1
|
Lichtenfeld MJ, Mulvey AG, Nejat H, Xiong YS, Carlson BM, Mitchell BA, Mendoza-Halliday D, Westerberg JA, Desimone R, Maier A, Kaas JH, Bastos AM. The laminar organization of cell types in macaque cortex and its relationship to neuronal oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587084. [PMID: 38585801 PMCID: PMC10996711 DOI: 10.1101/2024.03.27.587084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The canonical microcircuit (CMC) has been hypothesized to be the fundamental unit of information processing in cortex. Each CMC unit is thought to be an interconnected column of neurons with specific connections between excitatory and inhibitory neurons across layers. Recently, we identified a conserved spectrolaminar motif of oscillatory activity across the primate cortex that may be the physiological consequence of the CMC. The spectrolaminar motif consists of local field potential (LFP) gamma-band power (40-150 Hz) peaking in superficial layers 2 and 3 and alpha/beta-band power (8-30 Hz) peaking in deep layers 5 and 6. Here, we investigate whether specific conserved cell types may produce the spectrolaminar motif. We collected laminar histological and electrophysiological data in 11 distinct cortical areas spanning the visual hierarchy: V1, V2, V3, V4, TEO, MT, MST, LIP, 8A/FEF, PMD, and LPFC (area 46), and anatomical data in DP and 7A. We stained representative slices for the three main inhibitory subtypes, Parvalbumin (PV), Calbindin (CB), and Calretinin (CR) positive neurons, as well as pyramidal cells marked with Neurogranin (NRGN). We found a conserved laminar structure of PV, CB, CR, and pyramidal cells. We also found a consistent relationship between the laminar distribution of inhibitory subtypes with power in the local field potential. PV interneuron density positively correlated with gamma (40-150 Hz) power. CR and CB density negatively correlated with alpha (8-12 Hz) and beta (13-30 Hz) oscillations. The conserved, layer-specific pattern of inhibition and excitation across layers is therefore likely the anatomical substrate of the spectrolaminar motif. Significance Statement Neuronal oscillations emerge as an interplay between excitatory and inhibitory neurons and underlie cognitive functions and conscious states. These oscillations have distinct expression patterns across cortical layers. Does cellular anatomy enable these oscillations to emerge in specific cortical layers? We present a comprehensive analysis of the laminar distribution of the three main inhibitory cell types in primate cortex (Parvalbumin, Calbindin, and Calretinin positive) and excitatory pyramidal cells. We found a canonical relationship between the laminar anatomy and electrophysiology in 11 distinct primate areas spanning from primary visual to prefrontal cortex. The laminar anatomy explained the expression patterns of neuronal oscillations in different frequencies. Our work provides insight into the cortex-wide cellular mechanisms that generate neuronal oscillations in primates.
Collapse
|
2
|
Kuşdoğan M, Vural S, Albayrak L, Çaltekin İ, Gökçen E. The diagnostic and prognostic value of serum neurogranin in acute ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:106889. [PMID: 36481578 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Stroke is a frequently encountered life-threatening medical condition in emergency departments (EDs). Despite all worldwide efforts, a reliable circulating biomarker has not been identified yet. This study investigates the diagnostic and prognostic value of neurogranin (Ng) in acute ischemic stroke (AIS). METHODS This prospective case-control study was conducted on ED patients with AIS and healthy volunteers. We collected the basic demographics, measured serum Ng levels of the patients vs. controls, and followed up the patient group for 6-month by phone or clinical notes to assess the functional outcomes. RESULTS Data analysis was completed with 142 subjects (86 patients vs. 55 controls). The groups did not differ in terms of age and gender. The median serum Ng level of the patient group was significantly higher compared to the control group [160.00 (75.93) vs. 121.26 (90.35) ng/mL and p ˂ 0.001, respectively]. Serum Ng level of 25 patients admitted to the ED within the first 6 hours from the onset of AIS was 177.93 (24.03) ng/mL, while serum Ng level of 61 patients admitted to the ED within 6-24 hours was 131.84 (76.44) ng/mL. AUROC results were 0.717 vs. 0.868 vs. 0.874 for stroke patients admitted during the first 24 hours, 6 hours, and 4.5 hours after the onset, respectively. Lesion volume, NIHSS, and modified Rankin Scale scores (mRS) at admission showed no significant correlation with Ng levels as well as 6-month mortality and 6-month mRS. CONCLUSIONS Timely AIS diagnosis is still a challenge for emergency departments due to the dependency on imaging. Serum Ng can be a promising diagnostic biomarker for AIS patients admitted in the first 24 hours. Even it outperformed in the first 4.5 and 6-hour time windows. However, it did not show a significant prognostic value.
Collapse
Affiliation(s)
- Mikail Kuşdoğan
- Yozgat Bozok University, Faculty of Medicine, Department of Emergency Medicine, Yozgat, Turkey
| | - Sevilay Vural
- Yozgat Bozok University, Faculty of Medicine, Department of Emergency Medicine, Yozgat, Turkey; University Medical Center Groningen, Department of Emergency Medicine, Groningen, The Netherlands.
| | - Levent Albayrak
- Yozgat Bozok University, Faculty of Medicine, Department of Emergency Medicine, Yozgat, Turkey
| | - İbrahim Çaltekin
- Yozgat Bozok University, Faculty of Medicine, Department of Emergency Medicine, Yozgat, Turkey
| | - Emre Gökçen
- Yozgat Bozok University, Faculty of Medicine, Department of Emergency Medicine, Yozgat, Turkey
| |
Collapse
|
3
|
Alba-González A, Yáñez J, Anadón R, Folgueira M. Neurogranin-like immunoreactivity in the zebrafish brain during development. Brain Struct Funct 2022; 227:2593-2607. [PMID: 36018391 PMCID: PMC9618489 DOI: 10.1007/s00429-022-02550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
Neurogranin (Nrgn) is a neural protein that is enriched in the cerebral cortex and is involved in synaptic plasticity via its interaction with calmodulin. Recently we reported its expression in the brain of the adult zebrafish (Alba-González et al. J Comp Neurol 530:1569–1587, 2022). In this study we analyze the development of Nrgn-like immunoreactivity (Nrgn-like-ir) in the brain and sensory structures of zebrafish embryos and larvae, using whole mounts and sections. First Nrgn-like positive neurons appeared by 2 day post-fertilization (dpf) in restricted areas of the brain, mostly in the pallium, epiphysis and hindbrain. Nrgn-like populations increased noticeably by 3 dpf, reaching an adult-like pattern in 6 dpf. Most Nrgn-like positive neurons were observed in the olfactory organ, retina (most ganglion cells, some amacrine and bipolar cells), pallium, lateral hypothalamus, thalamus, optic tectum, torus semicircularis, octavolateralis area, and viscerosensory column. Immunoreactivity was also observed in axonal tracts originating in Nrgn-like neuronal populations, namely, the projection of Nrgn-like immunopositive primary olfactory fibers to olfactory glomeruli, that of Nrgn-like positive pallial cells to the hypothalamus, the Nrgn-like-ir optic nerve to the pretectum and optic tectum, the Nrgn-like immunolabeled lateral hypothalamus to the contralateral region via the horizontal commissure, the octavolateralis area to the midbrain via the lateral lemniscus, and the viscerosensory column to the dorsal isthmus via the secondary gustatory tract. The late expression of Nrgn in zebrafish neurons is probably related to functional maturation of higher brain centers, as reported in the mammalian telencephalon. The analysis of Nrgn expression in the zebrafish brain suggests that it may be a useful marker for specific neuronal circuitries.
Collapse
Affiliation(s)
- Anabel Alba-González
- Department of Biology, Faculty of Sciences, University of A Coruña, Campus da Zapateira, 15008-A, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, 15071-A, Coruña, Spain
| | - Julián Yáñez
- Department of Biology, Faculty of Sciences, University of A Coruña, Campus da Zapateira, 15008-A, Coruña, Spain. .,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, 15071-A, Coruña, Spain.
| | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Mónica Folgueira
- Department of Biology, Faculty of Sciences, University of A Coruña, Campus da Zapateira, 15008-A, Coruña, Spain. .,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, 15071-A, Coruña, Spain.
| |
Collapse
|
4
|
Guarque-Chabrera J, Gil-Miravet I, Olucha-Bordonau F, Melchor-Eixea I, Miquel M. When the front fails, the rear wins. Cerebellar correlates of prefrontal dysfunction in cocaine-induced memory in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110429. [PMID: 34416354 DOI: 10.1016/j.pnpbp.2021.110429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023]
Abstract
Reciprocal pathways connecting the cerebellum to the prefrontal cortex provide a biological and functional substrate to modulate cognitive functions. Dysfunction of both medial prefrontal cortex (mPFC) and cerebellum underlie the phenotypes of several neuropsychiatric disorders that exhibit comorbidity with substance use disorder (SUD). In people with SUD, cue-action-reward associations appears to be particularly strong and salient, acting as powerful motivational triggers for craving and relapse. Studies of cue reactivity in human with SUD have shown cerebellar activations when drug-related cues are presented. Our preclinical research showed that cocaine-induced conditioned preference increases neural activity and upregulates perineuronal nets (PNNs) around Golgi interneurons in the posterior cerebellar cortex. In the present investigation, we aimed at evaluating cerebellar signatures of conditioned preference for cocaine when drug learning is established under mPFC impairment. We used lidocaine to temporarily inactivate in male rats either the Prelimbic (PL) or the Infralimbic (IL) cortices during cocaine-induced conditioning. The inactivation of the IL, but not the PL, encouraged the acquisition of preference for cocaine-related cues, increased posterior cerebellar cortex activity, and upregulated the expression of PNNs around Golgi interneurons. Moreover, IL impairment not only increased vGluT2- and vGAT-related activity around Golgi cells but also regulated PNNs differently on subpopulations of Golgi cells, increasing the number of neurogranin+ PNN-expressing Golgi cells. Our findings suggest that IL dysfunction may facilitate the acquisition of cocaine-induced memory and cerebellar drug-related learning hallmarks. Overall, IL perturbation during cocaine-induced Pavlovian learning increased cerebellar activity and drug effects. Importantly, cerebellum involvement requires a contingent experience with the drug, and it is not the effect of a mere inactivation of IL cortex.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | - Isis Gil-Miravet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | | | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| |
Collapse
|
5
|
Guo C, Huson V, Macosko EZ, Regehr WG. Graded heterogeneity of metabotropic signaling underlies a continuum of cell-intrinsic temporal responses in unipolar brush cells. Nat Commun 2021; 12:5491. [PMID: 34620856 PMCID: PMC8497507 DOI: 10.1038/s41467-021-22893-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
Many neuron types consist of populations with continuously varying molecular properties. Here, we show a continuum of postsynaptic molecular properties in three types of neurons and assess the functional correlates in cerebellar unipolar brush cells (UBCs). While UBCs are generally thought to form discrete functional subtypes, with mossy fiber (MF) activation increasing firing in ON-UBCs and suppressing firing in OFF-UBCs, recent work also points to a heterogeneity of response profiles. Indeed, we find a continuum of response profiles that reflect the graded and inversely correlated expression of excitatory mGluR1 and inhibitory mGluR2/3 pathways. MFs coactivate mGluR2/3 and mGluR1 in many UBCs, leading to sequential inhibition-excitation because mGluR2/3-currents are faster. Additionally, we show that DAG-kinase controls mGluR1 response duration, and that graded DAG kinase levels correlate with systematic variation of response duration over two orders of magnitude. These results demonstrate that continuous variations in metabotropic signaling can generate a stable cell-autonomous basis for temporal integration and learning over multiple time scales.
