1
|
Fu L, Ding H, Mo L, Pan X, Feng L, Wen S, Lan Q, Long L. The association between body composition and overall survival in patients with advanced non-small cell lung cancer. Sci Rep 2025; 15:3109. [PMID: 39856268 PMCID: PMC11761065 DOI: 10.1038/s41598-025-87073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Nutritional status is associated with prognosis in a variety of cancers. Studies analyzing the association between the measurements of skeletal muscle and adipose tissue obtained from Computerized Tomography (CT) images at the time of diagnosis of advanced non-small cell lung cancer (NSCLC) and overall survival (OS) are relatively few. Data from 425 patients diagnosed with advanced NSCLC between January 2016 and December 2017 were retrospectively analyzed, with an average follow-up of 15.3 months. To outline the patient's chest CT plain image at the time of diagnosis,skeletal muscle and subcutaneous fat at the level of both thoracic vertebrae were quantified in terms of mass and quantity by the pectoral muscle index (PMI), pectoral muscle density (PMD), subcutaneous fat index (SFI), subcutaneous fat density (SFD), paravertebral muscle index (PVMI), and paravertebral muscle density (PVMD). The SFI value in the female survival group is significantly lower than that in the death group (P = 0.049), and the PVMI value in the overall survival group is significantly lower than that in the death group (P < 0.001). After adjusting for clinical variables such as gender, smoking status, clinical staging, degree of differentiation, and radiotherapy history, the multivariable Cox regression analysis showed that an increase in SFI significantly improves the overall survival rate of patients (Hazard Ratio [HR] = 1.410, 95% Confidence Interval [CI]: 1.042-1.908, P = 0.026). Conversely, a decrease in PVMD is significantly associated with improved overall survival and prognosis (HR = 0.762, 95% CI: 0.579-0.982, P = 0.048). No association was found between body mass index (BMI) and chest muscle status indicators and overall survival (P > 0.05). CT-measured body composition parameters provide precise prognostic information and are superior to BMI; an increased OS rate in advanced NSCLC is associated with a greater SFI and a lower PVMD.
Collapse
Affiliation(s)
- Liang Fu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Haiming Ding
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Liupei Mo
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoyu Pan
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Lijuan Feng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shenglian Wen
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qiaoqing Lan
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor of Gaungxi Medical University, Ministry of Education, Nanning, China.
| |
Collapse
|
2
|
Soh S, Suh YJ, Lee S, Roh YH, Kwak YL, Kim YJ. Prognostic value of CT body composition analysis for 1-year mortality after transcatheter aortic valve replacement. Eur Radiol 2025; 35:244-254. [PMID: 39023558 DOI: 10.1007/s00330-024-10953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES To investigate the value of body composition indices derived from pre-procedural computed tomography (CT) in predicting 1-year mortality among patients who underwent transcatheter aortic valve replacement (TAVR). MATERIALS AND METHODS We assessed consecutive patients who underwent TAVR between June 2016 and December 2021 at a single academic medical center. Skeletal muscle and subcutaneous fat area at the T4, T12, and L3 levels on pre-procedural CT were measured. The association between body composition and 1-year mortality was evaluated using Cox proportional hazard regression analysis. RESULTS Finally, 408 patients were included (185 men and 223 women; mean age, 81.7 ± 5.1 years; range, 62-98 years). Post-procedural death occurred in 13.2% of patients. The muscle-height index and fat-height index at the L3 level were more strongly correlated with those at the T12 level (r = 0.765, p < 0.001 and r = 0.932, p < 0.001, respectively) than with those at the T4 level (r = 0.535, p < 0.001 and r = 0.895, p < 0.001, respectively). The cumulative 1-year mortality rate was highest for patients with both sarcopenia and adipopenia (26%), followed by those with adipopenia only (17%), those with sarcopenia only (12%), and those with neither sarcopenia nor adipopenia (8%, p = 0.002). Multivariable analysis revealed that body composition at the T12 level was an independent risk factor for 1-year mortality (hazard ratio: 4.09, 95% confidence interval: 2.01-8.35) in patients with both sarcopenia and adipopenia (p < 0.001). CONCLUSION Sarcopenia or adipopenia assessed with CT at the thoracic level may be valuable for stratifying 1-year all-cause mortality in patients who undergo TAVR. CLINICAL RELEVANCE STATEMENT Skeletal muscle and subcutaneous fat mass indices at the level of T12, measured on pre-procedural CT, have value for risk stratification of 1-year all-cause mortality in patients who undergo transcatheter aortic valve replacement. KEY POINTS Sarcopenia and adipopenia are associated with the prognosis of patients undergoing transcatheter aortic valve replacement. Body composition at the T12 level was an independent risk factor for 1-year all-cause mortality. Sarcopenia or adipopenia assessed at T12 with pre-procedural CT is valuable for risk stratification.
Collapse
Affiliation(s)
- Sarah Soh
- Anesthesia and Pain Research Institute, Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Suh
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suji Lee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yun Ho Roh
- Department of Biomedical Systems Informatics, Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Anesthesia and Pain Research Institute, Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Young Jin Kim
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Berriel Diaz M, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 2024; 6:2222-2245. [PMID: 39578650 DOI: 10.1038/s42255-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Snoke DB, van der Velden JL, Bellafleur ER, Dearborn JS, Lenahan SM, Heininger SCJ, Ather JL, Sarausky H, Stephenson D, Reisz JA, D'Alessandro A, Majumdar D, Ahern TP, Sandler KL, Landman BA, Janssen-Heininger YMW, Poynter ME, Seward DJ, Toth MJ. Early adipose tissue wasting in a novel preclinical model of human lung cancer cachexia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615385. [PMID: 39651308 PMCID: PMC11623500 DOI: 10.1101/2024.09.27.615385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Cancer cachexia (CC), a syndrome of skeletal muscle and adipose tissue wasting, reduces responsiveness to therapies and increases mortality. There are no approved treatments for CC, which may relate to discordance between pre-clinical models and human CC. To address the need for clinically relevant models, we generated tamoxifen-inducible, epithelial cell specific Kras G12D/+ ( G12D ) mice. G12D mice develop CC over a protracted time course and phenocopy tissue, cellular, mutational, transcriptomic, and metabolic characteristics of human lung CC. CC in G12D mice is characterized by early loss of adipose tissue, a phenotype confirmed in a large cohort of patients with lung cancer. Tumor-released factors promote adipocyte lipolysis, a driver of adipose wasting in human CC, and adipose tissue wasting was inversely related to tumor burden. Thus, G12D mice model key features of human lung CC and suggest a novel role for early adipose tissue wasting in CC.
Collapse
|
5
|
Gonçalves DC, Gomes SP, Seelaender M. Metabolic, Inflammatory, and Molecular Impact of Cancer Cachexia on the Liver. Int J Mol Sci 2024; 25:11945. [PMID: 39596015 PMCID: PMC11593664 DOI: 10.3390/ijms252211945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer-associated cachexia (CAC) is a severe wasting syndrome, marked by involuntary weight loss and muscle wasting. It is a leading cause of cancer-related morbidity and mortality, and is driven by systemic, chronic low-grade inflammation. Key cytokines, such as IL-6 and GDF15, activate catabolic pathways in many organs. This study examined the role of inflammation and metabolic disruption in the liver during CAC, focusing on its dual role as both a target and a source of inflammatory factors. The analysis covered protein and lipid metabolism disturbances, including the hepatic production of acute-phase proteins and insulin resistance. Hepatic inflammation contributes to systemic dysfunction in CAC. The increased production of C-Reactive Protein (CRP) impacts muscle wasting, while liver inflammation leads to insulin resistance and hepatic steatosis, aggravating the cachectic state. Therefore, understanding the molecular mechanisms of liver metabolism in CAC is essential for developing effective therapies. Potential interventions include anti-inflammatory treatments, anabolic strategies, and restoration of lipid metabolism. Further research is necessary to explore the liver's full contribution to CAC and its systemic effects, allowing to the development of liver-targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Silvio Pires Gomes
- Instituto de Biociências (IBB), Departamento de Biologia Estrutural e Funcional, Anatomy Sector, Universidade Estadual Paulista (Unesp), Câmpus Botucatu, São Paulo 01049-010, Brazil
- LIM 26-HC, Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Marília Seelaender
- LIM 26-HC, Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| |
Collapse
|
6
|
Yee EJ, Torphy RJ, Myers EK, Meguid C, Franklin O, Sugawara T, Franco SR, Clark TJ, Mungo B, Ahrendt SA, Schulick RD, Del Chiaro M, McCarter MM. Dynamic Anthropometrics in Pancreatic Cancer: Associations Between Body Composition Changes During Neoadjuvant Therapy and Survival Outcomes After Resection. Ann Surg Oncol 2024; 31:8340-8351. [PMID: 39120842 DOI: 10.1245/s10434-024-15975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Assessment of individual tumor biology and response to systemic therapy in pancreatic ductal adenocarcinoma (PDAC) remains a clinical challenge. The significance of anthropometric (body composition) changes during chemotherapy as a surrogate for tumor biology in the setting of localized PDAC is unknown. METHODS A retrospective, single-institution analysis of patients with PDAC who received neoadjuvant therapy (NAT) and pancreatectomy from 2017 to 2021 was performed. Radiologic anthropometric analysis used artificial intelligence-driven software to segment and compute total and sub-compartment muscle area, adipose tissue area, and attenuation values at the level of the L3 vertebra. Kaplan-Meier survival estimates, log-rank tests, and multivariable Cox regression models were used in survival analyses. RESULTS The inclusion criteria were met by 138 patients. Although decreases in muscle and adipose tissue areas during NAT were predominant, a subset of patients experienced an increase in these compartments. Increases in muscle greater than 5% (hazard ratio [HR], 0.352; 95% confidence interval [CI] 0.135-0.918; p = 0.033) and increases in adipose tissue greater than 15% (HR, 0.375; 95% CI 0.144-0.978; p = 0.045), were significantly associated with improved survival, whereas loss of visceral fat greater than 15% was detrimental (HR 1.853; CI 1.099-3.124; p = 0.021). No significant associations with single time-point anthropometrics were observed. Gains in total muscle and adipose mass were associated with improved pathologic response to systemic therapy and less advanced pathologic tumor stage. CONCLUSIONS Dynamic anthropometric analysis during NAT for PDAC is a stronger prognostic indicator than measurements taken at a single point in time. Repeated anthropometric analysis during preoperative chemotherapy may serve as a biomarker for individual tumor biology and response to therapy.
Collapse
Affiliation(s)
- Elliott J Yee
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert J Torphy
- Division of Surgical Oncology, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Emily K Myers
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cheryl Meguid
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Oskar Franklin
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Toshitaka Sugawara
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Salvador Rodriguez Franco
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Toshimasa J Clark
- Division of Abdominal Imaging, Department of Radiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Benedetto Mungo
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Steven A Ahrendt
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Richard D Schulick
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Martin M McCarter
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
7
|
Tien SC, Chang CC, Huang CH, Peng HY, Chang YT, Chang MC, Lee WH, Hu CM. Exosomal miRNA 16-5p/29a-3p from pancreatic cancer induce adipose atrophy by inhibiting adipogenesis and promoting lipolysis. iScience 2024; 27:110346. [PMID: 39055920 PMCID: PMC11269291 DOI: 10.1016/j.isci.2024.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Over 80% of the patients with pancreatic ductal adenocarcinoma (PDAC) have cachexia/wasting syndrome. Cachexia is associated with reduced survival, decreased quality of life, and higher metastasis rates. Here, we demonstrate that fat loss is the earliest feature of PDAC-exosome-induced cachexia. MicroRNA sequencing of exosomal components from normal and cancer-derived exosomes revealed enrichment of miR-16-5p, miR-21-5p, miR-29a-3p, and miR-125b-5p in serum exosomes of mice harboring PDAC and patients with PDAC. Further, miR-16-5p and miR-29a-3p inhibited adipogenesis through decreasing Erlin2 and Cmpk1 expression which downregulates C/EBPβ and PPARγ. Synergistically, miR-29a-3p promotes lipolysis through increasing ATGL expression by suppressing MCT1 expression. Furthermore, PDAC-exosomes deprived of miR-16-5p and miR-29a-3p fail to induce fat loss. Hence, miR-16-5p and miR-29a-3p exosomal miRs are essential for PDAC-induced fat loss. Thus, we unravel that PDAC induces adipose atrophy via exosomal miRs. This knowledge may provide new diagnostic and therapeutic strategies for PDAC-induced cachexia.
