaryotic parasites but has the potential to understand ciliary motility regulation with possible implication on human ciliopathies.
Collapse
|
4
|
Saegusa Y, Yoshimura K. cAMP controls the balance of the propulsive forces generated by the two flagella of Chlamydomonas. Cytoskeleton (Hoboken) 2015; 72:412-21. [PMID: 26257199 DOI: 10.1002/cm.21235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 02/03/2023]
Abstract
The motility of cilia and flagella of eukaryotic cells is controlled by second messengers such as Ca(2+), cAMP, and cGMP. In this study, the cAMP-dependent control of flagellar bending of Chlamydomonas is investigated by applying cAMP through photolysis of 4,5-dimethoxy-2-nitrobenzyl adenosine 3',5'-cyclicmonophosphate (caged cAMP). When cAMP is applied to demembranated and reactivated cells, cells begin to swim with a larger helical path. This change is due to a larger turn about the axis normal to the anterior-posterior axis, indicating an increased imbalance in the propulsive forces generated by the cis-flagellum (flagellum nearer to the eyespot) and trans-flagellum (flagellum farther from the eyespot). Consistently, when cAMP is applied to isolated axonemes, some axonemes show attenuated motility whereas others do not. Axonemes from uni1 mutants, which have only trans-flagella, do not respond to cAMP. These observations indicate that cAMP controls the balance of the forces generated by cis- and trans-flagella in Chlamydomonas.
Collapse
Affiliation(s)
- Yu Saegusa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Kichijo Girls' School, Musashino, 180-0002, Japan
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| |
Collapse
|
5
|
Abstract
Motile cilia and flagella rapidly propagate bending waves and produce water flow over the cell surface. Their function is important for the physiology and development of various organisms including humans. The movement is based on the sliding between outer doublet microtubules driven by axonemal dyneins, and is regulated by various axonemal components and environmental factors. For studies aiming to elucidate the mechanism of cilia/flagella movement and regulation, Chlamydomonas is an invaluable model organism that offers a variety of mutants. This chapter introduces standard methods for studying Chlamydomonas flagellar motility including analysis of swimming paths, measurements of swimming speed and beat frequency, motility reactivation in demembranated cells (cell models), and observation of microtubule sliding in disintegrating axonemes. Most methods may be easily applied to other organisms with slight modifications of the medium conditions.
Collapse
Affiliation(s)
| | - Ritsu Kamiya
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
6
|
Wu G, Hufnagel DE, Denton AK, Shiu SH. Retained duplicate genes in green alga Chlamydomonas reinhardtii tend to be stress responsive and experience frequent response gains. BMC Genomics 2015; 16:149. [PMID: 25880851 PMCID: PMC4364661 DOI: 10.1186/s12864-015-1335-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/09/2015] [Indexed: 01/08/2023] Open
Abstract
Background Green algae belong to a group of photosynthetic organisms that occupy diverse habitats, are closely related to land plants, and have been studied as sources of food and biofuel. Although multiple green algal genomes are available, a global comparative study of algal gene families has not been carried out. To investigate how gene families and gene expression have evolved, particularly in the context of stress response that have been shown to correlate with gene family expansion in multiple eukaryotes, we characterized the expansion patterns of gene families in nine green algal species, and examined evolution of stress response among gene duplicates in Chlamydomonas reinhardtii. Results Substantial variation in domain family sizes exists among green algal species. Lineage-specific expansion of families occurred throughout the green algal lineage but inferred gene losses occurred more often than gene gains, suggesting a continuous reduction of algal gene repertoire. Retained duplicates tend to be involved in stress response, similar to land plant species. However, stress responsive genes tend to be pseudogenized as well. When comparing ancestral and extant gene stress response state, we found that response gains occur in 13% of duplicate gene branches, much higher than 6% in Arabidopsis thaliana. Conclusion The frequent gains of stress response among green algal duplicates potentially reflect a high rate of innovation, resulting in a species-specific gene repertoire that contributed to adaptive response to stress. This could be further explored towards deciphering the mechanism of stress response, and identifying suitable green algal species for oil production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1335-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangxi Wu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA.
| | - David E Hufnagel
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| | - Alisandra K Denton
- Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Shin-Han Shiu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Kamiya R, Yagi T. Functional Diversity of Axonemal Dyneins as Assessed by in Vitro and in Vivo Motility Assays ofChlamydomonasMutants. Zoolog Sci 2014; 31:633-44. [DOI: 10.2108/zs140066] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Fiedler SE, Sisson JH, Wyatt TA, Pavlik JA, Gambling TM, Carson JL, Carr DW. Loss of ASP but not ROPN1 reduces mammalian ciliary motility. Cytoskeleton (Hoboken) 2011; 69:22-32. [PMID: 22021175 DOI: 10.1002/cm.20539] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 02/05/2023]
Abstract
Protein kinase A (PKA) signaling is targeted by interactions with A-kinase anchoring proteins (AKAPs) via a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins [AKAP-associated sperm protein (ASP), ropporin (ROPN1), sperm protein 17 (SP17) and calcium binding tyrosine-(Y)-phosphorylation regulated protein (CABYR)] share this highly conserved RII dimerization/docking (R2D2) domain. ASP and ROPN1 are 41% identical in sequence, interact with a variety of AKAPs in a manner similar to PKA, and are expressed in ciliated and flagellated human cells. To test the hypothesis that these proteins regulate motility, we developed mutant mouse lines lacking ASP or ROPN1. Both mutant lines produced normal numbers of cilia with intact ciliary ultrastructure. Lack of ROPN1 had no effect on ciliary motility. However, the beat frequency of cilia from mice lacking ASP is significantly slower than wild type, indicating that ASP signaling may regulate ciliary motility. This is the first demonstration of in vivo function for ASP. Similar localization of ASP in mice and humans indicates that these findings may translate to human physiology, and that these mice will be an excellent model for future studies related to the pathogenesis of human disease.
Collapse
Affiliation(s)
- Sarah E Fiedler
- VA Medical Center, 3710 SW US Veterans' Hospital Rd., Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Rompolas P, Patel-King RS, King SM. An outer arm Dynein conformational switch is required for metachronal synchrony of motile cilia in planaria. Mol Biol Cell 2010; 21:3669-79. [PMID: 20844081 PMCID: PMC2965684 DOI: 10.1091/mbc.e10-04-0373] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Here we use the motile ventral cilia of the planarian S. mediterranea to examine the role of outer arm dynein in the generation and maintenance of metachronal synchrony. We demonstrate that a single dynein light chain plays a mechanosensory role necessary to entrain and maintain the metachronal synchrony of motile cilia. Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony.
Collapse
Affiliation(s)
- Panteleimon Rompolas
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | |
Collapse
|
10
|
Wei M, Sivadas P, Owen HA, Mitchell DR, Yang P. Chlamydomonas mutants display reversible deficiencies in flagellar beating and axonemal assembly. Cytoskeleton (Hoboken) 2010; 67:71-80. [PMID: 20169531 PMCID: PMC2835312 DOI: 10.1002/cm.20422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/14/2009] [Indexed: 11/12/2022]
Abstract
Axonemal complexes in flagella are largely prepackaged in the cell body. As such, one mutation often results in the absence of the co-assembled components and permanent motility deficiencies. For example, a Chlamydomonas mutant defective in RSP4 in the radial spoke (RS), which is critical for bend propagation, has paralyzed flagella that also lack the paralogue RSP6 and three additional RS proteins. Intriguingly, recent studies showed that several mutant strains contain a mixed population of swimmers and paralyzed cells despite their identical genetic background. Here we report a cause underlying these variations. Two new mutants lacking RSP6 swim processively and other components appear normally assembled in early log phase indicating that, unlike RSP4, this paralogue is dispensable. However, swimmers cannot maintain the typical helical trajectory and reactivated cell models tend to spin. Interestingly the motile fraction and the spokehead content dwindle during stationary phase. These results suggest that (1) intact RS is critical for maintaining the rhythm of oscillatory beating and thus the helical trajectory; (2) assembly of the axonemal complex with subtle defects is less efficient and the inefficiency is accentuated in compromised conditions, leading to reversible dyskinesia. Consistently, several organisms only possess one RSP4/6 gene. Gene duplication in Chlamydomonas enhances RS assembly to maintain optimal motility in various environments.