Collapse
Affiliation(s)
- Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Vincent Huson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main St., Cambridge, MA, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Schinzel F, Seyfer H, Ebbers L, Nothwang HG. The Lbx1 lineage differentially contributes to inhibitory cell types of the dorsal cochlear nucleus, a cerebellum-like structure, and the cerebellum. J Comp Neurol 2021; 529:3032-3045. [PMID: 33786818 DOI: 10.1002/cne.25147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
The dorsal cochlear nucleus (DCN) is a mammalian-specific nucleus of the auditory system. Anatomically, it is classified as a cerebellum-like structure. These structures are proposed to share genetic programs with the cerebellum. Previous analyses demonstrated that inhibitory serial sister cell types (SCTs) of the DCN and cerebellum are derived from the pancreatic transcription factor 1a (Ptf1a) lineage. Postmitotic neurons of the Ptf1a lineage often express the transcription factor Ladybird homeobox protein homolog 1 (Lbx1) which is involved in neuronal cell fate determination. Lbx1 is therefore an attractive candidate for a further component of the genetic program shared between the DCN and cerebellum. Here, we used cell-type specific marker analysis in combination with an Lbx1 reporter mouse line to analyze in both tissues which cell types of the Ptf1a lineage express Lbx1. In the DCN, stellate cells and Purkinje-like cartwheel cells were part of the Lbx1 lineage and Golgi cells were not, as determined by cell counts. In contrast, in the cerebellum, stellate cells and Golgi cells were part of the Lbx1 lineage and Purkinje cells were not. Hence, two out of three phenotypically similar cell types differed with respect to their Lbx1 expression. Our study demonstrates that Lbx1 is differentially recruited to the developmental genetic program of inhibitory neurons both within a given tissue and between the DCN and cerebellum. The differential expression of Lbx1 within the DCN and the cerebellum might contribute to the genetic individuation of the inhibitory SCTs to adapt to circuit specific tasks.
Collapse
Affiliation(s)
- Friedrich Schinzel
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Hannah Seyfer
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Lena Ebbers
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
Yamashiro K, Hori K, Lai ESK, Aoki R, Shimaoka K, Arimura N, Egusa SF, Sakamoto A, Abe M, Sakimura K, Watanabe T, Uesaka N, Kano M, Hoshino M. AUTS2 Governs Cerebellar Development, Purkinje Cell Maturation, Motor Function and Social Communication. iScience 2020; 23:101820. [PMID: 33305180 PMCID: PMC7708818 DOI: 10.1016/j.isci.2020.101820] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022] Open
Abstract
Autism susceptibility candidate 2 (AUTS2), a risk gene for autism spectrum disorders (ASDs), is implicated in telencephalon development. Because AUTS2 is also expressed in the cerebellum where defects have been linked to ASDs, we investigated AUTS2 functions in the cerebellum. AUTS2 is specifically localized in Purkinje cells (PCs) and Golgi cells during postnatal development. Auts2 conditional knockout (cKO) mice exhibited smaller and deformed cerebella containing immature-shaped PCs with reduced expression of Cacna1a. Auts2 cKO and knock-down experiments implicated AUTS2 participation in elimination and translocation of climbing fiber synapses and restriction of parallel fiber synapse numbers. Auts2 cKO mice exhibited behavioral impairments in motor learning and vocal communications. Because Cacna1a is known to regulate synapse development in PCs, it suggests that AUTS2 is required for PC maturation to elicit normal development of PC synapses and thus the impairment of AUTS2 may cause cerebellar dysfunction related to psychiatric illnesses such as ASDs. Loss of Auts2 leads to the reduction of cerebellar size AUTS2 promotes the dendritic maturation of Purkinje cells AUTS2 participates in PF and CF synapse development of Purkinje cells Auts2 cKO mice exhibit the impaired motor learning and vocal communications
Collapse
Affiliation(s)
- Kunihiko Yamashiro
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Esther S K Lai
- Brain Mechanism for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.,Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryo Aoki
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kazumi Shimaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Nariko Arimura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Saki F Egusa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Asami Sakamoto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
8
|
Stay TL, Miterko LN, Arancillo M, Lin T, Sillitoe RV. In vivo cerebellar circuit function is disrupted in an mdx mouse model of Duchenne muscular dystrophy. Dis Model Mech 2019; 13:dmm040840. [PMID: 31704708 PMCID: PMC6906634 DOI: 10.1242/dmm.040840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating and ultimately lethal disease involving progressive muscle degeneration and neurological dysfunction. DMD is caused by mutations in the dystrophin gene, which result in extremely low or total loss of dystrophin protein expression. In the brain, dystrophin is heavily localized to cerebellar Purkinje cells, which control motor and non-motor functions. In vitro experiments in mouse Purkinje cells revealed that loss of dystrophin leads to low firing rates and high spiking variability. However, it is still unclear how the loss of dystrophin affects cerebellar function in the intact brain. Here, we used in vivo electrophysiology to record Purkinje cells and cerebellar nuclear neurons in awake and anesthetized female mdx (also known as Dmd) mice. Purkinje cell simple spike firing rate is significantly lower in mdx mice compared to controls. Although simple spike firing regularity is not affected, complex spike regularity is increased in mdx mutants. Mean firing rate in cerebellar nuclear neurons is not altered in mdx mice, but their local firing pattern is irregular. Based on the relatively well-preserved cytoarchitecture in the mdx cerebellum, our data suggest that faulty signals across the circuit between Purkinje cells and cerebellar nuclei drive the abnormal firing activity. The in vivo requirements of dystrophin during cerebellar circuit communication could help explain the motor and cognitive anomalies seen in individuals with DMD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Trace L Stay
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marife Arancillo
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Secretagogin Immunoreactivity Reveals Lugaro Cells in the Pigeon Cerebellum. THE CEREBELLUM 2019; 18:544-555. [PMID: 30904983 DOI: 10.1007/s12311-019-01023-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lugaro cells are inhibitory interneurons found in the upper granular layer of the cerebellar cortex, just below or within the Purkinje cell layer. They are characterized by (1) a fusiform soma oriented in the parasagittal plane, (2) two pairs of dendrites emanating from opposite ends of the soma, (3) innervation from Purkinje cell collaterals, and (4) an axon that projects into the molecular layer akin to granular cell parallel fibers. Lugaro cells have been described in mammals, but not in other vertebrate classes, save one report in teleost fish. Here, we propose the existence of Lugaro cells in the avian cerebellum based on the morphological characteristics and connectivity described above. Immunohistochemical staining against the calcium binding protein secretagogin (SCGN) revealed Lugaro-like cells in the pigeon cerebellum. Some SCGN-labeled cells exhibit fusiform somata and dendrites parallel to the Purkinje cell layer in the parasagittal plane, as well as long axons that project into the molecular layer and travel alongside parallel fibers in the coronal plane. While mammalian Lugaro cells are known to express calretinin, the SCGN-labeled cells in the pigeon do not. SCGN-labeled cells also express glutamic acid decarboxylase, confirming their inhibitory function. Calbindin labeling revealed Purkinje cell terminals surrounding the SCGN-expressing cells. Our results suggest that Lugaro cells are more widespread among vertebrates than previously thought and may be a characteristic of the cerebellum of all vertebrates.
Collapse
|
10
|
Lebsir D, Guemri J, Kereselidze D, Grison S, Benderitter M, Pech A, Cohen D, Benadjaoud MA, Lestaevel P, Souidi M. Repeated potassium iodide exposure during pregnancy impairs progeny's brain development. Neuroscience 2019; 406:606-616. [PMID: 30797025 DOI: 10.1016/j.neuroscience.2019.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Protracted radioiodine release may require repeated intake of potassium iodide (KI) to protect thyroid gland. It is well established that iodine excess inhibits transiently the thyroid function. As developing fetus depends on maternal thyroid hormones (TH) supply, more knowledge is needed about the plausible effects that repeated KI intake can cause in this sensitive population, especially that even subtle variation of maternal thyroid function may have persistent consequences on progeny brain processing. The aim of this study is to assess the consequences of repeated intake of KI during pregnancy on the progeny's thyroid function and brain development. To do so pregnant Wistar rats received KI over eight days, and then thirty days after the weaning, male progeny was subjected to behavior test. Pituitary and thyroid hormones level, anti-thyroid antibodies level, organs morphology, gene expression and global DNA methylation were assessed. Thirty days after the weaning, KI-exposed male progeny showed an uncommon hormonal status, characterized by a decrease of both thyroid-stimulating hormone (-28%) and free thyroxine (-7%) levels. Motor coordination was altered in KI-exposed male progeny. At the cerebellar level, we observed a decrease of mRNA expression of DCX (-42%) and RC3 (-85%); on the other hand, at the cortical level, mRNA expression of MBP (+71%), MOBP (+90%) and Kcna1 (+42%) was increased. To conclude, repeated KI prophylaxis is not adequate during pregnancy since it led to long-term irreversible neurotoxicity in the male progeny.
