1
|
Bowers JM, Li CY, Parker CG, Westbrook ME, Juntti SA. Pheromone Perception in Fish: Mechanisms and Modulation by Internal Status. Integr Comp Biol 2023; 63:407-427. [PMID: 37263784 PMCID: PMC10445421 DOI: 10.1093/icb/icad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
Pheromones are chemical signals that facilitate communication between animals, and most animals use pheromones for reproduction and other forms of social behavior. The identification of key ligands and olfactory receptors used for pheromonal communication provides insight into the sensory processing of these important cues. An individual's responses to pheromones can be plastic, as physiological status modulates behavioral outputs. In this review, we outline the mechanisms for pheromone sensation and highlight physiological mechanisms that modify pheromone-guided behavior. We focus on hormones, which regulate pheromonal communication across vertebrates including fish, amphibians, and rodents. This regulation may occur in peripheral olfactory organs and the brain, but the mechanisms remain unclear. While this review centers on research in fish, we will discuss other systems to provide insight into how hormonal mechanisms function across taxa.
Collapse
Affiliation(s)
- Jessica M Bowers
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Cheng-Yu Li
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Coltan G Parker
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Molly E Westbrook
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Scott A Juntti
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| |
Collapse
|
2
|
Huang L, Zhang W, Han Y, Tang Y, Zhou W, Liu G, Shi W. Anti-Depressant Fluoxetine Hampers Olfaction of Goldfish by Interfering with the Initiation, Transmission, and Processing of Olfactory Signals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15848-15859. [PMID: 36260920 DOI: 10.1021/acs.est.2c02987] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of fluoxetine (FLX) in aquatic environments poses great threat to fish species. However, little is known about its deleterious impacts on fish olfaction. In this study, the olfactory toxicity of FLX at environmentally realistic levels was assessed by monitoring the behavioral and electroolfactogram (EOG) responses to olfactory stimuli with goldfish (Carassius auratus), and the toxification mechanisms underlying the observed olfaction dysfunction were also investigated. Our results showed that the behavioral and EOG responses of goldfish to olfactory stimuli were significantly weakened by FLX, indicating an evident toxicity of FLX to olfaction. Moreover, FLX exposure led to significant alterations in olfactory initiation-related genes, suppression of ion pumps (Ca2+-ATPase and Na+/K+-ATPase), tissue lesions, and fewer olfactory sensory neurons in olfactory epithelium. In addition to altering the expression of olfactory transmission-related genes, comparative metabolomic analysis found that olfaction-related neurotransmitters (i.e., l-glutamate and acetylcholine) and the olfactory transduction pathway were significantly affected by FLX. Furthermore, evident tissue lesions, aggravated lipid peroxidation and apoptosis, and less neuropeptide Y were observed in the olfactory bulbs of FLX-exposed goldfish. Our findings indicate that FLX may hamper goldfish olfaction by interfering with the initiation, transmission, and processing of olfactory signals.
Collapse
Affiliation(s)
- Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Kalloniatis M, Loh CS, Acosta ML, Tomisich G, Zhu Y, Nivison‐smith L, Fletcher EL, Chua J, Sun D, Arunthavasothy N. Retinal amino acid neurochemistry in health and disease. Clin Exp Optom 2021; 96:310-32. [DOI: 10.1111/cxo.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/01/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia,
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Chee Seang Loh
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Monica L Acosta
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Guido Tomisich
- Department of Optometry and Vision Science, The University of Melbourne, Parkville, Victoria, Australia,
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Lisa Nivison‐smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
| | - Jacqueline Chua
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Daniel Sun
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Niru Arunthavasothy
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
5
|
Gonçalves CL, Vasconcelos FFP, Wessler LB, Lemos IS, Candiotto G, Lin J, Matias MBD, Rico EP, Streck EL. Exposure to a high dose of amoxicillin causes behavioral changes and oxidative stress in young zebrafish. Metab Brain Dis 2020; 35:1407-1416. [PMID: 32876824 DOI: 10.1007/s11011-020-00610-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/21/2020] [Indexed: 12/28/2022]
Abstract
Autistic spectrum disorder (ASD) is a group of early-onset neurodevelopmental disorders characterized by impaired social and communication skills. Autism is widely described as a behavioral syndrome with multiple etiologies where may exhibit neurobiological, genetic, and psychological deficits. Studies have indicated that long term use of antibiotics can alter the intestinal flora followed by neuroendocrine changes, leading to behavioral changes. Indeed, previous studies demonstrate that a high dose of amoxicillin can change behavioral parameters in murine animal models. The objective was to evaluate behavioral and oxidative stress parameters in zebrafish exposed to a high dose of amoxicillin for 7 days. Young zebrafish were exposed to a daily concentration of amoxicillin (100 mg/L) for 7 days. Subsequently, the behavioral analysis was performed, and the brain content was dissected for the evaluation of oxidative stress parameters. Zebrafish exposed to a high dose of amoxicillin showed locomotor alteration and decreased social interaction behavior. In addition, besides the significant decrease of sulfhydryl content, there was a marked decrease in catalase activity, as well as an increased superoxide dismutase activity in brain tissue. Thus, through the zebrafish model was possible to note a central effect related to the exposition of amoxicillin, the same as observed in murine models. Further, the present data reinforce the relation of the gut-brain-axis and the use of zebrafish as a useful tool to investigate new therapies for autistic traits.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Francine F P Vasconcelos
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Leticia B Wessler
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Isabela S Lemos
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Gabriela Candiotto
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Jaime Lin
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Mariane B D Matias
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Eduardo P Rico
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Emilio L Streck
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
6
|
Gallman K, Fortune E, Rivera D, Soares D. Differences in behavior between surface and cave Astyanax mexicanus may be mediated by changes in catecholamine signaling. J Comp Neurol 2020; 528:2639-2653. [PMID: 32291742 DOI: 10.1002/cne.24923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/07/2022]
Abstract
Astyanax mexicanus is a teleost fish that is in the process of allopatric speciation. Ancestral Astyanax are found in surface rivers and derived blind forms are found in cave systems. Adaptation to life in nutrient poor caves without predation includes the evolution of enhanced food seeking behaviors and loss of defensive responses. These behavioral adaptations may be mediated by changes in catecholaminergic control systems in the brain. We examined the distribution of tyrosine hydroxylase, a conserved precursor for the synthesis of the catecholamines dopamine and noradrenaline, in the brains of surface and cave Astyanax using immunohistochemistry. We found differences in tyrosine hydroxylase staining in regions that are associated with nonvisual sensory perception, motor control, endocrine release, and attention. These differences included significant increases in the diameters of tyrosine hydroxylase immunoreactive soma in cave Astyanax in the olfactory bulb, basal telencephalon, preoptic nuclei, ventral thalamus, posterior tuberculum, and locus coeruleus. These increases in modulation by dopamine and noradrenaline likely indicate changes in behavioral control that underlie adaptations to the cave environment.
Collapse
Affiliation(s)
- Kathryn Gallman
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Eric Fortune
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Daihana Rivera
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Daphne Soares
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| |
Collapse
|
7
|
Asaduzzaman M, Wahab MA, Rahman MM, Mariom, Nahiduzzaman M, Rahman MJ, Roy BK, Phillips MJ, Wong LL. Morpho-Genetic Divergence and Adaptation of Anadromous Hilsa shad (Tenualosa ilisha) Along Their Heterogenic Migratory Habitats. FRONTIERS IN MARINE SCIENCE 2020; 7. [DOI: 10.3389/fmars.2020.00554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
|
8
|
Franscescon F, Müller TE, Bertoncello KT, Rosemberg DB. Neuroprotective role of taurine on MK-801-induced memory impairment and hyperlocomotion in zebrafish. Neurochem Int 2020; 135:104710. [DOI: 10.1016/j.neuint.2020.104710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/16/2020] [Accepted: 02/20/2020] [Indexed: 11/15/2022]
|
9
|
Ceftriaxone Attenuated Anxiety-Like Behavior and Enhanced Brain Glutamate Transport in Zebrafish Subjected to Alcohol Withdrawal. Neurochem Res 2020; 45:1526-1535. [PMID: 32185643 DOI: 10.1007/s11064-020-03008-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Chronic and/or excessive consumption of alcohol followed by reduced consumption or abstention can result in Alcohol Withdrawal Syndrome. A number of behavioral changes and neurological damage result from ethanol (EtOH) withdrawal. Ceftriaxone (Cef) modulates the activity of excitatory amino acid transporters by increasing their gene expression. Zebrafish are commonly used to study alcohol exposure. The aim of this study was to evaluate the influence of Cef (100 µM) on behavior patterns, glutamate transport activity, and oxidative stress in zebrafish brains subjected to EtOH (0.3% v/v) withdrawal. The exploratory tests using Novel tank showed that EtOH withdrawal promoted a decrease in the time spent and number of entries of in the bottom displaying an anxiety-like behavior. In contrast, treatment with Cef resulted in recovery of exploratory behavioral patterns. Ceftriaxone treatment resulted in increased glutamate uptake in zebrafish subjected to EtOH withdrawal. Furthermore, EtOH withdrawal increased reactive species, as determined using thiobarbituric acid and dichlorodihydrofluorescein assays. Treatment with Cef reversed these effects. Ceftriaxone promoted a significant reduction in brain sulfhydryl content in zebrafish subjected to EtOH withdrawal. Therefore, Cef treatment in conjunction with EtOH withdrawal induced anxiolytic-like effects due to possible neuromodulation of glutamatergic transporters, potentially through mitigation of oxidative stress.