Collapse
Affiliation(s)
- Mei Wei
- Department of Biological Sciences, Marquette University, 530 N. 15 St. Milwaukee, WI 53233
| | - Priyanka Sivadas
- Department of Biological Sciences, Marquette University, 530 N. 15 St. Milwaukee, WI 53233
| | - Heather A. Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Ave, Milwaukee, WI 53211
| | - David R. Mitchell
- Department of Cell and Developmental Biology, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, 530 N. 15 St. Milwaukee, WI 53233
| |
Collapse
|
11
|
Abstract
Chlamydomonas, an organism that offers a variety of flagella-deficient mutants, has been very important for studies of cilia and flagella. Motility assessment of mutant flagella at various levels helps us understand the function of specific axonemal proteins and structures for flagellar function. Measurements of gross cell movements are useful to assess the overall flagellar activity, analyses of demembranated and reactivated cells ("cell models") enable us to study the regulatory mechanism, and measurements of microtubule sliding velocity in vitro provide important information about dynein-microtubule interactions. This chapter describes fundamental techniques for these measurements.
Collapse
|
12
|
Elam CA, Sale WS, Wirschell M. The regulation of dynein-driven microtubule sliding in Chlamydomonas flagella by axonemal kinases and phosphatases. Methods Cell Biol 2009; 92:133-51. [PMID: 20409803 DOI: 10.1016/s0091-679x(08)92009-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The purpose of this chapter is to review the methodology and advances that have revealed conserved signaling proteins that are localized in the 9+2 ciliary axoneme for regulating motility. Diverse experimental systems have revealed that ciliary and eukaryotic flagellar motility is regulated by second messengers including calcium, pH, and cyclic nucleotides. In addition, recent advances in in vitro functional studies, taking advantage of isolated axonemes, pharmacological approaches, and biochemical analysis of axonemes have demonstrated that otherwise ubiquitous, conserved protein kinases and phosphatases are transported to and anchored in the axoneme. Here, we focus on the functional/pharmacological, genetic, and biochemical approaches in the model genetic system Chlamydomonas that have revealed highly conserved kinases, anchoring proteins (e.g., A-kinase anchoring proteins), and phosphatases that are physically located in the axoneme where they play a direct role in control of motility.
Collapse
Affiliation(s)
- Candice A Elam
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
13
|
King SM. Purification of axonemal dyneins and dynein-associated components from Chlamydomonas. Methods Cell Biol 2009; 92:31-48. [PMID: 20409797 DOI: 10.1016/s0091-679x(08)92003-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Axonemal dyneins are responsible for generating the force required to power ciliary and flagellar motility. These highly complex enzymes form the inner and outer arms associated with the outer doublet microtubules. They are built around one or more ~520kD heavy chains that exhibit motor activity and also include additional components that are required for assembly within the axonemal superstructure and/or regulation of motor function in response to a broad range of signaling inputs. The dyneins from flagella of Chlamydomonas have been extensively studied as this organism is amenable to genetic, biochemical, and physiological approaches. In this chapter, I describe methods that have been devised by a number of laboratories to extract and purify individual dyneins from Chlamydomonas. When combined with the wide range of available mutants, these methods allow for the analysis of dyneins lacking individual components or motor units.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, 06030-3305, USA
| |
Collapse
|
14
|
Patel-King RS, King SM. An outer arm dynein light chain acts in a conformational switch for flagellar motility. J Cell Biol 2009; 186:283-95. [PMID: 19620633 PMCID: PMC2717645 DOI: 10.1083/jcb.200905083] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 06/25/2009] [Indexed: 12/28/2022] Open
Abstract
A system distinct from the central pair-radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the gamma heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint. Furthermore, we observed that LC1 interacts directly with tubulin in a nucleotide-independent manner and tethers this motor unit to the A-tubule of the outer doublet microtubules within the axoneme. Therefore, this dynein HC is attached to the same microtubule by two sites: via both the N-terminal region and the motor domain. We propose that this gamma HC-LC1-microtubule ternary complex functions as a conformational switch to control outer arm activity.
Collapse
Affiliation(s)
- Ramila S Patel-King
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
15
|
Klinbunga S, Amparyup P, Khamnamtong B, Hirono I, Aoki T, Jarayabhand P. Identification, Characterization, and Expression of the GenesTektinA1andAxonemal Protein66.0 in the Tropical AbaloneHaliotis asinina. Zoolog Sci 2009; 26:429-36. [DOI: 10.2108/zsj.26.429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Ferris P, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007; 318:245-50. [PMID: 17932292 PMCID: PMC2875087 DOI: 10.1126/science.1143609] [Citation(s) in RCA: 1815] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Simon E. Prochnik
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Olivier Vallon
- CNRS, UMR 7141, CNRS/Université Paris 6, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | - Steven J. Karpowicz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - George B. Witman
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Astrid Terry
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Asaf Salamov
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Lillian K. Fritz-Laylin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA94720, USA
| | | | - Wallace F. Marshall
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Liang-Hu Qu
- Biotechnology Research Center, Zhongshan University, Guangzhou 510275, China
| | - David R. Nelson
- Department of Molecular Sciences and Center of Excellence in Genomics and Bioinformatics, University of Tennessee, Memphis, TN 38163, USA
| | - Anton A. Sanderfoot
- Department of Plant Biology, University of Minnesota, St. Paul MN 55108, USA
| | - Martin H. Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | - Qinghu Ren
- The Institute for Genomic Research, Rockville, MD 20850, USA
| | - Patrick Ferris
- Plant Biology Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Erika Lindquist
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Harris Shapiro
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Susan M. Lucas
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jane Grimwood
- Stanford Human Genome Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jeremy Schmutz
- Stanford Human Genome Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Pierre Cardol
- CNRS, UMR 7141, CNRS/Université Paris 6, Institut de Biologie Physico-Chimique, 75005 Paris, France
- Plant Biology Institute, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Heriberto Cerutti
- University of Nebraska-Lincoln, School of Biological Sciences–Plant Science Initiative, Lincoln, NE 68588, USA
| | - Guillaume Chanfreau
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chun-Long Chen
- Biotechnology Research Center, Zhongshan University, Guangzhou 510275, China
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes, CNRS, 67084 Strasbourg Cedex, France
| | - Martin T. Croft
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Rachel Dent
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Susan Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Patrick Ferris
- Plant Biology Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510 DF, Mexico
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, D-33615 Bielefeld, Germany
| | - Marc Hanikenne
- Plant Biology Institute, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Michael Hippler
- Department of Biology, Institute of Plant Biochemistry and Biotechnology, University of Münster, 48143 Münster, Germany
| | - William Inwood
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Kamel Jabbari
- CNRS UMR 8186, Département de Biologie, Ecole Normale Supérieure, 75230 Paris, France
| | - Ming Kalanon
- Plant Cell Biology Research Centre, The School of Botany, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Richard Kuras
- CNRS, UMR 7141, CNRS/Université Paris 6, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Paul A. Lefebvre
- Department of Plant Biology, University of Minnesota, St. Paul MN 55108, USA
| | - Stéphane D. Lemaire
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Orsay, France
| | - Alexey V. Lobanov
- Department of Biochemistry, N151 Beadle Center, University of Nebraska, Lincoln, NE 68588–0664, USA
| | - Martin Lohr
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - Andrea Manuell
- Department of Cell Biology and Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Iris Meier
- PCMB and Plant Biotechnology Center, Ohio State University, Columbus, OH 43210, USA
| | - Laurens Mets
- Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Maria Mittag
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Telsa Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - James V. Moroney
- Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jeffrey Moseley
- Department of Plant Biology, Carnegie Institution, Stanford, CA 94306, USA
| | - Carolyn Napoli
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Aurora M. Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada E3B 6E1
| | - Krishna Niyogi
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Sergey V. Novoselov
- Department of Biochemistry, N151 Beadle Center, University of Nebraska, Lincoln, NE 68588–0664, USA
| | - Ian T. Paulsen
- The Institute for Genomic Research, Rockville, MD 20850, USA
| | - Greg Pazour
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Saul Purton
- Department of Biology, University College London, London WC1E 6BT, UK
| | - Jean-Philippe Ral
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS/USTL, IFR 118, Université des Sciences et Technologies de Lille, Cedex, France
| | | | - Wayne Riekhof
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - Linda Rymarquis
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Michael Schroda
- Institute of Biology II/Plant Biochemistry, 79104 Freiburg, Germany
| | - David Stern
- Boyce Thompson Institute for Plant Research at Cornell University, Ithaca, NY 14853, USA
| | - James Umen
- Plant Biology Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Robert Willows
