1
|
Nelson TS, Allen HN, Khanna R. Neuropeptide Y and Pain: Insights from Brain Research. ACS Pharmacol Transl Sci 2024; 7:3718-3728. [PMID: 39698268 PMCID: PMC11651174 DOI: 10.1021/acsptsci.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with widespread distribution in the central nervous system and diverse physiological functions. While extensively studied for its inhibitory effects on pain at the spinal cord level, its role in pain modulation within the brain remains less clear. This review aims to summarize the complex landscape of supraspinal NPY signaling in pain processing. We discuss the expression and function of NPY receptors in key pain-related brain regions, including the parabrachial nucleus, periaqueductal gray, amygdala, and nucleus accumbens. Additionally, we highlight the potent efficacy of NPY in attenuating pain sensitivity and nociceptive processing throughout the central nervous system. NPY-based therapeutic interventions targeting the central nervous system represent a promising avenue for novel analgesic strategies and pain-associated comorbidities.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Heather N. Allen
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Rajesh Khanna
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Slavova D, Ortiz V, Blaise M, Bairachnaya M, Giros B, Isingrini E. Role of the locus coeruleus-noradrenergic system in stress-related psychopathology and resilience: Clinical and pre-clinical evidences. Neurosci Biobehav Rev 2024; 167:105925. [PMID: 39427811 DOI: 10.1016/j.neubiorev.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Stressful events, from daily stressors to traumatic experiences, are common and occur at any age. Despite the high prevalence of trauma, not everyone develops stress-related disorders like major depressive disorder (MDD) and post-traumatic stress disorder (PTSD), a variation attributed to resilience, the ability to adapt and avoid negative consequences of significant stress. This review examines the locus coeruleus-norepinephrine (LC-NE) system, a critical component in the brain's stress response. It discusses the LC-NE system's anatomical and functional complexity and its role in individual variability in stress responses. How different etiological factors and stress modalities affect the LC-NE system, influencing both adaptive stress responses and psychopathologies, are discussed and supported by evidence from human and animal studies. It also explores molecular and cellular adaptations in the LC that contribute to resilience, including roles of neuropeptide, inflammatory cytokines, and genetic modulation, and addresses developmental and sex differences in stress vulnerability. The need for a multifaceted approach to understand stress-induced psychopathologies is emphasized and pave the way for more personalized interventions for stress-related disorders.
Collapse
Affiliation(s)
- Déa Slavova
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Vanesa Ortiz
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Maud Blaise
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Marya Bairachnaya
- Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Bruno Giros
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France; Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Elsa Isingrini
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France.
| |
Collapse
|
3
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
4
|
Mukai Y, Okubo TS, Lazarus M, Ono D, Tanaka KF, Yamanaka A. Prostaglandin E 2 Induces Long-Lasting Inhibition of Noradrenergic Neurons in the Locus Coeruleus and Moderates the Behavioral Response to Stressors. J Neurosci 2023; 43:7982-7999. [PMID: 37734949 PMCID: PMC10669809 DOI: 10.1523/jneurosci.0353-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca2+]i) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca2+]i, and pancreatic polypeptide and prostaglandin D2, which decrease [Ca2+]i Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca2+]i change, we focused on prostaglandin E2 (PGE2), since it induces a long-lasting decrease in [Ca2+]i via the EP3 receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca2+]i after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E2 can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.SIGNIFICANCE STATEMENT Bioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E2 (PGE2) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tatsuo S Okubo
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Chinese Institute for Brain Research, Beijing 102206, China
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
5
|
Żakowski W, Zawistowski P. Neurochemistry of the mammillary body. Brain Struct Funct 2023; 228:1379-1398. [PMID: 37378855 PMCID: PMC10335970 DOI: 10.1007/s00429-023-02673-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
The mammillary body (MB) is a component of the extended hippocampal system and many studies have shown that its functions are vital for mnemonic processes. Together with other subcortical structures, such as the anterior thalamic nuclei and tegmental nuclei of Gudden, the MB plays a crucial role in the processing of spatial and working memory, as well as navigation in rats. The aim of this paper is to review the distribution of various substances in the MB of the rat, with a description of their possible physiological roles. The following groups of substances are reviewed: (1) classical neurotransmitters (glutamate and other excitatory transmitters, gamma-aminobutyric acid, acetylcholine, serotonin, and dopamine), (2) neuropeptides (enkephalins, substance P, cocaine- and amphetamine-regulated transcript, neurotensin, neuropeptide Y, somatostatin, orexins, and galanin), and (3) other substances (calcium-binding proteins and calcium sensor proteins). This detailed description of the chemical parcellation may facilitate a better understanding of the MB functions and its complex relations with other structures of the extended hippocampal system.