Collapse
|
10
|
Mazurais D, Servili A, Le Bayon N, Gislard S, Madec L, Zambonino-Infante JL. Long-term exposure to near-future ocean acidification does not affect the expression of neurogenesis- and synaptic transmission-related genes in the olfactory bulb of European sea bass (Dicentrarchus labrax). J Comp Physiol B 2020; 190:161-167. [DOI: 10.1007/s00360-019-01256-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 01/04/2023]
|
11
|
Scaros AT, Andouche A, Baratte S, Croll RP. Histamine and histidine decarboxylase in the olfactory system and brain of the common cuttlefish Sepia officinalis (Linnaeus, 1758). J Comp Neurol 2019; 528:1095-1112. [PMID: 31721188 DOI: 10.1002/cne.24809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Cephalopods are radically different from any other invertebrate. Their molluscan heritage, innovative nervous system, and specialized behaviors create a unique blend of characteristics that are sometimes reminiscent of vertebrate features. For example, despite differences in the organization and development of their nervous systems, both vertebrates and cephalopods use many of the same neurotransmitters. One neurotransmitter, histamine (HA), has been well studied in both vertebrates and invertebrates, including molluscs. While HA was previously suggested to be present in the cephalopod central nervous system (CNS), Scaros, Croll, and Baratte only recently described the localization of HA in the olfactory system of the cuttlefish Sepia officinalis. Here, we describe the location of HA using an anti-HA antibody and a probe for histidine decarboxylase (HDC), a synthetic enzyme for HA. We extended previous descriptions of HA in the olfactory organ, nerve, and lobe, and describe HDC staining in the same regions. We found HDC-positive cell populations throughout the CNS, including the optic gland and the peduncle, optic, dorso-lateral, basal, subvertical, frontal, magnocellular, and buccal lobes. The distribution of HA in the olfactory system of S. officinalis is similar to the presence of HA in the chemosensory organs of gastropods but is different than the sensory systems in vertebrates or arthropods. However, HA's widespread abundance throughout the rest of the CNS of Sepia is a similarity shared with gastropods, vertebrates, and arthropods. Its widespread use with differing functions across Animalia provokes questions regarding the evolutionary history and adaptability of HA as a transmitter.
Collapse
Affiliation(s)
- Alexia T Scaros
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aude Andouche
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Sébastien Baratte
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Olivares J, Schmachtenberg O. An update on anatomy and function of the teleost olfactory system. PeerJ 2019; 7:e7808. [PMID: 31579633 PMCID: PMC6768218 DOI: 10.7717/peerj.7808] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022] Open
Abstract
About half of all extant vertebrates are teleost fishes. Although our knowledge about anatomy and function of their olfactory systems still lags behind that of mammals, recent advances in cellular and molecular biology have provided us with a wealth of novel information about the sense of smell in this important animal group. Its paired olfactory organs contain up to five types of olfactory receptor neurons expressing OR, TAAR, VR1- and VR2-class odorant receptors associated with individual transduction machineries. The different types of receptor neurons are preferentially tuned towards particular classes of odorants, that are associated with specific behaviors, such as feeding, mating or migration. We discuss the connections of the receptor neurons in the olfactory bulb, the differences in bulbar circuitry compared to mammals, and the characteristics of second order projections to telencephalic olfactory areas, considering the everted ontogeny of the teleost telencephalon. The review concludes with a brief overview of current theories about odor coding and the prominent neural oscillations observed in the teleost olfactory system.
Collapse
Affiliation(s)
- Jesús Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Universidad de Valparaíso, PhD Program in Neuroscience, Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
13
|
Li L. Circadian Vision in Zebrafish: From Molecule to Cell and from Neural Network to Behavior. J Biol Rhythms 2019; 34:451-462. [DOI: 10.1177/0748730419863917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Most visual system functions, such as opsin gene expression, retinal neural transmission, light perception, and visual sensitivity, display robust day-night rhythms. The rhythms persist in constant lighting conditions, suggesting the involvement of endogenous circadian clocks. While the circadian pacemakers that control the rhythms of animal behaviors are mostly found in the forebrain and midbrain, self-sustained circadian oscillators are also present in the neural retina, where they play important roles in the regulation of circadian vision. This review highlights some of the correlative studies of the circadian control of visual system functions in zebrafish. Because zebrafish maintain a high evolutionary proximity to mammals, the findings from zebrafish research may provide insights for a better understanding of the mechanisms of circadian vision in other vertebrate species including humans.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
14
|
Li L. Sensory Integration: Cross-Modal Communication Between the Olfactory and Visual Systems in Zebrafish. Chem Senses 2019; 44:351-356. [PMID: 31066902 DOI: 10.1093/chemse/bjz022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cross-modal sensory communication is an innate biological process that refers to the combination and/or interpretation of different types of sensory input in the brain. Often, this process conjugates with neural modulation, by which the neural signals that convey sensory information are adjusted, such as intensity, frequency, complexity, and/or novelty. Although the anatomic pathways involved in cross-modal sensory integration have been previously described, the course of development and the physiological roles of multisensory signaling integration in brain functions remain to be elucidated. In this article, I review some of the recent findings in sensory integration from research using the zebrafish models. In zebrafish, cross-modal sensory integration occurs between the olfactory and visual systems. It is mediated by the olfacto-retinal centrifugal (ORC) pathway, which originates from the terminalis nerve (TN) in the olfactory bulb and terminates in the neural retina. In the retina, the TNs synapse with the inner nuclear layer dopaminergic interplexiform cells (DA-IPCs). Through the ORC pathway, stimulation of the olfactory neurons alters the cellular activity of TNs and DA-IPCs, which in turn modulates retinal neural function and increases behavioral visual sensitivity.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
15
|
Calvo-Ochoa E, Byrd-Jacobs CA. The Olfactory System of Zebrafish as a Model for the Study of Neurotoxicity and Injury: Implications for Neuroplasticity and Disease. Int J Mol Sci 2019; 20:ijms20071639. [PMID: 30986990 PMCID: PMC6480214 DOI: 10.3390/ijms20071639] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
The olfactory system, composed of the olfactory organs and the olfactory bulb, allows organisms to interact with their environment and through the detection of odor signals. Olfaction mediates behaviors pivotal for survival, such as feeding, mating, social behavior, and danger assessment. The olfactory organs are directly exposed to the milieu, and thus are particularly vulnerable to damage by environmental pollutants and toxicants, such as heavy metals, pesticides, and surfactants, among others. Given the widespread occurrence of olfactory toxicants, there is a pressing need to understand the effects of these harmful compounds on olfactory function. Zebrafish (Danio rerio) is a valuable model for studying human physiology, disease, and toxicity. Additionally, the anatomical components of the zebrafish olfactory system are similar to those of other vertebrates, and they present a remarkable degree of regeneration and neuroplasticity, making it an ideal model for the study of regeneration, reorganization and repair mechanisms following olfactory toxicant exposure. In this review, we focus on (1) the anatomical, morphological, and functional organization of the olfactory system of zebrafish; (2) the adverse effects of olfactory toxicants and injury to the olfactory organ; and (3) remodeling and repair neuroplasticity mechanisms following injury and degeneration by olfactory toxicant exposure.