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney 2109, Australia
| | - Nedra Wilson
- Department of Anatomy and Cell Biology, Oklahoma State University, Center for Health Sciences, Tulsa, OK 74107, USA
| | - Sara Lana Zimmer
- Boyce Thompson Institute for Plant Research at Cornell University, Ithaca, NY 14853, USA
| | - Jens Allmer
- Izmir Ekonomi Universitesi, 35330 Balcova-Izmir Turkey
| | - Janneke Balk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Katerina Bisova
- Institute of Microbiology, Czech Academy of Sciences, Czech Republic
| | - Chong-Jian Chen
- Biotechnology Research Center, Zhongshan University, Guangzhou 510275, China
| | - Marek Elias
- Department of Plant Physiology, Faculty of Sciences, Charles University, 128 44 Prague 2, Czech Republic
| | - Karla Gendler
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Charles Hauser
- Bioinformatics Program, St. Edward's University, Austin, TX 78704, USA
| | - Mary Rose Lamb
- Department of Biology, University of Puget Sound, Tacoma, WA 98407, USA
| | - Heidi Ledford
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Joanne C. Long
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Minagawa
- Institute of Low-Temperature Science, Hokkaido University, 060-0819, Japan
| | - M. Dudley Page
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Junmin Pan
- Department of Biology, Tsinghua University, Beijing, China 100084
| | - Wirulda Pootakham
- Department of Plant Biology, Carnegie Institution, Stanford, CA 94306, USA
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | | | - Eric Stahlberg
- PCMB and Plant Biotechnology Center, Ohio State University, Columbus, OH 43210, USA
| | - Aimee M. Terauchi
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pinfen Yang
- Department of Biology, Marquette University, Milwaukee, WI 53233, USA
| | - Steven Ball
- UMR8576 CNRS, Laboratory of Biological Chemistry, 59655 Villeneuve d'Ascq, France
| | - Chris Bowler
- CNRS UMR 8186, Département de Biologie, Ecole Normale Supérieure, 75230 Paris, France
- Cell Signaling Laboratory, Stazione Zoologica, I 80121 Naples, Italy
| | - Carol L. Dieckmann
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Vadim N. Gladyshev
- Department of Biochemistry, N151 Beadle Center, University of Nebraska, Lincoln, NE 68588–0664, USA
| | - Pamela Green
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Richard Jorgensen
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen Mayfield
- Department of Cell Biology and Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Sathish Rajamani
- Graduate Program in Biophysics, Ohio State University, Columbus, OH 43210, USA
| | - Richard T. Sayre
- PCMB and Plant Biotechnology Center, Ohio State University, Columbus, OH 43210, USA
| | - Peter Brokstein
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Inna Dubchak
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - David Goodstein
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Leila Hornick
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Y. Wayne Huang
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jinal Jhaveri
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Yigong Luo
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Diego Martínez
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Wing Chi Abby Ngau
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Bobby Otillar
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Alexander Poliakov
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Aaron Porter
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Lukasz Szajkowski
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Gregory Werner
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Kemin Zhou
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Igor V. Grigoriev
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Daniel S. Rokhsar
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA94720, USA
| | - Arthur R. Grossman
- Department of Plant Biology, Carnegie Institution, Stanford, CA 94306, USA
| |
Collapse
|
17
|
Wirschell M, Hendrickson T, Sale WS. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation. ACTA ACUST UNITED AC 2007; 64:569-79. [PMID: 17549744 DOI: 10.1002/cm.20211] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Among the major challenges in understanding ciliary and flagellar motility is to determine how the dynein motors are assembled and localized and how dynein-driven outer doublet microtubule sliding is controlled. Diverse studies, particularly in Chlamydomonas, have determined that the inner arm dynein I1 is targeted to a unique structural position and is critical for regulating the microtubule sliding required for normal ciliary/flagellar bending. As described in this review, I1 dynein offers additional opportunities to determine the principles of assembly and targeting of dyneins to cellular locations and for studying the mechanisms that regulate dynein activity and control of motility by phosphorylation.
Collapse
Affiliation(s)
- Maureen Wirschell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
18
|
Gaillard AR, Fox LA, Rhea JM, Craige B, Sale WS. Disruption of the A-kinase anchoring domain in flagellar radial spoke protein 3 results in unregulated axonemal cAMP-dependent protein kinase activity and abnormal flagellar motility. Mol Biol Cell 2006; 17:2626-35. [PMID: 16571668 PMCID: PMC1474798 DOI: 10.1091/mbc.e06-02-0095] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility.
Collapse
Affiliation(s)
- Anne R. Gaillard
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341
| | - Laura A. Fox
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Jeanne M. Rhea
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Branch Craige
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Winfield S. Sale
- *Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and
| |
Collapse
|
19
|
Yang P, Diener DR, Yang C, Kohno T, Pazour GJ, Dienes JM, Agrin NS, King SM, Sale WS, Kamiya R, Rosenbaum JL, Witman GB. Radial spoke proteins of Chlamydomonas flagella. J Cell Sci 2006; 119:1165-74. [PMID: 16507594 PMCID: PMC1973137 DOI: 10.1242/jcs.02811] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The radial spoke is a ubiquitous component of '9+2' cilia and flagella, and plays an essential role in the control of dynein arm activity by relaying signals from the central pair of microtubules to the arms. The Chlamydomonas reinhardtii radial spoke contains at least 23 proteins, only 8 of which have been characterized at the molecular level. Here, we use mass spectrometry to identify 10 additional radial spoke proteins. Many of the newly identified proteins in the spoke stalk are predicted to contain domains associated with signal transduction, including Ca2+-, AKAP- and nucleotide-binding domains. This suggests that the spoke stalk is both a scaffold for signaling molecules and itself a transducer of signals. Moreover, in addition to the recently described HSP40 family member, a second spoke stalk protein is predicted to be a molecular chaperone, implying that there is a sophisticated mechanism for the assembly of this large complex. Among the 18 spoke proteins identified to date, at least 12 have apparent homologs in humans, indicating that the radial spoke has been conserved throughout evolution. The human genes encoding these proteins are candidates for causing primary ciliary dyskinesia, a severe inherited disease involving missing or defective axonemal structures, including the radial spokes.
Collapse
Affiliation(s)
- Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang C, Yang P. The flagellar motility of Chlamydomonas pf25 mutant lacking an AKAP-binding protein is overtly sensitive to medium conditions. Mol Biol Cell 2005; 17:227-38. [PMID: 16267272 PMCID: PMC1345661 DOI: 10.1091/mbc.e05-07-0630] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Radial spokes are a conserved axonemal structural complex postulated to regulate the motility of 9 + 2 cilia and flagella via a network of phosphoenzymes and regulatory proteins. Consistently, a Chlamydomonas radial spoke protein, RSP3, has been identified by RII overlays as an A-kinase anchoring protein (AKAP) that localizes the cAMP-dependent protein kinase (PKA) holoenzyme by binding to the RIIa domain of PKA RII subunit. However, the highly conserved docking domain of PKA is also found in the N termini of several AKAP-binding proteins unrelated to PKA as well as a 24-kDa novel spoke protein, RSP11. Here, we report that RSP11 binds to RSP3 directly in vitro and colocalizes with RSP3 toward the spoke base near outer doublets and dynein motors in axonemes. Importantly, RSP11 mutant pf25 displays a spectrum of motility, from paralysis with flaccid or twitching flagella as other spoke mutants to wildtype-like swimming. The wide range of motility changes reversibly depending on the condition of liquid media without replacing defective proteins. We postulate that radial spokes use the RIIa/AKAP module to regulate ciliary and flagellar beating; absence of the spoke RIIa protein exposes a medium-sensitive regulatory mechanism that is not obvious in wild-type Chlamydomonas.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biological Sciences, Marquette University, Milwaukee WI 53233, USA
| | | |
Collapse
|
21
|
Howard DR, Trantow CM, Thaler CD. Motility of a biflagellate sperm: waveform analysis and cyclic nucleotide activation. ACTA ACUST UNITED AC 2005; 59:120-30. [PMID: 15362116 DOI: 10.1002/cm.20027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The sperm of the freshwater clam Corbicula fluminea are unusual in that they have two flagella, both of which are capable of beating. When Corbicula sperm are removed from the gonad and placed into freshwater, most remain immotile. Video microscopy was used to assess signaling molecules capable of activating Corbicula sperm motility. Experiments using the cAMP analogs dbcAMP or 8-Br-cAMP show that elevating cAMP activates flagellar motility. Treatments with 8-Br-cGMP activated motility in similar numbers of sperm. Treatments with the selective cAMP-dependent protein kinase (PKA) inhibitor H-89 block activation by 8-Br-cAMP but not by 8-Br-cGMP. Similar treatments with the cGMP-dependent protein kinase (PKG) inhibitor Rp-8-pCPT-cGMPS block activation by 8-Br-cGMP but not by 8-Br-cAMP. These results suggest that cAMP and cGMP each work through their specific kinase to activate flagellar motility. Analysis of spontaneously activated freely swimming sperm shows that the two flagella beat with different parameters. The A flagellum beats with a shorter wavelength and a higher frequency than the B flagellum. The observed differences in flagellar waveform indicate that the flagella are differentially controlled.