Collapse
Affiliation(s)
- Dalila Lebsir
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262 Fontenay-aux-Roses, France
| | - Julien Guemri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262 Fontenay-aux-Roses, France
| | - Dimitri Kereselidze
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262 Fontenay-aux-Roses, France
| | - Stephane Grison
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262 Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, 92262 Fontenay-aux-Roses, France
| | - Annick Pech
- Pharmacie centrale des armées, Direction des Approvisionnement en produits de Santé des Armées, 45000 Orléans, France
| | - David Cohen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262 Fontenay-aux-Roses, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, 92262 Fontenay-aux-Roses, France
| | - Philippe Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SESANE, 92262 Fontenay-aux-Roses, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, 92262 Fontenay-aux-Roses, France.
| |
Collapse
|
11
|
Brown AM, Arancillo M, Lin T, Catt DR, Zhou J, Lackey EP, Stay TL, Zuo Z, White JJ, Sillitoe RV. Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells. Sci Rep 2019; 9:1742. [PMID: 30742002 PMCID: PMC6370775 DOI: 10.1038/s41598-018-38264-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/14/2018] [Indexed: 12/03/2022] Open
Abstract
Purkinje cells receive synaptic input from several classes of interneurons. Here, we address the roles of inhibitory molecular layer interneurons in establishing Purkinje cell function in vivo. Using conditional genetics approaches in mice, we compare how the lack of stellate cell versus basket cell GABAergic neurotransmission sculpts the firing properties of Purkinje cells. We take advantage of an inducible Ascl1CreER allele to spatially and temporally target the deletion of the vesicular GABA transporter, Vgat, in developing neurons. Selective depletion of basket cell GABAergic neurotransmission increases the frequency of Purkinje cell simple spike firing and decreases the frequency of complex spike firing in adult behaving mice. In contrast, lack of stellate cell communication increases the regularity of Purkinje cell simple spike firing while increasing the frequency of complex spike firing. Our data uncover complementary roles for molecular layer interneurons in shaping the rate and pattern of Purkinje cell activity in vivo.
Collapse
Affiliation(s)
- Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Marife Arancillo
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Daniel R Catt
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Trace L Stay
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Zhongyuan Zuo
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA.
| |
Collapse
|
12
|
Jaarsma D, Blot FGC, Wu B, Venkatesan S, Voogd J, Meijer D, Ruigrok TJH, Gao Z, Schonewille M, De Zeeuw CI. The basal interstitial nucleus (BIN) of the cerebellum provides diffuse ascending inhibitory input to the floccular granule cell layer. J Comp Neurol 2018; 526:2231-2256. [PMID: 29943833 DOI: 10.1002/cne.24479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022]
Abstract
The basal interstitial nucleus (BIN) in the white matter of the vestibulocerebellum has been defined more than three decades ago, but has since been largely ignored. It is still unclear which neurotransmitters are being used by BIN neurons, how these neurons are connected to the rest of the brain and what their activity patterns look like. Here, we studied BIN neurons in a range of mammals, including macaque, human, rat, mouse, rabbit, and ferret, using tracing, immunohistological and electrophysiological approaches. We show that BIN neurons are GABAergic and glycinergic, that in primates they also express the marker for cholinergic neurons choline acetyl transferase (ChAT), that they project with beaded fibers to the glomeruli in the granular layer of the ipsilateral floccular complex, and that they are driven by excitation from the ipsilateral and contralateral medio-dorsal medullary gigantocellular reticular formation. Systematic analysis of codistribution of the inhibitory synapse marker VIAAT, BIN axons, and Golgi cell marker mGluR2 indicate that BIN axon terminals complement Golgi cell axon terminals in glomeruli, accounting for a considerable proportion ( > 20%) of the inhibitory terminals in the granule cell layer of the floccular complex. Together, these data show that BIN neurons represent a novel and relevant inhibitory input to the part of the vestibulocerebellum that controls compensatory and smooth pursuit eye movements.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Bin Wu
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jan Voogd
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Dies Meijer
- Centre of neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Cerebellar networks and neuropathology of cerebellar developmental disorders. HANDBOOK OF CLINICAL NEUROLOGY 2018; 154:109-128. [PMID: 29903435 DOI: 10.1016/b978-0-444-63956-1.00007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cerebellar system is a series of axonal projections and synaptic circuits as networks, similar to those of the limbic system and those subserving the propagation and spread of seizures. Three principal cerebellar networks are identified and cerebellar disease often affects components of the networks other than just the cerebellar cortex. Contemporary developmental neuropathology of the cerebellum is best considered in the context of alterations of developmental processes: embryonic segmentation and genetic gradients along the three axes of the neural tube, individual neuronal and glial cell differentiation, migration, synaptogenesis, and myelination. Precisely timed developmental processes may be delayed or precocious rhombencephalosynapsis and pontocerebellar hypoplasia exemplify opposite gradients in the horizontal axis. Chiari II malformation may be reconsidered as a disorder of segmentation rather than simply due to mechanical forces upon normally developing hindbrain structures. Cellular nodules in the roof of the fourth ventricle are heterotopia of histologically differentiated but architecturally disoriented and disorganized neurons and glial cells; they often are less mature immunocytochemically than similar cells in adjacent normal folia. Cell rests are nodules of undifferentiated neuroepithelial cells. Both are frequent in human fetuses and neonates. Axonal projections from heterotopia to adjacent cerebellar folia or nuclei are few or absent, hence these nodules are clinically silent despite neuronal differentiation.
Collapse
|
14
|
Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors. PLoS One 2016; 11:e0167095. [PMID: 27893846 PMCID: PMC5125674 DOI: 10.1371/journal.pone.0167095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse line studied is a helpful model for understanding the molecular mechanisms in the cerebellum that influence locomotor control and reward-dependent behaviors.
Collapse
|
15
|
Only a Minority of the Inhibitory Inputs to Cerebellar Golgi Cells Originates from Local GABAergic Cells. eNeuro 2016; 3:eN-NWR-0055-16. [PMID: 27257627 PMCID: PMC4876488 DOI: 10.1523/eneuro.0055-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/28/2016] [Accepted: 05/08/2016] [Indexed: 11/21/2022] Open
Abstract
Cerebellar Golgi cells (GoCs) efficiently control the spiking activity of granule cells through GABAA receptor-mediated tonic and phasic inhibition. Recent experiments provided compelling evidence for the extensive interconnection of GoCs through electrical synapses, but their chemical inhibitory synaptic inputs are debated. Here, we investigated the GABAergic synaptic inputs of GoCs using in vitro electrophysiology and quantitative light microscopy (LM) and electron microscopy (EM). We characterized GABAA receptor-mediated IPSCs in GoCs and Lugaro cells (LuCs), and found that IPSCs in GoCs have lower frequencies, smaller amplitudes, and much slower decay kinetics. Pharmacological and LM immunolocalization experiments revealed that GoCs express α3, whereas LuCs express α1 subunit-containing GABAA receptors. The selective expression and clustered distribution of the α3 subunit in GoCs allowed the quantitative analysis of GABAergic synapses on their dendrites in the molecular layer (ML). EM and LM experiments in rats, and wild-type and GlyT2-GFP transgenic mice revealed that only one third of axon terminals establishing GABAergic synapses on GoC dendrites contain GlyT2, ruling out LuCs, globular cells, and any noncortical glycinergic inputs as major inhibitory sources. We also show that axon terminals of stellate/basket cells very rarely innervate GlyT2-GFP-expressing GoCs, indicating that only a minority of the inhibitory inputs to GoCs in the ML originates from local interneurons, and the majority of their inhibitory inputs exclusively releases GABA.
Collapse
|
16
|
White JJ, Lin T, Brown AM, Arancillo M, Lackey EP, Stay TL, Sillitoe RV. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods 2016; 262:21-31. [PMID: 26777474 DOI: 10.1016/j.jneumeth.2016.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Electrophysiological recording approaches are essential for understanding brain function. Among these approaches are various methods of performing single-unit recordings. However, a major hurdle to overcome when recording single units in vivo is stability. Poor stability results in a low signal-to-noise ratio, which makes it challenging to isolate neuronal signals. Proper isolation is needed for differentiating a signal from neighboring cells or the noise inherent to electrophysiology. Insufficient isolation makes it impossible to analyze full action potential waveforms. A common source of instability is an inadequate surgery. Problems during surgery cause blood loss, tissue damage and poor healing of the surrounding tissue, limited access to the target brain region, and, importantly, unreliable fixation points for holding the mouse's head. NEW METHOD We describe an optimized surgical procedure that ensures limited tissue damage and delineate a method for implanting head plates to hold the animal firmly in place. RESULTS Using the cerebellum as a model, we implement an extracellular recording technique to acquire single units from Purkinje cells and cerebellar nuclear neurons in behaving mice. We validate the stability of our method by holding single units after injecting the powerful tremorgenic drug harmaline. We performed multiple structural analyses after recording. COMPARISON WITH EXISTING METHODS Our approach is ideal for studying neuronal function in active mice and valuable for recording single-neuron activity when considerable motion is unavoidable. CONCLUSIONS The surgical principles we present for accessing the cerebellum can be easily adapted to examine the function of neurons in other brain regions.
Collapse
Affiliation(s)
- Joshua J White
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Marife Arancillo
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Trace L Stay
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Abstract
Cerebellar circuits are patterned into an array of topographic parasagittal domains called zones. The proper connectivity of zones is critical for motor coordination and motor learning, and in several neurological diseases cerebellar circuits degenerate in zonal patterns. Despite recent advances in understanding zone function, we still have a limited understanding of how zones are formed. Here, we focused our attention on Purkinje cells to gain a better understanding of their specific role in establishing zonal circuits. We used conditional mouse genetics to test the hypothesis that Purkinje cell neurotransmission is essential for refining prefunctional developmental zones into sharp functional zones. Our results show that inhibitory synaptic transmission in Purkinje cells is necessary for the precise patterning of Purkinje cell zones and the topographic targeting of mossy fiber afferents. As expected, blocking Purkinje cell neurotransmission caused ataxia. Using in vivo electrophysiology, we demonstrate that loss of Purkinje cell communication altered the firing rate and pattern of their target cerebellar nuclear neurons. Analysis of Purkinje cell complex spike firing revealed that feedback in the cerebellar nuclei to inferior olive to Purkinje cell loop is obstructed. Loss of Purkinje neurotransmission also caused ectopic zonal expression of tyrosine hydroxylase, which is only expressed in adult Purkinje cells when calcium is dysregulated and if excitability is altered. Our results suggest that Purkinje cell inhibitory neurotransmission establishes the functional circuitry of the cerebellum by patterning the molecular zones, fine-tuning afferent circuitry, and shaping neuronal activity.