Collapse
Affiliation(s)
- Erika Calvo-Ochoa
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| | - Christine A Byrd-Jacobs
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| |
Collapse
|
16
|
Banerjee S, Scheirer WJ, Li L. An Extreme Value Theory Model of Cross-Modal Sensory Information Integration in Modulation of Vertebrate Visual System Functions. Front Comput Neurosci 2019; 13:3. [PMID: 30863298 PMCID: PMC6400236 DOI: 10.3389/fncom.2019.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
We propose a computational model of vision that describes the integration of cross-modal sensory information between the olfactory and visual systems in zebrafish based on the principles of the statistical extreme value theory. The integration of olfacto-retinal information is mediated by the centrifugal pathway that originates from the olfactory bulb and terminates in the neural retina. Motivation for using extreme value theory stems from physiological evidence suggesting that extremes and not the mean of the cell responses direct cellular activity in the vertebrate brain. We argue that the visual system, as measured by retinal ganglion cell responses in spikes/sec, follows an extreme value process for sensory integration and the increase in visual sensitivity from the olfactory input can be better modeled using extreme value distributions. As zebrafish maintains high evolutionary proximity to mammals, our model can be extended to other vertebrates as well.
Collapse
Affiliation(s)
- Sreya Banerjee
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Walter J Scheirer
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
17
|
Dos Santos Sampaio TI, de Melo NC, de Freitas Paiva BT, da Silva Aleluia GA, da Silva Neto FLP, da Silva HR, Keita H, Cruz RAS, Sánchez-Ortiz BL, Pineda-Peña EA, Balderas JL, Navarrete A, Carvalho JCT. Leaves of Spondias mombin L. a traditional anxiolytic and antidepressant: Pharmacological evaluation on zebrafish (Danio rerio). JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:563-578. [PMID: 29852265 DOI: 10.1016/j.jep.2018.05.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/26/2018] [Accepted: 05/24/2018] [Indexed: 05/20/2023]
Abstract
ETHNOBOTANICAL RELEVANCE Spondias mombin L. is a plant dispersed throughout the tropical regions of South America, Africa, and Asia, being found mainly in the North and Northeast of Brazil, where the leaves are used in preparations for neuropsychiatric disorders. Therefore, it is of great importance to carry out studies in different pharmacological models that can prove the traditional use of this plant species. MATERIALS AND METHODS the hydroethanolic extract from S. mombin leaves (HELSm) was evaluated by oral administration (25 mg/kg) and by immersion (25 mg/l) in scototaxis test in zebrafish (Danio rerio). For this study, caffeine (100 mg/kg) and buspirone (25 mg/kg) were used as standard drugs. The antidepressant action of the HELSm was evaluated assessed in the novel tank diving test (NTDT). In this study, a group with 1% ethanol, one with unpredictable chronic mild stress (UCMS), and another with developmental, social isolation (DSI) were used as induction groups for depression-like behavior and fluoxetine (20 mg/kg) as a drug pattern. RESULTS by the HPLC-UV fingerprint analysis, the HELSm presented several derivatives of polyphenolic compounds and flavonoids and identified ellagic acid and isoquercitrin, and by the gas-chromatographic, the majority of the identified compounds were fatty acids, esters, and alcohols. By immersion, the LC50 was 49.86 mg/l and by oral via the LD50 in 48 h, was 4.515 g/kg in zebrafish. For all spatiotemporal and behavioral variables (time spent, white compartment, latency, toggle, erratic swimming, freezing duration, thigmotaxis, and risk assessment), the treatment with HELSm produced a similar effect to buspirone and was significant when compared to the caffeine and control group (p < 0.01, Tukey-Kramer test). For all spatiotemporal and behavioral variables evaluated (time spent at the top of the apparatus, crossed quadrants, erratic swimming, and duration of freezing), treatment with HELSm produced a change in the depression-like behavior in the groups tested, with a similar effect to fluoxetine, both with a significant difference when compared to the control groups (p < 0.01). CONCLUSIONS Our results suggest that the acute administration of the HELSm in the scototaxis and NTDT tests in a zebrafish model (Danio rerio) produced anxiolytic and antidepressant effects, devoid of hypnotic and sedative actions by immersion, and this action was improved when administered by oral via. Possibly, the presence of isoquercitrin in the leaves of Spondias mombin participates in the anxiolytic and antidepressant effects.
Collapse
Affiliation(s)
- Tafnis Ingret Dos Santos Sampaio
- Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil; Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Nayara Costa de Melo
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil; Programa de Pós-graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Bianca Thais de Freitas Paiva
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Gerley Anatê da Silva Aleluia
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Fernando Luiz Pinheiro da Silva Neto
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Heitor Ribeiro da Silva
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Hady Keita
- Universidad de la Sierra Sur, Division de Pós-Grado, Instituto de Investigación sobre la Salud Pública, Ciudad Universitaria, Calle Guillermo Rojas Mijangos S/N, Miahuatlán de Porfirio Díaz, Oaxaca, Mexico
| | - Rodrigo Alves Soares Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil; Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Brenda Lorena Sánchez-Ortiz
- Facultad de Química, Departamento de Farmacia, Laboratorio de Farmacología de Productos Naturales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Elizabeth Arlen Pineda-Peña
- Facultad de Química, Departamento de Farmacia, Laboratorio de Farmacología de Productos Naturales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - José Luis Balderas
- Facultad de Química, Departamento de Farmacia, Laboratorio de Farmacología de Productos Naturales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Andres Navarrete
- Facultad de Química, Departamento de Farmacia, Laboratorio de Farmacología de Productos Naturales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - José Carlos Tavares Carvalho
- Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil; Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil; Rede Bionorte, Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amapá, Brazil.
| |
Collapse
|
18
|
Pozzuto JM, Fuller CL, Byrd-Jacobs CA. Deafferentation-induced alterations in mitral cell dendritic morphology in the adult zebrafish olfactory bulb. J Bioenerg Biomembr 2018; 51:29-40. [PMID: 30215151 DOI: 10.1007/s10863-018-9772-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022]
Abstract
The removal of afferent input to the olfactory bulb by both cautery and chemical olfactory organ ablation in adult zebrafish results in a significant decrease in volume of the ipsilateral olfactory bulb. To examine the effects of deafferentation at a cellular level, primary output neurons of the olfactory bulb, the mitral cells, were investigated using retrograde tract tracing with fluorescent dextran using ex vivo brain cultures. Morphological characteristics including the number of major dendritic branches, total length of dendritic branches, area of the dendritic arbor, overall dendritic complexity, and optical density of the arbor were used to determine the effects of deafferentation on mitral cell dendrites. Following 8 weeks of permanent deafferentation there were significant reductions in the total length of dendritic branches, the area of the dendritic arbor, and the density of fine processes in the dendritic tuft. With 8 weeks of chronic, partial deafferentation there were significant reductions in all parameters examined, including a modified Sholl analysis that showed significant decreases in overall dendritic complexity. These results show the plasticity of mitral cell dendritic structures in the adult brain and provide information about the response of these output neurons following the loss of sensory input in this key model system.
Collapse
Affiliation(s)
- Joanna M Pozzuto
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008-5410, USA
| | - Cynthia L Fuller
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008-5410, USA
| | - Christine A Byrd-Jacobs
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008-5410, USA.
| |
Collapse
|
19
|
Cholinergic System and Oxidative Stress Changes in the Brain of a Zebrafish Model Chronically Exposed to Ethanol. Neurotox Res 2017; 33:749-758. [DOI: 10.1007/s12640-017-9816-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/17/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
|
20
|
Abstract
Food is critical for survival. Many animals, including the nematode Caenorhabditis elegans, use sensorimotor systems to detect and locate preferred food sources. However, the signaling mechanisms underlying food-choice behaviors are poorly understood. Here, we characterize the molecular signaling that regulates recognition and preference between different food odors in C. elegans. We show that the major olfactory sensory neurons, AWB and AWC, play essential roles in this behavior. A canonical Gα-protein, together with guanylate cyclases and cGMP-gated channels, is needed for the recognition of food odors. The food-odor-evoked signal is transmitted via glutamatergic neurotransmission from AWC and through AMPA and kainate-like glutamate receptor subunits. In contrast, peptidergic signaling is required to generate preference between different food odors while being dispensable for the recognition of the odors. We show that this regulation is achieved by the neuropeptide NLP-9 produced in AWB, which acts with its putative receptor NPR-18, and by the neuropeptide NLP-1 produced in AWC. In addition, another set of sensory neurons inhibits food-odor preference. These mechanistic logics, together with a previously mapped neural circuit underlying food-odor preference, provide a functional network linking sensory response, transduction, and downstream receptors to process complex olfactory information and generate the appropriate behavioral decision essential for survival.