Collapse
Affiliation(s)
- David R Howard
- Department of Biology, University of Wisconsin-La Crosse, 54601, USA.
| | | | | |
Collapse
|
22
|
Okita N, Isogai N, Hirono M, Kamiya R, Yoshimura K. Phototactic activity inChlamydomonas'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein. J Cell Sci 2005; 118:529-37. [PMID: 15657081 DOI: 10.1242/jcs.01633] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the mechanism underlying the phototactic behavior of Chlamydomonas, Ca2+ has been thought to control the dominance between the two flagella so as to steer the cell to correct directions. A newly isolated mutant, lsp1, that displays weak phototaxis was found to be defective in this Ca2+-dependent shift in flagellar dominance; in demembranated and reactivated cell models, the trans flagellum (the flagellum farthest from the eyespot) beat more strongly than the other (the cis flagellum) in about half of the cells regardless of the Ca2+ concentration between <10-9 M and 10-6 M, a range over which wild-type cell models display switching of flagellar dominance. This is unexpected because ptx1, another mutant that is also deficient in flagellar dominance control, has been reported to lack phototactic ability. We therefore re-examined ptx1 and another reportedly non-phototactic mutant, ida1, which lacks inner arm dynein subspecies f (also called I1). Both were found to retain reduced phototactic abilities. These results indicate that both Ca2+-dependent flagellar dominance control and inner-arm dynein subspecies f are important for phototaxis, but are not absolutely necessary. Analysis of the flagellar beat frequency in lsp1 cell models showed that both of the flagella beat at the frequency of the cis flagellum in wild type. In addition, lsp1 and ptx1 were found to be deficient in determining the sign of phototactic migration. Hence, the Ca2+-dependent flagellar dominance control detected in demembranated cells might be involved in the determination of the sign of phototaxis. The gene responsible for the lsp1 mutation was identified by phenotype rescue experiments and found to have sequences for phosphorylation.
Collapse
Affiliation(s)
- Noriko Okita
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0063, Japan
| | | | | | | | | |
Collapse
|
23
|
DiBella LM, Sakato M, Patel-King RS, Pazour GJ, King SM. The LC7 light chains of Chlamydomonas flagellar dyneins interact with components required for both motor assembly and regulation. Mol Biol Cell 2004; 15:4633-46. [PMID: 15304520 PMCID: PMC519155 DOI: 10.1091/mbc.e04-06-0461] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 07/09/2004] [Accepted: 07/23/2004] [Indexed: 11/11/2022] Open
Abstract
Members of the LC7/Roadblock family of light chains (LCs) have been found in both cytoplasmic and axonemal dyneins. LC7a was originally identified within Chlamydomonas outer arm dynein and associates with this motor's cargo-binding region. We describe here a novel member of this protein family, termed LC7b that is also present in the Chlamydomonas flagellum. Levels of LC7b are reduced approximately 20% in axonemes isolated from strains lacking inner arm I1 and are approximately 80% lower in the absence of the outer arms. When both dyneins are missing, LC7b levels are diminished to <10%. In oda9 axonemal extracts that completely lack outer arms, LC7b copurifies with inner arm I1, whereas in ida1 extracts that are devoid of I1 inner arms it associates with outer arm dynein. We also have observed that some LC7a is present in both isolated axonemes and purified 18S dynein from oda1, suggesting that it is also a component of both the outer arm and inner arm I1. Intriguingly, in axonemal extracts from the LC7a null mutant, oda15, which assembles approximately 30% of its outer arms, LC7b fails to copurify with either dynein, suggesting that it interacts with LC7a. Furthermore, both the outer arm gamma heavy chain and DC2 from the outer arm docking complex completely dissociate after salt extraction from oda15 axonemes. EDC cross-linking of purified dynein revealed that LC7b interacts with LC3, an outer dynein arm thioredoxin; DC2, an outer arm docking complex component; and also with the phosphoprotein IC138 from inner arm I1. These data suggest that LC7a stabilizes both the outer arms and inner arm I1 and that both LC7a and LC7b are involved in multiple intradynein interactions within both dyneins.
Collapse
Affiliation(s)
- Linda M DiBella
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | | | | | |
Collapse
|
24
|
Smith EF, Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. ACTA ACUST UNITED AC 2004; 57:8-17. [PMID: 14648553 PMCID: PMC1950942 DOI: 10.1002/cm.10155] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
25
|
Patel-King RS, Gorbatyuk O, Takebe S, King SM. Flagellar radial spokes contain a Ca2+-stimulated nucleoside diphosphate kinase. Mol Biol Cell 2004; 15:3891-902. [PMID: 15194815 PMCID: PMC491844 DOI: 10.1091/mbc.e04-04-0352] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The radial spokes are required for Ca(2+)-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca(2+)-independent manner, whereas IQ2 and IQ3 show Ca(2+)-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca(2+). This Ca(2+)-responsive enzyme, which accounts for approximately 45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca(2+)-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes.
Collapse
Affiliation(s)
- Ramila S Patel-King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA
| | | | | | | |
Collapse
|
26
|
Sakato M, King SM. Design and regulation of the AAA+ microtubule motor dynein. J Struct Biol 2004; 146:58-71. [PMID: 15037237 DOI: 10.1016/j.jsb.2003.09.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 09/22/2003] [Indexed: 11/19/2022]
Abstract
Dyneins are highly complex molecular motors that transport their attached cargo towards the minus end of microtubules. These enzymes are required for many essential motile activities within the cytoplasm and also power eukaryotic cilia and flagella. Each dynein contains one or more heavy chain motor units that consist of an N-terminal stem domain that is involved in cargo attachment, and six AAA+ domains (AAA1-6) plus a C-terminal globular segment that are arranged in a heptameric ring. At least one AAA+ domain (AAA1) is capable of ATP binding and hydrolysis, and the available data suggest that one or more additional domains also may bind nucleotide. The ATP-sensitive microtubule binding site is located at the tip of a 10nm coiled coil stalk that emanates from between AAA4 and AAA5. The function of this motor both in the cytoplasm and the flagellum must be tightly regulated in order to result in useful work. Consequently, dyneins also contain a series of additional components that serve to define the cargo-binding properties of the enzyme and which act as sensors to transmit regulatory inputs to the motor units. Here we describe the two basic dynein designs and detail the various regulatory systems that impinge on this motor within the eukaryotic flagellum.