Collapse
|
18
|
Abadesco AD, Cilluffo M, Yvone GM, Carpenter EM, Howell BW, Phelps PE. Novel Disabled-1-expressing neurons identified in adult brain and spinal cord. Eur J Neurosci 2014; 39:579-92. [PMID: 24251407 DOI: 10.1111/ejn.12416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022]
Abstract
Components of the Reelin-signaling pathway are highly expressed in embryos and regulate neuronal positioning, whereas these molecules are expressed at low levels in adults and modulate synaptic plasticity. Reelin binds to Apolipoprotein E receptor 2 and Very-low-density lipoprotein receptors, triggers the phosphorylation of Disabled-1 (Dab1), and initiates downstream signaling. The expression of Dab1 marks neurons that potentially respond to Reelin, yet phosphorylated Dab1 is difficult to detect due to its rapid ubiquitination and degradation. Here we used adult mice with a lacZ gene inserted into the dab1 locus to first verify the coexpression of β-galactosidase (β-gal) in established Dab1-immunoreactive neurons and then identify novel Dab1-expressing neurons. Both cerebellar Purkinje cells and spinal sympathetic preganglionic neurons have coincident Dab1 protein and β-gal expression in dab1(lacZ/+) mice. Adult pyramidal neurons in cortical layers II-III and V are labeled with Dab1 and/or β-gal and are inverted in the dab1(lacZ/lacZ) neocortex, but not in the somatosensory barrel fields. Novel Dab1 expression was identified in GABAergic medial septum/diagonal band projection neurons, cerebellar Golgi interneurons, and small neurons in the deep cerebellar nuclei. Adult somatic motor neurons also express Dab1 and show ventromedial positioning errors in dab1-null mice. These findings suggest that: (i) Reelin regulates the somatosensory barrel cortex differently than other neocortical areas, (ii) most Dab1 medial septum/diagonal band neurons are probably GABAergic projection neurons, and (iii) positioning errors in adult mutant Dab1-labeled neurons vary from subtle to extensive.
Collapse
Affiliation(s)
- Autumn D Abadesco
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Science Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kita Y, Kawakami K, Takahashi Y, Murakami F. Development of cerebellar neurons and glias revealed by in utero electroporation: Golgi-like labeling of cerebellar neurons and glias. PLoS One 2013; 8:e70091. [PMID: 23894597 PMCID: PMC3720936 DOI: 10.1371/journal.pone.0070091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Cerebellar cortical functions rely on precisely arranged cytoarchitectures composed of several distinct types of neurons and glias. Studies have indicated that cerebellar excitatory and inhibitory neurons have distinct spatial origins, the upper rhombic lip (uRL) and ventricular zone (VZ), respectively, and that different types of neurons have different birthdates. However, the spatiotemporal relationship between uRL/VZ progenitors and their final phenotype remains poorly understood due to technical limitations. To address this issue, we performed in utero electroporation (IUE) of fluorescent protein plasmids using mouse embryos to label uRL/VZ progenitors at specific developmental stages, and observed labeled cells at maturity. To overcome any potential dilution of the plasmids caused by progenitor division, we also utilized constructs that enable permanent labeling of cells. Cerebellar neurons and glias were labeled in a Golgi-like manner enabling ready identification of labeled cells. Five types of cerebellar neurons, namely Purkinje, Golgi, Lugaro and unipolar brush cells, large-diameter deep nuclei (DN) neurons, and DN astrocytes were labeled by conventional plasmids, whereas plasmids that enable permanent labeling additionally labeled stellate, basket, and granule cells as well as three types of glias. IUE allows us to label uRL/VZ progenitors at different developmental stages. We found that the five types of neurons and DN astrocytes were labeled in an IUE stage-dependent manner, while stellate, basket, granule cells and three types of glias were labeled regardless of the IUE stage. Thus, the results indicate the IUE is an efficient method to track the development of cerebellar cells from uRL/VZ progenitors facing the ventricular lumen. They also indicate that while the generation of the five types of neurons by uRL/VZ progenitors is regulated in a time-dependent manner, the progenitor pool retains multipotency throughout embryonic development.
Collapse
Affiliation(s)
- Yoshiaki Kita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto, Japan
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
20
|
White JJ, Sillitoe RV. Postnatal development of cerebellar zones revealed by neurofilament heavy chain protein expression. Front Neuroanat 2013; 7:9. [PMID: 23675325 PMCID: PMC3648691 DOI: 10.3389/fnana.2013.00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/24/2013] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is organized into parasagittal zones that control sensory-motor behavior. Although the architecture of adult zones is well understood, very little is known about how zones emerge during development. Understanding the process of zone formation is an essential step toward unraveling how circuits are constructed to support specific behaviors. Therefore, we focused this study on postnatal development to determine the spatial and temporal changes that establish zonal patterns during circuit formation. We used a combination of wholemount and tissue section immunohistochemistry in mice to show that the cytoskeletal protein neurofilament heavy chain (NFH) is a robust marker for postnatal cerebellar zonal patterning. The patterned expression of NFH is initiated shortly after birth, and compared to the domains of several known zonal markers such as zebrin II, HSP25, neurogranin, and phospholipase Cβ4 (PLCβ4), NFH does not exhibit transient expression patterns that are typically remodeled between stages, and the adult zones do not emerge after a period of uniform expression in all lobules. Instead, we found that throughout postnatal development NFH gradually reveals distinct zones in each cerebellar lobule. The boundaries of individual NFH zones sharpen over time, as zones are refined during the second and third weeks after birth. Double labeling with neurogranin and PLCβ4 further revealed that although the postnatal expression of NFH is spatially and temporally unique, its pattern of zones respects a fundamental and well-known molecular topography in the cerebellum. The dynamics of NFH expression support the hypothesis that adult circuits are derived from an embryonic map that is refined into zones during the first 3-weeks of life.
Collapse
Affiliation(s)
- Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA
| | | |
Collapse
|
21
|
Mangaru Z, Salem E, Sherman M, Van Dine SE, Bhambri A, Brumberg JC, Richfield EK, Gabel LA, Ramos RL. Neuronal migration defect of the developing cerebellar vermis in substrains of C57BL/6 mice: cytoarchitecture and prevalence of molecular layer heterotopia. Dev Neurosci 2013; 35:28-39. [PMID: 23428637 DOI: 10.1159/000346368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
Abnormal development of the cerebellum is often associated with disorders of movement, postural control, and motor learning. Rodent models are widely used to study normal and abnormal cerebellar development and have revealed the roles of many important genetic and environmental factors. In the present report we describe the prevalence and cytoarchitecture of molecular-layer heterotopia, a malformation of neuronal migration, in the cerebellar vermis of C57BL/6 mice and closely-related strains. In particular, we found a diverse number of cell-types affected by these malformations including Purkinje cells, granule cells, inhibitory interneurons (GABAergic and glycinergic), and glia. Heterotopia were not observed in a sample of wild-derived mice, outbred mice, or inbred mice not closely related to C57BL/6 mice. These data are relevant to the use of C57BL/6 mice as models in the study of brain and behavior relationships and provide greater understanding of human cerebellar dysplasia.
Collapse
Affiliation(s)
- Zareema Mangaru
- Department of Neuroscience and Histology, New York College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, N.Y., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aguado C, Fernández-Alacid L, Cabañero MJ, Yanagawa Y, Schilling K, Watanabe M, Fritschy JM, Luján R. Differential maturation of GIRK2-expressing neurons in the mouse cerebellum. J Chem Neuroanat 2013; 47:79-89. [DOI: 10.1016/j.jchemneu.2012.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 12/22/2022]
|
23
|
Leto K, Rolando C, Rossi F. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms. Front Neuroanat 2012; 6:6. [PMID: 22363268 PMCID: PMC3282257 DOI: 10.3389/fnana.2012.00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/03/2012] [Indexed: 11/15/2022] Open
Abstract
All cerebellar neurons derive from progenitors that proliferate in two germinal neuroepithelia: the ventricular zone (VZ) generates GABAergic neurons, whereas the rhombic lip is the origin of glutamatergic types. Among VZ-derivatives, GABAergic projection neurons, and interneurons are generated according to distinct strategies. Projection neurons (Purkinje cells and nucleo-olivary neurons) are produced at the onset of cerebellar neurogenesis by discrete progenitor pools located in distinct VZ microdomains. These cells are specified within the VZ and acquire mature phenotypes according to cell-autonomous developmental programs. On the other hand, the different categories of inhibitory interneurons derive from a single population of Pax-2-positive precursors that delaminate into the prospective white matter (PWM), where they continue to divide up to postnatal development. Heterotopic/heterochronic transplantation experiments indicate that interneuron progenitors maintain full developmental potentialities up to the end of cerebellar development and acquire mature phenotypes under the influence of environmental cues present in the PWM. Furthermore, the final fate choice occurs in postmitotic cells, rather than dividing progenitors. Extracerebellar cells grafted to the prospective cerebellar white matter are not responsive to local neurogenic cues and fail to adopt clear cerebellar identities. Conversely, cerebellar cells grafted to extracerebellar regions retain typical phenotypes of cerebellar GABAergic interneurons, but acquire type-specific traits under the influence of local cues. These findings indicate that interneuron progenitors are multipotent and sensitive to spatio-temporally patterned environmental signals that regulate the genesis of different categories of interneurons, in precise quantities and at defined times and places.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience, Neuroscience Institute of Turin, University of Turin Turin, Italy
| | | | | |
Collapse
|
24
|
Haws ME, Kaeser PS, Jarvis DL, Südhof TC, Powell CM. Region-specific deletions of RIM1 reproduce a subset of global RIM1α(-/-) phenotypes. GENES BRAIN AND BEHAVIOR 2012; 11:201-13. [PMID: 22103334 PMCID: PMC3268893 DOI: 10.1111/j.1601-183x.2011.00755.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The presynaptic protein RIM1α mediates multiple forms of presynaptic plasticity at both excitatory and inhibitory synapses. Previous studies of mice lacking RIM1α (RIM1α(-/-) throughout the brain showed that deletion of RIM1α results in multiple behavioral abnormalities. In an effort to begin to delineate the brain regions in which RIM1 deletion mediates these abnormal behaviors, we used conditional (floxed) RIM1 knockout mice (fRIM1). By crossing these fRIM1 mice to previously characterized transgenic cre lines, we aimed to delete RIM1 selectively in the dentate gyrus (DG), using a specific preproopiomelanocortin promoter driving cre recombinase (POMC-cre) line , and in pyramidal neurons of the CA3 region of hippocampus, using the kainate receptor subunit 1 promoter driving cre recombinase (KA-cre). Neither of these cre driver lines was uniquely selective to the targeted regions. In spite of this, we were able to reproduce a subset of the global RIM1α(-/-) behavioral abnormalities, thereby narrowing the brain regions in which loss of RIM1 is sufficient to produce these behavioral differences. Most interestingly, hypersensitivity to the pyschotomimetic MK-801 was shown in mice lacking RIM1 selectively in the DG, arcuate nucleus of the hypothalamus and select cerebellar neurons, implicating novel brain regions and neuronal subtypes in this behavior.
