1
|
Wetzel C, Gallenstein N, Peters V, Fleming T, Marinovic I, Bodenschatz A, Du Z, Küper K, Dallanoce C, Aldini G, Schmoch T, Brenner T, Weigand MA, Zarogiannis SG, Schmitt CP, Bartosova M. Histidine containing dipeptides protect epithelial and endothelial cell barriers from methylglyoxal induced injury. Sci Rep 2024; 14:26640. [PMID: 39496731 PMCID: PMC11535046 DOI: 10.1038/s41598-024-77891-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Integrity of epithelial and endothelial cell barriers is of critical importance for health, barrier disruption is a hallmark of numerous diseases, of which many are driven by carbonyl stressors such as methylglyoxal (MG). Carnosine and anserine exert some MG-quenching activity, but the impact of these and of other histidine containing dipeptides on cell barrier integrity has not been explored in detail. In human proximal tubular (HK-2) and umbilical vein endothelial (HUVEC) cells, exposure to 200 µM MG decreased transepithelial resistance (TER), i.e. increased ionic permeability and permeability for 4-, 10- and 70-kDa dextran, membrane zonula occludens (ZO-1) abundance was reduced, methylglyoxal 5-hydro-5-methylimidazolones (MG-H1) formation was increased. Carnosine, balenine (ß-ala-1methyl-histidine) and anserine (ß-ala-3-methyl-histidine) ameliorated MG-induced reduction of TER in both cell types. Incubation with histidine, 1-/3-methylhistidine, but not with ß-alanine alone, restored TER, although to a lower extent than the corresponding dipeptides. Carnosine and anserine normalized transport and membrane ZO-1 abundance. Aminoguanidine, a well-described MG-quencher, did not mitigate MG-induced loss of TER. Our results show that the effects of the dipeptides on epithelial and endothelial resistance and junction function depend on the methylation status of histidine and are not exclusively explained by their quenching activity.
Collapse
Affiliation(s)
- Charlotte Wetzel
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Nadia Gallenstein
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Verena Peters
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas Fleming
- Internal Medicine I and Clinical Chemistry, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Iva Marinovic
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Alea Bodenschatz
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Zhiwei Du
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Katharina Küper
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Milan, Italy
| | - Thomas Schmoch
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Anesthesiology and Intensive Care Medicine, Hôpitaux Robert Schuman - Hôpital Kirchberg, Luxembourg City, Luxembourg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Alexander Weigand
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sotirios G Zarogiannis
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Claus Peter Schmitt
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Maria Bartosova
- Centre for Paediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Artasensi A, Mazzotta S, Sanz I, Lin L, Vistoli G, Fumagalli L, Regazzoni L. Exploring Secondary Amine Carnosine Derivatives: Design, Synthesis, and Properties. Molecules 2024; 29:5083. [PMID: 39519724 PMCID: PMC11547551 DOI: 10.3390/molecules29215083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Carnosine is a naturally occurring dipeptide that has been advocated by some authors as an interesting scaffold for the development of potential therapeutic agents in view of the positive outcomes of its supplementation in animal models of human diseases. Its mode of action seems to depend on the quenching of toxic electrophiles, such as 4-hydroxynonenal (HNE). However, carnosine's bioavailability in humans is lower than that in other mammals. The main reason for such an unfavorable pharmacokinetic profile is the activity of the enzyme human serum carnosinase (E.C. 3.4.13.20), which rapidly hydrolyzes carnosine upon absorption. Therefore, some studies have focused on the design of carnosinase-resistant derivatives that retain binding activity toward toxic electrophiles. Nevertheless, the structural modification of the N-terminus amino group of carnosine has rarely been considered, possibly because of its key role in the electrophile scavenging mechanism. This was proven, since some carnosine N-terminus modification generated inactive compounds, despite some derivatives retaining oral bioavailability and gaining resistance to carnosinase hydrolysis. Herein, we therefore report a study aimed at exploring whether the amino group of carnosine can be conveniently modified to develop carnosinase-resistant derivatives retaining the dipeptide activity toward toxic electrophiles.
Collapse
Affiliation(s)
- Angelica Artasensi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Sarah Mazzotta
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Ines Sanz
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Licheng Lin
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Laura Fumagalli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
3
|
Romão IC, Siqueira SMC, Silva Abreu FOMD, Santos HSD. Hydralazine and Hydrazine Derivatives: Properties, Applications, and Repositioning Potential. Chem Biodivers 2024:e202401561. [PMID: 39429053 DOI: 10.1002/cbdv.202401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
The investigation of new drugs is slow and costly. Drug repositioning, like with Hydralazine (HDZ), an old antihypertensive, can accelerate the process. HDZ and its hydrazonic derivatives exhibit diverse biological activities, promising for new drugs. This review explores HDZ's repositioning potential and its derivatives' applications in various biological activities. It identified 70 relevant articles through database searches. HDZ shows potential in neurology, oncology, nephrology, and gynecology, with clinical trials up to Phase III. Hydralazine-valproate, marketed in Mexico, proves effective in combination with chemotherapy. Hydrazonic derivatives offer broad applications in medicine. Studying their structure-activity relationship can enhance efficacy. This review summarizes their properties and pharmacological activities succinctly.
Collapse
Affiliation(s)
- Ivana Carneiro Romão
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental-LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, 60.714903, Fortaleza, Ceará, Brazil
| | - Sônia Maria Costa Siqueira
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental-LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, 60.714903, Fortaleza, Ceará, Brazil
| | - Flávia Oliveira Monteiro da Silva Abreu
- Laboratório de polímeros naturais-Laponat, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, 60.714903, Fortaleza, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Laboratório de Bioensaios Químicos-Farmacológicos e Ambiental-LabQFAm, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, 60.714903, Fortaleza, Ceará, Brazil
- Curso de Química, Universidade Estadual Vale do Acaraú, 62.040-370, Sobral, Ceará, Brazil
| |
Collapse
|
4
|
Aleksic M, Meng X. Protein Haptenation and Its Role in Allergy. Chem Res Toxicol 2024; 37:850-872. [PMID: 38834188 PMCID: PMC11187640 DOI: 10.1021/acs.chemrestox.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Humans are exposed to numerous electrophilic chemicals either as medicines, in the workplace, in nature, or through use of many common cosmetic and household products. Covalent modification of human proteins by such chemicals, or protein haptenation, is a common occurrence in cells and may result in generation of antigenic species, leading to development of hypersensitivity reactions. Ranging in severity of symptoms from local cutaneous reactions and rhinitis to potentially life-threatening anaphylaxis and severe hypersensitivity reactions such as Stephen-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), all these reactions have the same Molecular Initiating Event (MIE), i.e. haptenation. However, not all individuals who are exposed to electrophilic chemicals develop symptoms of hypersensitivity. In the present review, we examine common chemistry behind the haptenation reactions leading to formation of neoantigens. We explore simple reactions involving single molecule additions to a nucleophilic side chain of proteins and complex reactions involving multiple electrophilic centers on a single molecule or involving more than one electrophilic molecule as well as the generation of reactive molecules from the interaction with cellular detoxification mechanisms. Besides generation of antigenic species and enabling activation of the immune system, we explore additional events which result directly from the presence of electrophilic chemicals in cells, including activation of key defense mechanisms and immediate consequences of those reactions, and explore their potential effects. We discuss the factors that work in concert with haptenation leading to the development of hypersensitivity reactions and those that may act to prevent it from developing. We also review the potential harnessing of the specificity of haptenation in the design of potent covalent therapeutic inhibitors.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety
and Environmental Assurance Centre, Unilever,
Colworth Science Park, Sharnbrook, Bedford MK44
1LQ, U.K.
| | - Xiaoli Meng
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, U.K.
| |
Collapse
|
5
|
Vacchini A, Chancellor A, Yang Q, Colombo R, Spagnuolo J, Berloffa G, Joss D, Øyås O, Lecchi C, De Simone G, Beshirova A, Nosi V, Loureiro JP, Morabito A, De Gregorio C, Pfeffer M, Schaefer V, Prota G, Zippelius A, Stelling J, Häussinger D, Brunelli L, Villalta P, Lepore M, Davoli E, Balbo S, Mori L, De Libero G. Nucleobase adducts bind MR1 and stimulate MR1-restricted T cells. Sci Immunol 2024; 9:eadn0126. [PMID: 38728413 DOI: 10.1126/sciimmunol.adn0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
MR1T cells are a recently found class of T cells that recognize antigens presented by the major histocompatibility complex-I-related molecule MR1 in the absence of microbial infection. The nature of the self-antigens that stimulate MR1T cells remains unclear, hampering our understanding of their physiological role and therapeutic potential. By combining genetic, pharmacological, and biochemical approaches, we found that carbonyl stress and changes in nucleobase metabolism in target cells promote MR1T cell activation. Stimulatory compounds formed by carbonyl adducts of nucleobases were detected within MR1 molecules produced by tumor cells, and their abundance and antigenicity were enhanced by drugs that induce carbonyl accumulation. Our data reveal carbonyl-nucleobase adducts as MR1T cell antigens. Recognizing cells under carbonyl stress allows MR1T cells to monitor cellular metabolic changes with physiological and therapeutic implications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Julian Spagnuolo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Ove Øyås
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland
| | - Chiara Lecchi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Corinne De Gregorio
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Gennaro Prota
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Peter Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| |
Collapse
|
6
|
Peyret H, Konecki C, Terryn C, Dubuisson F, Millart H, Feliu C, Djerada Z. Methylglyoxal induces cardiac dysfunction through mechanisms involving altered intracellular calcium handling in the rat heart. Chem Biol Interact 2024; 394:110949. [PMID: 38555048 DOI: 10.1016/j.cbi.2024.110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.