Collapse
Affiliation(s)
- Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Chin-Chun Chang
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| | | | - Hsuan-Yu Peng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100225, Taiwan
- National Taiwan University Hospital Hsin-Chu Branch, Zhubei City, Hsinchu County 302058, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100225, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
- Drug Development Center, China Medical University, Taichung 406040, Taiwan
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
8
|
Lan XQ, Deng CJ, Wang QQ, Zhao LM, Jiao BW, Xiang Y. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia. Gen Comp Endocrinol 2024; 353:114513. [PMID: 38604437 DOI: 10.1016/j.ygcen.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-β superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-β family members, such as TGF-β1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-β signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-β signaling for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xin-Qiang Lan
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Cheng-Jie Deng
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Qi-Quan Wang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Li-Min Zhao
- Senescence and Cancer Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bao-Wei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yang Xiang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
9
|
Kim S, Oh J, Park C, Kim M, Jo W, Kim CS, Cho SW, Park J. FAM3C in Cancer-Associated Adipocytes Promotes Breast Cancer Cell Survival and Metastasis. Cancer Res 2024; 84:545-559. [PMID: 38117489 DOI: 10.1158/0008-5472.can-23-1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/26/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Adipose tissue within the tumor microenvironment (TME) plays a critical role in supporting breast cancer progression. In this study, we identified FAM3 metabolism-regulating signaling molecule C (FAM3C) produced by cancer-associated adipocytes (CAA) as a key regulator of tumor progression. FAM3C overexpression in cultured adipocytes significantly reduced cell death in both adipocytes and cocultured breast cancer cells while suppressing markers of fibrosis. Conversely, FAM3C depletion in CAAs resulted in adipocyte-mesenchymal transition (AMT) and increased fibrosis within the TME. Adipocyte FAM3C expression was driven by TGFβ signaling from breast cancer cells and was reduced upon treatment with a TGFβ-neutralizing antibody. FAM3C knockdown in CAAs early in tumorigenesis in a genetically engineered mouse model of breast cancer significantly inhibited primary and metastatic tumor growth. Circulating FAM3C levels were elevated in patients with metastatic breast cancer compared with those with nonmetastatic breast cancer. These results suggest that therapeutic inhibition of FAM3C expression levels in CAAs during early tumor development could be a promising approach in the treatment of patients with breast cancer. SIGNIFICANCE High FAM3C levels in cancer-associated adipocytes contribute to tumor-supportive niches and are tightly associated with metastatic growth, indicating that FAM3C inhibition could be beneficial for treating patients with breast cancer.
Collapse
Affiliation(s)
- Sahee Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Min Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Woobeen Jo
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chu-Sook Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
10
|
Tambaro F, Imbimbo G, Ferraro E, Andreini M, Belli R, Amabile MI, Ramaccini C, Lauteri G, Nigri G, Muscaritoli M, Molfino A. Assessment of lipolysis biomarkers in adipose tissue of patients with gastrointestinal cancer. Cancer Metab 2024; 12:1. [PMID: 38167536 PMCID: PMC10762976 DOI: 10.1186/s40170-023-00329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Adipose tissue metabolism may be impaired in patients with cancer. In particular, increased lipolysis was described in cancer-promoting adipose tissue atrophy. For this reason, we assessed the expression of the lipolysis-associated genes and proteins in subcutaneous adipose tissue (SAT) of gastrointestinal (GI) cancer patients compared to controls to verify their involvement in cancer, among different types of GI cancers, and in cachexia. METHODS We considered patients with GI cancer (gastric, pancreatic, and colorectal) at their first diagnosis, with/without cachexia, and controls with benign diseases. We collected SAT and total RNA was extracted and ATGL, HSL, PPARα, and MCP1 were analyzed by qRT-PCR. Western blot was performed to evaluate CGI-58, PLIN1 and PLIN5. RESULTS We found higher expression of ATGL and HSL in GI cancer patients with respect to controls (p ≤ 0.008) and a trend of increase for PPARα (p = 0.055). We found an upregulation of ATGL in GI cancer patients with cachexia (p = 0.033) and without cachexia (p = 0.017) vs controls. HSL was higher in patients with cachexia (p = 0.020) and without cachexia (p = 0.021), compared to controls. ATGL was upregulated in gastric cancer vs controls (p = 0.014) and higher HSL was found in gastric (p = 0.008) and in pancreatic cancer (p = 0.033) vs controls. At the protein level, we found higher CGI-58 in cancer vs controls (p = 0.019) and in cachectic vs controls (p = 0.029), as well as in gastric cancer vs controls (p = 0.027). CONCLUSION In our cohort of GI cancer patients, we found a modulation in the expression of genes and proteins involved in lipolysis, and differences were interestingly detected according to cancer type.
Collapse
Affiliation(s)
- Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Imbimbo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Martina Andreini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberta Belli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Ida Amabile
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Cesarina Ramaccini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Lauteri
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Nigri
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Tao J, Fang J, Chen L, Liang C, Chen B, Wang Z, Wu Y, Zhang J. Increased adipose tissue is associated with improved overall survival, independent of skeletal muscle mass in non-small cell lung cancer. J Cachexia Sarcopenia Muscle 2023; 14:2591-2601. [PMID: 37724690 PMCID: PMC10751412 DOI: 10.1002/jcsm.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The prognostic significance of non-cancer-related prognostic factors, such as body composition, has gained extensive attention in oncological research. Compared with sarcopenia, the prognostic significance of adipose tissue for overall survival in non-small cell lung cancer remains unclear. We investigated the prognostic value of skeletal muscle and adipose tissue in patients with non-small cell lung cancer. METHODS This retrospective study included 4434 patients diagnosed with non-small cell lung cancer between January 2014 and December 2016. Cross-sectional areas of skeletal muscle and subcutaneous fat were measured, and the pericardial fat volume was automatically calculated. The skeletal muscle index and subcutaneous fat index were calculated as skeletal muscle area and subcutaneous fat area divided by height squared, respectively, and the pericardial fat index was calculated as pericardial fat volume divided by body surface area. The association between body composition and outcomes was evaluated using Cox proportional hazards model. RESULTS A total of 750 patients (501 males [66.8%] and 249 females [33.2%]; mean age, 60.9 ± 9.8 years) were included. Sarcopenia (60.8% vs. 52.7%; P < 0.001), decreased subcutaneous fat index (51.4% vs. 25.2%; P < 0.001) and decreased pericardial fat index (55.4% vs. 16.5%; P < 0.001) were more commonly found in the deceased group than survived group. In multivariable Cox regression analysis, after adjusting for clinical variables, increased subcutaneous fat index (hazard ratio [HR] = 0.56, 95% confidence interval [CI]: 0.47-0.66, P < 0.001) and increased pericardial fat index (HR = 0.47, 95% CI: 0.40-0.56, P < 0.001) were associated with longer overall survival. For stage I-III patients, increased subcutaneous fat index (HR = 0.62, 95% CI: 0.48-0.76, P < 0.001) and increased pericardial fat index (HR = 0.43, 95% CI: 0.34-0.54, P < 0.001) were associated with better 5-year overall survival rate. Similar results were recorded in stage IV patients. For patients with surgery, the prognostic value of increased subcutaneous fat index (HR = 0.60, 95% CI: 0.44-0.80, P = 0.001) and increased pericardial fat index (HR = 0.51, 95% CI: 0.38-0.68, P < 0.001) remained and predicted favourable overall survival. Non-surgical patients showed similar results as surgical patients. No association was noted between sarcopenia and overall survival (P > 0.05). CONCLUSIONS Increased subcutaneous fat index and pericardial fat index were associated with a higher 5-year overall survival rate, independent of sarcopenia, in non-small cell lung cancer and may indicate a reduced risk of non-cancer-related death.
Collapse
Affiliation(s)
- Junli Tao
- Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University)Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
| | - Jiayang Fang
- Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University)Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
| | - Lihua Chen
- Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University)Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
| | - Changyu Liang
- Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University)Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
| | - Bohui Chen
- Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University)Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
| | - Zhenyu Wang
- Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University)Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
| | - Yongzhong Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University)Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
- Department of radiotherapyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
| | - Jiuquan Zhang
- Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University)Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingP.R. China
| |
Collapse
|
12
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Understanding the relationship between cancer associated cachexia and hypoxia-inducible factor-1. Biomed Pharmacother 2023; 163:114802. [PMID: 37146421 DOI: 10.1016/j.biopha.2023.114802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a multifactorial disorder characterized by an unrestricted loss of body weight as a result of muscle and adipose tissue atrophy. Cachexia is influenced by several factors, including decreased metabolic activity and food intake, an imbalance between energy uptake and expenditure, excessive catabolism, and inflammation. Cachexia is highly associated with all types of cancers responsible for more than half of cancer-related mortalities worldwide. In healthy individuals, adipose tissue significantly regulates energy balance and glucose homeostasis. However, in metastatic cancer patients, CAC occurs mainly because of an imbalance between muscle protein synthesis and degradation which are organized by certain extracellular ligands and associated signaling pathways. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1α) accumulated and translocated to the nucleus and activate numerous genes involved in cell survival, invasion, angiogenesis, metastasis, metabolic reprogramming, and cancer stemness. On the other hand, the ubiquitination proteasome pathway is inhibited during low O2 levels which promote muscle wasting in cancer patients. Therefore, understanding the mechanism of the HIF-1 pathway and its metabolic adaptation to biomolecules is important for developing a novel therapeutic method for cancer and cachexia therapy. Even though many HIF inhibitors are already in a clinical trial, their mechanism of action remains unknown. With this background, this review summarizes the basic concepts of cachexia, the role of inflammatory cytokines, pathways connected with cachexia with special reference to the HIF-1 pathway and its regulation, metabolic changes, and inhibitors of HIFs.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
13
|
Fang R, Yan L, Liao Z. Abnormal lipid metabolism in cancer-associated cachexia and potential therapy strategy. Front Oncol 2023; 13:1123567. [PMID: 37205195 PMCID: PMC10185845 DOI: 10.3389/fonc.2023.1123567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a major characteristic of advanced cancer, associates with almost all types of cancer. Recent studies have found that lipopenia is an important feature of CAC, and it even occurs earlier than sarcopenia. Different types of adipose tissue are all important in the process of CAC. In CAC patients, the catabolism of white adipose tissue (WAT) is increased, leading to an increase in circulating free fatty acids (FFAs), resulting in " lipotoxic". At the same time, WAT also is induced by a variety of mechanisms, browning into brown adipose tissue (BAT). BAT is activated in CAC and greatly increases energy expenditure in patients. In addition, the production of lipid is reduced in CAC, and the cross-talk between adipose tissue and other systems, such as muscle tissue and immune system, also aggravates the progression of CAC. The treatment of CAC is still a vital clinical problem, and the abnormal lipid metabolism in CAC provides a new way for the treatment of CAC. In this article, we will review the mechanism of metabolic abnormalities of adipose tissue in CAC and its role in treatment.