Collapse
Affiliation(s)
- M E Haws
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
25
|
Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C, Hawkes R. Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev 2011. [PMID: 21592321 DOI: 10.1186/1749‐8104‐6‐25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The cerebellum is composed of a diverse array of neuronal subtypes. Here we have used a candidate approach to identify Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, as a new player in the transcriptional network required for the development of a specific subset of cerebellar nuclei and a population of Golgi cells in the cerebellar cortex. RESULTS We found that Zac1 has a complex expression profile in the developing cerebellum, including in two proliferating progenitor populations; the cerebellar ventricular zone and the external granular layer overlying posterior cerebellar lobules IX and X. Zac1 is also expressed in some postmitotic cerebellar neurons, including a subset of GABAergic interneurons in the medial cerebellar nuclei. Notably, GABAergic interneurons in the cerebellar nuclei are derived from the cerebellar ventricular zone, where Zac1 is also expressed, consistent with a lineage relationship between these two Zac1+ populations. Zac1 is also expressed in a small subset of cells in the posterior vermis, including some neurogranin-immunoreactive (NG+) Golgi cells, which, based on short-term birthdating, are derived from the EGL, where Zac1 is also expressed. However, Zac1+ cells and NG+ Golgi cells in the cerebellar cortex also display unique properties, as they are generated within different, albeit overlapping, time windows. Finally, consistent with the expression profile of Zac1, two conspicuous abnormalities were found in the cerebellum of Zac1 null mice: the medial cerebellar nuclei, and not the others, were significantly reduced in size; and the number of Golgi cells in cerebellar lobule IX was reduced by approximately 60% compared to wild-type littermates. CONCLUSIONS The data presented here indicate that the tumor suppressor gene Zac1 is expressed in a complex fashion in the developing cerebellum, including in two dividing progenitor populations and in specific subsets of postmitotic neurons, including Golgi cells and GABAergic neurons in the medial nuclei, which require Zac1 for their differentiation. We thus conclude that Zac1 is a critical regulator of normal cerebellar development, adding a new transcriptional regulator to the growing list of factors involved in generating neuronal diversity in the developing cerebellum.
Collapse
Affiliation(s)
- Seung-Hyuk Chung
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C, Hawkes R. Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev 2011; 6:25. [PMID: 21592321 PMCID: PMC3113315 DOI: 10.1186/1749-8104-6-25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/18/2011] [Indexed: 11/20/2022] Open
Abstract
Background The cerebellum is composed of a diverse array of neuronal subtypes. Here we have used a candidate approach to identify Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, as a new player in the transcriptional network required for the development of a specific subset of cerebellar nuclei and a population of Golgi cells in the cerebellar cortex. Results We found that Zac1 has a complex expression profile in the developing cerebellum, including in two proliferating progenitor populations; the cerebellar ventricular zone and the external granular layer overlying posterior cerebellar lobules IX and X. Zac1 is also expressed in some postmitotic cerebellar neurons, including a subset of GABAergic interneurons in the medial cerebellar nuclei. Notably, GABAergic interneurons in the cerebellar nuclei are derived from the cerebellar ventricular zone, where Zac1 is also expressed, consistent with a lineage relationship between these two Zac1+ populations. Zac1 is also expressed in a small subset of cells in the posterior vermis, including some neurogranin-immunoreactive (NG+) Golgi cells, which, based on short-term birthdating, are derived from the EGL, where Zac1 is also expressed. However, Zac1+ cells and NG+ Golgi cells in the cerebellar cortex also display unique properties, as they are generated within different, albeit overlapping, time windows. Finally, consistent with the expression profile of Zac1, two conspicuous abnormalities were found in the cerebellum of Zac1 null mice: the medial cerebellar nuclei, and not the others, were significantly reduced in size; and the number of Golgi cells in cerebellar lobule IX was reduced by approximately 60% compared to wild-type littermates. Conclusions The data presented here indicate that the tumor suppressor gene Zac1 is expressed in a complex fashion in the developing cerebellum, including in two dividing progenitor populations and in specific subsets of postmitotic neurons, including Golgi cells and GABAergic neurons in the medial nuclei, which require Zac1 for their differentiation. We thus conclude that Zac1 is a critical regulator of normal cerebellar development, adding a new transcriptional regulator to the growing list of factors involved in generating neuronal diversity in the developing cerebellum.
Collapse
Affiliation(s)
- Seung-Hyuk Chung
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | |
Collapse
|
27
|
Chung SH, Calafiore M, Plane JM, Pleasure DE, Deng W. Apoptosis inducing factor deficiency causes reduced mitofusion 1 expression and patterned Purkinje cell degeneration. Neurobiol Dis 2011; 41:445-57. [PMID: 20974255 PMCID: PMC3014456 DOI: 10.1016/j.nbd.2010.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/07/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022] Open
Abstract
Alteration in mitochondrial dynamics has been implicated in many neurodegenerative diseases. Mitochondrial apoptosis inducing factor (AIF) plays a key role in multiple cellular and disease processes. Using immunoblotting and flow cytometry analysis with Harlequin mutant mice that have a proviral insertion in the AIF gene, we first revealed that mitofusion 1 (Mfn1), a key mitochondrial fusion protein, is significantly diminished in Purkinje cells of the Harlequin cerebellum. Next, we investigated the cerebellar pathology of Harlequin mice in an age-dependent fashion, and identified a striking process of progressive and patterned Purkinje cell degeneration. Using immunohistochemistry with zebrin II, the most studied compartmentalization marker in the cerebellum, we found that zebrin II-negative Purkinje cells first started to degenerate at 7 months of age. By 11 months of age, almost half of the Purkinje cells were degenerated. Subsequently, most of the Purkinje cells disappeared in the Harlequin cerebellum. The surviving Purkinje cells were concentrated in cerebellar lobules IX and X, where these cells were positive for heat shock protein 25 and resistant to degeneration. We further showed that the patterned Purkinje cell degeneration was dependent on caspase but not poly(ADP-ribose) polymerase-1 (PARP-1) activation, and confirmed the marked decrease of Mfn1 in the Harlequin cerebellum. Our results identified a previously unrecognized role of AIF in Purkinje cell degeneration, and revealed that AIF deficiency leads to altered mitochondrial fusion and caspase-dependent cerebellar Purkinje cell loss in Harlequin mice. This study is the first to link AIF and mitochondrial fusion, both of which might play important roles in neurodegeneration.
Collapse
Affiliation(s)
- Seung-Hyuk Chung
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Sacramento, California 95817
| | - Marco Calafiore
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Sacramento, California 95817
| | - Jennifer M. Plane
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Sacramento, California 95817
| | - David E. Pleasure
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, California 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817
| | - Wenbin Deng
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Sacramento, California 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817
| |
Collapse
|
28
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
29
|
Díez-Guerra FJ. Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life 2010; 62:597-606. [DOI: 10.1002/iub.357] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Rolando C, Gribaudo S, Yoshikawa K, Leto K, De Marchis S, Rossi F. Extracerebellar progenitors grafted to the neurogenic milieu of the postnatal rat cerebellum adapt to the host environment but fail to acquire cerebellar identities. Eur J Neurosci 2010; 31:1340-51. [DOI: 10.1111/j.1460-9568.2010.07167.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Gribaudo S, Bovetti S, Garzotto D, Fasolo A, De Marchis S. Expression and localization of the calmodulin-binding protein neurogranin in the adult mouse olfactory bulb. J Comp Neurol 2010; 517:683-94. [PMID: 19827160 DOI: 10.1002/cne.22177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurogranin (Ng) is a brain-specific postsynaptic protein involved in activity-dependent synaptic plasticity through modulation of Ca(2+)/calmodulin (CaM)-dependent signal transduction in neurons. In this study, using biochemical and immunohistochemical approaches, we demonstrate Ng expression in the adult mouse olfactory bulb (OB), the first relay station in odor information processing. We show that Ng is principally associated with the granule cell layer (GCL), which is composed of granule cell inhibitory interneurons. This cell type is continuously renewed during adult life and plays a key role in OB circuits, integrating and modulating the activity of mitral/tufted cells. Our results indicate that Ng localizes in the soma and dendrites of a defined subpopulation of mature GABAergic granule cells, enriched in the deep portion of the GCL. Ng-immunopositive cells largely coexpress the Ca(+)/CaM-dependent kinase IV (CaMKIV), a downstream protein of CaM signaling cascade, whereas no colocalization was observed between Ng and the calcium-binding protein calretinin. Finally, we demonstrate that adult neurogenesis contributes to the Ng-expressing population, with more newly generated Ng-positive cells integrated in the deep GCL. Together, these results provide a new specific neurochemical marker to identify a subpopulation of olfactory granule cells and suggest possible functional implications for Ng in OB plasticity mechanisms.