Collapse
Affiliation(s)
- Hélène Peyret
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France
| | - Céline Konecki
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France; Centre Hospitalier Universitaire de Reims, Service Pharmacologie-Toxicologie, Pôle de Biologie Territoriale, Reims, 51100, France
| | - Christine Terryn
- Université de Reims Champagne Ardenne, PICT, Reims, 51100, France
| | - Florine Dubuisson
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France
| | - Hervé Millart
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France
| | - Catherine Feliu
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France; Centre Hospitalier Universitaire de Reims, Service Pharmacologie-Toxicologie, Pôle de Biologie Territoriale, Reims, 51100, France
| | - Zoubir Djerada
- Université de Reims Champagne Ardenne, UR 3801 PPF, Reims, 51100, France; Centre Hospitalier Universitaire de Reims, Service Pharmacologie-Toxicologie, Pôle de Biologie Territoriale, Reims, 51100, France.
| |
Collapse
|
7
|
Nègre-Salvayre A, Salvayre R. Reactive Carbonyl Species and Protein Lipoxidation in Atherogenesis. Antioxidants (Basel) 2024; 13:232. [PMID: 38397830 PMCID: PMC10886358 DOI: 10.3390/antiox13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis is a multifactorial disease of medium and large arteries, characterized by the presence of lipid-rich plaques lining the intima over time. It is the main cause of cardiovascular diseases and death worldwide. Redox imbalance and lipid peroxidation could play key roles in atherosclerosis by promoting a bundle of responses, including endothelial activation, inflammation, and foam cell formation. The oxidation of polyunsaturated fatty acids generates various lipid oxidation products such as reactive carbonyl species (RCS), including 4-hydroxy alkenals, malondialdehyde, and acrolein. RCS covalently bind to nucleophilic groups of nucleic acids, phospholipids, and proteins, modifying their structure and activity and leading to their progressive dysfunction. Protein lipoxidation is the non-enzymatic post-translational modification of proteins by RCS. Low-density lipoprotein (LDL) oxidation and apolipoprotein B (apoB) modification by RCS play a major role in foam cell formation. Moreover, oxidized LDLs are a source of RCS, which form adducts on a huge number of proteins, depending on oxidative stress intensity, the nature of targets, and the availability of detoxifying systems. Many systems are affected by lipoxidation, including extracellular matrix components, membranes, cytoplasmic and cytoskeletal proteins, transcription factors, and other components. The mechanisms involved in lipoxidation-induced vascular dysfunction are not fully elucidated. In this review, we focus on protein lipoxidation during atherogenesis.
Collapse
Affiliation(s)
- Anne Nègre-Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| | - Robert Salvayre
- Inserm Unité Mixte de Recherche (UMR), 1297 Toulouse, Centre Hospitalier Universitaire (CHU) Rangueil—BP 84225, 31432 Toulouse CEDEX 4, France;
- Faculty of Medicine, University of Toulouse, 31432 Toulouse, France
| |
Collapse
|
8
|
Zhang M, Huang C, Ou J, Liu F, Ou S, Zheng J. Glyoxal in Foods: Formation, Metabolism, Health Hazards, and Its Control Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2434-2450. [PMID: 38284798 DOI: 10.1021/acs.jafc.3c08225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Glyoxal is a highly reactive aldehyde widely present in common diet and environment and inevitably generated through various metabolic pathways in vivo. Glyoxal is easily produced in diets high in carbohydrates and fats via the Maillard reaction, carbohydrate autoxidation, and lipid peroxidation, etc. This leads to dietary intake being a major source of exogenous exposure. Exposure to glyoxal has been positively associated with a number of metabolic diseases, such as diabetes mellitus, atherosclerosis, and Alzheimer's disease. It has been demonstrated that polyphenols, probiotics, hydrocolloids, and amino acids can reduce the content of glyoxal in foods via different mechanisms, thus reducing the risk of exogenous exposure to glyoxal and alleviating carbonyl stresses in the human body. This review discussed the formation and metabolism of glyoxal, its health hazards, and the strategies to reduce such health hazards. Future investigation of glyoxal from different perspectives is also discussed.
Collapse
Affiliation(s)
- Mianzhang Zhang
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Juanying Ou
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
- Guangzhou College of Technology and Business, 510580 Guangzhou, Guangdong China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, 510632 Guangzhou , China
| |
Collapse
|
9
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
10
|
Artasensi A, Salina E, Fumagalli L, Regazzoni L. A Novel Chromatographic Method to Assess the Binding Ability towards Dicarbonyls. Molecules 2023; 28:5341. [PMID: 37513213 PMCID: PMC10384793 DOI: 10.3390/molecules28145341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Human exposure to dicarbonyls occurs via ingestion (e.g., food), inhalation (e.g., electronic cigarettes) and dysregulation of endogenous metabolic pathways (e.g., glycolysis). Dicarbonyls are electrophiles able to induce carbonylation of endogenous substrate. They have been associated with the onset and progression of several human diseases. Several studies have advocated the use of dicarbonyl binders as food preservatives or as drugs aimed at mitigating carbonylation. This study presents the setup of an easy and cheap assay for the screening of selective and potent dicarbonyl binders. The method is based on the incubation of the candidate molecules with a molecular probe. The activity is then determined by measuring the residual concentration of the molecular probe over time by liquid chromatography (LC). However, the naturally occurring dicarbonyls (e.g., glyoxal, methylglyoxal) are not appealing as probes since they are hard to separate and detect using the most popular LC variants. Benzylglyoxal (BGO) was therefore synthesized and tested, proving to be a convenient probe that allows a direct quantification of residual dicarbonyls by reversed phase LC without derivatization. The method was qualified by assessing the binding ability of some molecules known as binders of natural occurring dicarbonyls, obtaining results consistent with literature.
Collapse
Affiliation(s)
- Angelica Artasensi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Emanuele Salina
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Laura Fumagalli
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
11
|
Efforts Towards Repurposing of Antioxidant Drugs and Active Compounds for Multiple Sclerosis Control. Neurochem Res 2023; 48:725-744. [PMID: 36385213 DOI: 10.1007/s11064-022-03821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Multiple Sclerosis (MS) is a degenerative disorder of the central nervous system (CNS) with complicated etiology that has not been clearly analyzed until nowadays. Apart from anti-inflammatory, immune modulatory and symptomatic treatments, which are the main tools towards MS control, antioxidant molecules may be of interest. Oxidative stress is a key condition implicated in the disease progression. Reactive species production is associated with immune cell activation in the brain as well as in the periphery, accounting for demyelinating and axonal disruptive processes. This review refers to research articles, of the last decade. It describes biological evaluation of antioxidant drugs, and molecules with pharmaceutical interest, which are not designed for MS treatment, however they seem to have potency against MS. Their antioxidant effect is accompanied, in most of the cases, by anti-inflammatory, immune-modulatory and neuroprotective properties. Compounds with such characteristics are expected to be beneficial in the treatment of MS, alone or as complementary therapy, improving some clinical and mechanistic aspects of the disease. This review also summarizes some of the pathobiological characteristics of MS, as well as the role of oxidative stress and inflammation in the progression of neurodegeneration. It presents known drugs and bioactive compounds with antioxidant, and in many cases, pleiotropic activity that have been tested for their efficacy in MS progression or the experimentally induced MS. Antioxidants may offer reduction or prevention of the disease symptoms and progression. Thus, their results may, combined with already applied treatments, be beneficial for the development of new molecules or the repurposing of drugs and supplements that are used with other indication so far.
Collapse
|
12
|
Matthews JJ, Turner MD, Santos L, Elliott-Sale KJ, Sale C. Carnosine increases insulin-stimulated glucose uptake and reduces methylglyoxal-modified proteins in type-2 diabetic human skeletal muscle cells. Amino Acids 2023; 55:413-420. [PMID: 36637533 PMCID: PMC10038967 DOI: 10.1007/s00726-022-03230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 01/14/2023]
Abstract
Type-2 diabetes (T2D) is characterised by a dysregulation of metabolism, including skeletal muscle insulin resistance, mitochondrial dysfunction, and oxidative stress. Reactive species, such as methylglyoxal (MGO) and 4-hydroxynonenal (4-HNE), positively associate with T2D disease severity and can directly interfere with insulin signalling and glucose uptake in skeletal muscle by modifying cellular proteins. The multifunctional dipeptide carnosine, and its rate-limiting precursor β-alanine, have recently been shown to improve glycaemic control in humans and rodents with diabetes. However, the precise mechanisms are unclear and research in human skeletal muscle is limited. Herein, we present novel findings in primary human T2D and lean healthy control (LHC) skeletal muscle cells. Cells were differentiated to myotubes, and treated with 10 mM carnosine, 10 mM β-alanine, or control for 4-days. T2D cells had reduced ATP-linked and maximal respiration compared with LHC cells (p = 0.016 and p = 0.005). Treatment with 10 mM carnosine significantly increased insulin-stimulated glucose uptake in T2D cells (p = 0.047); with no effect in LHC cells. Insulin-stimulation increased MGO-modified proteins in T2D cells by 47%; treatment with carnosine attenuated this increase to 9.7% (p = 0.011). There was no effect treatment on cell viability or expression of other proteins. These findings suggest that the beneficial effects of carnosine on glycaemic control may be explained by its scavenging actions in human skeletal muscle.