Collapse
Affiliation(s)
- Miho Sakato
- Department of Biochemistry, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | | |
Collapse
|
27
|
Yoshimura K, Matsuo Y, Kamiya R. Gravitaxis in Chlamydomonas reinhardtii Studied with Novel Mutants. ACTA ACUST UNITED AC 2003; 44:1112-8. [PMID: 14581636 DOI: 10.1093/pcp/pcg134] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Many free-swimming unicellular organisms show negative gravitaxis, i.e. tend to swim upward, although their specific densities are higher than the medium density. To obtain clues to the mechanism of this behavior, we examined how a mutation in motility or behavior affects the gravitaxis in Chlamydomonas. A phototaxis mutant, ptx3, deficient in membrane excitability showed weakened gravitaxis, whereas another phototaxis mutant, ptx1, deficient in regulation of flagellar dominance displayed normal gravitaxis. Two mutants that swim backwards only, mbo1 and mbo2, did not show any clear gravitaxis. We also isolated two novel mutants deficient in gravitaxis, gtx1 and gtx2. These mutants displayed normal motility and physical characteristics of cell body as assessed by the behavior of anesthetized cells. However, these cells were found to have defects in physiological responses involving membrane excitation. These observations are consistent with the idea that the gravitaxis in Chlamydomonas involves a physiological signal transduction system, which is at least partially independent of the system used for phototaxis.
Collapse
Affiliation(s)
- Kenjiro Yoshimura
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572 Japan.
| | | | | |
Collapse
|
28
|
Itoh A, Inaba K, Ohtake H, Fujinoki M, Morisawa M. Characterization of a cAMP-dependent protein kinase catalytic subunit from rainbow trout spermatozoa. Biochem Biophys Res Commun 2003; 305:855-61. [PMID: 12767909 DOI: 10.1016/s0006-291x(03)00840-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cyclic AMP-dependent phosphorylation of proteins is essential for the initiation of sperm motility in salmonid fishes. This study isolated cDNA for the catalytic subunit of a cAMP-dependent protein kinase (PKA-C) from rainbow trout testis. The deduced amino acid sequence shows 75-80% identity to sequences previously reported in other organisms. However, the N-terminal regions of PKA-C from the testis as well as ovary in the trout appear slightly shorter than those from other tissues, suggesting that small PKA-C might be specific to germ cells. An immunofluorescence study using polyclonal antibody against trout testis PKA-C shows that it localizes along sperm flagellum. Furthermore, immunoelectron microscopy revealed that PKA-C is anchored to the outer arm dynein of flagellar axonemes. These results suggest that PKA-C is involved in regulating the flagellar motility of sperm via phosphorylation of a subunit of the outer arm dynein.
Collapse
Affiliation(s)
- Atsuko Itoh
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Koajiro, Misaki, Miura, Kanagawa 238-0225, Japan.
| | | | | | | | | |
Collapse
|
29
|
Kamiya R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 219:115-55. [PMID: 12211628 DOI: 10.1016/s0074-7696(02)19012-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cilia and flagella of most organisms are equipped with two kinds of motor protein complex, the inner and outer dynein arms. The two arms were previously thought to be similar to each other, but recent studies using Chlamydomonas mutants indicate that they differ significantly in subunit structure and arrangement within the axoneme. For example, whereas the outer dynein arm exists as a single protein complex containing three heavy chains, the inner dynein arm comprises seven different subspecies each containing one or two discrete heavy chains. Furthermore, the two kinds of arms appear to differ in function also. Most strikingly, our studies suggest that inner-arm dynein, but not outer-arm dynein, is under the control of the central pair microtubules and radial spokes. The axoneme thus appears to be equipped with two rather distinct systems for beating: one involving inner-arm dyneins, the central pair and radial spokes, and the other involving outer-arm dynein alone.
Collapse
Affiliation(s)
- Ritsu Kamiya
- Department of Biological Sciences, University of Tokyo, Japan
| |
Collapse
|
30
|
Padma P, Satouh Y, Wakabayashi KI, Hozumi A, Ushimaru Y, Kamiya R, Inaba K. Identification of a novel leucine-rich repeat protein as a component of flagellar radial spoke in the Ascidian Ciona intestinalis. Mol Biol Cell 2003; 14:774-85. [PMID: 12589069 PMCID: PMC150007 DOI: 10.1091/mbc.02-06-0089] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Axonemes are highly organized microtubule-based structures conserved in many eukaryotes. In an attempt to study axonemes by a proteomics approach, we selectively cloned cDNAs of axonemal proteins by immunoscreening the testis cDNA library from the ascidian Ciona intestinalis by using an antiserum against whole axonemes. We report here a 37-kDa protein of which cDNA occurred most frequently among total positive clones. This protein, named LRR37, belongs to the class of SDS22+ leucine-rich repeat (LRR) family. LRR37 is different from the LRR outer arm dynein light chain reported in Chlamydomonas and sea urchin flagella, and thus represents a novel axonemal LRR protein. Immunoelectron microscopy by using a polyclonal antibody against LRR37 showed that it is localized on the tip of the radial spoke, most likely on the spoke head. The LRR37 protein in fact seems to form a complex together with radial spoke protein 3 in a KI extract of the axonemes. These results suggest that LRR37 is a component of the radial spoke head and is involved in the interaction with other radial spoke components or proteins in the central pair projection.
Collapse
Affiliation(s)
- Potturi Padma
- Asamushi Marine Biological Station, Graduate School of Science, Tohoku University, Aomori 039-3501, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Kultgen PL, Byrd SK, Ostrowski LE, Milgram SL. Characterization of an A-kinase anchoring protein in human ciliary axonemes. Mol Biol Cell 2002; 13:4156-66. [PMID: 12475942 PMCID: PMC138623 DOI: 10.1091/mbc.e02-07-0391] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although protein kinase A (PKA) activation is known to increase ciliary beat frequency in humans the molecular mechanisms involved are unknown. We demonstrate that PKA is associated with ciliary axonemes where it specifically phosphorylates a 23-kDa protein. Because PKA is often localized to subcellular compartments in proximity to its substrate(s) via interactions with A-kinase-anchoring proteins (AKAPs), we investigated whether an AKAP was also associated with ciliary axonemes. This study has identified a novel 28 kDa AKAP (AKAP28)that is highly enriched in airway axonemes. The mRNA for AKAP28 is up-regulated as primary airway cells differentiate and is specifically expressed in tissues containing cilia and/or flagella. Additionally, both Western blot and immunostaining data show that AKAP28 is enriched in airway cilia. These data demonstrate that we have identified the first human axonemal AKAP, a protein that likely plays a role in the signaling necessary for efficient modulation of ciliary beat frequency.
Collapse
Affiliation(s)
- Patricia L Kultgen
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
32
|
Inaba K. Dephosphorylation of Tctex2-related dynein light chain by type 2A protein phosphatase. Biochem Biophys Res Commun 2002; 297:800-5. [PMID: 12359223 DOI: 10.1016/s0006-291x(02)02303-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sperm flagellar movements are regulated by cAMP-dependent protein phosphorylation. Tctex2-related light chain of outer arm dynein is a well-defined phosphorylated protein that is phosphorylated at activation of sperm motility. Here, the protein phosphatase that dephosphorylates Tctex2-related dynein light chain (LC2) has been characterized in salmonid fish sperm. Most of the phosphatase activity against LC2 is found in Triton-soluble fraction of flagella but trace extent of the activity is retained in the axoneme. The dephosphorylation of LC2 is inhibited by okadaic acid at more than 1nM, whereas that of dynein alpha heavy chain is inhibited at more than 10nM. The addition of Ca(2+) gives no direct effect on LC2 dephosphorylation, but it accelerates the dephosphorylation of the regulatory subunit of cAMP-dependent protein kinase, resulting in the decrease of LC2 phosphorylation. The activity to dephosphorylate the LC2 is separated by MonoQ ion-exchange column chromatography along with the immunoreactivity to the antibody against the catalytic subunit of type 2A protein phosphatase. These results suggest that LC2 is dephosphorylated by type 2A protein phosphatase and that dynein alpha heavy chain and the regulatory subunit of cAMP-dependent protein kinase are dephosphorylated by other types of protein phosphatases.