Collapse
|
21
|
Kermen F, Franco LM, Wyatt C, Yaksi E. Neural circuits mediating olfactory-driven behavior in fish. Front Neural Circuits 2013; 7:62. [PMID: 23596397 PMCID: PMC3622886 DOI: 10.3389/fncir.2013.00062] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/18/2013] [Indexed: 11/13/2022] Open
Abstract
The fish olfactory system processes odor signals and mediates behaviors that are crucial for survival such as foraging, courtship, and alarm response. Although the upstream olfactory brain areas (olfactory epithelium and olfactory bulb) are well-studied, less is known about their target brain areas and the role they play in generating odor-driven behaviors. Here we review a broad range of literature on the anatomy, physiology, and behavioral output of the olfactory system and its target areas in a wide range of teleost fish. Additionally, we discuss how applying recent technological advancements to the zebrafish (Danio rerio) could help in understanding the function of these target areas. We hope to provide a framework for elucidating the neural circuit computations underlying the odor-driven behaviors in this small, transparent, and genetically amenable vertebrate.
Collapse
Affiliation(s)
- Florence Kermen
- Neuroelectronics Research Flanders Leuven, Belgium ; Vlaams Instituut voor Biotechnologie Leuven, Belgium
| | | | | | | |
Collapse
|
22
|
The role of CRH in behavioral responses to acute restraint stress in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:176-82. [PMID: 21893154 DOI: 10.1016/j.pnpbp.2011.08.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 01/21/2023]
Abstract
In teleosts, changes in swimming, exploring, general locomotor activity, and anxious state can be a response to stress mediated by the corticotropin-releasing hormone system activation and its effects on glucocorticoid levels. Zebrafish has been widely used to study neuropharmacology and has become a promising animal model to investigate neurobehavioral mechanisms of stress. In this report the animals were submitted to acute restraint stress for different time lengths (15, 60 and 90 min) for further evaluation of behavioral patterns, whole-body cortisol content, and corticotropin-releasing hormone expression. The results demonstrated an increase in the locomotor activity and an alteration in the swimming pattern during a 5-min trial after the acute restraint stress. Interestingly, all groups of fish tested in the novel tank test exhibited signs of anxiety as evaluated by the time spent in the bottom of the tank. Whole-body cortisol content showed a positive correlation with increased behavioral indices of locomotion in zebrafish whereas molecular analysis of corticotropin-releasing hormone showed a late reduction of mRNA expression (90 min). Altogether, we present a model of acute restraint stress in zebrafish, confirmed by elevated cortisol content, as a valid and reliable model to study the biochemical basis of stress behavior, which seems to be accompanied by a negative feedback of corticotropin-release hormone mRNA expression.
Collapse
|
23
|
de Souza CF, Kalloniatis M, Polkinghorne PJ, McGhee CN, Acosta ML. Functional activation of glutamate ionotropic receptors in the human peripheral retina. Exp Eye Res 2012; 94:71-84. [DOI: 10.1016/j.exer.2011.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/22/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022]
|
24
|
Paskin TR, Iqbal TR, Byrd-Jacobs CA. Olfactory bulb recovery following reversible deafferentation with repeated detergent application in the adult zebrafish. Neuroscience 2011; 196:276-84. [PMID: 21933699 DOI: 10.1016/j.neuroscience.2011.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
The neuroplasticity and regenerative properties of the olfactory system make it a useful model for studying the ability of the nervous system to recover from damage. We have developed a novel method for examining the effects of long-term deafferentation and regeneration of the olfactory organ and resulting influence on the olfactory bulb in adult zebrafish. To test the hypothesis that repeated damage to the olfactory epithelium causes reduced olfactory bulb afferent input and cessation of treatment allows recovery, we chronically ablated the olfactory organ every 2-3 days for 3 weeks with the detergent Triton X-100 while another group was allowed 3 weeks of recovery following treatment. Animals receiving chronic treatment showed severe morphological disruption of the olfactory organ, although small pockets of epithelium remained. These pockets were labeled by anti-calretinin, indicating the presence of mature olfactory sensory neurons (OSNs). Following a recovery period, the epithelium was more extensive and neuronal labeling increased, with three different morphologies of sensory neurons observed. Repeated peripheral exposure to Triton X-100 also affected the olfactory bulb. Bulb volumes and anti-tyrosine hydroxylase-like immunoreactivity, which is an indicator of afferent activity, were diminished in the olfactory bulb of the chronically treated group compared to the control side. In the recovery group, there was little difference in bulb volume or antibody staining. These results suggest that repeated, long-term nasal irrigation with Triton X-100 eliminates a substantial number of mature OSNs and reduces afferent input to the olfactory bulb. It also appears that these effects are reversible and regeneration will occur in both the peripheral olfactory organ and the olfactory bulb when given time to recover following cessation of treatment. We report here a new method that allows observation not only of the effects of deafferentation on the olfactory bulb but also the effects of reinnervation.
Collapse
Affiliation(s)
- T R Paskin
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA
| | | | | |
Collapse
|
25
|
Stewart A, Wu N, Cachat J, Hart P, Gaikwad S, Wong K, Utterback E, Gilder T, Kyzar E, Newman A, Carlos D, Chang K, Hook M, Rhymes C, Caffery M, Greenberg M, Zadina J, Kalueff AV. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1421-31. [PMID: 21122812 DOI: 10.1016/j.pnpbp.2010.11.035] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 12/25/2022]
Abstract
Zebrafish (Danio rerio) are becoming increasingly popular in neurobehavioral research. Here, we summarize recent data on behavioral responses of adult zebrafish to a wide spectrum of putative anxiolytic and anxiogenic agents. Using the novel tank test as a sensitive and efficient behavioral assay, zebrafish anxiety-like behavior can be bi-directionally modulated by drugs affecting the gamma-aminobutyric acid, monoaminergic, cholinergic, glutamatergic and opioidergic systems. Complementing human and rodent data, zebrafish drug-evoked phenotypes obtained in this test support this species as a useful model for neurobehavioral and psychopharmacological research.
Collapse
Affiliation(s)
- Adam Stewart
- Department of Pharmacology and Zebrafish Neuroscience Research Consortium, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang S, Kim W, Choi B, Koh H, Lee C. Alcohol impairs learning of T‐maze task but not active avoidance task in zebrafish. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/12265071.2003.9647720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sunggu Yang
- a Department of Biological Science and Institute of Molecular Cell Biology , Inha University , Inchon , 402–751 , Korea
| | - Wansik Kim
- a Department of Biological Science and Institute of Molecular Cell Biology , Inha University , Inchon , 402–751 , Korea
| | - Byung‐Hee Choi
- a Department of Biological Science and Institute of Molecular Cell Biology , Inha University , Inchon , 402–751 , Korea
| | - Hae‐Young Koh
- b Department of Physiology and Biophysics , Mount Sinai School of Medicine , New York , NY , 10029 , USA
| | - Chang‐Joong Lee
- c Department of Biological Science and Institute of Molecular Cell Biology , Inha University , Inchon , 402–751 , Korea Phone: Fax: E-mail:
| |
Collapse
|
27
|
Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish. J Neurosci 2010; 30:13718-28. [PMID: 20943912 DOI: 10.1523/jneurosci.1887-10.2010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Disruption of E3 ubiquitin ligase activity in immature zebrafish mind bomb mutants leads to a failure in Notch signaling, excessive numbers of neurons, and depletion of neural progenitor cells. This neurogenic phenotype is associated with defects in neural patterning and brain development. Because developmental brain abnormalities are recognized as an important feature of childhood neurological disorders such as epilepsy and autism, we determined whether zebrafish mutants with grossly abnormal brain structure exhibit spontaneous electrical activity that resembles the long-duration, high-amplitude multispike discharges reported in immature zebrafish exposed to convulsant drugs. Electrophysiological recordings from agar immobilized mind bomb mutants at 3 d postfertilization confirmed the occurrence of electrographic seizure activity; seizure-like behaviors were also noted during locomotion video tracking of freely behaving mutants. To identify genes differentially expressed in the mind bomb mutant and provide insight into molecular pathways that may mediate these epileptic phenotypes, a transcriptome analysis was performed using microarray. Interesting candidate genes were further analyzed using conventional reverse transcriptase-PCR and real-time quantitative PCR, as well as whole-mount in situ hybridization. Approximately 150 genes, some implicated in development, transcription, cell metabolism, and signal transduction, are differentially regulated, including downregulation of several genes necessary for GABA-mediated signaling. These findings identify a collection of gene transcripts that may be responsible for the abnormal electrical discharge and epileptic activities observed in a mind bomb zebrafish mutant. This work may have important implications for neurological and neurodevelopmental disorders associated with mutations in ubiquitin ligase activity.