Collapse
Affiliation(s)
- Ruoxin Fang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, China
- *Correspondence: Zhengkai Liao, ; Ling Yan,
| | - Zhengkai Liao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Zhengkai Liao, ; Ling Yan,
| |
Collapse
|
14
|
Wang R, Wei L, Wazir J, Li L, Song S, Lin K, Pu W, Zhao C, Su Z, Zhao Q, Wang H. Curcumin treatment suppresses cachexia-associated adipose wasting in mice by blocking the cAMP/PKA/CREB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154563. [PMID: 36610148 DOI: 10.1016/j.phymed.2022.154563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/24/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cachexia is a multifactorial debilitating syndrome that is responsible for 22% of mortality among cancer patients, and there are no effective therapeutic agents available. Curcumin, a polyphenolic compound derived from the plant turmeric, has been shown to have anti-inflammatory, antioxidant, anti-autophagic, and antitumor activities. However, its function in cancer cachexia remains largely unexplored. PURPOSE This study aimed to elucidate the mechanisms by which curcumin improves adipose atrophy in cancer cachexia. METHODS C26 tumor-bearing BALB/c mice and β3-adrenoceptor agonist CL316243 stimulated BALB/c mice were used to observe the therapeutic effects of curcumin on the lipid degradation of cancer cachexia in vivo. The effects of curcumin in vitro were examined using mature 3T3-L1 adipocytes treated with a conditioned medium of C26 tumor cells or CL316243. RESULTS Mice with C26 tumors and cachexia were protected from weight loss and adipose atrophy by curcumin (50 mg/kg, i.g.). Curcumin significantly reduced serum levels of free fatty acids and increased triglyceride levels. In addition, curcumin significantly inhibited PKA and CREB activation in the adipose tissue of cancer cachectic mice. Curcumin also ameliorated CL316243-induced adipose atrophy and inhibited hormone-mediated PKA and CREB activation in mice. Moreover, the lipid droplet degradation induced by C26 tumor cell conditioned medium in mature 3T3-L1 adipocytes was ameliorated by curcumin (20 µM) treatment. Curcumin also improved the lipid droplet degradation of mature 3T3-L1 adipocytes induced by CL316243. CONCLUSION Curcumin might be expected to be a therapeutic supplement for cancer cachexia patients, primarily through inhibiting adipose tissue loss via the cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Kai Lin
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Chen Zhao
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Chen S, Huang X. Cytosolic lipolysis in non-adipose tissues: energy provision and beyond. FEBS J 2022; 289:7385-7398. [PMID: 34407292 DOI: 10.1111/febs.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/18/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Cytosolic lipolysis is a well-defined biochemical process that plays important roles in the mobilization of stored neutral lipids. Lipid turnover, regulated by cytosolic lipolysis, has been extensively studied in adipose tissue, liver, and muscle. The storage and utilization of neutral lipids is a basic function of most, if not all, tissues and cells. In this review, we focus on the functions of cytosolic lipolysis mainly in non-adipose tissues and in several physiological processes, including cancer, longevity, and pathogen infection. The mechanisms underlying the impact of cytosolic lipolysis on these events will be discussed. Detailed understanding of cytosolic lipolysis in both adipose and non-adipose tissues will have implications for future clinical translation.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Abstract
White adipose tissue wasting plays a critical role in the development and progression of cancer cachexia. However, the mechanism behind the loss of adipose tissue remains ill-defined. In this study, we found that cancer cell-derived exosomes highly expressed miR-425-3p. Administration of cancer cell-derived exosomes significantly inhibited proliferation and differentiation of human preadipocytes-viscereal (HPA-v) cells. In mature adipocytes, cancer cell-derived exosomes activated cAMP/PKA signalling and lipophagy, leading to adipocyte lipolysis and browning of white adipocytes. These exosomes-induced alterations were almost abolished by endocytosis inhibitor cytochalasin D (CytoD) and antagomiR-425-3p, or reproduced by miR-425-3p mimics. In addition, bioinformatics analysis and luciferase reporter assay revealed that miR-425-3p directly targeted proliferation-related genes such as GATA2, IGFBP4, MMP15, differentiation-related gene CEBPA, and phosphodiesterase 4B gene (PDE4B). Depletion of PDE4B enhanced cAMP/PKA signalling and lipophagy, but had no effects on HPA-v proliferation and differentiation. Taken together, these results suggested that cancer cell-derived exosomal miR-425-3p inhibited preadipocyte proliferation and differentiation, increased adipocyte lipolysis, and promoted browning of white adipocytes, all of which might contribute to adipocyte atrophy and ultimately the loss of adipose tissue in cancer cachexia. Abbreviations: ADPN: adiponectin; aP2: adipocyte protein 2 or fatty acid binding protein 4 (FABP4); BCA: bicinchoninic acid assay; BFA: bafilomycin A1; BMI: body mass index; C/EBP: CCAAT/enhancer binding protein; CEBPA: CCAAT/enhancer-binding protein-alpha; C-Exo: cancer cell-derived exosomes; CNTL: control; CREB: cAMP-response element binding protein; CytoD: cytochalasin D; ECL: chemiluminescence; GATA2: GATA Binding Protein 2; HFD: high fat diet; HSL: hormone-sensitive lipase; IGFBP4: insulin like growth factor binding protein 4; IRS-1: insulin receptor substrate-1; ISO: isoproterenol hydrochloride; KD: knockdown; KO: knock out; LC3: microtubule-associated protein 1A/1B-light chain 3; LMF: lipid mobilizing factor; LPL: lipoprotein lipase; MMP15: matrix metallopeptidase 15; Mir-Inh-C-Exo: cancer cell-derived exosomes with miR-425-3p inhibition; mTOR: mammalian target of rapamycin; Mut: mutant; N-Exo: normal cell-derived exosomes; NSCLC: non-small cell lung cancer; PBS, phosphate buffered saline; PGC-1: peroxisome proliferator-activated receptor-gamma coactivator-1; PDEs: phosphodiesterases; PKI: PKA inhibitor; PKA: cAMP-dependent protein kinase; PLIN1: Perilipin 1; PTHRP: parathyroid hormone-related protein; PVDF: polyvinylidene difluoride; shRNA: short hairpin RNA; UCP1: uncoupling protein 1; WT: wild type.
Collapse
Affiliation(s)
- Anwen Liu
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Wenxia Pan
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Shutong Zhuang
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yuanzhi Tang
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Haitao Zhang
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Transforming Growth Factor-Beta Signaling in Cancer-Induced Cachexia: From Molecular Pathways to the Clinics. Cells 2022; 11:cells11172671. [PMID: 36078078 PMCID: PMC9454487 DOI: 10.3390/cells11172671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a metabolic syndrome consisting of massive loss of muscle mass and function that has a severe impact on the quality of life and survival of cancer patients. Up to 20% of lung cancer patients and up to 80% of pancreatic cancer patients are diagnosed with cachexia, leading to death in 20% of them. The main drivers of cachexia are cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), macrophage inhibitory cytokine 1 (MIC-1/GDF15) and transforming growth factor-beta (TGF-β). Besides its double-edged role as a tumor suppressor and activator, TGF-β causes muscle loss through myostatin-based signaling, involved in the reduction in protein synthesis and enhanced protein degradation. Additionally, TGF-β induces inhibin and activin, causing weight loss and muscle depletion, while MIC-1/GDF15, a member of the TGF-β superfamily, leads to anorexia and so, indirectly, to muscle wasting, acting on the hypothalamus center. Against this background, the blockade of TGF-β is tested as a potential mechanism to revert cachexia, and antibodies against TGF-β reduced weight and muscle loss in murine models of pancreatic cancer. This article reviews the role of the TGF-β pathway and to a minor extent of other molecules including microRNA in cancer onset and progression with a special focus on their involvement in cachexia, to enlighten whether TGF-β and such other players could be potential targets for therapy.
Collapse
|
18
|
Christou CN, Ehrsson YT, Westerbergh J, Risérus U, Laurell G. Longitudinal Changes in the Fatty Acid Profile in Patients with Head and Neck Cancer: Associations with Treatment and Inflammatory Response. Cancers (Basel) 2022; 14:3696. [PMID: 35954360 PMCID: PMC9367269 DOI: 10.3390/cancers14153696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Studies on fatty acids (FAs) in patients with head and neck cancer (HNC) are limited. We aimed to investigate the longitudinal changes of circulating FAs in patients with HNC and to examine potential correlations of FA changes with treatment. The secondary aims were to investigate correlations of FAs with cytokines and patient-related factors, and if any FAs correlated with disease recurrence or death. A total of 174 patients with HNC were included before treatment and followed-up at three time points after the start of the treatment through blood sampling and body weight measurements. Serum FA profiling was assessed by gas chromatography. The total follow-up time was 3 years. The levels of almost all FAs changed from baseline to 7 weeks. The change in FA 14:0 was associated with treatment and the change in 18:3n-6 was associated with the patients' pre-treatment BMI. FAs 14:0 and 18:0 were correlated with weight changes from baseline to 7 weeks. IL-6 was correlated with three FAs at 7 weeks and with two FAs at 1 year. Patients with higher levels 20:5n-3 at 3 months had a higher risk of all-cause death within 3 years (HR 2.75, 95% CI 1.22-6.21). Treatment, inflammation, and weight loss contributed in a complex manner to the altered FA profile in the studied cohort. The association between IL-6 and FAs in patients with HNC is in line with earlier studies and suggests the opportunity for regulating inflammation in HNC patients through modulation of FAs.
Collapse
Affiliation(s)
- Constantina N Christou
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (Y.T.E.); (G.L.)
| | - Ylva Tiblom Ehrsson
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (Y.T.E.); (G.L.)
| | - Johan Westerbergh
- Uppsala Clinical Research Center, Uppsala University, 751 85 Uppsala, Sweden;
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Uppsala University, 752 37 Uppsala, Sweden;
| | - Göran Laurell
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (Y.T.E.); (G.L.)
| |
Collapse
|
19
|
Kershaw JC, Elzey BD, Guo XX, Kim KH. Piceatannol, a Dietary Polyphenol, Alleviates Adipose Tissue Loss in Pre-Clinical Model of Cancer-Associated Cachexia via Lipolysis Inhibition. Nutrients 2022; 14:nu14112306. [PMID: 35684106 PMCID: PMC9183120 DOI: 10.3390/nu14112306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia (CAC) is the nutrition-independent loss of lean muscle and adipose tissues, and results in reduced chemotherapy effectiveness and increased mortality. Preventing adipose loss is considered a key target in the early stages of cachexia. Lipolysis is considered the central driver of adipose loss in CAC. We recently found that piceatannol, but not its analogue resveratrol, exhibits an inhibitory effect on lipolysis. The objective of this study was to investigate the role of piceatannol in cancer-associated lipolysis and cachexia-induced weight loss. Cancer cell-induced lipolysis in adipocytes was stimulated using cancer-conditioned media (CCM) or co-culture with human pancreatic cancer cells and the cachexia-associated cytokines TNF-α and interleukin-6 in 3T3-L1 adipocytes. C26 colon carcinoma-bearing mice were modeled using CAC in vivo. Piceatannol reduced cancer-associated lipolysis by at least 50% in both CCM and cytokine-induced lipolysis in vitro. Further gene and protein analysis confirmed that piceatannol modulated the stability of lipolytic proteins. Moreover, piceatannol protected tumor-bearing mice against weight-loss in early stages of CAC largely through preserving adipose tissue, with no effect on survival. This study demonstrates the use of a dietary compound to preserve adipose in models of early stage CAC and provides groundwork for further investigation of piceatannol or piceatannol-rich foods as alternative medicine in the preservation of body fat mass and future CAC therapy.
Collapse
Affiliation(s)
- Jonathan C. Kershaw
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
- Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Bennett D. Elzey
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| | - Xiao-Xuan Guo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: ; Tel.: +1-765-496-2330
| |
Collapse
|
20
|
Weber BZC, Arabaci DH, Kir S. Metabolic Reprogramming in Adipose Tissue During Cancer Cachexia. Front Oncol 2022; 12:848394. [PMID: 35646636 PMCID: PMC9135324 DOI: 10.3389/fonc.2022.848394] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a disorder of energy balance characterized by the wasting of adipose tissue and skeletal muscle resulting in severe weight loss with profound influence on morbidity and mortality. Treatment options for cancer cachexia are still limited. This multifactorial syndrome is associated with changes in several metabolic pathways in adipose tissue which is affected early in the course of cachexia. Adipose depots are involved in energy storage and consumption as well as endocrine functions. In this mini review, we discuss the metabolic reprogramming in all three types of adipose tissues – white, brown, and beige – under the influence of the tumor macro-environment. Alterations in adipose tissue lipolysis, lipogenesis, inflammation and adaptive thermogenesis of beige/brown adipocytes are highlighted. Energy-wasting circuits in adipose tissue impacts whole-body metabolism and particularly skeletal muscle. Targeting of key molecular players involved in the metabolic reprogramming may aid in the development of new treatment strategies for cancer cachexia.
Collapse
|
21
|
Abstract
Recent technological developments have allowed determination of the age of fat cells and their lipids in adult humans. In contrast to prior views, this has demonstrated a high turnover rate of the fat cells (10%/year) and their unilocular lipid droplets (six times/10 years). Fat cell turnover is increased in obesity and when adipose tissue is composed of many but small adipocytes (hyperplasia, a benign adipose phenotype). While fat mass gain increases adipocyte number and size, only the latter is altered (decreased) after weight loss, which may facilitate weight regain. Fat cell lipid turnover is attenuated in subjects with excess body fat. In the subcutaneous region, this dysregulation occurs already in the overweight state while in the visceral depot, it is only observed in severe obesity. This may explain why the latter depot is particularly pernicious in the overweight/obese state as it allows for more rapid lipid fluxes between visceral fat and the liver. Adipose lipid turnover decreases during ageing due to impaired breakdown (lipolysis) of stored triglycerides. If this decline is not compensated by reduced adipocyte lipid uptake, bodyweight will increase over time. In concordance with this, low lipolysis rates are a risk factor for future weight gain and glucose intolerance. Adipose lipid turnover is also decreased in insulin resistance and certain forms of dyslipidemia. Altogether, adult human adipose tissue is in a highly dynamic state. Alterations in the turnover of fat cells and their lipids are therefore novel factors to consider in the pathophysiology of common metabolic disorders.
Collapse
Affiliation(s)
- Peter Arner
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Divella R, Gadaleta Caldarola G, Mazzocca A. Chronic Inflammation in Obesity and Cancer Cachexia. J Clin Med 2022; 11:2191. [PMID: 35456284 PMCID: PMC9027625 DOI: 10.3390/jcm11082191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation has long been linked to obesity and related conditions such as type 2 diabetes and metabolic syndrome. According to current research, the increased risk of cancer in people with certain metabolic diseases may be due to chronic inflammation. Adipocytokines, which are pro-inflammatory cytokines secreted in excess, are elevated in many chronic metabolic diseases. Cytokines and inflammatory mediators, which are not directly linked to DNA, are important in tumorigenesis. Cachexia, a type of metabolic syndrome linked to the disease, is associated with a dysregulation of metabolic pathways. Obesity and cachexia have distinct metabolic characteristics, such as insulin resistance, increased lipolysis, elevated free fatty acids (FFA), and ceramide levels, which are discussed in this section. The goal of this research project is to create a framework for bringing together our knowledge of inflammation-mediated insulin resistance.