Collapse
Affiliation(s)
- Kazuo Inaba
- Asamushi Marine Biological Station, Graduate School of Science, Tohoku University, Sakamoto 9, Asamushi, Aomori, Aomori 039-3501, Japan.
| |
Collapse
|
33
|
Smith EF. Regulation of flagellar dynein by the axonemal central apparatus. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:33-42. [PMID: 11977081 DOI: 10.1002/cm.10031] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous studies indicate that the central apparatus, radial spokes, and dynein regulatory complex form a signaling pathway that regulates dynein activity in eukaryotic flagella. This regulation involves the action of several kinases and phosphatases anchored to the axoneme. To further investigate the role of the central apparatus in this signaling pathway, we have taken advantage of a microtubule-sliding assay to assess dynein activity in central apparatus defective mutants of Chlamydomonas. Axonemes isolated from both pf18 and pf15 (lacking the entire central apparatus) and from pf16 (lacking the C1 central microtubule) have reduced microtubule-sliding velocity compared with wild-type axonemes. Based on functional analyses of axonemes isolated from radial spokeless mutants, we hypothesized that inhibitors of casein kinase 1 (CK1) and cAMP dependent protein kinase (PKA) would rescue dynein activity and increase microtubule-sliding velocity in central pairless mutants. Treatment of axonemes isolated from both pf18 and pf16 with DRB, a CK1 inhibitor, but not with PKI, a PKA inhibitor, restored dynein activity to wild-type levels. The DRB-induced increase in dynein-driven microtubule sliding was inhibited if axonemes were first incubated with the phosphatase inhibitor, microcystin. Inhibiting CK1 in pf15 axonemes, which lack the central pair as well as PP2A [Yang et al., 2000: J. Cell Sci. 113:91-102], did not increase microtubule-sliding velocity. These data are consistent with a model in which the central apparatus, and specifically the C1 microtubule, regulate dynein through interactions with the radial spokes that ultimately alter the activity of CK1 and PP2A. These data are also consistent with localization of axonemal CK1 and PP2A near the dynein arms.
Collapse
Affiliation(s)
- Elizabeth F Smith
- Dartmouth College, Department of Biological Sciences, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
34
|
Abstract
Chlamydomonas is a biflagellate unicellular green alga that has proven especially amenable for the analysis of microtubule (MT)-based molecular motors, notably dyneins. These enzymes form the inner and outer arms of the flagellum and are also required for intraflagellar transport. Dyneins have masses of approximately 1-2 MDa and consist of up to 15 different polypeptides. Nucleotide binding/hydrolysis and MT motor activity are associated with the heavy chains, and we detail here our current model for the substructural organization of these approximately 520-kDa proteins. The remaining polypeptides play a variety of roles in dynein function, including attachment of the motor to cargo, regulation of motor activity in response to specific inputs, and their necessity for the assembly and/or stability of the entire complex. The combination of genetic, physiological, structural, and biochemical approaches has made the Chlamydomonas flagellum a very powerful model system in which to dissect the function of these fascinating molecular motors.
Collapse
Affiliation(s)
- L M DiBella
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032, USA
| | | |
Collapse
|
35
|
Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 2002; 415:1047-51. [PMID: 11875575 DOI: 10.1038/4151047a] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Blue light regulates processes such as the development of plants and fungi and the behaviour of microbes. Two types of blue-light receptor flavoprotein have been identified: cryptochromes, which have partial similarity to photolyases, and phototropins, which are photoregulated protein kinases. The former have also been found in animals with evidence of essential roles in circadian rhythms. Euglena gracilis, a unicellular flagellate, abruptly changes its swimming direction after a sudden increase or decrease in incident blue light intensity, that is, step-up or step-down photophobic responses, resulting in photoavoidance or photoaccumulation, respectively. Although these photobehaviours of Euglena have been studied for a century, the photoreceptor molecules mediating them have remained unknown. Here we report the discovery and biochemical characterization of a new type of blue-light receptor flavoprotein, photoactivated adenylyl cyclase, in the photoreceptor organelle of Euglena gracilis, with molecular genetic evidence that it mediates the step-up photophobic response.
Collapse
Affiliation(s)
- Mineo Iseki
- National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gaillard AR, Diener DR, Rosenbaum JL, Sale WS. Flagellar radial spoke protein 3 is an A-kinase anchoring protein (AKAP). J Cell Biol 2001; 153:443-8. [PMID: 11309423 PMCID: PMC2169452 DOI: 10.1083/jcb.153.2.443] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous physiological and pharmacological experiments have demonstrated that the Chlamydomonas flagellar axoneme contains a cAMP-dependent protein kinase (PKA) that regulates axonemal motility and dynein activity. However, the mechanism for anchoring PKA in the axoneme is unknown. Here we test the hypothesis that the axoneme contains an A-kinase anchoring protein (AKAP). By performing RII blot overlays on motility mutants defective for specific axonemal structures, two axonemal AKAPs have been identified: a 240-kD AKAP associated with the central pair apparatus, and a 97-kD AKAP located in the radial spoke stalk. Based on a detailed analysis, we have shown that AKAP97 is radial spoke protein 3 (RSP3). By expressing truncated forms of RSP3, we have localized the RII-binding domain to a region between amino acids 144-180. Amino acids 161-180 are homologous with the RII-binding domains of other AKAPs and are predicted to form an amphipathic helix. Amino acid substitution of the central residues of this region (L to P or VL to AA) results in the complete loss of RII binding. RSP3 is located near the inner arm dyneins, where an anchored PKA would be in direct position to modify dynein activity and regulate flagellar motility.
Collapse
Affiliation(s)
- Anne Roush Gaillard
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dennis R. Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Joel L. Rosenbaum
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Winfield S. Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
37
|
Porter ME, Sale WS. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 2000; 151:F37-42. [PMID: 11086017 PMCID: PMC2174360 DOI: 10.1083/jcb.151.5.f37] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2000] [Accepted: 10/05/2000] [Indexed: 11/22/2022] Open
Affiliation(s)
- M E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
38
|
Yagi T, Kamiya R. Vigorous beating of Chlamydomonas axonemes lacking central pair/radial spoke structures in the presence of salts and organic compounds. CELL MOTILITY AND THE CYTOSKELETON 2000; 46:190-9. [PMID: 10913966 DOI: 10.1002/1097-0169(200007)46:3<190::aid-cm4>3.0.co;2-#] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flagella of Chlamydomonas mutants lacking the central pair of microtubules or radial spokes do not beat; however, axonemes isolated from these mutants were found to display vigorous bending movements in the presence of ATP and various salts, sugars, alcohols, and other organic compounds. For example, about 15% of the total axonemes isolated from pf18, a mutant lacking the central pair, displayed beating in the presence of 10 mM MgSO(4) and 0.2 mM ATP at about 22 Hz, while none beat with the same concentration of ATP and < or = 5 mM or > or = 25 mM MgSO(4). The beat frequency and waveform of beating pf18 axonemes were similar to those of wild type axonemes beating under the same conditions. Similarly, 10-50% of the axonemes beat in the presence of 0.5 M sucrose, 2.0 M glycerol, or 1.7 M[10% (v/v)] ethanol. The appearance of motility did not correlate with the change in axonemal ATPase; however, these substances at those concentrations commonly increased the amplitude of nanometer-scale oscillation (hyper-oscillation) in pf18 axonemes, as well as the extent of ATP-induced sliding disintegration of protease-treated axonemes. Axonemes of double mutants lacking both the central pair and various subspecies of inner-arm dynein also beat at increased MgSO(4) concentrations, but axonemes lacking outer-arm dynein in addition to the central pair did not beat. These and other observations suggest that small molecules perturb the regulation of microtubule sliding through some change in water activity or osmotic stress. Axonemes must have an intrinsic ability to beat without the central pair/radial spokes under a variety of non-physiological solution conditions, as long as the outer dynein arms are present. Apparently, the major function of the central pair/radial spoke structures is to restore this activity under physiological conditions.
Collapse
Affiliation(s)
- T Yagi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | | |
Collapse
|
39
|
Yang P, Sale WS. Casein kinase I is anchored on axonemal doublet microtubules and regulates flagellar dynein phosphorylation and activity. J Biol Chem 2000; 275:18905-12. [PMID: 10858448 DOI: 10.1074/jbc.m002134200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flagellar dynein activity is regulated by phosphorylation. One critical phosphoprotein substrate in Chlamydomonas is the 138-kDa intermediate chain (IC138) of the inner arm dyneins (Habermacher, G., and Sale, W. S. (1997) J. Cell Biol. 136, 167-176). In this study, several approaches were used to determine that casein kinase I (CKI) is physically anchored in the flagellar axoneme and regulates IC138 phosphorylation and dynein activity. First, using a videomicroscopic motility assay, selective CKI inhibitors rescued dynein-driven microtubule sliding in axonemes isolated from paralyzed flagellar mutants lacking radial spokes. Rescue of dynein activity failed in axonemes isolated from these mutant cells lacking IC138. Second, CKI was unequivocally identified in salt extracts from isolated axonemes, whereas casein kinase II was excluded from the flagellar compartment. Third, Western blots indicate that within flagella, CKI is anchored exclusively to the axoneme. Analysis of multiple Chlamydomonas motility mutants suggests that the axonemal CKI is located on the outer doublet microtubules. Finally, CKI inhibitors that rescued dynein activity blocked phosphorylation of IC138. We propose that CKI is anchored on the outer doublet microtubules in position to regulate flagellar dynein.