Collapse
Affiliation(s)
- Joseph J Matthews
- Sport, Health and Performance Research Centre, Musculoskeletal Physiology Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Sport and Exercise, Centre for Life and Sport Sciences (CLaSS), Birmingham City University, Birmingham, UK
| | - Mark D Turner
- Centre for Diabetes, Chronic Diseases & Ageing, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Livia Santos
- Sport, Health and Performance Research Centre, Musculoskeletal Physiology Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Kirsty J Elliott-Sale
- Sport, Health and Performance Research Centre, Musculoskeletal Physiology Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Craig Sale
- Sport, Health and Performance Research Centre, Musculoskeletal Physiology Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Institute of Sport, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
13
|
Rodrigues WD, Cardoso FN, Baviera AM, dos Santos AG. In Vitro Antiglycation Potential of Erva-Baleeira ( Varronia curassavica Jacq.). Antioxidants (Basel) 2023; 12:522. [PMID: 36830081 PMCID: PMC9952575 DOI: 10.3390/antiox12020522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Varronia curassavica Jacq. (Boraginaceae) is traditionally used in the treatment of inflammatory processes. The ethanolic extract of its leaves (EEVc) showed anti-inflammatory properties and low toxicity. Medicinal plants have aroused interest for their antiglycation activities. The formation and accumulation of advanced glycation end products (AGEs) are associated with several chronic diseases. The objective of this study was to evaluate the antiglycation potential of EEVc and two isolated compounds. METHODS The compounds brickellin and cordialin A were obtained by chromatographic methods and identified by spectrometric techniques. Analysis of fluorescent AGEs, biomarkers of amino acid residue oxidation, protein carbonyl groups and crosslink formation were performed in samples obtained from an in vitro model system of protein glycation with methylglyoxal. RESULTS EEVc, brickellin and cordialin A significantly reduced the in vitro formation of AGEs, and reduced the damage caused by oxidative damage to the protein. CONCLUSIONS According to the results, EEVc, brickellin and cordialin A are potential candidates against AGEs formation, which opens the way to expand the therapeutic arsenal for many pathologies resulting from glycoxidative stress.
Collapse
Affiliation(s)
- Winner Duque Rodrigues
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, Brazil
| | - Felipe Nunes Cardoso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, Brazil
| | - André Gonzaga dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, Brazil
| |
Collapse
|
14
|
Diniz FC, Hipkiss AR, Ferreira GC. The Potential Use of Carnosine in Diabetes and Other Afflictions Reported in Long COVID Patients. Front Neurosci 2022; 16:898735. [PMID: 35812220 PMCID: PMC9257001 DOI: 10.3389/fnins.2022.898735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Carnosine is a dipeptide expressed in both the central nervous system and periphery. Several biological functions have been attributed to carnosine, including as an anti-inflammatory and antioxidant agent, and as a modulator of mitochondrial metabolism. Some of these mechanisms have been implicated in the pathophysiology of coronavirus disease-2019 (COVID-19). COVID-19 is caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The clinical manifestation and recovery time for COVID-19 are variable. Some patients are severely affected by SARS-CoV-2 infection and may experience respiratory failure, thromboembolic disease, neurological symptoms, kidney damage, acute pancreatitis, and even death. COVID-19 patients with comorbidities, including diabetes, are at higher risk of death. Mechanisms underlying the dysfunction of the afflicted organs in COVID-19 patients have been discussed, the most common being the so-called cytokine storm. Given the biological effects attributed to carnosine, adjuvant therapy with this dipeptide could be considered as supportive treatment in patients with either COVID-19 or long COVID.
Collapse
Affiliation(s)
- Fabiola Cardoso Diniz
- Laboratório de Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alan Roger Hipkiss
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham, United Kingdom
| | - Gustavo Costa Ferreira
- Laboratório de Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Química Biológica, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Vassilyeva OY, Buvaylo EA, Kokozay VN, Studzinsky SL, Skelton BW, Vasyliev GS. Ni II mol-ecular complex with a tetra-dentate amino-guanidine-derived Schiff base ligand: structural, spectroscopic and electrochemical studies and photoelectric response. Acta Crystallogr E Crystallogr Commun 2022; 78:173-178. [PMID: 35145746 PMCID: PMC8819441 DOI: 10.1107/s2056989022000317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
The new mol-ecular nickel(II) complex, namely, {4-bromo-2-[({N'-[(2-oxidobenzylidene)amino]carbamimidoyl}imino)methyl]phenolato}nickel(II) N,N-di-methyl-formamide solvate monohydrate, [Ni(C15H11BrN4O2)]·C3H7NO·H2O, (I), crystallizes in the triclinic space group P with one mol-ecule per asymmetric unit. The guanidine ligand is a product of Schiff base condensation between amino-guanidine, salicyl-aldehyde and 5-bromo-salicyl-aldehyde templated by Ni2+ ions. The chelating ligand mol-ecule is deprotonated at the phenol O atoms and coordinates the metal centre through the two azomethine N and two phenolate O atoms in a cis-NiN2O2 square-planar configuration [average(Ni-N/O) = 1.8489 Å, cis angles in the range 83.08 (5)-95.35 (5)°, trans angles of 177.80 (5) and 178.29 (5)°]. The complex mol-ecule adopts an almost planar conformation. In the crystal, a complicated hydrogen-bonded network is formed through N-H⋯N/O and O-H⋯O inter-molecular inter-actions. Complex (I) was also characterized by FT-IR and 1H NMR spectroscopy. It undergoes an NiII ↔ NiIII redox reaction at E 1/2 = +0.295 V (vs Ag/AgCl) in methanol solution. In a thin film with a free surface, complex (I) shows a fast photoelectric response upon exposure to visible light with a maximum photovoltage of ∼178 mV.
Collapse
Affiliation(s)
- Olga Yu. Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Elena A. Buvaylo
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Vladimir N. Kokozay
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Sergey L. Studzinsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Brian W. Skelton
- School of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
| | - Georgii S. Vasyliev
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Prospect Peremohy, Kyiv 03056, Ukraine
| |
Collapse
|
16
|
Spaas J, Franssen WMA, Keytsman C, Blancquaert L, Vanmierlo T, Bogie J, Broux B, Hellings N, van Horssen J, Posa DK, Hoetker D, Baba SP, Derave W, Eijnde BO. Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation. J Neuroinflammation 2021; 18:255. [PMID: 34740381 PMCID: PMC8571880 DOI: 10.1186/s12974-021-02306-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. Methods The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). Results Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (β-alanyl-l-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. Conclusions Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02306-9.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium. .,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium. .,Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Wouter M A Franssen
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Charly Keytsman
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tim Vanmierlo
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Division of Translational Neuroscience, Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jeroen Bogie
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bieke Broux
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Niels Hellings
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jack van Horssen
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
17
|
Pasten C, Lozano M, Rocco J, Carrión F, Alvarado C, Liberona J, Michea L, Irarrázabal CE. Aminoguanidine Prevents the Oxidative Stress, Inhibiting Elements of Inflammation, Endothelial Activation, Mesenchymal Markers, and Confers a Renoprotective Effect in Renal Ischemia and Reperfusion Injury. Antioxidants (Basel) 2021; 10:antiox10111724. [PMID: 34829595 PMCID: PMC8614713 DOI: 10.3390/antiox10111724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress produces macromolecules dysfunction and cellular damage. Renal ischemia-reperfusion injury (IRI) induces oxidative stress, inflammation, epithelium and endothelium damage, and cessation of renal function. The IRI is an inevitable process during kidney transplantation. Preliminary studies suggest that aminoguanidine (AG) is an antioxidant compound. In this study, we investigated the antioxidant effects of AG (50 mg/kg, intraperitoneal) and its association with molecular pathways activated by IRI (30 min/48 h) in the kidney. The antioxidant effect of AG was studied measuring GSSH/GSSG ratio, GST activity, lipoperoxidation, iNOS, and Hsp27 levels. In addition, we examined the effect of AG on elements associated with cell survival, inflammation, endothelium, and mesenchymal transition during IRI. AG prevented lipid peroxidation, increased GSH levels, and recovered the GST activity impaired by IRI. AG was associated with inhibition of iNOS, Hsp27, endothelial activation (VE-cadherin, PECAM), mesenchymal markers (vimentin, fascin, and HSP47), and inflammation (IL-1β, IL-6, Foxp3, and IL-10) upregulation. In addition, AG reduced kidney injury (NGAL, clusterin, Arg-2, and TFG-β1) and improved kidney function (glomerular filtration rate) during IRI. In conclusion, we found new evidence of the antioxidant properties of AG as a renoprotective compound during IRI. Therefore, AG is a promising compound to treat the deleterious effect of renal IRI.
Collapse
Affiliation(s)
- Consuelo Pasten
- Laboratorio de Fisiología Integrativa y Molecular, Programa de Fisiología, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 7620157, Chile; (C.P.); (M.L.); (J.R.)