Collapse
Affiliation(s)
- Rosa Divella
- ASD Nordic Walking Apulia Lifestyle, Corso Giuseppe Di Vittorio 14, 70024 Gravina in Puglia, Italy
| | | | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
23
|
Anderson LJ, Lee J, Anderson B, Lee B, Migula D, Sauer A, Chong N, Liu H, Wu PC, Dash A, Li Y, Garcia JM. Whole-body and adipose tissue metabolic phenotype in cancer patients. J Cachexia Sarcopenia Muscle 2022; 13:1124-1133. [PMID: 35088949 PMCID: PMC8977952 DOI: 10.1002/jcsm.12918] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Altered adipose tissue (AT) metabolism in cancer-associated weight loss via inflammation, lipolysis, and white adipose tissue (WAT) browning is primarily implicated from rodent models; their contribution to AT wasting in cancer patients is unclear. METHODS Energy expenditure (EE), plasma, and abdominal subcutaneous WAT were obtained from men (aged 65 ± 8 years) with cancer, with (CWL, n = 27) or without (CWS, n = 47) weight loss, and weight-stable non-cancer patients (CON, n = 26). Clinical images were assessed for adipose and muscle area while plasma and WAT were assessed for inflammatory, lipolytic, and browning markers. RESULTS CWL displayed smaller subcutaneous AT (SAT; P = 0.05) and visceral AT (VAT; P = 0.034) than CWS, and displayed higher circulating interleukin (IL)-6 (P = 0.01) and WAT transcript levels of IL-6 (P = 0.029), IL-1β (P = 0.042), adipose triglyceride lipase (P = 0.026), and browning markers (Dio2, P = 0.03; PGC-1a, P = 0.016) than CWS and CON. There was no difference across groups in absolute REE (P = 0.061), %predicted REE (P = 0.18), circulating free fatty acids (FFA, P = 0.13) or parathyroid hormone-related peptide (PTHrP; P = 0.88), or WAT protein expression of inflammation (IL-6, P = 0.51; IL-1β, P = 0.29; monocyte chemoattractant protein-1, P = 0.23) or WAT protein or gene expression of browning (uncoupling protein-1, UCP-1; P = 0.13, UCP-1, P = 0.14). In patients with cancer, FFA was moderately correlated with WAT hormone-sensitive lipase transcript (r = 0.38, P = 0.018, n = 39); circulating cytokines were not correlated with expression of WAT inflammatory markers and circulating PTHrP was not correlated with expression of WAT browning markers. In multivariate regression using cancer patients only, body mass index (BMI) directly predicted SAT (N = 25, R2 = 0.72, P < 0.001), VAT (N = 28, R2 = 0.64, P < 0.001), and absolute REE (N = 22, R2 = 0.43, P = 0.001), while BMI and WAT UCP-1 protein were indirectly associated with %predicted REE (N = 22, R2 = 0.45, P = 0.02), and FFA was indirectly associated with RQ (N = 22, R2 = 0.52, P < 0.001). CONCLUSIONS Cancer-related weight loss was associated with elevated circulating IL-6 and elevations in some WAT inflammatory, lipolytic and browning marker transcripts. BMI, not weight loss, was associated with increased energy expenditure. The contribution of inflammation and lipolysis, and lack thereof for WAT browning, will need to be clarified in other tumour types to increase generalizability. Future studies should consider variability in fat mass when exploring the relationship between cancer and adipose metabolism and should observe the trajectory of lipolysis and energy expenditure over time to establish the clinical significance of these associations and to inform more mechanistic interpretation of causation.
Collapse
Affiliation(s)
- Lindsey J. Anderson
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric Medicine‐Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Jonathan Lee
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
| | - Barbara Anderson
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
| | - Benjamin Lee
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
| | - Dorota Migula
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
| | - Adam Sauer
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
| | - Nicole Chong
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
| | - Haiming Liu
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric Medicine‐Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Peter C. Wu
- Department of SurgeryVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Department of SurgeryUniversity of WashingtonSeattleWAUSA
| | - Atreya Dash
- Department of UrologyVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Department of UrologyUniversity of WashingtonSeattleWAUSA
| | - Yi‐Ping Li
- Department of Integrative Biology and PharmacologyUniversity of Texas Health Science CenterHoustonTXUSA
| | - Jose M. Garcia
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric Medicine‐Department of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
24
|
Brown LR, Laird BJA, Wigmore SJ, Skipworth RJE. Understanding Cancer Cachexia and Its Implications in Upper Gastrointestinal Cancers. Curr Treat Options Oncol 2022; 23:1732-1747. [PMID: 36269458 PMCID: PMC9768000 DOI: 10.1007/s11864-022-01028-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Considerable advances in the investigation and management of oesophagogastric cancer have occurred over the last few decades. While the historically dismal prognosis associated with these diseases has improved, outcomes remain very poor. Cancer cachexia is an often neglected, yet critical, factor for this patient group. There is a persuasive argument that a lack of assessment and treatment of cachexia has limited progress in oesophagogastric cancer care. In the curative setting, the stage of the host (based on factors such as body composition, function, and inflammatory status), alongside tumour stage, has the potential to influence treatment efficacy. Phenotypical features of cachexia may decrease the survival benefit of (peri-operative) chemoradiotherapy, immunotherapy, or surgical resection in patients with potentially curative malignancy. Most patients with oesophagogastric cancer unfortunately present with disease which is not amenable, or is unlikely to respond, to these treatments. In the palliative setting, host factors can similarly impair results from systemic anti-cancer therapies, cause adverse symptoms, and reduce quality of life. To optimise treatment pathways and enhance patient outcomes, we must utilise this information during clinical decision-making. As our understanding of the genesis of cancer cachexia improves and more therapeutic options, ranging from basic (e.g. exercise and nutrition) to targeted (e.g. anti-IL1 α and anti-GDF-15), become available, there can be grounds for optimism. Cachexia can change from a hitherto neglected condition to an integral part of the oesophagogastric cancer treatment pathway.
Collapse
Affiliation(s)
- Leo R. Brown
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, Scotland EH16 4SA UK
| | - Barry J. A. Laird
- Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, Scotland EH4 2XU UK ,St Columba’s Hospice, Edinburgh, Scotland EH5 3RW UK
| | - Stephen J. Wigmore
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, Scotland EH16 4SA UK
| | - Richard J. E. Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, Scotland EH16 4SA UK
| |
Collapse
|
25
|
Rossmeislová L, Gojda J, Smolková K. Pancreatic cancer: branched-chain amino acids as putative key metabolic regulators? Cancer Metastasis Rev 2021; 40:1115-1139. [PMID: 34962613 DOI: 10.1007/s10555-021-10016-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
Abstract
Branched-chain amino acids (BCAA) are essential amino acids utilized in anabolic and catabolic metabolism. While extensively studied in obesity and diabetes, recent evidence suggests an important role for BCAA metabolism in cancer. Elevated plasma levels of BCAA are associated with an increased risk of developing pancreatic cancer, namely pancreatic ductal adenocarcinoma (PDAC), a tumor with one of the highest 1-year mortality rates. The dreadful prognosis for PDAC patients could be attributable also to the early and frequent development of cancer cachexia, a fatal host metabolic reprogramming leading to muscle and adipose wasting. We propose that BCAA dysmetabolism is a unifying component of several pathological conditions, i.e., obesity, insulin resistance, and PDAC. These conditions are mutually dependent since PDAC ranks among cancers tightly associated with obesity and insulin resistance. It is also well-established that PDAC itself can trigger insulin resistance and new-onset diabetes. However, the exact link between BCAA metabolism, development of PDAC, and tissue wasting is still unclear. Although tissue-specific intracellular and systemic metabolism of BCAA is being intensively studied, unresolved questions related to PDAC and cancer cachexia remain, namely, whether elevated circulating BCAA contribute to PDAC etiology, what is the biological background of BCAA elevation, and what is the role of adipose tissue relative to BCAA metabolism during cancer cachexia. To cover those issues, we provide our view on BCAA metabolism at the intracellular, tissue, and whole-body level, with special emphasis on different metabolic links to BCAA intermediates and the role of insulin in substrate handling.
Collapse
Affiliation(s)
- Lenka Rossmeislová
- Department of Pathophysiology, Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research On Obesity, Third Faculty of Medicine, Prague, Czech Republic
| | - Jan Gojda
- Franco-Czech Laboratory for Clinical Research On Obesity, Third Faculty of Medicine, Prague, Czech Republic
- Department of Internal Medicine, Královské Vinohrady University Hospital and Third Faculty of Medicine, Prague, Czech Republic
| | - Katarína Smolková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
26
|
Maki Y, Sueta D, Ishii M, Yamanouchi Y, Fujisue K, Yamanaga K, Nakamura T, Tabata N, Arima Y, Araki S, Yamamoto E, Kaikita K, Chikamoto A, Matsushita K, Matsuoka M, Usuku K, Tsujita K. Associations of cardiovascular risk factors with survival outcomes in a cancer registration: Findings from the KUMAMON registry. Medicine (Baltimore) 2021; 100:e27921. [PMID: 34964764 PMCID: PMC8615348 DOI: 10.1097/md.0000000000027921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
Although the relationship between cardiovascular diseases and malignant diseases has recently attracted attention, the associations of cardiovascular risk factors and clinical outcomes in cancer patients remain to be elucidated. We performed a retrospective, observational study that explored the clinical outcomes of patients with cancer or with a history of cancer.We enrolled 30,706 consecutive adult cancer patients from Kumamoto University Hospital. We investigated mortality and morbidity, including cardiovascular conditions (dyslipidemia [DL]/diabetes mellitus [DM]/hypertension [HT]). The primary endpoint was all-cause mortality.Of the enrolled patients, 9032 patients (29.4%) died within the follow-up period. The Kaplan-Meier analysis demonstrated that in the groups classified according to the number of DL/DM/HT (LDH) factors, the LDH1 and LDH2 groups had a significantly higher probability of the primary endpoint than the LDH0 group (P < .001 and P < .001, respectively), whereas there were no significant differences between the LDH0 group and LDH3 group (P = .963). Univariate Cox proportional hazards regression analyses of mortality complemented by the multiple imputation method including various factors demonstrated that the presence of DL in cancer patients was a significant negative predictor of mortality (hazard ratio = 0.79, P < .01).The all-cause mortality rate did not always increase as the number of LDH factors increased. The present study revealed that the presence of DL is a negative risk factor for all-cause mortality in cancer patients.