Collapse
Affiliation(s)
- P Yang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
40
|
Saudrais C, Fierville F, Loir M, Le Rumeur E, Cibert C, Cosson J. The use of phosphocreatine plus ADP as energy source for motility of membrane-deprived trout spermatozoa. CELL MOTILITY AND THE CYTOSKELETON 2000; 41:91-106. [PMID: 9786085 DOI: 10.1002/(sici)1097-0169(1998)41:2<91::aid-cm1>3.0.co;2-i] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Live trout spermatozoa initiate flagellar motility for a short period of time (30 s at 18 degrees C), during which their mean beat frequency (BF) decreases steadily from 60 to 20 Hz; motility then stops abruptly. When demembranated, the motility of axonemes lasts much longer, up to 20 min, with high beat frequency, provided that ATP (millimolar concentration) and cAMP (micromolar) are added. In the present paper, the motility of demembranated trout sperm was investigated in the absence of added ATP in various incubation conditions relative to other substrates. Without the addition of exogenous creatine kinase, the addition of phosphocreatine (PCr) and ADP shows the appearance of a progressive activation of all sperm models with BF increasing with time up to high values. Without the addition of cAMP, the BF increases to lower values but flagella propagated poorly coordinated waves for only a few min. Similar progressive activation is also observed when only ADP is added (without any previous in vivo activation) and BF increases up to moderate values. In this latter case, no activation occurs without addition of cAMP. The respective roles of creatine kinase and adenylate kinase in this process were investigated by addition of specific inhibitors such as fluorodinitrobenzene and P1,P5-di(adenosine-5')pentaphosphate in the above described conditions. We conclude from these observations that all the elements necessary for a coupling between ADP/PCr/creatine kinase on one hand and ATP/ADP/dynein on the other appear to be present in trout spermatozoa: thus the existence of a shuttle sustaining this coupling is strongly suggested.
Collapse
Affiliation(s)
- C Saudrais
- Laboratoire de Physiologie des Poissons, INRA, Campus de Beaulieu, Rennes, France
| | | | | | | | | | | |
Collapse
|
41
|
Yang P, Fox L, Colbran RJ, Sale WS. Protein phosphatases PP1 and PP2A are located in distinct positions in the Chlamydomonas flagellar axoneme. J Cell Sci 2000; 113 ( Pt 1):91-102. [PMID: 10591628 DOI: 10.1242/jcs.113.1.91] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We postulated that microcystin-sensitive protein phosphatases are integral components of the Chlamydomonas flagellar axoneme, positioned to regulate inner arm dynein activity. To test this, we took a direct biochemical approach. Microcystin-Sepharose affinity purification revealed a prominent 35-kDa axonemal protein, predicted to be the catalytic subunit of type-1 protein phosphatase (PP1c). We cloned the Chlamydomonas PP1c and produced specific polyclonal peptide antibodies. Based on western blot analysis, the 35-kDa PP1c is anchored in the axoneme. Moreover, analysis of flagella and axonemes from mutant strains revealed that PP1c is primarily, but not exclusively, anchored in the central pair apparatus, associated with the C1 microtubule. Thus, PP1 is part of the central pair mechanism that controls flagellar motility. Two additional axonemal proteins of 62 and 37 kDa were also isolated using microcystin-Sepharose affinity. Based on direct peptide sequence and western blots, these proteins are the A- and C-subunits of type 2A protein phosphatase (PP2A). The axonemal PP2A is not one of the previously identified components of the central pair apparatus, outer arm dynein, inner arm dynein, dynein regulatory complex or the radial spokes. We postulate PP2A is anchored on the doublet microtubules, possibly in position to directly control inner arm dynein activity.
Collapse
Affiliation(s)
- P Yang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
42
|
Inaba K, Kagami O, Ogawa K. Tctex2-related outer arm dynein light chain is phosphorylated at activation of sperm motility. Biochem Biophys Res Commun 1999; 256:177-83. [PMID: 10066443 DOI: 10.1006/bbrc.1999.0309] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When the motility of sperm is activated, only one light chain of flagellar outer arm dynein is phosphorylated in many organisms. We show here that the light chain to be phosphorylated was shown to be light chain 2 (LC2) in rainbow trout and chum salmon sperm and LC1 in sea urchin sperm. Molecular analyses of the phosphorylated light chains from sperm flagella of the salmonid fishes and sea urchin revealed that the light chains are homologs of the mouse t complex-encoded protein Tctex2, which is one of the putative t complex distorters. These results suggest that mouse Tctex2 might also be a light chain of flagellar outer arm dynein and that the abortive phosphorylation of Tctex2/outer arm dynein light chain might be related to the less progressive movement of sperm.
Collapse
Affiliation(s)
- K Inaba
- Asamushi Marine Biological Station, Tohoku University, Asamushi, Aomori, Aomori, 039-3501, Japan.
| | | | | |
Collapse
|
43
|
Yoshimura M, Shingyoji C. Effects of the central pair apparatus on microtubule sliding velocity in sea urchin sperm flagella. Cell Struct Funct 1999; 24:43-54. [PMID: 10355878 DOI: 10.1247/csf.24.43] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To produce oscillatory bending movement in cilia and flagella, the activity of dynein arms must be regulated. The central-pair microtubules, located at the centre of the axoneme, are often thought to be involved in the regulation, but this has not been demonstrated definitively. In order to determine whether the central-pair apparatus are directly involved in the regulation of the dynein arm activity, we analyzed the movement of singlet microtubules that were brought into contact with dynein arms on bundles of doublets obtained by sliding disintegration of elastase-treated flagellar axonemes. An advantage of this new assay system was that we could distinguish the bundles that contained the central pair apparatus from those that did not, the former being clearly thicker than the latter. We found that microtubule sliding occurred along both the thinner and the thicker bundles, but its velocity differed between the two kinds of bundles in an ATP concentration dependent manner. At high ATP concentrations, such as 0.1 and 1 mM, the sliding velocity on the thinner bundles was significantly higher than that on the thicker bundles, while at lower ATP concentrations the sliding velocity did not change between the thinner and the thicker bundles. We observed similar bundle width-related differences in sliding velocity after removal of the outer arms. These results provide first evidence suggesting that the central pair and its associated structures may directly regulate the activity of the inner (and probably also the outer) arm dynein.
Collapse
Affiliation(s)
- M Yoshimura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Japan
| | | |
Collapse
|
44
|
Inaba K, Morisawa S, Morisawa M. Proteasomes regulate the motility of salmonid fish sperm through modulation of cAMP-dependent phosphorylation of an outer arm dynein light chain. J Cell Sci 1998; 111 ( Pt 8):1105-15. [PMID: 9512506 DOI: 10.1242/jcs.111.8.1105] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteasomes are involved in ATP-dependent regulation of sperm motility in salmonid fish. We have demonstrated here by immunoelectron microscopy that proteasomes are located at the structure of the chum salmon sperm flagellum that attaches at the base of the outer arm dynein and extends toward the plasma membrane. Furthermore, substrates and inhibitors of proteasome inhibit the cAMP-dependent phosphorylation of a 22 kDa axonemal protein in chum salmon sperm. The 22 kDa phosphoprotein was solubilized by treatment of the axoneme with a high salt solution and subsequent sucrose density gradient centrifugation of the extract revealed that it cosedimented with 19 S outer arm dynein, indicating that it is a dynein light chain. These results suggest that proteasomes modulate the activity of outer arm dynein by regulating cAMP-dependent phosphorylation of the 22 kDa dynein light chain.