- Facultad de Medicina, Universidad de los Andes, Santiago 7620157, Chile
| | - Mauricio Lozano
- Laboratorio de Fisiología Integrativa y Molecular, Programa de Fisiología, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 7620157, Chile; (C.P.); (M.L.); (J.R.)
| | - Jocelyn Rocco
- Laboratorio de Fisiología Integrativa y Molecular, Programa de Fisiología, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 7620157, Chile; (C.P.); (M.L.); (J.R.)
| | - Flavio Carrión
- Facultad de Ciencias de la Salud, Universidad del Alba, Santiago 7620157, Chile;
| | - Cristobal Alvarado
- Clinical Research Unit, Hospital Las Higueras, Talcahuano 4260000, Chile;
- Department of Basic Sciences, School of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile
| | - Jéssica Liberona
- Instituto de Ciencias Biomédicas, School of Medicine, Universidad de Chile, Santiago 7620157, Chile; (J.L.); (L.M.)
| | - Luis Michea
- Instituto de Ciencias Biomédicas, School of Medicine, Universidad de Chile, Santiago 7620157, Chile; (J.L.); (L.M.)
- Millennium Institute on Immunology and Immunotheraphy, Santiago 762015, Chile
| | - Carlos E. Irarrázabal
- Laboratorio de Fisiología Integrativa y Molecular, Programa de Fisiología, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 7620157, Chile; (C.P.); (M.L.); (J.R.)
- Facultad de Medicina, Universidad de los Andes, Santiago 7620157, Chile
- Correspondence: ; Tel.: +56-2-4129607
| |
Collapse
|
18
|
Monroe TB, Anderson EJ. A Catecholaldehyde Metabolite of Norepinephrine Induces Myofibroblast Activation and Toxicity via the Receptor for Advanced Glycation Endproducts: Mitigating Role of l-Carnosine. Chem Res Toxicol 2021; 34:2194-2201. [PMID: 34609854 PMCID: PMC8527521 DOI: 10.1021/acs.chemrestox.1c00262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 01/12/2023]
Abstract
Monoamine oxidase (MAO) is rapidly gaining appreciation for its pathophysiologic role in cardiac injury and failure. Oxidative deamination of norepinephrine by MAO generates H2O2 and the catecholaldehyde 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL), the latter of which is a highly potent and reactive electrophile that has been linked to cardiotoxicity. However, many questions remain as to whether catecholaldehydes regulate basic physiological processes in the myocardium and the pathways involved. Here, we examined the role of MAO-derived oxidative metabolites in mediating the activation of cardiac fibroblasts in response to norepinephrine. In neonatal murine cardiac fibroblasts, norepinephrine increased reactive oxygen species (ROS), accumulation of catechol-modified protein adducts, expression and secretion of collagens I/III, and other markers of profibrotic activation including STAT3 phosphorylation. These effects were attenuated with MAO inhibitors, the aldehyde-scavenging dipeptide l-carnosine, and FPS-ZM1, an antagonist for the receptor for advanced glycation endproducts (RAGE). Interestingly, treatment of cardiac fibroblasts with a low dose (1 μM) of DOPEGAL-modified albumin phenocopied many of the effects of norepinephrine and also induced an increase in RAGE expression. Higher doses (>10 μM) of DOPEGAL-modified albumin were determined to be toxic to cardiac fibroblasts in a RAGE-dependent manner, which was mitigated by l-carnosine. Collectively, these findings suggest that norepinephrine may influence extracellular matrix remodeling via an adrenergic-independent redox pathway in cardiac fibroblasts involving the MAO-mediated generation of ROS, catecholaldehydes, and RAGE. Furthermore, since elevations in the catecholaminergic tone and oxidative stress in heart disease are linked with cardiac fibrosis, this study illustrates novel drug targets that could potentially mitigate this serious disorder.
Collapse
Affiliation(s)
- T. Blake Monroe
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ethan J. Anderson
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
19
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
20
|
Complexes of Copper and Iron with Pyridoxamine, Ascorbic Acid, and a Model Amadori Compound: Exploring Pyridoxamine's Secondary Antioxidant Activity. Antioxidants (Basel) 2021; 10:antiox10020208. [PMID: 33535448 PMCID: PMC7912584 DOI: 10.3390/antiox10020208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
The thermodynamic stability of 11 complexes of Cu(II) and 26 complexes of Fe(III) is studied, comprising the ligands pyridoxamine (PM), ascorbic acid (ASC), and a model Amadori compound (AMD). In addition, the secondary antioxidant activity of PM is analyzed when chelating both Cu(II) and Fe(III), relative to the rate constant of the first step of the Haber-Weiss cycle, in the presence of the superoxide radical anion (O2•-) or ascorbate (ASC-). Calculations are performed at the M05(SMD)/6-311+G(d,p) level of theory. The aqueous environment is modeled by making use of the SMD solvation method in all calculations. This level of theory accurately reproduces the experimental data available. When put in perspective with the stability of various complexes of aminoguanidine (AG) (which we have previously studied), the following stability trends can be found for the Cu(II) and Fe(III) complexes, respectively: ASC < AG < AMD < PM and AG < ASC < AMD < PM. The most stable complex of Cu(II) with PM (with two bidentate ligands) presents a ΔGf0 value of -35.8 kcal/mol, whereas the Fe(III) complex with the highest stability (with three bidentate ligands) possesses a ΔGf0 of -58.9 kcal/mol. These complexes can significantly reduce the rate constant of the first step of the Haber-Weiss cycle with both O2•- and ASC-. In the case of the copper-containing reaction, the rates are reduced up to 9.70 × 103 and 4.09 × 1013 times, respectively. With iron, the rates become 1.78 × 103 and 4.45 × 1015 times smaller, respectively. Thus, PM presents significant secondary antioxidant activity since it is able to inhibit the production of ·OH radicals. This work concludes a series of studies on secondary antioxidant activity and allows potentially new glycation inhibitors to be investigated and compared relative to both PM and AG.
Collapse
|
21
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
22
|
Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V. Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis. Antioxidants (Basel) 2020; 9:antiox9121303. [PMID: 33353117 PMCID: PMC7767317 DOI: 10.3390/antiox9121303] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence indicates that the dysregulation of cellular redox homeostasis and chronic inflammatory processes are implicated in the pathogenesis of kidney and brain disorders. In this light, endogenous dipeptide carnosine (β-alanyl-L-histidine) and hydrogen sulfide (H2S) exert cytoprotective actions through the modulation of redox-dependent resilience pathways during oxidative stress and inflammation. Several recent studies have elucidated a functional crosstalk occurring between kidney and the brain. The pathophysiological link of this crosstalk is represented by oxidative stress and inflammatory processes which contribute to the high prevalence of neuropsychiatric disorders, cognitive impairment, and dementia during the natural history of chronic kidney disease. Herein, we provide an overview of the main pathophysiological mechanisms related to high levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and neurotoxins, which play a critical role in the kidney–brain crosstalk. The present paper also explores the respective role of H2S and carnosine in the modulation of oxidative stress and inflammation in the kidney–brain axis. It suggests that these activities are likely mediated, at least in part, via hormetic processes, involving Nrf2 (Nuclear factor-like 2), Hsp 70 (heat shock protein 70), SIRT-1 (Sirtuin-1), Trx (Thioredoxin), and the glutathione system. Metabolic interactions at the kidney and brain axis level operate in controlling and reducing oxidant-induced inflammatory damage and therefore, can be a promising potential therapeutic target to reduce the severity of renal and brain injuries in humans.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| |
Collapse
|
23
|
Aldini G, de Courten B, Regazzoni L, Gilardoni E, Ferrario G, Baron G, Altomare A, D’Amato A, Vistoli G, Carini M. Understanding the antioxidant and carbonyl sequestering activity of carnosine: direct and indirect mechanisms. Free Radic Res 2020; 55:321-330. [DOI: 10.1080/10715762.2020.1856830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Mandell KJ, Clark D, Chu DS, Foster CS, Sheppard J, Brady TC. Randomized Phase 2 Trial of Reproxalap, a Novel Reactive Aldehyde Species Inhibitor, in Patients with Noninfectious Anterior Uveitis: Model for Corticosteroid Replacement. J Ocul Pharmacol Ther 2020; 36:732-739. [PMID: 32955967 PMCID: PMC7757619 DOI: 10.1089/jop.2020.0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/11/2020] [Indexed: 11/12/2022] Open
Abstract
Purpose: Topical corticosteroids used to treat ocular inflammation are associated with a high risk of clinically significant toxicities. Therefore, corticosteroid-sparing medications to treat ocular inflammation are needed. Noninfectious anterior uveitis (NAU) is a sight-threatening ocular inflammatory condition typically treated with topical corticosteroids. This corticosteroid-controlled comparator trial examines the safety and efficacy of reproxalap, a novel inhibitor of reactive aldehyde species (RASP), for the treatment of ocular inflammation, by using NAU as a model. Methods: Forty-five patients with mild-to-moderate acute NAU were randomly assigned 1:1:1 to receive reproxalap 0.5% ophthalmic solution (4 times daily for 6 weeks), prednisolone 1% ophthalmic solution (Pred Forte®, 4 times daily taper for 6 weeks), or a combination of reproxalap 0.5% ophthalmic solution (4 times daily for 6 weeks) and prednisolone 1% ophthalmic solution (twice daily taper for 6 weeks). Results: All treatments improved anterior cell count and grade, and no differences were observed in change from baseline between groups. Reproxalap monotherapy and combination therapy were statistically noninferior to prednisolone. The proportion of patients requiring rescue therapy was comparable across treatment groups. No safety issues were identified for reproxalap-treated patients, whereas treatment with prednisolone resulted in an average increase of intraocular pressure of ∼2 mm Hg. Conclusions: Reproxalap may be a safe and effective alternative to topical corticosteroids for patients with NAU and other forms of ocular inflammation. These results represent initial clinical evidence of the importance of RASP in ocular inflammation and the applicability of RASP inhibition to immune modulation in ocular disease. Clinical trial (NCT02406209).