Collapse
Affiliation(s)
- Yuji Maki
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Masanobu Ishii
- Department of Cardiology, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Yoshinori Yamanouchi
- Department of Department of Clinical Investigation, Kumamoto University Hospital, Kumamoto, Japan
| | - Koichiro Fujisue
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
- Medical Quality and Safety Management, Kumamoto University Hospital, Kumamoto, Japan
| | - Kenshi Yamanaga
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Taishi Nakamura
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
- Medical Information Science and Administration Planning, Kumamoto University Hospital, Kumamoto, Japan
| | - Noriaki Tabata
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Akira Chikamoto
- Medical Quality and Safety Management, Kumamoto University Hospital, Kumamoto, Japan
- Gastroenterological Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Kenichi Matsushita
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
- Division of Advanced Cardiovascular Therapeutics, Kumamoto University Hospital, Kumamoto, Japan
| | - Masao Matsuoka
- Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto Japan
| | - Koichiro Usuku
- Medical Information Science and Administration Planning, Kumamoto University Hospital, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| |
Collapse
|
27
|
Ma D, Li X, Wang Y, Cai L, Wang Y. Excessive fat expenditure in cachexia is associated with dysregulated circadian rhythm: a review. Nutr Metab (Lond) 2021; 18:89. [PMID: 34627306 PMCID: PMC8502262 DOI: 10.1186/s12986-021-00616-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a progressive metabolic disorder characterized by the excessive depletion of adipose tissue. This hypermetabolic condition has catastrophic impacts on the survival and quality of life for patients suffering from critical illness. However, efficient therapies to prevent adipose expenditure have not been discovered. It has been established that the circadian clock plays an important role in modulating fat metabolic processes. Recently, an increasing number of studies had provided evidence showing that disrupted circadian rhythm leads to insulin resistance and obesity; however, studies analyzing the relationship between circadian misalignment and adipose tissue expenditure in cachexia are scarce. In the present review, we cover the involvement of the circadian clocks in the regulation of adipogenesis, lipid metabolism and thermogenesis as well as inflammation in white and brown adipose tissue. According to the present review, we conclude that circadian clock disruption is associated with lipid metabolism imbalance and elevated adipose tissue inflammation. Moreover, under cachexia conditions, lipid synthesis and storage processes lost rhythm and decreased, while lipolysis and thermogenesis activities remained high for 24 h. Therefore, disordered circadian clock may be responsible for fat expenditure in cachexia by adversely influencing lipid synthesis/ storage/lipolysis/utilization. Further study needs to be performed to explore the direct interaction between circadian clock and fat expenditure in cachexia, it will likely provide potential efficient drugs for the treatment of fat expenditure in cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Xiao Li
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yongcheng Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Lu Cai
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China.
| |
Collapse
|
28
|
Choi H, Park YS, Na KJ, Park S, Park IK, Kang CH, Kim YT, Goo JM, Yoon SH. Association of Adipopenia at Preoperative PET/CT with Mortality in Stage I Non-Small Cell Lung Cancer. Radiology 2021; 301:645-653. [PMID: 34609197 DOI: 10.1148/radiol.2021210576] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Body mass index (BMI) and sarcopenia status are well-established prognostic factors in patients with lung cancer. However, the relationship between the amount of adipose tissue and survival remains unclear. Purpose To investigate the association between baseline adipopenia and outcomes in patients with early-stage non-small cell lung cancer (NSCLC). Materials and Methods Consecutive patients who underwent surgical resection for stage I NSCLC between 2011 and 2015 at a single tertiary care center were retrospectively identified. The primary outcome was the 5-year overall survival (OS) rate, and secondary outcomes were the 5-year disease-free survival (DFS) rate and the major postoperative complication rate. The abdominal total fat volume at the waist and the skeletal muscle area at the L3 level were obtained from preoperative PET/CT data and were normalized by the height squared to calculate the fat volume index (FVI) and skeletal muscle index. Adipopenia was defined as the sex-specific lowest quartile of the FVI for the study sample, and sarcopenia was determined using the skeletal muscle index reference value (men, <55 cm2/m2; women, <39 cm2/m2). The association between body composition and outcomes was evaluated using Cox regression analysis. Results A total of 440 patients (median age, 65 years [interquartile range, 58-72 years]; 243 men) were evaluated. Most underweight patients (<20 kg/m2) had adipopenia (97%, 36 of 37 patients), but overweight patients (25-30 kg/m2, n = 138) and obese patients (>30 kg/m2, n = 14) did not have adipopenia (3%, four of 152 patients). In the group with a normal BMI (20-25 kg/m2), 28% (70 of 251 patients) had adipopenia and 67% (168 of 251 patients) had sarcopenia. After adjusting for age, sex, smoking history, surgical procedure, stage, histologic type, BMI, and sarcopenia, adipopenia was associated with reduced 5-year OS (hazard ratio [HR] = 2.2; 95% CI: 1.1, 3.8; P = .02) and 5-year non-cancer-specific OS rates (HR = 3.2; 95% CI: 1.2, 8.7; P = .02). There was no association between adipopenia and postoperative complications (P = .45) or between adipopenia and the 5-year DFS rate (P = .18). Conclusion Baseline adipopenia was associated with a reduced 5-year overall survival rate in patients with early-stage non-small cell lung cancer and may indicate risk for non-cancer-related death. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Hyewon Choi
- From the Department of Radiology (H.C.), Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea; Departments of Internal Medicine (Y.S.P.), Thoracic and Cardiovascular Surgery (K.J.N., S.P., I.K.P., C.H.K., Y.T.K.), and Radiology (J.M.G., S.H.Y.), Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Young Sik Park
- From the Department of Radiology (H.C.), Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea; Departments of Internal Medicine (Y.S.P.), Thoracic and Cardiovascular Surgery (K.J.N., S.P., I.K.P., C.H.K., Y.T.K.), and Radiology (J.M.G., S.H.Y.), Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Kwon Joong Na
- From the Department of Radiology (H.C.), Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea; Departments of Internal Medicine (Y.S.P.), Thoracic and Cardiovascular Surgery (K.J.N., S.P., I.K.P., C.H.K., Y.T.K.), and Radiology (J.M.G., S.H.Y.), Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Samina Park
- From the Department of Radiology (H.C.), Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea; Departments of Internal Medicine (Y.S.P.), Thoracic and Cardiovascular Surgery (K.J.N., S.P., I.K.P., C.H.K., Y.T.K.), and Radiology (J.M.G., S.H.Y.), Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - In Kyu Park
- From the Department of Radiology (H.C.), Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea; Departments of Internal Medicine (Y.S.P.), Thoracic and Cardiovascular Surgery (K.J.N., S.P., I.K.P., C.H.K., Y.T.K.), and Radiology (J.M.G., S.H.Y.), Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Chang Hyun Kang
- From the Department of Radiology (H.C.), Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea; Departments of Internal Medicine (Y.S.P.), Thoracic and Cardiovascular Surgery (K.J.N., S.P., I.K.P., C.H.K., Y.T.K.), and Radiology (J.M.G., S.H.Y.), Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Young Tae Kim
- From the Department of Radiology (H.C.), Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea; Departments of Internal Medicine (Y.S.P.), Thoracic and Cardiovascular Surgery (K.J.N., S.P., I.K.P., C.H.K., Y.T.K.), and Radiology (J.M.G., S.H.Y.), Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Jin Mo Goo
- From the Department of Radiology (H.C.), Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea; Departments of Internal Medicine (Y.S.P.), Thoracic and Cardiovascular Surgery (K.J.N., S.P., I.K.P., C.H.K., Y.T.K.), and Radiology (J.M.G., S.H.Y.), Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Soon Ho Yoon
- From the Department of Radiology (H.C.), Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Korea; Departments of Internal Medicine (Y.S.P.), Thoracic and Cardiovascular Surgery (K.J.N., S.P., I.K.P., C.H.K., Y.T.K.), and Radiology (J.M.G., S.H.Y.), Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
29
|
Sun D, Ding Z, Shen L, Yang F, Han J, Wu G. miR-410-3P inhibits adipocyte differentiation by targeting IRS-1 in cancer-associated cachexia patients. Lipids Health Dis 2021; 20:115. [PMID: 34563222 PMCID: PMC8465700 DOI: 10.1186/s12944-021-01530-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/24/2021] [Indexed: 11/14/2022] Open
Abstract
Backgrounds Cancer-associated cachexia (CAC) is a metabolic syndrome characterized by progressive depletion of adipose and muscle tissue that cannot be corrected by conventional nutritional therapy. Adipose tissue, an important form of energy storage, exhibits marked loss in the early stages of CAC, which affects quality of life and efficacy of chemotherapy. MicroRNAs (miRNAs) are a class of noncoding RNAs that widely exist in all kinds of eukaryotic cells and play regulatory roles in various biological processes. However, the role of miRNAs in adipose metabolism in CAC has rarely been reported. This study attempted to identify important miRNAs in adipose metabolism in CAC and explore their mechanism to identify a new predictive marker or therapeutic target for CAC-related adipose tissue loss (CAL). Methods In this study, miRNA sequencing was firstly used to identify differentially expressed miRNAs related to CAL and the reliability of the conclusions was verified in large population samples. Furthermore, functional experiments were performed by up and down regulating miR-410-3p in adipocytes. The binding of miR-410-3p to Insulin Receptor Substrate 1 (IRS-1) was verified by Luciferase reporter assay and functional experiments of IRS-1 were performed in adipocytes. Finally, the expression of miR-410-3p in serum exosomes was detected. Results miR-410-3p was selected as differentially expressed miRNA through screening and validation. Adipogenesis was suppressed in miR-410-3p upregulation experiment and increased in downregulation experiment. Luciferase reporter assay showed that miR-410-3p binds to 3′ non-coding region of IRS-1 and represses its expression and ultimately inhibits adipogenesis. miR-410-3p was highly expressed in serum exosomes of CAC patients, which was consistent with results in adipose tissue. Conclusions The expression of miR-410-3p was higher in subcutaneous adipose tissues and serum exosomes of CAC patients, which significantly inhibits adipogenesis and lipid accumulation. The study shows that miR-410-3p could downregulate IRS-1 and downstream adipose differentiation factors including C/EBP-a and PPAR-γ by targeting 3′ noncoding region. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01530-9.
Collapse
Affiliation(s)
- Diya Sun
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zuoyou Ding
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Lei Shen
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Fan Yang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China. .,Shanghai Clinical Nutrition Research Centre, Shanghai, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China. .,Shanghai Clinical Nutrition Research Centre, Shanghai, China.
| |
Collapse
|
30
|
Pancreatic cancer cachexia: three dimensions of a complex syndrome. Br J Cancer 2021; 124:1623-1636. [PMID: 33742145 PMCID: PMC8110983 DOI: 10.1038/s41416-021-01301-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome that is characterised by a loss of skeletal muscle mass, is commonly associated with adipose tissue wasting and malaise, and responds poorly to therapeutic interventions. Although cachexia can affect patients who are severely ill with various malignant or non-malignant conditions, it is particularly common among patients with pancreatic cancer. Pancreatic cancer often leads to the development of cachexia through a combination of distinct factors, which, together, explain its high prevalence and clinical importance in this disease: systemic factors, including metabolic changes and pathogenic signals related to the tumour biology of pancreatic adenocarcinoma; factors resulting from the disruption of the digestive and endocrine functions of the pancreas; and factors related to the close anatomical and functional connection of the pancreas with the gut. In this review, we conceptualise the various insights into the mechanisms underlying pancreatic cancer cachexia according to these three dimensions to expose its particular complexity and the challenges that face clinicians in trying to devise therapeutic interventions.
Collapse
|
31
|
Hu W, Xiong H, Ru Z, Zhao Y, Zhou Y, Xie K, Xiao W, Xiong Z, Wang C, Yuan C, Shi J, Du Q, Zhang X, Yang H. Extracellular vesicles-released parathyroid hormone-related protein from Lewis lung carcinoma induces lipolysis and adipose tissue browning in cancer cachexia. Cell Death Dis 2021; 12:134. [PMID: 33510128 PMCID: PMC7843996 DOI: 10.1038/s41419-020-03382-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Cancer cachexia is a metabolic disorder characterized by skeletal muscle wasting and white adipose tissue browning. Specific functions of several hormones, growth factors, and cytokines derived from tumors can trigger cachexia. Moreover, adipose tissue lipolysis might explain weight loss that occurs owing to cachexia. Extracellular vesicles (EVs) are involved in intercellular communication. However, whether EVs participate in lipolysis induced by cancer cachexia has not been thoroughly investigated. Using Lewis lung carcinoma (LLC) cell culture, we tested whether LLC cell-derived EVs can induce lipolysis in 3T3-L1 adipocytes. EVs derived from LLC cells were isolated and characterized biochemically and biophysically. Western blotting and glycerol assay were used to study lipolysis. LLC cell-derived EVs induced lipolysis in vivo and vitro. EVs fused directly with target 3T3-L1 adipocytes and transferred parathyroid hormone-related protein (PTHrP), activating the PKA signaling pathway in 3T3-L1 adipocytes. Blocking PTHrP activity in LLC-EVs using a neutralizing antibody and by knocking down PTHR expression prevented lipolysis in adipocytes. Inhibiting the PKA signaling pathway also prevents the lipolytic effects of EVs. In vivo, suppression of LLC-EVs release by knocking down Rab27A alleviated white adipose tissue browning and lipolysis. Our data showed that LLC cell-derived EVs induced adipocyte lipolysis via the extracellular PTHrP-mediated PKA pathway. Our data demonstrate that LLC-EVs induce lipolysis in vitro and vivo by delivering PTHrP, which interacts with PTHR. The lipolytic effect of LLC-EVs was abrogated by PTHR knockdown and treatment with a neutralizing anti-PTHrP antibody. Together, these data show that LLC-EV-induced lipolysis is mediated by extracellular PTHrP. These findings suggest a novel mechanism of lipid droplet loss and identify a potential therapeutic strategy for cancer cachexia.