Collapse
Affiliation(s)
- S Gribaudo
- Department of Animal & Human Biology, University of Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
32
|
Kim SH, Kim MK, Yu HS, Kim HS, Park IS, Park HG, Kang UG, Kim YS. Electroconvulsive seizure increases phosphorylation of PKC substrates, including GAP-43, MARCKS, and neurogranin, in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:115-21. [PMID: 19837121 DOI: 10.1016/j.pnpbp.2009.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/08/2009] [Accepted: 10/08/2009] [Indexed: 01/06/2023]
Abstract
Protein kinase C (PKC) has been suggested as a molecular target related to the pathogenetic and therapeutic mechanisms of mood disorders in which electroconvulsive seizure (ECS) is effective. However, the reports concerning the effects of ECS on PKC are anecdotal and need further clarification. In this study, we examined the effects of ECS treatment on the phosphorylation of PKC substrates, including GAP-43, MARCKS, and neurogranin. Immunoblot using anti-p-PKC substrate antibodies revealed that a single ECS treatment induced temporal changes in the phosphorylation level of PKC substrates in rat brain, reflecting the effects on PKC activity. Phosphorylation of GAP-43 and MARCKS, representative PKC substrates related to synaptic remodeling, increased from 5 to 30 min, after a transient decrease at 0 min immediately after ECS, and returned to basal levels at 60 min in rat frontal cortex, hippocampus, and cerebellum. Phosphorylation of neurogranin, another PKC substrate, showed a similar pattern of temporal changes in the frontal cortex and hippocampus. Immunohistochemical analysis revealed that p-GAP-43 and p-MARCKS were densely stained throughout the neuronal cells of the prefrontal cortex and hippocampus, and the Purkinje cells of cerebellum, after ECS treatment. Brief and transient activation of PKC may be translated into long-term biochemical changes, resulting in synaptic plasticity. Taken together, the acute effects of ECS on PKC activity, which could be an underpinning of long-term biochemical changes induced by ECS, may contribute to understand the molecular mechanism of ECS.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Psychiatry and Behavioral Science and Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 2010; 5:e8809. [PMID: 20126454 PMCID: PMC2813284 DOI: 10.1371/journal.pone.0008809] [Citation(s) in RCA: 470] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 12/23/2009] [Indexed: 02/06/2023] Open
Abstract
Background Essentially all knowledge about adult hippocampal neurogenesis in humans still comes from one seminal study by Eriksson et al. in 1998, although several others have provided suggestive findings. But only little information has been available in how far the situation in animal models would reflect the conditions in the adult and aging human brain. We therefore here mapped numerous features associated with adult neurogenesis in rodents in samples from human hippocampus across the entire lifespan. Such data would not offer proof of adult neurogenesis in humans, because it is based on the assumption that humans and rodents share marker expression patterns in adult neurogenesis. Nevertheless, together the data provide valuable information at least about the presence of markers, for which a link to adult neurogenesis might more reasonably be assumed than for others, in the adult human brain and their change with increasing age. Methods and Findings In rodents, doublecortin (DCX) is transiently expressed during adult neurogenesis and within the neurogenic niche of the dentate gyrus can serve as a valuable marker. We validated DCX as marker of granule cell development in fetal human tissue and used DCX expression as seed to examine the dentate gyrus for additional neurogenesis-associated features across the lifespan. We studied 54 individuals and detected DCX expression between birth and 100 years of age. Caveats for post-mortem analyses of human tissues apply but all samples were free of signs of ischemia and activated caspase-3. Fourteen markers related to adult hippocampal neurogenesis in rodents were assessed in DCX-positive cells. Total numbers of DCX expressing cells declined exponentially with increasing age, and co-expression of DCX with the other markers decreased. This argued against a non-specific re-appearance of immature markers in specimen from old brains. Early postnatally all 14 markers were co-expressed in DCX-positive cells. Until 30 to 40 years of age, for example, an overlap of DCX with Ki67, Mcm2, Sox2, Nestin, Prox1, PSA-NCAM, Calretinin, NeuN, and others was detected, and some key markers (Nestin, Sox2, Prox1) remained co-expressed into oldest age. Conclusions Our data suggest that in the adult human hippocampus neurogenesis-associated features that have been identified in rodents show patterns, as well as qualitative and quantitative age-related changes, that are similar to the course of adult hippocampal neurogenesis in rodents. Consequently, although further validation as well as the application of independent methodology (e.g. electron microscopy and cell culture work) is desirable, our data will help to devise the framework for specific research on cellular plasticity in the aging human hippocampus.
Collapse
Affiliation(s)
- Rolf Knoth
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Ilyas Singec
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
- Burnham Institute for Medical Research, Stem Cell and Regeneration Program, La Jolla, California, United States of America
| | - Margarethe Ditter
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Georgios Pantazis
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Philipp Capetian
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Ralf P. Meyer
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Volker Horvat
- CRTD – Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Benedikt Volk
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Gerd Kempermann
- CRTD – Center for Regenerative Therapies Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
34
|
Armstrong CL, Chung SH, Armstrong JN, Hochgeschwender U, Jeong YG, Hawkes R. A novel somatostatin-immunoreactive mossy fiber pathway associated with HSP25-immunoreactive purkinje cell stripes in the mouse cerebellum. J Comp Neurol 2009; 517:524-38. [PMID: 19795496 DOI: 10.1002/cne.22167] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Somatostatin 28 immunoreactivity (Sst28-ir) identifies a specific subset of mossy fiber terminals in the adult mouse cerebellum. By using double-labeling immunohistochemistry, we determined that Sst28-ir is associated with presynaptic mossy fiber terminal rosettes, and not Purkinje cells, Golgi cells, or unipolar brush cells. Sst28-ir mossy fibers are restricted to the central zone (lobules VI/VII) and nodular zone (lobules IX, X) of the vermis, and the paraflocculus and flocculus. Within each transverse zone the mossy fiber terminal fields form a reproducible array of parasagittal stripes. The boundaries of Sst28-ir stripes align with a specific array of Purkinje cell stripes revealed by using immunocytochemistry for the small heat shock protein HSP25. In the cerebellum of the homozygous weaver mouse, in which a subpopulation of HSP25-ir Purkinje cells are located ectopically, the corresponding Sst28-ir mossy fiber projection is also ectopic, suggesting a role for a specific Purkinje cell subset in afferent pattern formation. Likewise, in the scrambler mutant mouse, Sst28-ir mossy fibers show a very close association with HSP25-ir Purkinje cell clusters. HSP25 itself does not appear to be critical for normal patterning, however: in the KJR mouse, which does not express cerebellar HSP25, Sst28 expression appears to be normal. Likewise, the Purkinje cell patterning antigens zebrin II and HSP25 are expressed normally in both Sst- and Sst-receptor knockout mice, suggesting that somatostatinergic transmission is not necessary for Purkinje cell stripe formation.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Development of cerebellar GABAergic interneurons: origin and shaping of the "minibrain" local connections. THE CEREBELLUM 2009; 7:523-9. [PMID: 19002744 DOI: 10.1007/s12311-008-0079-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellar circuits comprise a limited number of neuronal phenotypes embedded in a defined cytoarchitecture and generated according to specific spatio-temporal patterns. The local GABAergic network is composed of several interneuron phenotypes that play essential roles in information processing by modulating the activity of cerebellar cortical inputs and outputs. A major issue in the study of cerebellar development is to understand the mechanisms that underlie the generation of different interneuron classes and regulate their placement in the cerebellar architecture and integration in the cortico-nuclear network. Recent findings indicate that the variety of cerebellar interneurons derives from a single population of multipotent progenitors whose fate choices are determined by instructive environmental information. Such a strategy, which is unique for the cerebellum along the neuraxis, allows great flexibility in the control of the quality and quantity of GABAergic interneurons that are produced, thus facilitating the adaptive shaping of the cerebellar network to specific functional demands.
Collapse
|
36
|
Jakovcevski I, Siering J, Hargus G, Karl N, Hoelters L, Djogo N, Yin S, Zecevic N, Schachner M, Irintchev A. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development. J Comp Neurol 2009; 513:496-510. [PMID: 19226508 DOI: 10.1002/cne.21981] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several L1-related adhesion molecules, expressed in a well-coordinated temporospatial pattern during development, are important for fine tuning of specific cerebellar circuitries. We tested the hypothesis that CHL1, the close homologue of L1, abundantly expressed in the developing and adult cerebellum, is also required for normal cerebellar histogenesis. We found that constitutive ablation of CHL1 in mice caused significant loss (20-23%) of Purkinje and granule cells in the mature 2-month-old cerebellum. The ratio of stellate/basket interneurons to Purkinje cells was abnormally high (+38%) in CHL1-deficient (CHL1-/-) mice compared with wild-type (CHL1+/+) littermates, but the gamma-aminobutyric acid (GABA)ergic synaptic inputs to Purkinje cell bodies and dendrites were normal, as were numbers of Golgi interneurons, microglia, astrocytes, and Bergmann glia. Purkinje cell loss occurred before the first postnatal week and was associated with enhanced apoptosis, presumably as a consequence of CHL1 deficiency in afferent axons. In contrast, generation of granule cells, as indicated by in vivo analyses of cell proliferation and death, was unaffected in 1-week-old CHL1-/- mice, but numbers of migrating granule cells in the molecular layer were increased. This increase was likely related to retarded cell migration because CHL1-/- granule cells migrated more slowly than CHL1+/+ cells in vitro, and Bergmann glial processes guiding migration in vivo expressed CHL1 in wild-type mice. Granule cell deficiency in adult CHL1-/- mice appeared to result from decreased precursor cell proliferation after the first postnatal week. Our results indicate that CHL1 promotes Purkinje and granule cell survival and granule cell migration during cerebellar development.
Collapse
Affiliation(s)
- Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Clayton DF, George JM, Mello CV, Siepka SM. Conservation and expression of IQ-domain-containing calpacitin gene products (neuromodulin/GAP-43, neurogranin/RC3) in the adult and developing oscine song control system. Dev Neurobiol 2009; 69:124-40. [PMID: 19023859 DOI: 10.1002/dneu.20686] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Songbirds are appreciated for the insights they provide into regulated neural plasticity. Here, we describe the comparative analysis and brain expression of two gene sequences encoding probable regulators of synaptic plasticity in songbirds: neuromodulin (GAP-43) and neurogranin (RC3). Both are members of the calpacitin family and share a distinctive conserved core domain that mediates interactions between calcium, calmodulin, and protein kinase C signaling pathways. Comparative sequence analysis is consistent with known phylogenetic relationships, with songbirds most closely related to chicken and progressively more distant from mammals and fish. The C-terminus of neurogranin is different in birds and mammals, and antibodies to the protein reveal high expression in adult zebra finches in cerebellar Purkinje cells, which has not been observed in other species. RNAs for both proteins are generally abundant in the telencephalon yet markedly reduced in certain nuclei of the song control system in adult canaries and zebra finches: neuromodulin RNA is very low in RA and HVC (relative to the surrounding pallial areas), whereas neurogranin RNA is conspicuously low in Area X (relative to surrounding striatum). In both cases, this selective downregulation develops in the zebra finch during the juvenile song learning period, 25-45 days after hatching. These results suggest molecular parallels to the robust stability of the adult avian song control circuit.
Collapse
Affiliation(s)
- David F Clayton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA.
| | | | | | | |
Collapse
|
38
|
Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures. J Neurosci Methods 2008; 178:80-6. [PMID: 19114056 DOI: 10.1016/j.jneumeth.2008.11.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 11/04/2008] [Accepted: 11/22/2008] [Indexed: 01/09/2023]
Abstract
RNA interference (RNAi) is a powerful means to investigate functions of genes involved in neuronal differentiation and degeneration. In contrast to widely used methods for introducing small interfering RNA (siRNA) into cells, recently developed single-cell electroporation has enabled transfer of siRNA into single and identified cells. To explore the availability of single-cell electroporation of siRNA in detail, we introduced siRNA against green fluorescent protein (GFP) into GFP-expressing Golgi and Purkinje cells in cerebellar cell cultures by single-cell electroporation using micropipettes. The temporal changes in the intensity of GFP fluorescence in the same electroporated cells were monitored in real-time up to 4 days after electroporation. Several parameters, including tip diameter and resistance of micropipettes, concentrations of siRNA and a fluorescent dye marker, voltage and time of pulses, were optimized to maximize both the efficacy of RNAi and the viability of the electroporated cells. Under the optimal conditions, transfer of GFP siRNA significantly reduced GFP fluorescence in the electroporated cells, whereas that of negative control siRNA had no effects. GFP siRNA was more efficient in Purkinje cells than in Golgi cells. The electroporated Purkinje cells were normal in their morphology, including elaborated dendrites. Thus, the single-cell electroporation of siRNA could be a simple but effective tool for silencing gene expression in individual cells in neuronal primary cultures. In addition, both gene-silencing and off-target effects of siRNA introduced by this method may differ between neuronal cell types, and the parameters of single-cell electroporation should be optimized in each cell type.