Collapse
|
28
|
Dumbarton TC, Stoyek M, Croll RP, Smith FM. Adrenergic control of swimbladder deflation in the zebrafish (Danio rerio). ACTA ACUST UNITED AC 2010; 213:2536-46. [PMID: 20581284 DOI: 10.1242/jeb.039792] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many teleosts actively regulate buoyancy by adjusting gas volume in the swimbladder. In physostomous fishes such as the zebrafish, a connection is maintained between the swimbladder and the oesophagus via the pneumatic duct for the inflation and deflation of this organ. Here we investigated the role of adrenergic stimulation of swimbladder wall musculature in deflation of the swimbladder. Noradrenaline (NA), the sympathetic neurotransmitter (dosage 10(-6) to 10(-5) mol l(-1)), doubled the force of smooth muscle contraction in isolated tissue rings from the anterior chamber, caused a doubling of pressure in this chamber in situ, and evoked gas expulsion through the pneumatic duct, deflating the swimbladder to approximately 85% of the pre-NA volume. These effects were mediated by beta-adrenergic receptors, representing a novel role for these receptors in vertebrates. No effects of adrenergic stimulation were detected in the posterior chamber. In a detailed examination of the musculature and innervation of the swimbladder to determine the anatomical substrate for these functional results, we found that the anterior chamber contained an extensive ventral band of smooth muscle with fibres organized into putative motor units, richly innervated by tyrosine hydroxylase-positive axons. Additionally, a novel arrangement of folds in the lumenal connective tissue in the wall of the anterior chamber was described that may permit small changes in muscle length to cause large changes in effective wall distensibility and hence chamber volume. Taken together, these data strongly suggest that deflation of the zebrafish swimbladder occurs primarily by beta-adrenergically mediated contraction of smooth muscle in the anterior chamber and is under the control of the sympathetic limb of the autonomic nervous system.
Collapse
Affiliation(s)
- Tristan C Dumbarton
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada, B3H 1X5
| | | | | | | |
Collapse
|
29
|
Chua J, Fletcher EL, Kalloniatis M. Functional remodeling of glutamate receptors by inner retinal neurons occurs from an early stage of retinal degeneration. J Comp Neurol 2009; 514:473-91. [PMID: 19350664 DOI: 10.1002/cne.22029] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinitis pigmentosa reflects a family of diseases that result in retinal photoreceptor death and functional blindness. The natural course of retinal changes secondary to photoreceptor degeneration involves anatomical remodeling (cell process alterations and soma displacement) and neurochemical remodeling. Anatomical remodeling predominantly occurs late in the disease process and cannot explain the significant visual deficits that occur very early in the disease process. Neurochemical remodeling includes modified glutamate receptor disposition and altered responses secondary to functional activation of glutamate receptors. We investigated the neurochemical remodeling of retinal neurons in the rd/rd (rd1) mouse retina by tracking the functional activation of glutamate receptors with a cation probe, agmatine. We provide evidence that bipolar cells and amacrine cells undergo selective remodeling of glutamate receptors during the early phases of retinal degeneration. These early neurochemical changes in the rd/rd mouse retina include the expression of aberrant functional ionotropic glutamate receptors on the cone ON bipolar cells from postnatal day 15 (P15), poor functional activation of metabotropic glutamate receptors on both rod and cone ON bipolar cells throughout development/degeneration, and poor functional activation of N-methyl-D-aspartate receptors on amacrine cells from P15. Our results suggest that major neurochemical remodeling occurs prior to anatomical remodeling, and likely accounts for the early visual deficits in the rd/rd mouse retina.
Collapse
Affiliation(s)
- Jacqueline Chua
- Department of Optometry and Vision Science, University of Auckland, Private Bag 92010, Auckland, New Zealand
| | | | | |
Collapse
|
30
|
Megalou EV, Brandon CJ, Frost WN. Evidence that the swim afferent neurons of tritonia diomedea are glutamatergic. THE BIOLOGICAL BULLETIN 2009; 216:103-112. [PMID: 19366921 PMCID: PMC3073080 DOI: 10.1086/bblv216n2p103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The escape swim response of the marine mollusc Tritonia diomedea is a well-established model system for studies of the neural basis of behavior. Although the swim neural network is reasonably well understood, little is known about the transmitters used by its constituent neurons. In the present study, we provide immunocytochemical and electrophysiological evidence that the S-cells, the afferent neurons that detect aversive skin stimuli and in turn trigger Tritonia's escape swim response, use glutamate as their transmitter. First, immunolabeling revealed that S-cell somata contain elevated levels of glutamate compared to most other neurons in the Tritonia brain, consistent with findings from glutamatergic neurons in many species. Second, pressure-applied puffs of glutamate produced the same excitatory response in the target neurons of the S-cells as the naturally released S-cell transmitter itself. Third, the glutamate receptor antagonist CNQX completely blocked S-cell synaptic connections. These findings support glutamate as a transmitter used by the S-cells, and will facilitate studies using this model system to explore a variety of issues related to the neural basis of behavior.
Collapse
Affiliation(s)
- E V Megalou
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|
31
|
Villanueva R, Byrd-Jacobs CA. Peripheral sensory deafferentation affects olfactory bulb neurogenesis in zebrafish. Brain Res 2009; 1269:31-9. [PMID: 19302984 DOI: 10.1016/j.brainres.2009.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 02/05/2009] [Accepted: 03/02/2009] [Indexed: 11/26/2022]
Abstract
The potential effects of the removal of olfactory input on adult neurogenesis in the olfactory bulb were examined. Olfactory organs of adult zebrafish were permanently and completely ablated by cautery and animals were exposed to bromodeoxyuridine then examined following short (4-hour) or long (3-week) survival periods. Short survival times allowed analysis of cell proliferation in the olfactory bulb. Long survival times permitted investigation of survival of adult-formed cells. Deafferentation did not immediately affect the dividing cells in the bulb but did affect the number of adult-formed cells, some of which expressed a neuronal marker, present in the bulb 3 weeks later. Thus, afferent removal influenced the fate of newly formed cells by impacting subsequent divisions, maturation, or survival of those cells. One week of deafferentation altered the pattern of cell genesis, with a significant increase in the number of dividing cells located in the olfactory bulb and also in the ventral telencephalic proliferation zone. Sham surgery did not impact either proliferation or survival of adult-formed cells in the olfactory bulb, suggesting that the deafferentation effect is specific. Thus, afferent innervation is necessary for normal cell proliferation and maintenance of the olfactory bulb in adult zebrafish.
Collapse
Affiliation(s)
- Ruth Villanueva
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Ave., Kalamazoo, MI 49008, USA
| | | |
Collapse
|
32
|
Tabor R, Yaksi E, Friedrich RW. Multiple functions of GABA A and GABA B receptors during pattern processing in the zebrafish olfactory bulb. Eur J Neurosci 2008; 28:117-27. [PMID: 18616562 DOI: 10.1111/j.1460-9568.2008.06316.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
gamma-Aminobutyric acid (GABA)ergic synapses are thought to play pivotal roles in the processing of activity patterns in the olfactory bulb (OB), but their functions have been difficult to study during odor responses in the intact system. We pharmacologically manipulated GABA(A) and GABA(B) receptors in the OB of zebrafish and analysed the effects on odor responses of the output neurons, the mitral cells (MCs), by electrophysiological recordings and temporally deconvolved two-photon Ca2+ imaging. The blockade of GABA(B) receptors enhanced presynaptic Ca2+ influx into afferent axon terminals, and changed the amplitude and time course of a subset of MC responses, indicating that GABA(B) receptors have a modulatory influence on OB output activity. The blockade of GABA(A) receptors induced epileptiform firing, enhanced excitatory responses and abolished fast oscillations in the local field potential. Moreover, the topological reorganization and decorrelation of MC activity patterns during the initial phase of the response was perturbed. These results indicate that GABA(A) receptor-containing circuits participate in the balance of excitation and inhibition, the regulation of total OB output activity, the synchronization of odor-dependent neuronal ensembles, and the reorganization of odor-encoding activity patterns. GABA(A) and GABA(B) receptors are therefore differentially involved in multiple functions of neuronal circuits in the OB.