Collapse
Affiliation(s)
- Wenjun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Hairong Xiong
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zeyuan Ru
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yan Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yali Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Kairu Xie
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Cheng Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Changfei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Quansheng Du
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
32
|
Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res 2020; 82:101084. [PMID: 33387571 DOI: 10.1016/j.plipres.2020.101084] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Collapse
Affiliation(s)
- Emeline Recazens
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
33
|
Webster JM, Kempen LJAP, Hardy RS, Langen RCJ. Inflammation and Skeletal Muscle Wasting During Cachexia. Front Physiol 2020; 11:597675. [PMID: 33329046 PMCID: PMC7710765 DOI: 10.3389/fphys.2020.597675] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Cachexia is the involuntary loss of muscle and adipose tissue that strongly affects mortality and treatment efficacy in patients with cancer or chronic inflammatory disease. Currently, no specific treatments or interventions are available for patients developing this disorder. Given the well-documented involvement of pro-inflammatory cytokines in muscle and fat metabolism in physiological responses and in the pathophysiology of chronic inflammatory disease and cancer, considerable interest has revolved around their role in mediating cachexia. This has been supported by association studies that report increased levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in some, but not all, cancers and in chronic inflammatory diseases such as chronic obstructive pulmonary disease (COPD) and rheumatoid arthritis (RA). In addition, preclinical studies including animal disease models have provided a substantial body of evidence implicating a causal contribution of systemic inflammation to cachexia. The presence of inflammatory cytokines can affect skeletal muscle through several direct mechanisms, relying on activation of the corresponding receptor expressed by muscle, and resulting in inhibition of muscle protein synthesis (MPS), elevation of catabolic activity through the ubiquitin-proteasomal system (UPS) and autophagy, and impairment of myogenesis. Additionally, systemic inflammatory mediators indirectly contribute to muscle wasting through dysregulation of tissue and organ systems, including GCs via the hypothalamus-pituitary-adrenal (HPA) axis, the digestive system leading to anorexia-cachexia, and alterations in liver and adipocyte behavior, which subsequently impact on muscle. Finally, myokines secreted by skeletal muscle itself in response to inflammation have been implicated as autocrine and endocrine mediators of cachexia, as well as potential modulators of this debilitating condition. While inflammation has been shown to play a pivotal role in cachexia development, further understanding how these cytokines contribute to disease progression is required to reveal biomarkers or diagnostic tools to help identify at risk patients, or enable the design of targeted therapies to prevent or delay the progression of cachexia.
Collapse
Affiliation(s)
- Justine M. Webster
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Laura J. A. P. Kempen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Rowan S. Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Institute for Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
34
|
Becker AS, Zellweger C, Bacanovic S, Franckenberg S, Nagel HW, Frick L, Schawkat K, Eberhard M, Blüthgen C, Volbracht J, Moos R, Wolfrum C, Burger IA. Brown fat does not cause cachexia in cancer patients: A large retrospective longitudinal FDG-PET/CT cohort study. PLoS One 2020; 15:e0239990. [PMID: 33031379 PMCID: PMC7544086 DOI: 10.1371/journal.pone.0239990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Brown adipose tissue (BAT) is a specialized form of adipose tissue, able to increase energy expenditure by heat generation in response to various stimuli. Recently, its pathological activation has been implicated in the pathogenesis of cancer cachexia. To establish a causal relationship, we retrospectively investigated the longitudinal changes in BAT and cancer in a large FDG-PET/CT cohort. Methods We retrospectively analyzed 13 461 FDG-PET/CT examinations of n = 8 409 patients at our institution from the winter months of 2007–2015. We graded the activation strength of BAT based on the anatomical location of the most caudally activated BAT depot into three tiers, and the stage of the cancer into five general grades. We validated the cancer grading by an interreader analysis and correlation with histopathological stage. Ambient temperature data (seven-day average before the examination) was obtained from a meteorological station close to the hospital. Changes of BAT, cancer, body mass index (BMI) and temperature between the different examinations were examined with Spearman’s test and a mixed linear model for correlation, and with a causal inference algorithm for causality. Results We found n = 283 patients with at least two examinations and active BAT in at least one of them. There was no significant interaction between the changes in BAT activation, cancer burden or BMI. Temperature changes exhibited a strong negative correlation with BAT activity (ϱ = -0.57, p<0.00001). These results were confirmed with the mixed linear model. Causal inference revealed a link of Temperature ➜ BAT in all subjects and also of BMI ➜ BAT in subjects who had lost weight and increased cancer burden, but no role of cancer and no causal links of BAT ➜ BMI. Conclusions Our data did not confirm the hypothesis that BAT plays a major role in cancer-mediated weight loss. Temperature changes are the main driver of incidental BAT activity on FDG-PET scans.
Collapse
Affiliation(s)
- Anton S. Becker
- Department of Health Sciences and Technology; Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| | - Caroline Zellweger
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sara Bacanovic
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sabine Franckenberg
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Hannes W. Nagel
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Lukas Frick
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Khoschy Schawkat
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Eberhard
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Christian Blüthgen
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Jörk Volbracht
- Division of Controlling and Data Management, University Hospital Zurich, Zurich, Switzerland
| | - Rudolf Moos
- Division of Controlling and Data Management, University Hospital Zurich, Zurich, Switzerland
| | - Christian Wolfrum
- Department of Health Sciences and Technology; Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Miller J, Dreczkowski G, Ramage MI, Wigmore SJ, Gallagher IJ, Skipworth RJE. Adipose depot gene expression and intelectin-1 in the metabolic response to cancer and cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1141-1153. [PMID: 32232960 PMCID: PMC7432578 DOI: 10.1002/jcsm.12568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/21/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer cachexia is a poorly understood metabolic consequence of cancer. During cachexia, different adipose depots demonstrate differential wasting rates. Animal models suggest adipose tissue may be a key driver of muscle wasting through fat-muscle crosstalk, but human studies in this area are lacking. We performed global gene expression profiling of visceral (VAT) and subcutaneous (SAT) adipose from weight stable and cachectic cancer patients and healthy controls. METHODS Cachexia was defined as >2% weight loss plus low computed tomography-muscularity. Biopsies of SAT and VAT were taken from patients undergoing resection for oesophago-gastric cancer, and healthy controls (n = 16 and 8 respectively). RNA was isolated and reverse transcribed. cDNA was hybridised to the Affymetrix Clariom S microarray and data analysed using R/Bioconductor. Differential expression of genes was assessed using empirical Bayes and moderated-t-statistic approaches. Category enrichment analysis was used with a tissue-specific background to examine the biological context of differentially expressed genes. Selected differentially regulated genes were validated by qPCR. Enzyme-linked immunosorbent assay (ELISA) for intelectin-1 was performed on all VAT samples. The previously-described cohort plus 12 additional patients from each group also had plasma I = intelectin-1 ELISA carried out. RESULTS In VAT vs. SAT comparisons, there were 2101, 1722, and 1659 significantly regulated genes in the cachectic, weight stable, and control groups, respectively. There were 2200 significantly regulated genes from VAT in cachectic patients compared with controls. Genes involving inflammation were enriched in cancer and control VAT vs. SAT, although different genes contributed to enrichment in each group. Energy metabolism, fat browning (e.g. uncoupling protein 1), and adipogenesis genes were down-regulated in cancer VAT (P = 0.043, P = 5.4 × 10-6 and P = 1 × 10-6 respectively). The gene showing the largest difference in expression was ITLN1, the gene that encodes for intelectin-1 (false discovery rate-corrected P = 0.0001), a novel adipocytokine associated with weight loss in other contexts. CONCLUSIONS SAT and VAT have unique gene expression signatures in cancer and cachexia. VAT is metabolically active in cancer, and intelectin-1 may be a target for therapeutic manipulation. VAT may play a fundamental role in cachexia, but the down-regulation of energy metabolism genes implies a limited role for fat browning in cachectic patients, in contrast to pre-clinical models.
Collapse
Affiliation(s)
- Janice Miller
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | | | - Michael I Ramage
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Stephen J Wigmore
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Iain J Gallagher
- Faculty of Health Science and Sport, University of Stirling, Stirling, UK
| | - Richard J E Skipworth
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Suriben R, Chen M, Higbee J, Oeffinger J, Ventura R, Li B, Mondal K, Gao Z, Ayupova D, Taskar P, Li D, Starck SR, Chen HIH, McEntee M, Katewa SD, Phung V, Wang M, Kekatpure A, Lakshminarasimhan D, White A, Olland A, Haldankar R, Solloway MJ, Hsu JY, Wang Y, Tang J, Lindhout DA, Allan BB. Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat Med 2020; 26:1264-1270. [PMID: 32661391 DOI: 10.1038/s41591-020-0945-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
Abstract
Cancer cachexia is a highly prevalent condition associated with poor quality of life and reduced survival1. Tumor-induced perturbations in the endocrine, immune and nervous systems drive anorexia and catabolic changes in adipose tissue and skeletal muscle, hallmarks of cancer cachexia2-4. However, the molecular mechanisms driving cachexia remain poorly defined, and there are currently no approved drugs for the condition. Elevation in circulating growth differentiation factor 15 (GDF15) correlates with cachexia and reduced survival in patients with cancer5-8, and a GDNF family receptor alpha like (GFRAL)-Ret proto-oncogene (RET) signaling complex in brainstem neurons that mediates GDF15-induced weight loss in mice has recently been described9-12. Here we report a therapeutic antagonistic monoclonal antibody, 3P10, that targets GFRAL and inhibits RET signaling by preventing the GDF15-driven interaction of RET with GFRAL on the cell surface. Treatment with 3P10 reverses excessive lipid oxidation in tumor-bearing mice and prevents cancer cachexia, even under calorie-restricted conditions. Mechanistically, activation of the GFRAL-RET pathway induces expression of genes involved in lipid metabolism in adipose tissues, and both peripheral chemical sympathectomy and loss of adipose triglyceride lipase protect mice from GDF15-induced weight loss. These data uncover a peripheral sympathetic axis by which GDF15 elicits a lipolytic response in adipose tissue independently of anorexia, leading to reduced adipose and muscle mass and function in tumor-bearing mice.
Collapse
Affiliation(s)
| | - Michael Chen
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | - Jared Higbee
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | | | | | - Betty Li
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | | | - Zhengyu Gao
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | - Dina Ayupova
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | | | - Diana Li
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | | | | | | | | | - Van Phung
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | - Marilyn Wang
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | | | | | | | | | - Raj Haldankar
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | | | - Jer-Yuan Hsu
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | - Yan Wang
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | - Jie Tang
- NGM Biopharmaceuticals, South San Francisco, CA, USA
| | | | | |
Collapse
|
37
|
Bandyopadhayaya S, Ford B, Mandal CC. Cold-hearted: A case for cold stress in cancer risk. J Therm Biol 2020; 91:102608. [PMID: 32716858 DOI: 10.1016/j.jtherbio.2020.102608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
A negative correlation exists between environmental temperature and cancer risk based on both epidemiological and statistical analyses. Previously, cold stress was reported to be an effective cause of tumorigenesis. Several studies have demonstrated that cold temperature serves as a potential risk factor in cancer development. Most recently, a link was demonstrated between the effects of extreme cold climate on cancer incidence, pinpointing its impact on tumour suppressor genes by causing mutation. The underlying mechanism behind cold stress and its association with tumorigenesis is not well understood. Hence, this review intends to shed light on the role of associated factors, genetic and/or non-genetic, which are modulated by cold temperature, and eventually influence tumorigenic potential. While scrutinizing the effect of cold exposure on the body, the expression of certain genes, e.g. uncoupled proteins and heat-shock proteins, were elevated. Biological chemicals such as norepinephrine, thyroxine, and cholesterol were also elevated. Brown adipose tissue, which plays an essential role in thermogenesis, displayed enhanced activity upon cold exposure. Adaptive measures are utilized by the body to tolerate the cold, and in doing so, invites both epigenetic and genetic changes. Unknowingly, these adaptive strategies give rise to a lethal outcome i.e., genesis of cancer. Concisely, this review attempts to draw a link between cold stress, genetic and epigenetic changes, and tumorigenesis and aspires to ascertain the mechanism behind cold temperature-mediated cancer risk.
Collapse
Affiliation(s)
| | - Bridget Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| |
Collapse
|
38
|
Abstract
During nearly 100 years of research on cancer cachexia (CC), science has been reciting the same mantra: it is a multifactorial syndrome. The aim of this paper is to show that the symptoms are many, but they have a single cause: anoxia. CC is a complex and devastating condition that affects a high proportion of advanced cancer patients. Unfortunately, it cannot be reversed by traditional nutritional support and it generally reduces survival time. It is characterized by significant weight loss, mainly from fat deposits and skeletal muscles. The occurrence of cachexia in cancer patients is usually a late phenomenon. The conundrum is why do similar patients with similar tumors, develop cachexia and others do not? Even if cachexia is mainly a metabolic dysfunction, there are other issues involved such as the activation of inflammatory responses and crosstalk between different cell types. The exact mechanism leading to a wasting syndrome is not known, however there are some factors that are surely involved, such as anorexia with lower calorie intake, increased glycolytic flux, gluconeogenesis, increased lipolysis and severe tumor hypoxia. Based on this incomplete knowledge we put together a scheme explaining the molecular mechanisms behind cancer cachexia, and surprisingly, there is one cause that explains all of its characteristics: anoxia. With this different view of CC we propose a treatment based on the physiopathology that leads from anoxia to the symptoms of CC. The fundamentals of this hypothesis are based on the idea that CC is the result of anoxia causing intracellular lactic acidosis. This is a dangerous situation for cell survival which can be solved by activating energy consuming gluconeogenesis. The process is conducted by the hypoxia inducible factor-1α. This hypothesis was built by putting together pieces of evidence produced by authors working on related topics.