Collapse
Affiliation(s)
| | - David Clark
- Aldeyra Therapeutics, Inc., Lexington, Massachusetts, USA
| | - David S. Chu
- Metropolitan Eye Research and Surgery Institute, Palisades Park, New Jersey, USA
| | - C. Stephen Foster
- Massachusetts Eye Research and Surgery Institution, Waltham, Massachusetts, USA
| | | | - Todd C. Brady
- Aldeyra Therapeutics, Inc., Lexington, Massachusetts, USA
| |
Collapse
|
25
|
Drosera tokaiensis extract containing multiple phenolic compounds inhibits the formation of advanced glycation end-products. Arch Biochem Biophys 2020; 693:108586. [DOI: 10.1016/j.abb.2020.108586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
26
|
Palin MF, Lapointe J, Gariépy C, Beaudry D, Kalbe C. Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions. PLoS One 2020; 15:e0239496. [PMID: 32946513 PMCID: PMC7500635 DOI: 10.1371/journal.pone.0239496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Carnosine is a naturally occurring histidine-containing dipeptide present at high concentration in mammalian skeletal muscles. Carnosine was shown to affect muscle contraction, prevent the accumulation of oxidative metabolism by-products and act as an intracellular proton buffer maintaining the muscle acid-base balance. The present study was undertaken to gain additional knowledge about the intracellular mechanisms activated by carnosine in porcine myoblast cells under basal and oxidative stress conditions. Satellite cells were isolated from the skeletal muscles of 3 to 4 day-old piglets to study the effect of 0, 10, 25 and 50 mM carnosine pre-treatments in cells that were exposed (0.3 mM H2O2) or not to an H2O2-induced oxidative stress. Study results demonstrated that carnosine acts differently in myoblasts under oxidative stress and in basal conditions, the only exception being with the reduction of reactive oxygen species and protein carbonyls observed in both experimental conditions with carnosine pre-treatment. In oxidative stress conditions, carnosine pre-treatment increased the mRNA abundance of the nuclear factor, erythroid 2 like 2 (NEF2L2) transcription factor and several of its downstream genes known to reduce H2O2. Carnosine prevented the H2O2-mediated activation of p38 MAPK in oxidative stress conditions, whereas it triggered the activation of mTOR under basal conditions. Current results support the protective effect of carnosine against oxidative damage in porcine myoblast cells, an effect that would be mediated through the p38 MAPK intracellular signaling pathway. The activation of the mTOR signaling pathway under basal condition also suggest a role for carnosine in myoblasts proliferation, growth and survival.
Collapse
Affiliation(s)
- Marie-France Palin
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Québec, Canada
| | - Jérôme Lapointe
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Québec, Canada
| | - Claude Gariépy
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, Québec, Canada
| | - Danièle Beaudry
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Québec, Canada
| | - Claudia Kalbe
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, Dummerstorf, Germany
| |
Collapse
|
27
|
García-Díez G, Mora-Diez N. Theoretical Study of the Iron Complexes with Aminoguanidine: Investigating Secondary Antioxidant Activity. Antioxidants (Basel) 2020; 9:E756. [PMID: 32824195 PMCID: PMC7463863 DOI: 10.3390/antiox9080756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
A thorough analysis of the thermodynamic stability of various complexes of aminoguanidine (AG) with Fe(III) at a physiological pH is presented. Moreover, the secondary antioxidant activity of AG is studied with respect to its kinetic role in the Fe(III) reduction to Fe(II) when reacting with the superoxide radical anion or ascorbate. Calculations are performed at the M05(SMD)/6-311+G(d,p) level of theory. Solvent effects (water) are taken into account in both geometry optimizations and frequency calculations employing the SMD solvation method. Even though the results of this study show that AG can form an extensive number of stable complexes with Fe(III), none of these can reduce the rate constant of the initial step of the Haber-Weiss cycle when the reducing agent is O2•-. However, when the reductant is the ascorbate anion, AG is capable of reducing the rate constant of this reaction significantly, to the point of inhibiting the production of •OH radicals. In fact, the most stable complex of Fe(III) with AG, having a ∆Gf° of -37.9 kcal/mol, can reduce the rate constant of this reaction by 7.9 × 105 times. Thus, AG possesses secondary antioxidant activity relative to the Fe(III)/Fe(II) reduction with ascorbate, but not with O2•-. Similar results have also been found for AG relative to the Cu(II)/Cu(I) reduction, in agreement with experimental results.
Collapse
Affiliation(s)
| | - Nelaine Mora-Diez
- Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| |
Collapse
|
28
|
García-Díez G, Ramis R, Mora-Diez N. Theoretical Study of the Copper Complexes with Aminoguanidine: Investigating Secondary Antioxidant Activity. ACS OMEGA 2020; 5:14502-14512. [PMID: 32596588 PMCID: PMC7315568 DOI: 10.1021/acsomega.0c01175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
A systematic study of the thermodynamic stability of various Cu(II) complexes with aminoguanidine (AG) is performed, together with the study of its secondary antioxidant activity. Calculations have been carried out at the M05(SMD)/6-311+G(d,p) level of theory using water as the solvent. The results obtained indicate that AG is capable of forming a wide array of stable coordination compounds with Cu(II) under physiological pH conditions, and it possesses some degree of secondary antioxidant activity when coordinating to copper. The most thermodynamically stable complex can slow down 2.8 times the first step of the Haber-Weiss cycle (from 7.71 × 109 to 2.80 × 109 M-1 s-1) and slightly reduce the potential damage that the formation of •OH radicals can cause. The results of this research add to previous knowledge on this molecule, which could be used as a potential glycation inhibitor.
Collapse
Affiliation(s)
- Guillermo García-Díez
- Department
of Chemistry, Thompson Rivers University, Kamloops, British Columbia V2C 0C8, Canada
| | - Rafael Ramis
- Departament
de Química, Universitat de les Illes
Balears, Palma de Mallorca 07122, Spain
| | - Nelaine Mora-Diez
- Department
of Chemistry, Thompson Rivers University, Kamloops, British Columbia V2C 0C8, Canada
| |
Collapse
|
29
|
Gilardoni E, Baron G, Altomare A, Carini M, Aldini G, Regazzoni L. The Disposal of Reactive Carbonyl Species through Carnosine Conjugation: What We Know Now. Curr Med Chem 2020; 27:1726-1743. [DOI: 10.2174/0929867326666190624094813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 05/15/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
:Reactive Carbonyl Species are electrophiles generated by the oxidative cleavage of lipids and sugars. Such compounds have been described as important molecules for cellular signaling, whilst their accumulation has been found to be cytotoxic as they may trigger aberrant modifications of proteins (a process often referred to as carbonylation).:A correlation between carbonylation of proteins and human disease progression has been shown in ageing, diabetes, obesity, chronic renal failure, neurodegeneration and cardiovascular disease. However, the fate of reactive carbonyl species is still far from being understood, especially concerning the mechanisms responsible for their disposal as well as the importance of this in disease progression.:In this context, some data have been published on phase I and phase II deactivation of reactive carbonyl species. In the case of phase II mechanisms, the route involving glutathione conjugation and subsequent disposal of the adducts has been extensively studied both in vitro and in vivo for some of the more representative compounds, e.g. 4-hydroxynonenal.:There is also emerging evidence of an involvement of carnosine as an endogenous alternative to glutathione for phase II conjugation. However, the fate of carnosine conjugates is still poorly investigated and, unlike glutathione, there is little evidence of the formation of carnosine adducts in vivo. The acquisition of such data could be of importance for the development of new drugs, since carnosine and its derivatives have been proposed as potential therapeutic agents for the mitigation of carbonylation associated with disease progression.:Herein, we wish to review our current knowledge of the binding of reactive carbonyl species with carnosine together with the disposal of carnosine conjugates, emphasizing those aspects still requiring investigation such as conjugation reversibility and enzyme assisted catalysis of the reactions.
Collapse
Affiliation(s)
- Ettore Gilardoni
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Universita degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
30
|
Sardella R, Ianni F, Cossignani L, Aldini G, Carotti A. Binding modes identification through molecular dynamic simulations: A case study with carnosine enantiomers and the Teicoplanin A2-2-based chiral stationary phase. J Sep Sci 2020; 43:1728-1736. [PMID: 32112671 DOI: 10.1002/jssc.202000092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
In the present study, an in silico methodology able to define the binding modes adopted by carnosine enantiomers in the setting of the chiral recognition process is described. The inter- and intramolecular forces involved in the enantioseparation process with the Teicoplanin A2-2 chiral selector and carnosine as model compound are successfully identified. This approach fully rationalizes, at a molecular level, the (S) < (R) enantiomeric elution order obtained under reversed-phase conditions. Consistent explanations were achieved by managing molecular dynamics results with advanced techniques of data analysis. As a result, the time-dependent identification of all the interactions simultaneously occurring in the chiral selector-enantiomeric analyte binding process was obtained. Accordingly, it was found that only (R)-carnosine is able to engage a stabilizing charge-charge interaction through its ionized imidazole ring with the carboxylate counter-part on the chiral selector. Instead, (S)-carnosine establishes intramolecular contacts between its ionized functional groups, that limit its conformational freedom and impair the association with the chiral selector unit.