Collapse
Affiliation(s)
- Rico Tabor
- Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | | | | |
Collapse
|
33
|
Lefebvre KA, Tilton SC, Bammler TK, Beyer RP, Srinouanprachan S, Stapleton PL, Farin FM, Gallagher EP. Gene expression profiles in zebrafish brain after acute exposure to domoic acid at symptomatic and asymptomatic doses. Toxicol Sci 2008; 107:65-77. [PMID: 18936300 DOI: 10.1093/toxsci/kfn207] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Domoic acid (DA) is a neuroexcitatory amino acid that is naturally produced by some marine diatom species of the genus Pseudo-nitzschia. Ingestion of DA-contaminated seafood by humans results in a severe neurotoxic disease known as amnesic shellfish poisoning (ASP). Clinical signs of ASP include seizures and neuronal damage from activation of ionotropic glutamate receptors. However, the impacts of DA exposure at levels below those known to induce outward signs of neurobehavioral exicitotoxicity have not been well characterized. To further understand the mechanisms of neurotoxic injury associated with DA exposure, we examined the transcriptome of whole brains from zebrafish (Danio rerio) receiving intracoelomic (IC) injection of DA at both symptomatic and asymptomatic doses. A majority of zebrafish exposed to high-dose DA (1.2 microg DA/g) exhibited clinical signs of neuroexcitotoxicity (EC(50) of 0.86 microg DA/g) within 5-20 min of IC injection. All zebrafish receiving low-dose DA (0.47 microg DA/g) or vehicle only maintained normal behavior. Microarray analysis of symptomatic and asymptomatic exposures collectively yielded 306 differentially expressed genes (1.5-fold, p </= 0.05) predominately represented by signal transduction, ion transport, and transcription factor functional categories. Transcriptional profiles were suggestive of neuronal apoptosis following an overwhelming of protective adaptive pathways. Further, potential molecular biomarkers of neuropathic injury, including the zebrafish homolog of human NDRG4, were identified and may be relevant to DA exposure levels below that causing neurobehavioral injury. In general, DA-modulated gene expression was consistent with other model species thereby validating zebrafish as an appropriate vertebrate model to study mechanisms of DA neurotoxicity. These data provide a basis for identifying pathways of DA-induced injury as well as biomarkers of asymptomatic and symptomatic DA exposure levels.
Collapse
Affiliation(s)
- Kathi A Lefebvre
- Marine Biotoxins Program, National Oceanic and Atmospheric Administration (NOAA) Fisheries/Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, Washington 98125, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hu RG, Lim J, Donaldson PJ, Kalloniatis M. Characterization of the cystine/glutamate transporter in the outer plexiform layer of the vertebrate retina. Eur J Neurosci 2008; 28:1491-502. [DOI: 10.1111/j.1460-9568.2008.06435.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Mobley AS, Michel WC, Lucero MT. Odorant responsiveness of squid olfactory receptor neurons. Anat Rec (Hoboken) 2008; 291:763-74. [PMID: 18484602 DOI: 10.1002/ar.20704] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the olfactory organ of the squid, Lolliguncula brevis there are five morphological types of olfactory receptor neurons (ORNs). Previous work to characterize odor sensitivity of squid ORNs was performed on only two of the five types in dissociated primary cell cultures. Here, we sought to establish the odorant responsiveness of all five types. We exposed live squid or intact olfactory organs to excitatory odors plus the activity marker, agmatine (AGB), an arginine derivative that enters cells through nonselective cation channels. An antibody against AGB was used to identify odorant-activated neurons. We were able to determine the ORN types of AGB-labeled cells based on their location in the epithelium, morphology and immunolabeling by a set of metabolites: arginine, aspartate, glutamate, glycine, and glutathione. Of 389 neurons identified from metabolite-labeled tissue, 3% were type 1, 32% type 2, 33% type 3, 15% type 4, and 17% type 5. Each ORN type had different odorant specificity with type 3 cells showing the highest percentages of odorant-stimulated AGB labeling. Type 1 cells were rare and none of the identified type 1 cells responded to the tested odorants, which included glutamate, alanine and AGB. Glutamate is a behaviorally attractive odorant and elicited AGB labeling in types 2 and 3. Glutamate-activated AGB labeling was significantly reduced in the presence of the adenylate cyclase inhibitor, SQ22536 (80 microM). These data suggest that the five ORN types differ in their relative abundance and odor responsiveness and that the adenylate cyclase pathway is involved in squid olfactory transduction.
Collapse
|
36
|
Park E, Lee Y, Kim Y, Lee CJ. Cholinergic modulation of neural activity in the telencephalon of the zebrafish. Neurosci Lett 2008; 439:79-83. [DOI: 10.1016/j.neulet.2008.04.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 04/06/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
|
37
|
Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb. PLoS One 2008; 3:e1416. [PMID: 18183297 PMCID: PMC2169298 DOI: 10.1371/journal.pone.0001416] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 12/02/2007] [Indexed: 12/15/2022] Open
Abstract
Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1) interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2) interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3) AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4) ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb.
Collapse
|
38
|
Sun D, Bui BV, Vingrys AJ, Kalloniatis M. Alterations in photoreceptor-bipolar cell signaling following ischemia/reperfusion in the rat retina. J Comp Neurol 2008; 505:131-46. [PMID: 17729268 DOI: 10.1002/cne.21470] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies of retinal ischemia/reperfusion indicate a disparity between the anatomical and functional results; while a large number of rod bipolar cells remain postischemia, there is a significant reduction in the amplitude of the scotopic b-wave of the electroretinogram (ERG). We investigated the alterations in photoreceptor-bipolar cell signaling following ischemia/reperfusion and suggest a mechanism for the decrease in b-wave amplitude. A cation channel probe (agmatine, 1-amino-4-guanidobutane, AGB) was used to assess cellular ion channel activity in neurochemically identified cells secondary to endogenous glutamate release or pharmacological manipulations. By applying the "neurochemical truth point" principle (Sun et al. [2007a] J Comp Neurol, this issue), we have been able to confirm the loss of specific subpopulations of neurons. ERG was used to assess gross retinal function, with parameters of the ERG model providing insight into changes in the phototransduction cascade and sensitivity of postreceptoral glutamate receptors. Following ischemia/reperfusion, rod bipolar cells maintained 2-amino-4-phosphonobutyric acid-responsive metabotropic glutamate receptors and displayed no change in sensitivity to flashes of light as assessed by ERG. Therefore, the loss in b-wave amplitude is likely due to alterations in photoreceptoral glutamate release detected as a change in postsynaptic AGB permeation into rod bipolar cells. Bipolar cell to amacrine cell signaling was also altered. The robust AGB entry into cholinergic amacrine cells was virtually absent in retinas that had undergone ischemia/reperfusion but remained in the AII amacrine cells. Such results suggest a loss of glutamate receptors and/or a change in receptor subunit expression in subpopulations of inner retinal neurons. Although many cells retain their characteristic neurochemical labeling following ischemia/reperfusion, caution should be used when assuming cells participate in functional retinal circuits based solely on the persistence of neurochemical labeling.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
39
|
Edwards JG, Greig A, Sakata Y, Elkin D, Michel WC. Cholinergic innervation of the zebrafish olfactory bulb. J Comp Neurol 2008; 504:631-45. [PMID: 17722029 DOI: 10.1002/cne.21480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A number of fish species receive forebrain cholinergic input but two recent reports failed to find evidence of cholinergic cell bodies or fibers in the olfactory bulbs (OBs) of zebrafish. In the current study we sought to confirm these findings by examining the OBs of adult zebrafish for choline acetyltransferase (ChAT) immunoreactivity. We observed a diffuse network of varicose ChAT-positive fibers associated with the nervus terminalis ganglion innervating the mitral cell/glomerular layer (MC/GL). The highest density of these fibers occurred in the anterior region of the bulb. The cellular targets of this cholinergic input were identified by exposing isolated OBs to acetylcholine receptor (AChR) agonists in the presence of agmatine (AGB), a cationic probe that permeates some active ion channels. Nicotine (50 microM) significantly increased the activity-dependent labeling of mitral cells and juxtaglomerular cells but not of tyrosine hydroxlase-positive dopaminergic neurons (TH(+) cells) compared to control preparations. The nAChR antagonist mecamylamine, an alpha7-nAChR subunit-specific antagonist, calcium-free artificial cerebrospinal fluid, or a cocktail of ionotropic glutamate receptor (iGluR) antagonists each blocked nicotine-stimulated labeling, suggesting that AGB does not enter the labeled neurons through activated nAChRs but rather through activated iGluRs following ACh-stimulated glutamate release. Deafferentation of OBs did not eliminate nicotine-stimulated labeling, suggesting that cholinergic input is primarily acting on bulbar neurons. These findings confirm the presence of a functioning cholinergic system in the zebrafish OB.