Collapse
|
39
|
Romauch M. Zinc-α2-glycoprotein as an inhibitor of amine oxidase copper-containing 3. Open Biol 2020; 10:190035. [PMID: 32315567 PMCID: PMC6685929 DOI: 10.1098/rsob.190035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Zinc-α2-glycoprotein (ZAG) is a major plasma protein whose levels increase in chronic energy-demanding diseases and thus serves as an important clinical biomarker in the diagnosis and prognosis of the development of cachexia. Current knowledge suggests that ZAG mediates progressive weight loss through β-adrenergic signalling in adipocytes, resulting in the activation of lipolysis and fat mobilization. Here, through cross-linking experiments, amine oxidase copper-containing 3 (AOC3) is identified as a novel ZAG binding partner. AOC3-also known as vascular adhesion protein 1 (VAP-1) and semicarbazide sensitive amine oxidase (SSAO)-deaminates primary amines, thereby generating the corresponding aldehyde, H2O2 and NH3. It is an ectoenzyme largely expressed by adipocytes and induced in endothelial cells during inflammation. Extravasation of immune cells depends on amine oxidase activity and AOC3-derived H2O2 has an insulinogenic effect. The observations described here suggest that ZAG acts as an allosteric inhibitor of AOC3 and interferes with the associated pro-inflammatory and anti-lipolytic functions. Thus, inhibition of the deamination of lipolytic hormone octopamine by AOC3 represents a novel mechanism by which ZAG might stimulate lipolysis. Furthermore, experiments involving overexpression of recombinant ZAG reveal that its glycosylation is co-regulated by oxygen availability and that the pattern of glycosylation affects its inhibitory potential. The newly identified protein interaction between AOC3 and ZAG highlights a previously unknown functional relationship, which may be relevant to inflammation, energy metabolism and the development of cachexia.
Collapse
Affiliation(s)
- Matthias Romauch
- Institute of Molecular Biosciences, Karl-Franzens-University, Graz, Austria
| |
Collapse
|
40
|
Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21041242. [PMID: 32069876 PMCID: PMC7072891 DOI: 10.3390/ijms21041242] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/17/2022] Open
Abstract
Among the severe side effects induced by cisplatin chemotherapy, muscle wasting is the most relevant one. This effect is a major cause for a clinical decline of cancer patients, since it is a negative predictor of treatment outcome and associated to increased mortality. However, despite its toxicity even at low doses, cisplatin remains the first-line therapy for several types of solid tumors. Thus, effective pharmacological treatments counteracting or minimizing cisplatin-induced muscle wasting are urgently needed. The dissection of the molecular pathways responsible for cisplatin-induced muscle dysfunction gives the possibility to identify novel promising therapeutic targets. In this context, the use of animal model of cisplatin-induced cachexia is very useful. Here, we report an update of the most relevant researches on the mechanisms underlying cisplatin-induced muscle wasting and on the most promising potential therapeutic options to preserve muscle mass and function.
Collapse
|
41
|
Sun X, Feng X, Wu X, Lu Y, Chen K, Ye Y. Fat Wasting Is Damaging: Role of Adipose Tissue in Cancer-Associated Cachexia. Front Cell Dev Biol 2020; 8:33. [PMID: 32117967 PMCID: PMC7028686 DOI: 10.3389/fcell.2020.00033] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Loss of body weight, especially loss of adipose tissue and skeletal muscle weight, characterizes cancer-associated cachexia (CAC). Clinically, therapeutic options for CAC are limited due to the complicated signaling between cancer and other organs. Recent research advances show that adipose tissues play a critical role during thermogenesis, glucose homeostasis, insulin sensitivity, and lipid metabolism. Understanding the adipocyte lipolysis, the formation of beige adipocytes, and the activation of brown adipocytes is vital for novel therapies for metabolic syndromes like CAC. The system-level crosstalk between adipose tissue and other organs involves adipocyte lipolysis, white adipose tissue browning, and secreted factors and metabolites. Novel CAC animal models and accumulating molecular signaling knowledge have provided mechanisms that may ultimately be translated into future therapeutic possibilities that benefit CAC patients. This mini review discusses the role of adipose tissue in CAC development, mechanism, and therapy.
Collapse
Affiliation(s)
- Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaogang Feng
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Xiaojing Wu
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, China
| | - Yongtian Lu
- Department of ENT, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kaihong Chen
- Department of Cardiology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, China
| | - Ying Ye
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
42
|
Zwickl H, Zwickl-Traxler E, Pecherstorfer M. Is Neuronal Histamine Signaling Involved in Cancer Cachexia? Implications and Perspectives. Front Oncol 2019; 9:1409. [PMID: 31921666 PMCID: PMC6933599 DOI: 10.3389/fonc.2019.01409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we present evidence in support of our hypothesis that the neuronal histaminergic system might be involved in cancer cachexia1. To build our premise, we present the research and the reasonable inferences that can be drawn from it in a section by section approach starting from one of the key issues related to cachexia, increased resting energy expenditure (REE), and progressing to the other, anorexia. Based on an extensive survey of the literature and our own deliberations on the abovementioned topics, we investigate whether histamine signaling might be the mechanism used by a tumor to hijack the body's thermogenic machinery. Our hypothesis in short is that hypothalamic histaminergic neurons are stimulated by inputs from the parasympathetic nervous system (PSNS), which senses tumor traits early in cancer development. Histamine release in the preoptic area of the hypothalamus primarily activates brown adipose tissue (BAT), triggering a highly energy demanding mechanism. Chronic activation of BAT, which, in this context, refers to intermittent and/or low grade activation by the sympathetic nervous system, leads to browning of white adipose tissue and further enhances thermogenic potential. Aberrant histamine signaling not only triggers energy-consuming processes, but also anorexia. Moreover, since functions such as taste, smell, and sleep are governed by discrete structures of the brain, which are targeted by distinct histaminergic neuron populations even relatively minor symptoms of cachexia, such as sleep disturbances and taste and smell distortions, also might be ascribed to aberrant histamine signaling. In late stage cachexia, the sympathetic tone in skeletal muscle breaks down, which we hypothesize might be caused by a reduction in histamine signaling or by the interference of other cachexia related mechanisms. Histamine signaling thus might delineate distinct stages of cachexia progression, with the early phase marked by a PSNS-mediated increase in histamine signaling, increased sympathetic tone and symptomatic adipose tissue depletion, and the late phase characterized by reduced histamine signaling, decreased sympathetic tone and symptomatic muscle wasting. To support our hypothesis, we review the literature from across disciplines and highlight the many commonalities between the mechanisms underlying cancer cachexia and current research findings on the regulation of energy homeostasis (particularly as it relates to hypothalamic histamine signaling). Extrapolating from the current body of knowledge, we develop our hypothetical framework (based on experimentally falsifiable assumptions) about the role of a distinct neuron population in the pathophysiology of cancer cachexia. Our hope is that presenting our ideas will spark discussion about the pathophysiology of cachexia, cancer's devastating and intractable syndrome.
Collapse
Affiliation(s)
- Hannes Zwickl
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Elisabeth Zwickl-Traxler
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Martin Pecherstorfer
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| |
Collapse
|
43
|
Dev R, Bruera E, Dalal S. Insulin resistance and body composition in cancer patients. Ann Oncol 2019; 29 Suppl 2:ii18-ii26. [PMID: 29506229 DOI: 10.1093/annonc/mdx815] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer cachexia, weight loss with altered body composition, is a multifactorial syndrome propagated by symptoms that impair caloric intake, tumor byproducts, chronic inflammation, altered metabolism, and hormonal abnormalities. Cachexia is associated with reduced performance status, decreased tolerance to chemotherapy, and increased mortality in cancer patients. Insulin resistance as a consequence of tumor byproducts, chronic inflammation, and endocrine dysfunction has been associated with weight loss in cancer patients. Insulin resistance in cancer patients is characterized by increased hepatic glucose production and gluconeogenesis, and unlike type 2 diabetes, normal fasting glucose with high, normal or low levels of insulin. Cancer cachexia results in altered body composition with the loss of lean muscle mass with or without the loss of adipose tissue. Alteration in visceral adiposity, accumulation of intramuscular adipose tissue, and secretion of adipocytokines from adipose cells may play a role in promoting the metabolic derangements associated with cachexia including a proinflammatory environment and insulin resistance. Increased production of ghrelin, testosterone deficiency, and low vitamin D levels may also contribute to altered metabolism of glucose. Cancer cachexia cannot be easily reversed by standard nutritional interventions and identifying and treating cachexia at the earliest stage of development is advocated. Experts advocate for multimodal therapy to address symptoms that impact caloric intake, reduce chronic inflammation, and treat metabolic and endocrine derangements, which propagate the loss of weight. Treatment of insulin resistance may be a critical component of multimodal therapy for cancer cachexia and more research is needed.
Collapse
Affiliation(s)
- R Dev
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| | - E Bruera
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Dalal
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
44
|
Erdem M, Möckel D, Jumpertz S, John C, Fragoulis A, Rudolph I, Wulfmeier J, Springer J, Horn H, Koch M, Lurje G, Lammers T, Olde Damink S, van der Kroft G, Gremse F, Cramer T. Macrophages protect against loss of adipose tissue during cancer cachexia. J Cachexia Sarcopenia Muscle 2019; 10:1128-1142. [PMID: 31318182 PMCID: PMC6818538 DOI: 10.1002/jcsm.12450] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/01/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer cachexia represents a central obstacle in medical oncology as it is associated with poor therapy response and reduced overall survival. Systemic inflammation is considered to be a key driver of cancer cachexia; however, clinical studies with anti-inflammatory drugs failed to show distinct cachexia-inhibiting effects. To address this contradiction, we investigated the functional importance of innate immune cells for hepatocellular carcinoma (HCC)-associated cachexia. METHODS A transgenic HCC mouse model was intercrossed with mice harbouring a defect in myeloid cell-mediated inflammation. Body composition of mice was analysed via nuclear magnetic resonance spectroscopy and microcomputed tomography. Quantitative PCR was used to determine adipose tissue browning and polarization of adipose tissue macrophages. The activation state of distinct areas of the hypothalamus was analysed via immunofluorescence. Multispectral immunofluorescence imaging and immunoblot were applied to characterize sympathetic neurons and macrophages in visceral adipose tissue. Quantification of pro-inflammatory cytokines in mouse serum was performed with a multiplex immunoassay. Visceral adipose tissue of HCC patients was quantified via the L3 index of computed tomography scans obtained during routine clinical care. RESULTS We identified robust cachexia in the HCC mouse model as evidenced by a marked loss of visceral fat and lean mass. Computed tomography-based analyses demonstrated that a subgroup of human HCC patients displays reduced visceral fat mass, complementing the murine data. While the myeloid cell-mediated inflammation defect resulted in reduced expression of pro-inflammatory cytokines in the serum of HCC-bearing mice, this unexpectedly did not translate into diminished but rather enhanced cachexia-associated fat loss. Defective myeloid cell-mediated inflammation was associated with decreased macrophage abundance in visceral adipose tissue, suggesting a role for local macrophages in the regulation of cancer-induced fat loss. CONCLUSIONS Myeloid cell-mediated inflammation displays a rather unexpected beneficial function in a murine HCC model. These results demonstrate that immune cells are capable of protecting the host against cancer-induced tissue wasting, adding a further layer of complexity to the pathogenesis of cachexia and providing a potential explanation for the contradictory results of clinical studies with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Merve Erdem
- Department of General, Visceral and Transplantation SurgeryUniversity Hospital RWTH AachenAachenGermany
- Berlin School of Integrative OncologyCharité—Universitätsmedizin Berlin, Campus Virchow‐KlinikumBerlinGermany
| | - Diana Möckel
- Institute for Experimental Molecular Imaging, Center for Biohybrid Medical SystemsUniversity Hospital RWTH AachenAachenGermany
| | - Sandra Jumpertz
- Department of General, Visceral and Transplantation SurgeryUniversity Hospital RWTH AachenAachenGermany
| | - Cathleen John
- Department of CardiologyCharité—Universitätsmedizin Berlin, Campus Virchow‐KlinikumBerlinGermany
| | - Athanassios Fragoulis
- Department of General, Visceral and Transplantation SurgeryUniversity Hospital RWTH AachenAachenGermany
| | - Ines Rudolph
- Department of Hepatology and GastroenterologyCharité—Universitätsmedizin Berlin, Campus Virchow‐KlinikumBerlinGermany
| | - Johanna Wulfmeier
- Department of General, Visceral and Transplantation SurgeryUniversity Hospital RWTH AachenAachenGermany
| | - Jochen Springer
- Department of CardiologyCharité—Universitätsmedizin Berlin, Campus Virchow‐KlinikumBerlinGermany
| | - Henrike Horn
- Institute of AnatomyUniversity of LeipzigLeipzigGermany
| | - Marco Koch
- Institute of AnatomyUniversity of LeipzigLeipzigGermany
| | - Georg Lurje
- Department of General, Visceral and Transplantation SurgeryUniversity Hospital RWTH AachenAachenGermany
- ESCAM—European Surgery Center Aachen MaastrichtAachenGermany
- ESCAM—European Surgery Center Aachen MaastrichtMaastrichtThe Netherlands
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Center for Biohybrid Medical SystemsUniversity Hospital RWTH AachenAachenGermany
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeThe Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Steven Olde Damink
- ESCAM—European Surgery Center Aachen MaastrichtAachenGermany
- ESCAM—European Surgery Center Aachen MaastrichtMaastrichtThe Netherlands
- Department of SurgeryMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Gregory van der Kroft
- Department of General, Visceral and Transplantation SurgeryUniversity Hospital RWTH AachenAachenGermany
- ESCAM—European Surgery Center Aachen MaastrichtAachenGermany
- ESCAM—European Surgery Center Aachen MaastrichtMaastrichtThe Netherlands
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, Center for Biohybrid Medical SystemsUniversity Hospital RWTH AachenAachenGermany
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation SurgeryUniversity Hospital RWTH AachenAachenGermany
- ESCAM—European Surgery Center Aachen MaastrichtAachenGermany
- ESCAM—European Surgery Center Aachen MaastrichtMaastrichtThe Netherlands
- Department of SurgeryMaastricht University Medical CentreMaastrichtThe Netherlands
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
45
|
Can radiomics help to predict skeletal muscle response to chemotherapy in stage IV non-small cell lung cancer? Eur J Cancer 2019; 120:107-113. [PMID: 31514107 DOI: 10.1016/j.ejca.2019.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Muscle depletion negatively impacts treatment efficacy and survival rates in cancer. Prevention and timely treatment of muscle loss require prediction of patients at risk. We aimed to investigate the potential of skeletal muscle radiomic features to predict future muscle loss. METHODS A total of 116 patients with stage IV non-small cell lung cancer included in a randomised controlled trial (NCT01171170) studying the effect of nitroglycerin added to paclitaxel-carboplatin-bevacizumab were enrolled. In this post hoc analysis, muscle cross-sectional area and radiomic features were extracted from computed tomography images obtained before initiation of chemotherapy and shortly after administration of the second cycle. For internal cross-validation, the cohort was randomly split in a training set and validation set 100 times. We used least absolute shrinkage and selection operator method to select features that were most significantly associated with muscle loss and an area under the curve (AUC) for model performance. RESULTS Sixty-nine patients (59%) exhibited loss of skeletal muscle. One hundred ninety-three features were used to construct a prediction model for muscle loss. The average AUC was 0.49 (95% confidence interval [CI]: 0.36, 0.62). Differences in intensity and texture radiomic features over time were seen between patients with and without muscle loss. CONCLUSIONS The present study shows that skeletal muscle radiomics did not predict future muscle loss during chemotherapy in non-small cell lung cancer. Differences in radiomic features over time might reflect myosteatosis. Future imaging analysis combined with muscle tissue analysis in patients and in experimental models is needed to unravel the biological processes linked to the radiomic features.