Collapse
Affiliation(s)
- Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, Perugia, 06123, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, Perugia, 06123, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, Perugia, 06123, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milano, 20133, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, Perugia, 06123, Italy
| |
Collapse
|
31
|
Kamphuis JBJ, Guiard B, Leveque M, Olier M, Jouanin I, Yvon S, Tondereau V, Rivière P, Guéraud F, Chevolleau S, Noguer-Meireles MH, Martin JF, Debrauwer L, Eutamène H, Theodorou V. Lactose and Fructo-oligosaccharides Increase Visceral Sensitivity in Mice via Glycation Processes, Increasing Mast Cell Density in Colonic Mucosa. Gastroenterology 2020; 158:652-663.e6. [PMID: 31711923 DOI: 10.1053/j.gastro.2019.10.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Irritable bowel syndrome (IBS) is characterized by abdominal pain, bloating, and erratic bowel habits. A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) can reduce symptoms of IBS, possibly by reducing microbial fermentation products. We investigated whether ingestion of FODMAPs can induce IBS-like visceral hypersensitivity mediated by fermentation products of intestinal microbes in mice. METHODS C57Bl/6 mice were gavaged with lactose, with or without the antiglycation agent pyridoxamine, or saline (controls) daily for 3 weeks. A separate group of mice were fed a diet containing fructo-oligosaccharides, with or without pyridoxamine in drinking water, or a normal chow diet (controls) for 6 weeks. Feces were collected and analyzed by 16S ribosomal RNA gene sequencing and bacterial community analyses. Abdominal sensitivity was measured by electromyography and mechanical von Frey filament assays. Colon tissues were collected from some mice and analyzed by histology and immunofluorescence to quantify mast cells and expression of advanced glycosylation end-product specific receptor (AGER). RESULTS Mice gavaged with lactose or fed fructo-oligosaccharides had increased abdominal sensitivity compared with controls, associated with increased numbers of mast cells in colon and expression of the receptor for AGER in proximal colon epithelium. These effects were prevented by administration of pyridoxamine. Lactose and/or pyridoxamine did not induce significant alterations in the composition of the fecal microbiota. Mass spectrometric analysis of carbonyl compounds in fecal samples identified signatures associated with mice given lactose or fructo-oligosaccharides vs controls. CONCLUSIONS We found that oral administration of lactose or fructo-oligosaccharides to mice increases abdominal sensitivity, associated with increased numbers of mast cells in colon and expression of AGER; these can be prevented with an antiglycation agent. Lactose and/or pyridoxamine did not produce alterations in fecal microbiota of mice. Our findings indicate that preventing glycation reactions might reduce abdominal pain in patients with IBS with sensitivity to FODMAPs.
Collapse
Affiliation(s)
- Jasper B J Kamphuis
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Bruno Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mathilde Leveque
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Maiwenn Olier
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Isabelle Jouanin
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; AXIOM Platform, MetaToul MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Sophie Yvon
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Valerie Tondereau
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Pauline Rivière
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| | - Françoise Guéraud
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Prevention and Promotion of Carcinogenesis by Food team, Toxalim, Toulouse, France
| | - Sylvie Chevolleau
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; AXIOM Platform, MetaToul MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Maria-Helena Noguer-Meireles
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; AXIOM Platform, MetaToul MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Jean-François Martin
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; AXIOM Platform, MetaToul MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Laurent Debrauwer
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; AXIOM Platform, MetaToul MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Helene Eutamène
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse.
| | - Vassilia Theodorou
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Toxalim, UMR1331, INRAE/INP/UPS, Toulouse, France; Neurogastroenterology and Nutrition, Toxalim, Toulouse
| |
Collapse
|
32
|
Palchykov VA, Gaponov AA. 1,3-Amino alcohols and their phenol analogs in heterocyclization reactions. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
34
|
Kinoshita S, Mera K, Ichikawa H, Shimasaki S, Nagai M, Taga Y, Iijima K, Hattori S, Fujiwara Y, Shirakawa JI, Nagai R. Nω -(Carboxymethyl)arginine Is One of the Dominant Advanced Glycation End Products in Glycated Collagens and Mouse Tissues. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9073451. [PMID: 31583049 PMCID: PMC6754957 DOI: 10.1155/2019/9073451] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/31/2019] [Accepted: 08/16/2019] [Indexed: 01/22/2023]
Abstract
Advanced glycation end products (AGEs) accumulate in proteins during aging in humans. In particular, the AGE structure Nω -(carboxymethyl)arginine (CMA) is produced by oxidation in glycated collagen, accounting for one of the major proteins detected in biological samples. In this study, we investigated the mechanism by which CMA is generated in collagen and detected CMA in collagen-rich tissues. When various protein samples were incubated with glucose, the CMA content, detected using a monoclonal antibody, increased in a time-dependent manner only in glycated collagen, whereas the formation of Nε -(carboxymethyl)lysine (CML), a major antigenic AGE, was detected in all glycated proteins. Dominant CMA formation in glycated collagen was also observed by electrospray ionization-liquid chromatography-tandem mass spectrometry (LC-MS/MS). During incubation of glucose with collagen, CMA formation was enhanced with increasing glucose concentration, whereas it was inhibited in the presence of dicarbonyl-trapping reagents and a metal chelator. CMA formation was also observed upon incubating collagen with glyoxal, and CMA was generated in a time-dependent manner when glyoxal was incubated with type I-IV collagens. To identify hotspots of CMA formation, tryptic digests of glycated collagen were applied to an affinity column conjugated with anti-CMA. Several CMA peptides that are important for recognition by integrins were detected by LC-MS/MS and amino acid sequence analyses. CMA formation on each sequence was confirmed by incubation of the synthesized peptides with glyoxal and ribose. LC-MS detected CMA in the mouse skin at a higher level than other AGEs. Furthermore, CMA accumulation was greater in the human aorta of older individuals. Overall, our study provides evidence that CMA is a representative AGE structure that serves as a useful index to reflect the oxidation and glycation of collagen.
Collapse
Affiliation(s)
- Sho Kinoshita
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Katsumi Mera
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroko Ichikawa
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Satoko Shimasaki
- Department of Food and Nutrition, Laboratory of Nutritional Science and Biochemistry, Japan Women's University, Tokyo, Japan
| | - Mime Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Tokyo, Japan
| | | | | | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun-ichi Shirakawa
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| |
Collapse
|
35
|
Pucciarini L, Gilardoni E, Ianni F, D'Amato A, Marrone V, Fumagalli L, Regazzoni L, Aldini G, Carini M, Sardella R. Development and validation of a HPLC method for the direct separation of carnosine enantiomers and analogues in dietary supplements. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121747. [DOI: 10.1016/j.jchromb.2019.121747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/05/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023]
|
36
|
Cascade reactions for constructing heterocycles containing a pyrimidino-pyrazino-pyrimidine core using 1,2,4-triazole scaffolds. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Azeredo NF, Rossini PO, Gonçalves JM, Assis GL, Araki K, Angnes L. Nanostructured mixed Ni/Pt hydroxides electrodes for BIA-amperometry determination of hydralazine. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Bellier J, Nokin MJ, Lardé E, Karoyan P, Peulen O, Castronovo V, Bellahcène A. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res Clin Pract 2019; 148:200-211. [PMID: 30664892 DOI: 10.1016/j.diabres.2019.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
Abstract
Diabetes is one of the most frequent diseases throughout the world and its incidence is predicted to exponentially progress in the future. This metabolic disorder is associated with major complications such as neuropathy, retinopathy, atherosclerosis, and diabetic nephropathy, the severity of which correlates with hyperglycemia, suggesting that they are triggered by high glucose condition. Reducing sugars and reactive carbonyl species such as methylglyoxal (MGO) lead to glycation of proteins, lipids and DNA and the gradual accumulation of advanced glycation end products (AGEs) in cells and tissues. While AGEs are clearly implicated in the pathogenesis of diabetes complications, their potential involvement during malignant tumor development, progression and resistance to therapy is an emerging concept. Meta-analysis studies established that patients with diabetes are at higher risk of developing cancer and show a higher mortality rate than cancer patients free of diabetes. In this review, we highlight the potential connection between hyperglycemia-associated AGEs formation on the one hand and the recent evidence of pro-tumoral effects of MGO stress on the other hand. We also discuss the marked interest in anti-glycation compounds in view of their strategic use to treat diabetic complications but also to protect against augmented cancer risk in patients with diabetes.