Collapse
|
39
|
Golgi cell dendrites are restricted by Purkinje cell stripe boundaries in the adult mouse cerebellar cortex. J Neurosci 2008; 28:2820-6. [PMID: 18337412 DOI: 10.1523/jneurosci.4145-07.2008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the general uniformity in cellular composition of the adult cerebellar cortex, there is a complex underlying pattern of parasagittal stripes of Purkinje cells with characteristic molecular phenotypes and patterns of connectivity. It is not known whether interneuron processes are restricted at stripe boundaries. To begin to address the issue, three strategies were used to explore how cerebellar Golgi cell dendrites are organized with respect to parasagittal stripes: first, double immunofluorescence staining combining anti-neurogranin to identify Golgi cell dendrites with the Purkinje cell compartmentation antigens zebrin II/aldolase C, HNK-1, and phospholipase Cbeta4; second, zebrin II immunohistochemistry combined with a rapid Golgi-Cox impregnation procedure to reveal Golgi cell dendritic arbors; third, stripe antigen expression was used on sections of a GlyT2-EGFP transgenic mouse in which reporter expression is prominent in Golgi cell dendrites. In each case, the dendritic projections of Golgi cells were studied in the vicinity of Purkinje cell stripe boundaries. The data presented here show that the dendrites of a cerebellar interneuron, the Golgi cell, respect the fundamental cerebellar stripe cytoarchitecture.
Collapse
|
40
|
Marzban H, Kim CT, Doorn D, Chung SH, Hawkes R. A novel transverse expression domain in the mouse cerebellum revealed by a neurofilament-associated antigen. Neuroscience 2008; 153:1190-201. [PMID: 18455884 DOI: 10.1016/j.neuroscience.2008.02.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/17/2022]
Abstract
The mammalian cerebellum is composed of a highly reproducible array of transverse zones, each of which is subdivided into parasagittal stripes. By using a combination of Purkinje cell antigenic markers and afferent tracing, four transverse zones have been identified: the anterior zone (AZ: approximately lobules I-V), the central zone (CZ: approximately lobules VI-VII), the posterior zone (PZ: approximately lobules VIII-dorsal IX) and the nodular zone (NZ: approximately ventral lobule IX+lobule X). Neurofilament-associated antigen (NAA) is an epitope recognized by a monoclonal antibody, which is expressed strongly in association with neurofilaments. During perinatal cerebellar development, anti-NAA immunocytochemistry reveals novel features of cerebellar organization. In particular, the CZ is reproducibly subdivided into anterior and posterior components. Between embryonic day 17 and postnatal day 7 NAA immunoreactivity is expressed selectively by a parallel fiber bundle that is restricted to lobule VII, thereby distinguishing the CZ anterior (lobules VIa, b) from the CZ posterior (lobule VII). The novel restriction boundary at lobule VII/VIII, which is also reflected in the morphology of the external granular layer and aligns with a gap in the developing Purkinje cell layer, precedes the morphological appearance of the posterior superior fissure between lobules VIb and VII. In addition, afferent axons to the CZ terminate in an array of parasagittal stripes that is probably a specific climbing fiber projection. Thus, the transverse zone architecture of the mouse cerebellum is more complex than had previously been appreciated.
Collapse
Affiliation(s)
- H Marzban
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
41
|
Larouche M, Beffert U, Herz J, Hawkes R. The Reelin receptors Apoer2 and Vldlr coordinate the patterning of Purkinje cell topography in the developing mouse cerebellum. PLoS One 2008; 3:e1653. [PMID: 18301736 PMCID: PMC2242849 DOI: 10.1371/journal.pone.0001653] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/25/2008] [Indexed: 11/18/2022] Open
Abstract
The adult cerebellar cortex is comprised of reproducible arrays of transverse zones and parasagittal stripes of Purkinje cells. Adult stripes are created through the perinatal rostrocaudal dispersion of embryonic Purkinje cell clusters, triggered by signaling through the Reelin pathway. Reelin is secreted by neurons in the external granular layer and deep cerebellar nuclei and binds to two high affinity extracellular receptors on Purkinje cells-the Very low density lipoprotein receptor (Vldlr) and apolipoprotein E receptor 2 (Apoer2). In mice null for either Reelin or double null for Vldlr and Apoer2, Purkinje cell clusters fail to disperse. Here we report that animals null for either Vldlr or Apoer2 individually, exhibit specific and parasagittally-restricted Purkinje cell ectopias. For example, in mice lacking Apoer2 function immunostaining reveals ectopic Purkinje cells that are largely restricted to the zebrin II-immunonegative population of the anterior vermis. In contrast, mice null for Vldlr have a much larger population of ectopic Purkinje cells that includes members from both the zebrin II-immunonegative and -immunopositive phenotypes. HSP25 immunoreactivity reveals that in Vldlr null animals a large portion of zebrin II-immunopositive ectopic cells are probably destined to become stripes in the central zone (lobules VI–VII). A small population of ectopic zebrin II-immunonegative Purkinje cells is also observed in animals heterozygous for both receptors (Apoer2+/−: Vldlr+/−), but no ectopia is present in mice heterozygous for either receptor alone. These results indicate that Apoer2 and Vldlr coordinate the dispersal of distinct, but overlapping subsets of Purkinje cells in the developing cerebellum.
Collapse
Affiliation(s)
- Matt Larouche
- Genes and Development Research Group and Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Uwe Beffert
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Richard Hawkes
- Genes and Development Research Group and Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada
- *E-mail:
| |
Collapse
|
42
|
Simat M, Ambrosetti L, Lardi-Studler B, Fritschy JM. GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum. Eur J Neurosci 2007; 26:2239-56. [PMID: 17892480 DOI: 10.1111/j.1460-9568.2007.05846.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type 2 glycine transporter (GlyT2) mediates intracellular glycine transport and is expressed selectively in glycinergic neurons. Expression of GlyT2 gene promoter-driven enhanced green fluorescent protein (eGFP) in BAC transgenic mice allows selective visualization of glycinergic neurons by fluorescence microscopy. Here, we show that cerebellar interneuron precursors identified by the transcription factor Pax2, including gamma-aminobutyric acid (GABA)ergic interneurons of the molecular layer (ML; basket and stellate cells), transiently express GlyT2-eGFP during development. In contrast, expression of endogenous GlyT2 is restricted to glycinergic Golgi cells. Comparison with knock-in mice expressing eGFP in GABAergic neurons [glutamic acid decarboxylase (GAD)67-eGFP] revealed that GlyT2-eGFP expression often precedes GAD67-eGFP and is therefore a marker of immature GABAergic interneurons. In the internal granule cell layer, GABAergic Golgi cells differentiated shortly after birth, prior to glycinergic Golgi cells. In the ML, GlyT2-eGFP-positive precursor cells migrated until the boundary with the external granule cell layer, forming an inside-out maturation gradient that determined the final position of interneurons in the ML. After migration, GlyT2-eGFP gradually disappeared, while interneurons differentiated morphologically and became immunoreactive for parvalbumin, the GABA(A) receptor alpha1 subunit, and the K(+)Cl(-) exchanger KCC2 (K(+)Cl(-) cotransporter type 2). Numerous presumptive GABAergic synaptic terminals were seen on immature ML interneurons as early as P4, preceding the expression of these neurochemical markers. These results suggest that GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in the mouse cerebellum, and that GABAergic synaptic function might contribute to the differentiation of interneurons in the cerebellar cortex.
Collapse
Affiliation(s)
- Marija Simat
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
43
|
Marzban H, Hawkes R. Fibroblast growth factor promotes the development of deep cerebellar nuclear neurons in dissociated mouse cerebellar cultures. Brain Res 2007; 1141:25-36. [PMID: 17300764 DOI: 10.1016/j.brainres.2007.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 01/24/2023]
Abstract
Neurons of the deep cerebellar nuclei and excitatory cerebellar interneurons arise from the rhombic lip of the cerebellar anlage. In contrast, Purkinje cells and inhibitory interneurons arise in the neuroepithelium of the fourth ventricle. During development, the projection neurons of the cerebellar nuclei are born first (embryo age (E)9-E12 in mouse) followed closely by the Purkinje cells (E10-E13). Cerebellar interneurons arise later and differentiate postnatally. We have examined the development of cerebellar nuclear neurons in primary cultures. Embryonic cerebella from E15 to E18 pups were cultured 21 days in vitro. Three distinct classes of large neurons were identified: those expressing calbindin, typical of Purkinje cells; those expressing neurogranin (Golgi cells); and a third class expressing parvalbumin but not calbindin, consistent with the morphology of large projection neurons of the cerebellar nuclei. These neurons also express Tbr1, a specific antigenic marker of cerebellar nuclear neurons. Birthdating by using BrdU incorporation shows that the putative DCN neurons are not born in vitro. To confirm their identity the E18 cerebellum was dissected into cerebellar nuclear-containing (ventral) and -lacking (dorsal) halves, which were then dissociated and cultured separately. Only the ventral cultures produce putative cerebellar nuclear neurons. In contrast to E15-E18 cultures, dissociated E13-E14 cerebella in vitro do not yield putative cerebellar nuclear neurons. However, E14 cultures do produce them when fibroblast growth factors are added to the medium. We conclude that FGF signaling is required for the maturation of cerebellar nuclear neurons.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology and Anatomy, Genes and Development Research Group, and Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
44
|
Lein PJ, Yang D, Bachstetter AD, Tilson HA, Harry GJ, Mervis RF, Kodavanti PRS. Ontogenetic alterations in molecular and structural correlates of dendritic growth after developmental exposure to polychlorinated biphenyls. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:556-63. [PMID: 17450224 PMCID: PMC1852648 DOI: 10.1289/ehp.9773] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 01/16/2007] [Indexed: 05/03/2023]
Abstract
OBJECTIVE Perinatal exposure to polychlorinated biphenyls (PCBs) is associated with decreased IQ scores, impaired learning and memory, psychomotor difficulties, and attentional deficits in children. It is postulated that these neuropsychological deficits reflect altered patterns of neuronal connectivity. To test this hypothesis, we examined the effects of developmental PCB exposure on dendritic growth. METHODS Rat dams were gavaged from gestational day 6 through postnatal day (PND) 21 with vehicle (corn oil) or the commercial PCB mixture Aroclor 1254 (6 mg/kg/day). Dendritic growth and molecular markers were examined in pups during development. RESULTS Golgi analyses of CA1 hippocampal pyramidal neurons and cerebellar Purkinje cells indicated that developmental exposure to PCBs caused a pronounced age-related increase in dendritic growth. Thus, even though dendritic lengths were significantly attenuated in PCB-treated animals at PND22, the rate of growth was accelerated at later ages such that by PND60, dendritic growth was comparable to or even exceeded that observed in vehicle controls. Quantitative reverse transcriptase polymerase chain reaction analyses demonstrated that from PND4 through PND21, PCBs generally increased expression of both spinophilin and RC3/neurogranin mRNA in the hippocampus, cerebellum, and cortex with the most significant increases observed in the cortex. CONCLUSIONS This study demonstrates that developmental PCB exposure alters the ontogenetic profile of dendritogenesis in critical brain regions, supporting the hypothesis that disruption of neuronal connectivity contributes to neuropsychological deficits seen in exposed children.