Collapse
Affiliation(s)
- Jeffrey G Edwards
- University of Utah School of Medicine, Department of Physiology, Salt Lake City, Utah 84108-1297, USA
| | | | | | | | | |
Collapse
|
40
|
Yaksi E, Judkewitz B, Friedrich RW. Topological reorganization of odor representations in the olfactory bulb. PLoS Biol 2007; 5:e178. [PMID: 17608564 PMCID: PMC1904499 DOI: 10.1371/journal.pbio.0050178] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 05/07/2007] [Indexed: 11/24/2022] Open
Abstract
Odors are initially represented in the olfactory bulb (OB) by patterns of sensory input across the array of glomeruli. Although activated glomeruli are often widely distributed, glomeruli responding to stimuli sharing molecular features tend to be loosely clustered and thus establish a fractured chemotopic map. Neuronal circuits in the OB transform glomerular patterns of sensory input into spatiotemporal patterns of output activity and thereby extract information about a stimulus. It is, however, unknown whether the chemotopic spatial organization of glomerular inputs is maintained during these computations. To explore this issue, we measured spatiotemporal patterns of odor-evoked activity across thousands of individual neurons in the zebrafish OB by temporally deconvolved two-photon Ca2+ imaging. Mitral cells and interneurons were distinguished by transgenic markers and exhibited different response selectivities. Shortly after response onset, activity patterns exhibited foci of activity associated with certain chemical features throughout all layers. During the subsequent few hundred milliseconds, however, MC activity was locally sparsened within the initial foci in an odor-specific manner. As a consequence, chemotopic maps disappeared and activity patterns became more informative about precise odor identity. Hence, chemotopic maps of glomerular input activity are initially transmitted to OB outputs, but not maintained during pattern processing. Nevertheless, transient chemotopic maps may support neuronal computations by establishing important synaptic interactions within the circuit. These results provide insights into the functional topology of neural activity patterns and its potential role in circuit function. Many sensory brain areas contain topographic maps where the physical location of neuronal activity contains information about a stimulus feature. In the first central processing center of the olfactory pathway, the olfactory bulb, chemically distinct odors often elicit spatially segregated input activity so that general chemical features are initially represented in a topographic fashion. It is, however, unclear whether this “chemotopic” organization of odor representations is maintained at subsequent stages of odor processing. To address this question, we visualized activity patterns across thousands of individual neurons in the intact olfactory bulb of zebrafish over time using two-photon calcium imaging. Our results demonstrate that odor-evoked activity across the output neurons of the olfactory bulb is chemotopically organized shortly after stimulus onset but becomes more widely distributed during the subsequent few hundred milliseconds of the response. This reorganization of olfactory bulb output activity is most likely mediated by inhibitory feedback and reduces the redundancy in activity patterns evoked by related stimuli. These results indicate that topographically organized activity maps in the olfactory bulb are not maintained during information processing, but contribute to the function of local circuits. Two-photon calcium imaging in the zebrafish olfactory bulb reveals that mitral cells show more selective responses to odors than interneurons, and odor-evoked firing patterns of populations of mitral cells evolve over hundreds of milliseconds to become more distinct for different odors, thus providing more information about odor identity.
Collapse
Affiliation(s)
- Emre Yaksi
- Department of Biomedical Optics, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Benjamin Judkewitz
- Department of Biomedical Optics, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Rainer W Friedrich
- Department of Biomedical Optics, Max-Planck-Institute for Medical Research, Heidelberg, Germany
- Friedrich-Miescher-Institute, Basel, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Sun D, Vingrys AJ, Kalloniatis M. Metabolic and functional profiling of the normal rat retina. J Comp Neurol 2007; 505:92-113. [PMID: 17729258 DOI: 10.1002/cne.21478] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We established a metabolic and functional profile map of the normal rat retina, given the premise that: 1) amino acid neurochemistry reflects metabolic integrity and cellular identity, and 2) the permeation of a cation channel probe, agmatine (1-amino-4-guanidobutane, AGB), reflects cation channel functionality. The purpose was to provide a unique method of simultaneously assessing the metabolic and functional characteristics of the normal retina, upon which a comparison can be made to disease models. Quantitative pattern recognition analysis of overlapping amino acid and AGB expression profiles was used to provide a statistically robust classification of all neural elements according to their metabolic and functional characteristics. This classification was spatially complete and with single-cell resolution. The resulting classification demonstrated 28 statistically separable theme classes dominated by characteristic glutamate, GABA, glycine, and/or taurine profiles, with each of the neuronal theme classes containing further subtypes. The inclusion of a functional parameter (AGB mapping) in the classification process nearly doubled the number of neural elements that could be ascribed a neurochemical/cation profile, compared to when amino acid labeling was used alone. Strong endogenous glutamate gated AGB labeling was observed in horizontal cells, rod bipolar cells, cholinergic amacrine cells, and AII amacrine cells. The resulting amino acid and AGB profile matrix constitutes a nomogram for assessing cellular responses to experimental challenges in models of ocular disease.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | | | | |
Collapse
|
42
|
Fuller CL, Yettaw HK, Byrd CA. Mitral cells in the olfactory bulb of adult zebrafish (Danio rerio): morphology and distribution. J Comp Neurol 2006; 499:218-30. [PMID: 16977629 DOI: 10.1002/cne.21091] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mitral cell is the primary output neuron and central relay in the olfactory bulb of vertebrates. The morphology of these cells has been studied extensively in mammalian systems and to a lesser degree in teleosts. This study uses retrograde tract tracing and other techniques to characterize the morphology and distribution of mitral cells in the olfactory bulb of adult zebrafish, Danio rerio. These output neurons, located primarily in the glomerular layer and superficial internal cell layer, had variable-shaped somata that ranged in size from 4-18 microm in diameter and 31-96 microm2 in cross-sectional area. The mitral cells exhibited two main types of morphologies with regard to their dendrites: the unidendritic morphology was a single primary dendrite with one or more tufts, but multidendritic cells with several dendritic projections also were seen. The axons of these cells projected to either the medial or the lateral olfactory tract and, in general, the location of the cell on the medial or lateral side of the bulb was indicative of the tract to which it would project. Further, this study shows that the majority of zebrafish mitral cells likely innervate a single glomerulus rather than multiple glomeruli. This information is contrary to the multiple innervation pattern suggested for all teleost mitral cells. Our findings suggest that mitral cells in zebrafish may be more similar to mammalian mitral cells than previously believed, despite variation in size and structure. This information provides a revised anatomical framework for olfactory processing studies in this key model system.
Collapse
Affiliation(s)
- Cynthia L Fuller
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan 49008-5410, USA
| | | | | |
Collapse
|
43
|
Adolf B, Chapouton P, Lam CS, Topp S, Tannhäuser B, Strähle U, Götz M, Bally-Cuif L. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol 2006; 295:278-93. [PMID: 16828638 DOI: 10.1016/j.ydbio.2006.03.023] [Citation(s) in RCA: 314] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 03/16/2006] [Indexed: 12/24/2022]
Abstract
Our understanding of the cellular and molecular mechanisms underlying the adult neural stem cell state remains fragmentary. To provide new models on this issue, we searched for stem cells in the adult brain of the zebrafish. Using BrdU tracing and immunodetection of cell-type-specific markers, we demonstrate that the adult zebrafish telencephalon contains self-renewing progenitors, which show features of adult mammalian neural stem cells but distribute along the entire dorso-ventral extent of the telencephalic ventricular zone. These progenitors give rise to newborn neurons settling close to the ventricular zone within the telencephalon proper. They have no equivalent in mammals and therefore constitute a new model of adult telencephalic neural stem cells. In addition, progenitors from the ventral subpallium generate rapidly dividing progenitors and neuroblasts that reach the olfactory bulb (OB) via a rostral migratory stream and differentiate into GABAergic and TH-positive neurons. These ventral progenitors are comparable to the mammalian neural stem cells of the subependymal zone. Interestingly, dorsal and ventral progenitors in the adult telencephalon express a different combination of transcription factors than their embryonic counterparts. In the case of neurogenin1, this is due to the usage of different enhancer elements. Together, our results highlight the conserved and unique phylogenic and ontogenic features of adult neurogenesis in the zebrafish telencephalon and open the way to the identification of adult neural stem cell characters in cross-species comparative studies.