Collapse
Affiliation(s)
- Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Belgium
| | - Eva Lardé
- Laboratoire des Biomolécules, UMR 7203, Sorbonne Université, Paris, France
| | - Philippe Karoyan
- Laboratoire des Biomolécules, UMR 7203, Sorbonne Université, Paris, France
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Belgium.
| |
Collapse
|
39
|
Anderson EJ, Vistoli G, Katunga LA, Funai K, Regazzoni L, Monroe TB, Gilardoni E, Cannizzaro L, Colzani M, De Maddis D, Rossoni G, Canevotti R, Gagliardi S, Carini M, Aldini G. A carnosine analog mitigates metabolic disorders of obesity by reducing carbonyl stress. J Clin Invest 2018; 128:5280-5293. [PMID: 30226473 DOI: 10.1172/jci94307] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Sugar- and lipid-derived aldehydes are reactive carbonyl species (RCS) frequently used as surrogate markers of oxidative stress in obesity. A pathogenic role for RCS in metabolic diseases of obesity remains controversial, however, partly because of their highly diffuse and broad reactivity and the lack of specific RCS-scavenging therapies. Naturally occurring histidine dipeptides (e.g., anserine and carnosine) show RCS reactivity, but their therapeutic potential in humans is limited by serum carnosinases. Here, we present the rational design, characterization, and pharmacological evaluation of carnosinol, i.e., (2S)-2-(3-amino propanoylamino)-3-(1H-imidazol-5-yl)propanol, a derivative of carnosine with high oral bioavailability that is resistant to carnosinases. Carnosinol displayed a suitable ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile and was determined to have the greatest potency and selectivity toward α,β-unsaturated aldehydes (e.g., 4-hydroxynonenal, HNE, ACR) among all others reported thus far. In rodent models of diet-induced obesity and metabolic syndrome, carnosinol dose-dependently attenuated HNE adduct formation in liver and skeletal muscle, while simultaneously mitigating inflammation, dyslipidemia, insulin resistance, and steatohepatitis. These improvements in metabolic parameters with carnosinol were not due to changes in energy expenditure, physical activity, adiposity, or body weight. Collectively, our findings illustrate a pathogenic role for RCS in obesity-related metabolic disorders and provide validation for a promising new class of carbonyl-scavenging therapeutic compounds rationally derived from carnosine.
Collapse
Affiliation(s)
- Ethan J Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lalage A Katunga
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - T Blake Monroe
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Luca Cannizzaro
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Mara Colzani
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Danilo De Maddis
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giuseppe Rossoni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
40
|
Protective Actions of Anserine Under Diabetic Conditions. Int J Mol Sci 2018; 19:ijms19092751. [PMID: 30217069 PMCID: PMC6164239 DOI: 10.3390/ijms19092751] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 01/20/2023] Open
Abstract
Background/Aims: In rodents, carnosine treatment improves diabetic nephropathy, whereas little is known about the role and function of anserine, the methylated form of carnosine. Methods: Antioxidant activity was measured by oxygen radical absorbance capacity and oxygen stress response in human renal tubular cells (HK-2) by RT-PCR and Western-Immunoblotting. In wildtype (WT) and diabetic mice (db/db), the effect of short-term anserine treatment on blood glucose, proteinuria and vascular permeability was measured. Results: Anserine has a higher antioxidant capacity compared to carnosine (p < 0.001). In tubular cells (HK-2) stressed with 25 mM glucose or 20–100 µM hydrogen peroxide, anserine but not carnosine, increased intracellular heat shock protein (Hsp70) mRNA and protein levels. In HK-2 cells stressed with glucose, co-incubation with anserine also increased hemeoxygenase (HO-1) protein and reduced total protein carbonylation, but had no effect on cellular sirtuin-1 and thioredoxin protein concentrations. Three intravenous anserine injections every 48 h in 12-week-old db/db mice, improved blood glucose by one fifth, vascular permeability by one third, and halved proteinuria (all p < 0.05). Conclusion: Anserine is a potent antioxidant and activates the intracellular Hsp70/HO-1 defense system under oxidative and glycative stress. Short-term anserine treatment in diabetic mice improves glucose homeostasis and nephropathy.
Collapse
|
41
|
Biochemical characterization of the catecholaldehyde reactivity of L-carnosine and its therapeutic potential in human myocardium. Amino Acids 2018; 51:97-102. [PMID: 30191330 DOI: 10.1007/s00726-018-2647-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/28/2018] [Indexed: 01/28/2023]
Abstract
Oxidative deamination of norepinephrine (NE) and dopamine (DA) by monoamine oxidase (MAO) generates the catecholaldehydes 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) and 3,4-dihydroxyphenylacetaldehyde (DOPAL), respectively, and H2O2. Catecholaldehydes are highly reactive electrophiles that have been implicated as causal factors in the etiology of neurodegenerative diseases and cardiac injury from ischemia and diabetes. The reactivity of both catechol and aldehyde groups enables the catecholaldehdyes to cross-link proteins and other biological molecules. Carnosine is a β-alanyl-histidine dipeptide found in millimolar concentrations in brain and myocardium. It is well known to detoxify aldehydes formed from oxidized lipids and sugars, yet the reactivity of carnosine with catecholaldehydes has never been reported. Here, we investigated the ability of carnosine to form conjugates with DOPAL and DOPEGAL. Both catecholaldehydes were highly reactive towards L-cysteine (L-Cys), as well as carnosine; however, glutathione (GSH) showed essentially no reactivity towards DOPAL. In contrast, GSH readily reacted with the lipid peroxidation product 4-hydroxy-2-nonenal (4HNE), while carnosine showed low reactivity to 4HNE by comparison. To determine whether carnosine mitigates catecholaldehyde toxicity, samples of atrial myocardium were collected from patients undergoing elective cardiac surgery. Using permeabilized myofibers prepared from this tissue, mitochondrial respiration analysis revealed a concentration-dependent decrease in ADP-stimulated respiration with DOPAL. Pre-incubation with carnosine, but not GSH or L-Cys, significantly reduced this effect (p < 0.05). Carnosine was also able to block formation of catecholaldehyde protein adducts in isolated human cardiac mitochondria treated with NE. These findings demonstrate the unique reactivity of carnosine towards catecholaldehydes and, therefore, suggest a novel and distinct biological role for histidine dipeptides in this detoxification reaction. The therapeutic potential of carnosine in diseases associated with catecholamine-related toxicity is worthy of further examination.
Collapse
|
42
|
Colzani M, Regazzoni L, Criscuolo A, Baron G, Carini M, Vistoli G, Lee YM, Han SI, Aldini G, Yeum KJ. Isotopic labelling for the characterisation of HNE-sequestering agents in plant-based extracts and its application for the identification of anthocyanidins in black rice with giant embryo. Free Radic Res 2018; 52:896-906. [PMID: 30035649 DOI: 10.1080/10715762.2018.1490735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive carbonyl species (RCS) are cytotoxic molecules that originate from lipid peroxidation and sugar oxidation. Natural derivatives can be an attractive source of potential RCS scavenger. However, the lack of analytical methods to screen and identify bioactive compounds contained in complex matrices has hindered their identification. The sequestering actions of various rice extracts on RCS have been determined using ubiquitin and 4-hydroxy-2-nonenal (HNE) as a protein and RCS model, respectively. Black rice with giant embryo extract was found to be the most effective among various rice varieties. The identification of bioactive compounds was then carried out by an isotopic signature profile method using the characteristic isotopic ion cluster generated by the mixture of HNE: 2H5-HNE mixed at a 1:1 stoichiometric ratio. An in-house database was used to obtain the structures of the possible bioactive components. The identified compounds were further confirmed as HNE sequestering agents through HPLC-UV analysis.
Collapse
Affiliation(s)
- Mara Colzani
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Luca Regazzoni
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Angela Criscuolo
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Giovanna Baron
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Marina Carini
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Giulio Vistoli
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Yoon-Mi Lee
- b Division of Food Bioscience, College of Biomedical and Health Sciences , Konkuk University , Chungju-si , South Korea
| | - Sang-Ik Han
- c National Institute of Crop Science, Rural Development Administration , Suwon-si , South Korea
| | - Giancarlo Aldini
- a Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Kyung-Jin Yeum
- b Division of Food Bioscience, College of Biomedical and Health Sciences , Konkuk University , Chungju-si , South Korea
| |
Collapse
|
43
|
Burcham PC. Carbonyl scavengers as pharmacotherapies in degenerative disease: Hydralazine repurposing and challenges in clinical translation. Biochem Pharmacol 2018; 154:397-406. [PMID: 29883705 DOI: 10.1016/j.bcp.2018.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022]
Abstract
During cellular metabolism, spontaneous oxidative damage to unsaturated lipids generates many electrophilic carbonyl compounds that readily attack cell macromolecules, forming adducts that are potential drivers of tissue dysfunction. Since such damage is heightened in many degenerative conditions, researchers have assessed the efficacy of nucleophilic carbonyl-trapping drugs in animal models of such disorders, anticipating that they will protect tissues by intercepting toxic lipid-derived electrophiles (LDEs) within cells. This Commentary explores recent animal evidence for carbonyl scavenger efficacy in two disparate yet significant conditions known to involve LDE production, namely spinal cord injury (SCI) and alcoholic liver disease (ALD). Primary emphasis is placed on studies that utilised hydralazine, a clinically-approved "broad-spectrum" scavenger known to trap multiple LDEs. In addition to reviewing recent studies of hydralazine efficacy in animal SCI and ALD models, the Commentary reviews new insights concerning novel lifespan- and healthspan-extending properties of hydralazine obtained during studies in model invertebrate organisms, since the mechanisms involved seem of likely benefit during the treatment of degenerative disease. Finally, noting that human translation of the histoprotective properties of hydralazine have been limited, the final section of the Commentary will address two obstacles that hamper clinical translation of LDE-trapping therapies while also suggesting potential strategies for overcoming these problems.