Collapse
Affiliation(s)
- Pamela J. Lein
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon, USA
| | - Dongren Yang
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon, USA
| | - Adam D. Bachstetter
- Neurostructural Research Labs, Tampa, Florida, USA
- Center of Excellence for Aging and Brain Repair and Department of Neurosurgery, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Hugh A. Tilson
- Cellular and Molecular Toxicology Branch, Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - G. Jean Harry
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Ronald F. Mervis
- Neurostructural Research Labs, Tampa, Florida, USA
- Center of Excellence for Aging and Brain Repair and Department of Neurosurgery, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Prasada Rao S. Kodavanti
- Cellular and Molecular Toxicology Branch, Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
45
|
Marzban H, Chung S, Watanabe M, Hawkes R. Phospholipase cβ4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol 2007; 502:857-71. [PMID: 17436294 DOI: 10.1002/cne.21352] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mediolateral boundaries divide the mouse cerebellar cortex into four transverse zones, and within each zone the cortex is further subdivided into a symmetrical array of parasagittal stripes. Various expression markers reveal this complexity, and detailed maps have been constructed based on the differential expression of zebrin II/aldolase C in a Purkinje cell subset. Recently, phospholipase (PL) Cbeta4 expression in adult mice was shown to be restricted to, and coextensive with, the zebrin II-immunonegative Purkinje cell subset. The Purkinje cell expression of PLCbeta4 during embryogenesis and postnatal development begins just before birth in a subset of Purkinje cells that are clustered to form a reproducible array of parasagittal stripes. Double label and serial section immunocytochemistry revealed that the early PLCbeta4-immunoreactive clusters in the neonate are complementary to those previously identified by neurogranin expression. The PLCbeta4 expression pattern can be traced continuously from embryo to adult, revealing the continuity of the topographical map from perinatal to adult cerebella. The only exception, as has been seen for other antigenic markers, is that transient PLCbeta4 expression (which subsequently disappears) is seen in some Purkinje cell stripes during the second postnatal week. Furthermore, the data confirm that some adult Purkinje cell stripes are composite in origin, being derived from two or more distinct embryonic clusters. Thus, the zone and stripe topography of the cerebellum is conserved from embryo to adult, confirming that the early- and late-antigenic markers share a common cerebellar topography.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology and Anatomy, Genes and Development Research Group, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
46
|
Kralic JE, Sidler C, Parpan F, Homanics GE, Morrow AL, Fritschy JM. Compensatory alteration of inhibitory synaptic circuits in cerebellum and thalamus of gamma-aminobutyric acid type A receptor alpha1 subunit knockout mice. J Comp Neurol 2006; 495:408-21. [PMID: 16485284 DOI: 10.1002/cne.20866] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Targeted deletion of the alpha1 subunit gene results in a profound loss of gamma-aminobutyric acid type A (GABA(A)) receptors in adult mouse brain but has only moderate behavioral consequences. Mutant mice exhibit several adaptations in GABA(A) receptor subunit expression, as measured by Western blotting. By using immunohistochemistry, we investigated here whether these adaptations serve to replace the missing alpha1 subunit or represent compensatory changes in neurons that normally express these subunits. We focused on cerebellum and thalamus and distinguished postsynaptic GABA(A) receptor clusters by their colocalization with gephyrin. In the molecular layer of the cerebellum, alpha1 subunit clusters colocalized with gephyrin disappeared from Purkinje cell dendrites of mutant mice, whereas alpha3 subunit/gephyrin clusters, presumably located on dendrites of Golgi interneurons, increased sevenfold, suggesting profound network reorganization in the absence of the alpha1 subunit. In thalamus, a prominent increase in alpha3 and alpha4 subunit immunoreactivity was evident, but without change in regional distribution. In the ventrobasal complex, which contains primarily postsynaptic alpha1- and extrasynaptic alpha4-GABA(A) receptors, the loss of alpha1 subunit was accompanied by disruption of gamma2 subunit and gephyrin clustering, in spite of the increased alpha4 subunit expression. However, in the reticular nucleus, which lacks alpha1-GABA(A) receptors in wild-type mice, postsynaptic alpha3/gamma2/gephyrin clusters were unaffected. These results demonstrate that adaptive responses in the brain of alpha1(0/0) mice involve reorganization of GABAergic circuits and not merely replacement of the missing alpha1 subunit by another receptor subtype. In addition, clustering of gephyrin at synaptic sites in cerebellum and thalamus appears to be dependent on expression of a GABA(A) receptor subtype localized postsynaptically.
Collapse
Affiliation(s)
- Jason E Kralic
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Larouche M, Che PM, Hawkes R. Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol 2006; 494:215-27. [PMID: 16320235 DOI: 10.1002/cne.20791] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Markers that reveal the parasagittal organization of cerebellar Purkinje cells may be grouped into two classes based on the time during development when they are expressed. In mice, early-onset markers are defined by their heterogeneous expression in clusters of Purkinje cells during late embryogenesis, which disappears shortly following birth. Late-onset markers are generally not expressed until about 1 week after birth and do not reach a stable striped expression pattern until about 3 weeks postnatally. Currently, no endogenous markers are known that are heterogeneously expressed in the temporal gap between these two classes. Here we present immunocytochemical evidence that parasagittal stripes of Purkinje cells express a member of the calpacitin protein family, neurogranin, possibly from as early as embryonic day (E) 13 and definitively from E15, in a pattern that persists up to postnatal day (P) 20. Neurogranin is thus the first endogenous marker of a Purkinje cell subset capable of bridging the temporal gap between the early- and late-onset patterns. In the early neonate, up to five pairs of neurogranin-immunopositive Purkinje cell stripes run parasagittally through the cerebellum, with the exact number dependent on the rostrocaudal position. Expression is lost during postnatal development in a transverse zone-dependent fashion. Purkinje cells in the central and nodular zones lose neurogranin expression between approximately P4 and P6, whereas expression in the posterior zone persists until approximately P20. Neurogranin immunoreactivity will be a valuable tool in helping to clarify the relationships between early- and late-onset patterns.
Collapse
Affiliation(s)
- Matt Larouche
- Department of Cell Biology and Anatomy, Genes and Development Research Group, Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
48
|
Simat M, Parpan F, Fritschy JM. Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 2006; 500:71-83. [PMID: 17099896 DOI: 10.1002/cne.21142] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Interneurons of the cerebellum granule cell layer (GCL) form distinct populations. Golgi cells extend dendrites in the molecular layer (ML) and innervate granule cells. In contrast, Lugaro cells have dendrites confined to the GCL but innervate interneurons in the ML, and globular cells have both their dendrites and axons in the ML. The latter cells were described recently and remain poorly characterized. Although several neurochemical markers have been associated selectively with GCL interneurons, it is unclear how they relate to their morphological classification and neurochemical phenotype (glycinergic and/or gamma-aminobutyric acid [GABA]ergic). Here, we performed a detailed characterization of GCL interneurons in mice expressing enhanced green fluorescent protein (GFP) in glycinergic and GABAergic neurons, respectively. By using immunofluorescence for metabotropic glutamate receptor 2 (mGluR2) and neurogranin as markers, we demonstrate the existence of five non-overlapping subsets of Golgi cells: about 65% are glycinergic/GABAergic and co-express both markers. Two small subsets (5-10%) also contain both neurotransmitters but express only mGluR2; they are distinguished by cell body size and location in the GCL. The fourth subset (15%) is GABAergic only and expresses neurogranin. The fifth subset (5%) is glycinergic only and lacks both markers. Thus, the heterogeneity of Golgi cells suggests that they belong to specific functional circuits and are differentially regulated by mGluRs and Ca(2+)-calmodulin-dependent signaling pathways. In contrast to Golgi cells, Lugaro and globular cells are glycinergic/GABAergic and lack mGluR2 and neurogranin. They each represent at least 15% of GCL interneurons and extensively innervate stellate and basket cells, but not Purkinje cells, emphasizing their contribution to inhibitory control of ML interneurons.
Collapse
Affiliation(s)
- Marija Simat
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
49
|
Singec I, Knoth R, Ditter M, Volk B, Frotscher M. Neurogranin is expressed by principal cells but not interneurons in the rodent and monkey neocortex and hippocampus. J Comp Neurol 2004; 479:30-42. [PMID: 15389613 DOI: 10.1002/cne.20302] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As a substrate of protein kinase C (PKC), neurogranin (NG) is involved in the regulation of calcium signaling and activity-dependent plasticity. Recently, we have shown that, in the rodent cerebellum, NG is exclusively expressed by gamma-aminobutyric acidergic Golgi cells, whereas, in the monkey cerebellum, brush cells were the only neuronal population expressing NG (Singec et al. [2003] J. Comp. Neurol. 459:278-289). In the present study, we analyzed the neocortical and hippocampal expression patterns of NG in adult mouse (C57Bl/6), rat (Wistar), and monkey (Cercopithecus aetiops). By using immunocytochemistry and nonradioactive in situ hybridization, we demonstrate strong NG expression by principal cells in different neocortical layers and in the hippocampus by granule cells of the dentate gyrus and pyramidal neurons of CA1-CA3. In contrast, double-labeling experiments in rodents revealed that neocortical and hippocampal interneurons expressing glutamate decarboxylase 67 (GAD67) were consistently devoid of NG. In addition, by using antibodies against parvalbumin, calbindin, and calretinin, we could demonstrate the absence of NG in interneurons of monkey frontal cortex and hippocampus. Together these findings corroborate the idea of different calcium signaling pathways in excitatory and inhibitory cells that may contribute to different modes of synaptic plasticity in these neurons.
Collapse
Affiliation(s)
- Ilyas Singec
- Institute of Anatomy and Cell Biology, University of Freiburg, D-79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|