Collapse
|
46
|
Stevanovic M, Vekic J, Bogavac-Stanojevic N, Janac J, Stjepanovic Z, Zeljkovic D, Trifunovic B, Spasojevic-Kalimanovska V, Zeljkovic A. Significance of LDL and HDL subclasses characterization in the assessment of risk for colorectal cancer development. Biochem Med (Zagreb) 2019; 28:030703. [PMID: 30429670 PMCID: PMC6214700 DOI: 10.11613/bm.2018.030713] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction Dyslipidaemia contributes to the occurrence of colorectal cancer (CRC). We hypothesized that qualitative changes of lipoproteins are associated with the risk for CRC development. This study analyses low-density lipoprotein (LDL) and high-density lipoprotein (HDL) diameters, as well as distribution of LDL and HDL subclasses in patients with CRC, with an aim to determine whether advanced lipid testing might be useful in predicting the risk for the onset of this malignancy. Materials and methods This case-control study included 84 patients with newly diagnosed CRC and 92 controls. Gradient gel electrophoresis was applied for separation of lipoprotein subclasses and for LDL and HDL diameters determination. Lipid parameters were measured using routine enzymatic methods. Results Total cholesterol, HDL and LDL-cholesterol were significantly lower in CRC patients compared to controls (4.47 mmol/L vs. 5.63 mmol/L; 0.99 mmol/L vs. 1.27 mmol/L; 2.90 mmol/L vs. 3.66 mmol/L; P < 0.001, respectively). Patients had significantly smaller LDL (25.14 nm vs. 26.92 nm; P < 0.001) and HDL diameters (8.76 nm vs. 10.17 nm; P < 0.001) and greater proportion of small, dense LDL particles (54.0% vs. 52.9%; P = 0.044) than controls. Decreased LDL and HDL diameters were independent predictors of CRC (OR = 0.5, P = 0.001 and OR = 0.5, P = 0.008, respectively), and alongside with age and HDL-cholesterol concentrations formed the optimal cost-effective model, providing adequate discriminative abilities for CRC (AUC = 0.89) and correct patients classification (81%). Conclusions Patients with CRC have decreased LDL and HDL diameters and increased proportion of smaller particles. LDL and HDL diameters determination could be useful in assessing the risk for CRC development.
Collapse
Affiliation(s)
- Milica Stevanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Jelena Janac
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Dejan Zeljkovic
- Clinic of General Surgery, Military Medical Academy, Belgrade, Serbia
| | - Bratislav Trifunovic
- Clinic of General Surgery, Military Medical Academy, Belgrade, Serbia.,Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | | | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
47
|
Shen L, Han J, Wang H, Meng Q, Chen L, Liu Y, Feng Y, Wu G. Cachexia-related long noncoding RNA, CAAlnc1, suppresses adipogenesis by blocking the binding of HuR to adipogenic transcription factor mRNAs. Int J Cancer 2019; 145:1809-1821. [PMID: 30807648 DOI: 10.1002/ijc.32236] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Lei Shen
- Department of General Surgery, Zhongshan Hospital; Fudan University; Shanghai China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital; Fudan University; Shanghai China
| | - Haiyu Wang
- Department of General Surgery, Zhongshan Hospital; Fudan University; Shanghai China
| | - Qingyang Meng
- Department of General Surgery, Zhongshan Hospital; Fudan University; Shanghai China
| | - Linlin Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Yuguo Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Ying Feng
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital; Fudan University; Shanghai China
| |
Collapse
|
48
|
Yoshizawa K, Tashiro M, Tezuka S, Uchiyama M, Uchida E, Yamada T. Eicosapentaenoic Acid Improves Cisplatin-Induced Muscle Atrophy Without Accompanying Body Weight Gain. Nutr Cancer 2019; 71:439-443. [PMID: 30849237 DOI: 10.1080/01635581.2019.1578386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Cisplatin (CDDP) induces loss of muscle mass by activating the nuclear factor (NF)-κB signaling pathway. In this study, we investigated the effects of eicosapentaenoic acid (EPA), which inhibits NF-κB activation, on CDDP-induced loss of muscle mass in mice. METHODS Male C57BL/6J mice received a single dose of CDDP and olive oil, linseed oil, or EPA daily for 4 days. Body weight and food intake were recorded daily for 5 days. Forelimb grip strength was determined using a strain gauge on the fourth day. The mice were killed 24 h after the final dose of fatty acid and the wet weight of their gastrocnemius, soleus, and tibialis anterior muscles measured. RESULTS Olive oil, linseed oil, and EPA all failed to prevent decrease in food intake and loss of body weight. However, only EPA prevented loss of muscle mass and strength. CONCLUSION EPA prevents CDDP-related loss of muscle mass and muscle but not CDDP-related loss of body weight.
Collapse
Affiliation(s)
- Kazumi Yoshizawa
- a Laboratory of Pharmacology and Therapeutics Faculty of Pharmaceutical Sciences , Tokyo University of Science , Tokyo , Japan
| | - Mayumi Tashiro
- a Laboratory of Pharmacology and Therapeutics Faculty of Pharmaceutical Sciences , Tokyo University of Science , Tokyo , Japan
| | - Shiori Tezuka
- a Laboratory of Pharmacology and Therapeutics Faculty of Pharmaceutical Sciences , Tokyo University of Science , Tokyo , Japan
| | - Mizuki Uchiyama
- a Laboratory of Pharmacology and Therapeutics Faculty of Pharmaceutical Sciences , Tokyo University of Science , Tokyo , Japan
| | - Eiji Uchida
- b Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery , Nippon Medical School , Tokyo , Japan
| | - Takeshi Yamada
- b Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery , Nippon Medical School , Tokyo , Japan
| |
Collapse
|
49
|
Dahran N, Szewczyk-Bieda M, Vinnicombe S, Fleming S, Nabi G. Periprostatic fat adipokine expression is correlated with prostate cancer aggressiveness in men undergoing radical prostatectomy for clinically localized disease. BJU Int 2019; 123:985-994. [PMID: 29969844 DOI: 10.1111/bju.14469] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To investigate the relationship between periprostatic adipose tissue (PPAT) adipokine expression and prostate cancer (PCa) aggressiveness using both pathological features of radical prostatectomy (RP) and multiparametric magnetic resonance imaging ( MRI) variables. PATIENTS AND METHODS Sixty-nine men were recruited to assess immunohistochemical expression of tumour necrosis factor (TNF)α and vascular endothelial growth factor (VEGF) of periprostatic fat of RP specimens. Per cent immunopositivity was quantified on scanned slides using the Aperio Positive Pixel Count algorithm for PPAT TNFα, VEGF and androgen receptors. Periprostatic fat volume (PFV) was segmented on contiguous T1 -weighted axial MRI slices from the level of the prostate base to apex. PFV was normalized to prostate volume (PV) to account for variations in PV (normalized PFV = PFV/PV). MRI quantitative values (Kep , Ktrans and apparent diffusion coefficient) were measured from the PCa primary lesion using Olea Sphere software. Patients were stratified into three groups according to RP Gleason score (GS): ≤6, 7(3 + 4) and ≥7(4 + 3). RESULTS The mean rank of VEGF and TNFα was significantly different between the groups [H(2) = 11.038, P = 0.004] and [H(2) = 13.086, P = 0.001], respectively. Patients with stage pT3 had higher TNFα (18.2 ± 8.95) positivity than patients with stage pT2 (13.27 ± 10.66; t [67] = -2.03, P = 0.047). TNFα expression significantly correlated with Ktrans (ρ = 0.327, P = 0.023). TNFα (P = 0.043), and VEGF (P = 0.02) correlated with high grade PCa (GS ≥ 7) in RP specimens and also correlated significantly with upgrading of GS from biopsy to RP histology. CONCLUSIONS The expression levels of TNFα and VEGF on immunostaining significantly correlated with aggressivity of PCa. As biomarkers, these indicate the risk of having high grade PCa in men undergoing RP.
Collapse
Affiliation(s)
- Naief Dahran
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK.,Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sarah Vinnicombe
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Stewart Fleming
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Ghulam Nabi
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
50
|
Saavedra P, Perrimon N. Drosophila as a Model for Tumor-Induced Organ Wasting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:191-205. [PMID: 31520356 DOI: 10.1007/978-3-030-23629-8_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In humans, cancer-associated cachexia is a complex syndrome that reduces the overall quality of life and survival of cancer patients, particularly for those undergoing chemotherapy. The most easily observable sign of cachexia is organ wasting, the dramatic loss of skeletal muscle and adipose tissue mass. Estimates suggest that 80% of patients in advanced stages of cancer show signs of the syndrome and about 20% of cancer patients die directly of cachexia. Because there is no treatment or drug available to ameliorate organ wasting induced by cancer, cachexia is a relevant clinical problem. However, it is unclear how cachexia is mediated, what factors drive interactions between tumors and host tissues, and which markers of cachexia might be used to allow early detection before the observable signs of organ wasting. In this chapter, we review the current mammalian models of cachexia and the need to use new models of study. We also explain recent developments in Drosophila as a model for studying organ wasting induced by tumors and how fly studies can help unravel important mechanisms that drive cachexia. In particular, we discuss what lessons have been learned from tumor models recently reported to induce systemic organ wasting in Drosophila.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|