Collapse
Affiliation(s)
- Philip C Burcham
- Discipline of Pharmacology, School of Biomedical Science, The University of Western Australia, Crawley, WA 6007, Australia.
| |
Collapse
|
44
|
Buvaylo EA, Kokozay VN, Strutynska NY, Vassilyeva OY, Skelton BW. Formaldehyde-aminoguanidine condensation and aminoguanidine self-condensation products: syntheses, crystal structures and characterization. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:152-158. [PMID: 29400329 DOI: 10.1107/s2053229617018514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/30/2017] [Indexed: 11/10/2022]
Abstract
Guanidine is the functional group on the side chain of arginine, one of the fundamental building blocks of life. In recent years, a number of compounds based on the aminoguanidine (AG) moiety have been described as presenting high anticancer activities. The product of condensation between two molecules of AG and one molecule of formaldehyde was isolated in the protonated form as the dinitrate salt (systematic name: 2,8-diamino-1,3,4,6,7,9-hexaazanona-1,8-diene-1,9-diium dinitrate), C3H14N82+·2NO3-, (I). The cation lacks crystallographically imposed symmetry and comprises two terminal planar guanidinium groups, which share an N-C-N unit. Each cation in (I) builds 14 N-H...O hydrogen bonds and is separated from adjacent cations by seven nitrate anions. The AG self-condensation reaction in the presence of copper(II) chloride and chloride anions led to the formation of the organic-inorganic hybrid 1,2-bis(diaminomethylidene)hydrazine-1,2-diium tetrachloridocuprate(II), (C2H10N6)[CuCl4], (II). Its asymmetric unit is composed of half a diprotonated 1,2-bis(diaminomethylidene)hydrazine-1,2-diium dication and half a tetrachloridocuprate(II) dianion, with the CuII atom situated on a twofold rotation axis. The planar guanidinium fragments in (II) have their planes twisted by approximately 77.64 (5)° with respect to each other. The tetrahedral [CuCl4]2- anion is severely distorted and its pronounced `planarity' must originate from its involvement in multiple N-H...Cl hydrogen bonds. It was reported that [CuCl4]2- anions, with a trans-Cl-Cu-Cl angle (Θ) of ∼140°, are yellow-green at room temperature, with the colour shifting to a deeper green as Θ increases and toward orange as Θ decreases. Brown salt (II), with a Θ value of 142.059 (8)°, does not fit the trend, which emphasizes the need to take other structural factors into consideration. In the crystal of salt (II), layers of cations and anions alternate along the b axis, with the minimum Cu...Cu distance being 7.5408 (3) Å inside a layer. The structures of salts (I) and (II) were substantiated via spectroscopic data. The endothermic reaction involved in the thermal decomposition of (I) requires additional oxygen. The title salts may be useful for the screening of new substances with biological activity.
Collapse
Affiliation(s)
- Elena A Buvaylo
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Vladimir N Kokozay
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Nataliia Yu Strutynska
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Olga Yu Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Brian W Skelton
- School of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
45
|
Fumagalli L, Pucciarini L, Regazzoni L, Gilardoni E, Carini M, Vistoli G, Aldini G, Sardella R. Direct HPLC separation of carnosine enantiomers with two chiral stationary phases based on penicillamine and teicoplanin derivatives. J Sep Sci 2018; 41:1240-1246. [PMID: 29230946 DOI: 10.1002/jssc.201701308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022]
Abstract
Carnosine is present in high concentrations in specific human tissues such as the skeletal muscle, and among its biological functions, the remarkable scavenging activity toward reactive carbonyl species is noteworthy. Although the two enantiomers show almost identical scavenging reactivity toward reactive carbonyl species, only d-carnosine is poorly adsorbed at the gastrointestinal level and is stable in human plasma. Direct methods for the enantioselective analysis of carnosine are still missing even though they could find more effective applications in the analysis of complex matrices. In the present study, the use of two different chiral stationary phases is presented. A chiral ligand-exchange chromatography stationary phase based on N,S-dioctyl-d-penicillamine resulted in the direct enantioseparation of carnosine. Indeed, running the analysis at 25°C and 1.0 mL/min with a 1.5 mM copper(II) sulfate concentration allowed us to obtain separation and resolution factors of 3.37 and 12.34, respectively. However, the use of a copper(II)-containing eluent renders it hardly compatible with mass spectrometry detectors. With the teicoplanin-based stationary phase, a mass spectrometry compatible method was successfully developed. Indeed, a water/methanol 60:40 v/v pH 3.1 eluent flowed at 1.0 mL/min and with a 25°C column temperature produced separation and resolution factors of 2.60 and 4.16, respectively.
Collapse
Affiliation(s)
- Laura Fumagalli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lucia Pucciarini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Roccardo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
46
|
Ansari FA, Mahmood R. Carnosine and N-acetyl cysteine protect against sodium nitrite-induced oxidative stress in rat blood. Cell Biol Int 2017; 42:281-293. [DOI: 10.1002/cbin.10893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Fariheen Aisha Ansari
- Faculty of Life Sciences, Department of Biochemistry; Aligarh Muslim University; Aligarh 202002 UP India
| | - Riaz Mahmood
- Faculty of Life Sciences, Department of Biochemistry; Aligarh Muslim University; Aligarh 202002 UP India
| |
Collapse
|
47
|
Quenching activity of carnosine derivatives towards reactive carbonyl species: Focus on α−(methylglyoxal) and β−(malondialdehyde) dicarbonyls. Biochem Biophys Res Commun 2017; 492:487-492. [DOI: 10.1016/j.bbrc.2017.08.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022]
|
48
|
Nègre-Salvayre A, Garoby-Salom S, Swiader A, Rouahi M, Pucelle M, Salvayre R. Proatherogenic effects of 4-hydroxynonenal. Free Radic Biol Med 2017; 111:127-139. [PMID: 28040472 DOI: 10.1016/j.freeradbiomed.2016.12.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/08/2023]
Abstract
4-hydroxy-2-nonenal (HNE) is a α,β-unsaturated hydroxyalkenal generated by peroxidation of n-6 polyunsaturated fatty acid. This reactive carbonyl compound exhibits a huge number of biological properties that result mainly from the formation of HNE-adducts on free amino groups and thiol groups in proteins. In the vascular system, HNE adduct accumulation progressively leads to cellular dysfunction and tissue damages that are involved in the progression of atherosclerosis and related diseases. HNE contributes to the atherogenicity of oxidized LDL, by forming HNE-apoB adducts that deviate the LDL metabolism to the scavenger receptor pathway of macrophagic cells, and lead to the formation of foam cells. HNE activates transcription factors (Nrf2, NF-kappaB) that (dys)regulate various cellular responses ranging from hormetic and survival signaling at very low concentrations, to inflammatory and apoptotic effects at higher concentrations. Among a variety of cellular targets, HNE can modify signaling proteins involved in atherosclerotic plaque remodeling, particularly growth factor receptors (PDGFR, EGFR), cell cycle proteins, mitochondrial and endoplasmic reticulum components or extracellular matrix proteins, which progressively alters smooth muscle cell proliferation, angiogenesis and induces apoptosis. HNE adducts accumulate in the lipidic necrotic core of advanced atherosclerotic lesions, and may locally contribute to macrophage and smooth muscle cell apoptosis, which may induce plaque destabilization and rupture, thereby increasing the risk of athero-thrombotic events.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| |
Collapse
|
49
|
Guéraud F. 4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer. Free Radic Biol Med 2017; 111:196-208. [PMID: 28065782 DOI: 10.1016/j.freeradbiomed.2016.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
4-hydroxy-2-nonenal (HNE) is an amazing reactive compound, originating from lipid peroxidation within cells but also in food and considered as a "second messenger" of oxidative stress. Due to its chemical features, HNE is able to make covalent links with DNA, proteins and lipids. The aim of this review is to give a comprehensive summary of the chemical properties of HNE and of the consequences of its reactivity in relation to cancer development. The formation of exocyclic etheno-and propano-adducts and genotoxic effects are addressed. The adduction to cellular proteins and the repercussions on the regulation of cell signaling pathways involved in cancer development are reviewed, notably on the Nrf2/Keap1/ARE pathway. The metabolic pathways leading to the inactivation/elimination or, on the contrary, to the bioactivation of HNE are considered. A special focus is given on the link between HNE and colorectal cancer development, due to its occurrence in foodstuffs and in the digestive lumen, during digestion.
Collapse
Affiliation(s)
- Françoise Guéraud
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
50
|
Nelson MAM, Baba SP, Anderson EJ. Biogenic Aldehydes as Therapeutic Targets for Cardiovascular Disease. Curr Opin Pharmacol 2017; 33:56-63. [PMID: 28528297 DOI: 10.1016/j.coph.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
Aldehydes are continuously formed in biological systems through enzyme-dependent and spontaneous oxidation of lipids, glucose, and primary amines. These highly reactive, biogenic electrophiles can become toxic via covalent modification of proteins, lipids and DNA. Thus, agents that scavenge aldehydes through conjugation have therapeutic value for a number of major cardiovascular diseases. Several commonly-prescribed drugs (e.g., hydralazine) have been shown to have potent aldehyde-conjugating properties which may contribute to their beneficial effects. Herein, we briefly describe the major sources and toxicities of biogenic aldehydes in cardiovascular system, and provide an overview of drugs that are known to have aldehyde-conjugating effects. Some compounds of phytochemical origin, and histidyl-dipeptides with emerging therapeutic value in this area are also discussed.
Collapse
Affiliation(s)
- Margaret-Ann M Nelson
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, USA
| | - Shahid P Baba
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Ethan J Anderson
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|