Collapse
Affiliation(s)
- Birgit Adolf
- Institute of Virology, Technical University-Munich, Trogerstrasse 4b, D-81675, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Li J, Mack JA, Souren M, Yaksi E, Higashijima SI, Mione M, Fetcho JR, Friedrich RW. Early development of functional spatial maps in the zebrafish olfactory bulb. J Neurosci 2006; 25:5784-95. [PMID: 15958745 PMCID: PMC6724871 DOI: 10.1523/jneurosci.0922-05.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the adult olfactory bulb (OB), particular chemical classes of odorants preferentially activate glomeruli within loosely defined regions, resulting in a coarse and fractured "chemotopic" map. In zebrafish, amino acids and bile acids predominantly stimulate glomeruli in the lateral and medial OB, respectively. We studied the development of these spatial response maps in zebrafish. At 3 d postfertilization (dpf), the OB contained protoglomerular structures that became refined and more numerous during subsequent days. In a transgenic zebrafish line expressing the Ca2+ indicator protein inverse pericam, mainly in mitral cells, odor responses in the OB were first detected at 2.5-3 dpf. Already at this stage, amino acids and bile acids evoked activity predominantly in the lateral and medial OB, respectively. Two-photon Ca2+ imaging using a synthetic indicator was used to reconstruct activity patterns at higher resolution in three dimensions. Responses to amino acids and bile acids were detected predominantly in the lateral and medial OB, respectively, with little overlap. Between 2.5 and 6 dpf, the number of odor-responsive units increased, but the overall spatial organization of activity persisted. Hence, a coarse spatial organization of functional activity maps is established very early during OB development when glomeruli are not yet differentiated. This spatial organization is maintained during development and growth of neuronal circuits and may have important functions for odor processing in larvae, for the differentiation of glomeruli, and for the refinement of activity maps at later developmental stages.
Collapse
Affiliation(s)
- Jun Li
- Department of Biomedical Optics, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Eram M, Michel WC. Heterogeneous distribution of taste cells in facial and vagal nerve-innervated taste buds. Neuroscience 2006; 138:339-50. [PMID: 16387446 DOI: 10.1016/j.neuroscience.2005.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/09/2005] [Accepted: 11/14/2005] [Indexed: 11/19/2022]
Abstract
Input from the three gustatory nerves of vertebrates is used to evaluate the nutritional quality of food. In some species, these cranial nerves are modified to accomplish additional specific functions. For example, the facial nerve innervated taste buds distributed over the body surface of catfish aid food search. Physiological studies indicate that this extra-oral taste pathway is more sensitive to amino acids than either the glossopharyngeal or vagal systems of the oral cavity. The current investigation seeks to determine if differences in taste cell subtypes might contribute to the observed differences in sensitivity. The distributions of five low molecular weight metabolites, L-alanine, L-aspartate, L-glutamate, GABA, taurine and the tripeptide glutathione, were examined in 2118 individual taste cells innervated by either the facial or vagal nerve of the channel catfish, Ictalurus punctatus. The metabolite profiles of these cells were determined immunocytochemically and subjected to a k-means clustering algorithm. Fifteen cell classes with quantitatively different patterns of metabolite co-localization were identified. All but one small class of two cells were found in both facial and vagal nerve-innervated taste buds. Four classes (9% of the total cells) had high, two classes (17%) had intermediate and the remaining nine classes (74%) had low levels of GABA immunoreactivity. While the functional significance of differences in metabolite profile remains to be determined, taste cell classes were not uniformly distributed across vagal and facial nerve innervated taste buds and may provide an anatomical basis for previously reported differences in gustatory sensitivity.
Collapse
Affiliation(s)
- M Eram
- University of Utah School of Medicine, Department of Physiology, Salt Lake City, UT 84108-1297, USA
| | | |
Collapse
|
46
|
|
47
|
Marc RE, Kalloniatis M, Jones BW. Excitation mapping with the organic cation AGB2+. Vision Res 2005; 45:3454-68. [PMID: 16139860 DOI: 10.1016/j.visres.2005.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/22/2005] [Accepted: 07/25/2005] [Indexed: 11/26/2022]
Abstract
Excitation mapping is a method of visualizing the signaling history of neurons with permeant organic cations. It is compatible with high-resolution imaging, allowing concurrent visualization of all neuronal classes and their glutamate-gated excitation histories. Excitation mapping documents the stability and precision of neuronal signaling within a given neuronal class, arguing that single unit electrophysiological sampling accurately reflects neuronal diversity. We here review the theory of excitation mapping, provide methods and protocol links; outline imaging concepts; provide parametric data on the temporal range and physiological sensitivity of excitation mapping; and show that immunocytochemical methods for macromolecules are compatible with excitation mapping.
Collapse
Affiliation(s)
- Robert E Marc
- John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, 84132, USA.
| | | | | |
Collapse
|
48
|
Satou M, Hoshikawa R, Sato Y, Okawa K. An in vitro study of long-term potentiation in the carp (Cyprinus carpio L.) olfactory bulb. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 192:135-50. [PMID: 16328534 DOI: 10.1007/s00359-005-0056-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 08/30/2005] [Accepted: 09/01/2005] [Indexed: 10/25/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is considered a cellular mechanism for neural plasticity and memory formation. Previously, we showed that in the carp olfactory bulb, LTP occurs at the dendrodendritic mitral-to-granule cell synapse following tetanic electrical stimulation applied to the olfactory tract, and suggested that it is involved in the process of olfactory memory formation. As a first step towards understanding mechanisms underlying plasticity at this synapse, we examined the effects of various drugs (glutamate and GABA receptor agonists and antagonists, noradrenaline, and drugs affecting cAMP signaling) on dendrodendritic mitral-to-granule cell synaptic transmission in an in vitro preparation. Two forms of LTP are involved: a postsynaptic form (tetanus-evoked LTP) and a presynaptic form. The postsynaptic form is evoked at the granule cell dendrite following tetanic olfactory tract stimulation and is suppressed by the NMDA receptor antagonist, D-AP5, enhanced by noradrenaline, and occluded by the metabotropic glutamate receptor agonist, trans-ACPD. The presynaptic form occurs at the mitral cell dendrite following blockade of the GABA(A) receptor by picrotoxin and bicuculline, or via activation of cAMP signaling by forskolin and 8-Br-cAMP.
Collapse
Affiliation(s)
- M Satou
- Division of Information Science, Graduate School of Integrated Science, Yokohama City University, 236-0027 Yokohama, Japan.
| | | | | | | |
Collapse
|
49
|
Gasperini R, Foa L. Homer 1b/c expression correlates with zebrafish olfactory system development. ACTA ACUST UNITED AC 2005; 33:671-80. [PMID: 16217622 DOI: 10.1007/s11068-005-3335-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 01/27/2005] [Accepted: 04/06/2005] [Indexed: 12/13/2022]
Abstract
The zebrafish, (Danio rerio) is an important model organism for the analysis of molecular mechanisms that govern neuronal circuit development. The neuronal circuitry that mediates olfaction is crucial for the development and survival of all teleost fishes. In concert with other sensory systems, olfaction is functional at early stages in zebrafish development and mediates important behavioral and survival strategies in the developing larva. Odorant cues are transduced by an array of signaling molecules from receptors in olfactory sensory neurons. The scaffolding protein family known as Homer is well placed to orchestrate this signaling cascade by interacting with and coupling membrane bound receptors to cytosolic signaling partners. To date, Homer has not been demonstrated in the zebrafish. Here we report that the Homer 1b/c isoform was prominent in the olfactory system from the earliest stages of differentiation. We describe the spatial and temporal distribution of Homer in the zebrafish olfactory system. At 24 hours post fertilization (hpf), Homer expression delineated the boundary of the presumptive olfactory placode. Subsequent expression steadily increased throughout the developing olfactory placode, with a prominent localization to the dendritic knobs of the olfactory sensory neurons. Homer expression in the developing olfactory bulb was punctate and prominent in the glomeruli, displaying an apparent synaptic localization. This work supports the hypothesis that Homer is an important molecule in neuronal circuit development, necessary for crucial behaviors required for development and survival.
Collapse
Affiliation(s)
- Robert Gasperini
- Discipline of Anatomy and Physiology, School of Medicine, University of Tasmania, Tasmania, Australia
| | | |
Collapse
|
50
|
Fuller CL, Byrd CA. Ruffed cells identified in the adult zebrafish olfactory bulb. Neurosci Lett 2005; 379:190-4. [PMID: 15843061 DOI: 10.1016/j.neulet.2004.12.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/14/2004] [Accepted: 12/24/2004] [Indexed: 11/17/2022]
Abstract
The morphology and distribution of ruffed cells was examined in the olfactory bulb of adult zebrafish, Danio rerio, using retrograde tract tracing and Golgi-Kopsch techniques. The neurons had variable-shaped soma that ranged in size from 7 to 15 microm in diameter. There was an obvious protrusion of the membrane, a ruff, near the initial portion of the axon, and the cells appeared to be distributed primarily in the glomerular layer and superficial internal cell layer. This cell type has been described for a number of teleosts, but not for other animal groups. While the presence of ruffed cells in all teleosts has been suggested, the existence of this cell type in zebrafish was uncertain until now. This new evidence may provide additional insight into olfactory coding and processing in this key model system.
Collapse
Affiliation(s)
- Cynthia L Fuller
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI 49008-5410, USA
| | | |
Collapse
|