Collapse
Affiliation(s)
- K Inaba
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa, Japan
| | | | | |
Collapse
|
45
|
NOGUCHI MUNENORI, INOUE HIROSHI, ATAGO TOSHIHIRO, NAKAMURA SHOGO. Effects of Organic Solvents on the Coupling Between ATP Hydrolysis and Sliding of Microtubules in Axonemes from Chlamydomonas Flagella. J Eukaryot Microbiol 1997. [DOI: 10.1111/j.1550-7408.1997.tb05949.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Habermacher G, Sale WS. Regulation of flagellar dynein by phosphorylation of a 138-kD inner arm dynein intermediate chain. J Cell Biol 1997; 136:167-76. [PMID: 9008711 PMCID: PMC2132463 DOI: 10.1083/jcb.136.1.167] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/1996] [Revised: 10/29/1996] [Indexed: 02/03/2023] Open
Abstract
One of the challenges in understanding ciliary and flagellar motility is determining the mechanisms that locally regulate dynein-driven microtubule sliding. Our recent studies demonstrated that microtubule sliding, in Chlamydomonas flagella, is regulated by phosphorylation. However, the regulatory proteins remain unknown. Here we identify the 138-kD intermediate chain of inner arm dynein I1 as the critical phosphoprotein required for regulation of motility. This conclusion is founded on the results of three different experimental approaches. First, genetic analysis and functional assays revealed that regulation of microtubule sliding, by phosphorylation, requires inner arm dynein I1. Second, in vitro phosphorylation indicated the 138-kD intermediate chain of I1 is the only phosphorylated subunit. Third, in vitro reconstitution demonstrated that phosphorylation and dephosphorylation of the 138-kD intermediate chain inhibits and restores wild-type microtubule sliding, respectively. We conclude that change in phosphorylation of the 138-kD intermediate chain of I1 regulates dynein-driven microtubule sliding. Moreover, based on these and other data, we predict that regulation of I1 activity is involved in modulation of flagellar waveform.
Collapse
Affiliation(s)
- G Habermacher
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
47
|
King SJ, Dutcher SK. Phosphoregulation of an inner dynein arm complex in Chlamydomonas reinhardtii is altered in phototactic mutant strains. J Cell Biol 1997; 136:177-91. [PMID: 9008712 PMCID: PMC2132467 DOI: 10.1083/jcb.136.1.177] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/1996] [Revised: 10/30/1996] [Indexed: 02/03/2023] Open
Abstract
To gain a further understanding of axonemal dynein regulation, mutant strains of Chlamydomonas reinhardtii that had defects in both phototactic behavior and flagellar motility were identified and characterized. ptm1, ptm2, and ptm3 mutant strains exhibited motility phenotypes that resembled those of known inner dynein arm region mutant strains, but did not have biochemical or genetic phenotypes characteristic of other inner dynein arm mutations. Three other mutant strains had defects in the f class of inner dynein arms. Dynein extracts from the pf9-4 strain were missing the entire f complex. Strains with mutations in pf9/ida1, ida2, or ida3 failed to assemble the f dynein complex and did not exhibit phototactic behavior. Fractionated dynein from mia1-1 and mia2-1 axonemes exhibited a novel f class inner dynein arm biochemical phenotype; the 138-kD f intermediate chain was present in altered phosphorylation forms. In vitro axonemal dynein activity was reduced by the mia1-1 and mia2-1 mutations. The addition of kinase inhibitor restored axonemal dynein activity concomitant with the dephosphorylation of the 138-kD f intermediate chain. Dynein extracts from uni1-1 axonemes, which specifically assemble only one of the two flagella, contained relatively high levels of the altered phosphorylation forms of the 138-kD intermediate chain. We suggest that the f dynein complex may be phosphoregulated asymmetrically between the two flagella to achieve phototactic turning.
Collapse
Affiliation(s)
- S J King
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder 80309-0347, USA
| | | |
Collapse
|
48
|
Habermacher G, Sale WS. Regulation of flagellar dynein by an axonemal type-1 phosphatase in Chlamydomonas. J Cell Sci 1996; 109 ( Pt 7):1899-907. [PMID: 8832412 DOI: 10.1242/jcs.109.7.1899] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Physiological studies have demonstrated that flagellar radial spokes regulate inner arm dynein activity in Chlamydomonas and that an axonemal cAMP-dependent kinase inhibits dynein activity in radial spoke defective axonemes. These studies also suggested that an axonemal protein phosphatase is required for activation of flagellar dynein. We tested whether inhibitors of protein phosphatases would prevent activation of dynein by the kinase inhibitor PKI in Chlamydomonas axonemes lacking radial spokes. As predicted, preincubation of spoke defective axonemes (pf14 and pf17) with ATP gamma S maintained the slow dynein-driven microtubule sliding characteristic of paralyzed axonemes lacking spokes, and blocked activation of dynein-driven microtubule sliding by subsequent addition of PKI. Preincubation of spoke defective axonemes with the phosphatase inhibitors okadaic acid, microcystin-LR or inhibitor-2 also potently blocked PKI-induced activation of microtubule sliding velocity: the non-inhibitory okadaic acid analog, 1-norokadaone, did not. ATP gamma S or the phosphatase inhibitors blocked activation of dynein in a double mutant lacking the radial spokes and the outer dynein arms (pf14pf28). We concluded that the axoneme contains a type-1 phosphatase required for activation of inner arm dynein. We postulated that the radial spokes regulate dynein through the activity of the type-1 protein phosphatase. To test this, we performed in vitro reconstitution experiments using inner arm dynein from the double mutant pf14pf28 and dynein-depleted axonemes containing wild-type radial spokes (pf28). As described previously, microtubule sliding velocity was increased from approximately 2 microns/second to approximately 7 microns/second when inner arm dynein from pf14pf28 axonemes ws reconstituted with axonemes containing wild-type spokes. In contrast, pretreatment of inner arm dynein from pf14pf28 axonemes with ATP gamma S, or reconstitution in the presence of microcystin-LR, blocked increased velocity following reconstitution, despite the presence of wild-type radial spokes. We conclude that the radial spokes, through the activity of an axonemal type-1 phosphatase, activate inner arm dynein by dephosphorylation of a critical dynein component. Wild-type radial spokes also operate to inhibit the axonemal cAMP-dependent kinase, which would otherwise inhibit axonemal dynein and motility.
Collapse
Affiliation(s)
- G Habermacher
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
49
|
Zhang Y, Luo Y, Emmett K, Snell WJ. Cell adhesion-dependent inactivation of a soluble protein kinase during fertilization in Chlamydomonas. Mol Biol Cell 1996; 7:515-27. [PMID: 8730096 PMCID: PMC275906 DOI: 10.1091/mbc.7.4.515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Within seconds after the flagella of mt+ and mt- Chlamydomonas gametes adhere during fertilization, their flagellar adenylyl cyclase is activated several fold and preparation for cell fusion is initiated. Our previous studies indicated that early events in this pathway, including control of adenylyl cyclase, are regulated by phosphorylation and dephosphorylation. Here, we describe a soluble, flagellar protein kinase activity that is regulated by flagellar adhesion. A 48-kDa, soluble flagellar protein was consistently phosphorylated in an in vitro assay in flagella isolated from nonadhering mt+ and mt- gametes, but not in flagella isolated from mt+ and mt- gametes that had been adhering for 1 min. Although the 48-kDa protein was present in the flagella isolated from adhering gametes, we demonstrate that its protein kinase was inactivated by flagellar adhesion. Immunoblot analysis and inhibitor studies indicate that the 48-kDa protein in nonadhering gametes is phosphorylated by a protein tyrosine kinase. In vivo experiments showing that the protein tyrosine phosphatase inhibitor sodium orthovanadate inhibits fertilization suggest that protein dephosphorylation may be required for signal transduction. The 48-kDa protein and its protein kinase may be among the first elements of a novel signalling pathway that couples interaction of flagellar adhesion molecules to gamete activation.
Collapse
Affiliation(s)
- Y Zhang
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical School, Dallas 75235, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Progress in the sequence determination of dynein subunits is providing new insights into the locations of functional domains in these microtubule motors. Combined structural and biochemical analyses of flagellar mutations are also yielding information on the three-dimensional organization of the dynein arms and on the different components that target dynein arm assembly. Physiological approaches are revealing multiple pathways that regulate dynein activity.
Collapse
Affiliation(s)
- M E Porter
- Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis 55455-0217, USA.
| |
Collapse
|