Collapse
Affiliation(s)
- Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Piotr Zawistowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
6
|
Tüfekci KK, Bakirhan EG, Terzi F. A Maternal High-Fat Diet Causes Anxiety-Related Behaviors by Altering Neuropeptide Y1 Receptor and Hippocampal Volumes in Rat Offspring: the Potential Effect of N-Acetylcysteine. Mol Neurobiol 2023; 60:1499-1514. [PMID: 36502431 DOI: 10.1007/s12035-022-03158-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
The children of obese mothers are known to have a high risk of obesity and metabolic disease and are prone to developing cognitive deficits, although the underlying mechanism is not yet fully understood. This study investigated the relationship between neuropeptide Y1 receptor (NPY1R) and anxiety-like behaviors in the hippocampi of male rat offspring exposed to maternal obesity and the potential neuroprotective effects of N-acetylcysteine (NAC). A maternal obesity model was created using a high-fat (60% k/cal) diet. NAC (150 mg/kg) was administered by intragastric gavage for 25 days in both the NAC and obesity + NAC (ObNAC) groups. All male rat offspring were subjected to behavioral testing on postnatal day 28, the end of the experiment. Stereological analysis was performed on hippocampal sections, while NPY1R expression was determined using immunohistochemical methods. Stereological data indicated significant decreases in the total volume of the hippocampus and CA1 and dentate gyrus (DG) regions in the obese (Ob) group (p < 0.01). Decreased NPY1R expression was observed in the Ob group hippocampus (p < 0.01). At behavioral assessments, the Ob group rats exhibited increased anxiety and less social interaction, although the ObNAC group rats exhibited stronger responses than the Ob group (p < 0.01). The study results show that NAC attenuated anxiety-like behaviors and NPY1R expression and also protected hippocampal volume against maternal obesity. The findings indicate that a decrease in NPY1R-positive neurons in the hippocampus of male rats due to maternal conditions may be associated with increased levels of anxiety and a lower hippocampal volume. Additionally, although there is no direct evidence, maintenance of NPY1R expression by NAC may be critical for regulating maternal obesity-induced anxiety-related behaviors and hippocampal structure.
Collapse
Affiliation(s)
- Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey.
| | - Elfide Gizem Bakirhan
- Department of Histology and Embryology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Funda Terzi
- Department of Pathology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
7
|
Smith NK, Kondev V, Hunt TR, Grueter BA. Neuropeptide Y modulates excitatory synaptic transmission and promotes social behavior in the mouse nucleus accumbens. Neuropharmacology 2022; 217:109201. [PMID: 35917875 PMCID: PMC9836361 DOI: 10.1016/j.neuropharm.2022.109201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 01/14/2023]
Abstract
Social interactions define the human experience, but these integral behaviors are disrupted in many psychiatric disorders. Social behaviors have evolved over millennia, and neuromodulatory systems that promote social behavior in invertebrates are also present in mammalian brains. One such conserved neuromodulator, neuropeptide Y (NPY), acts through several receptors including the Y1r, Y2r, and Y5r. These receptors are present in brain regions that control social behavior, including the nucleus accumbens (NAc). However, whether NPY modulates NAc neurotransmission is unknown. Using whole-cell patch-clamp electrophysiology of NAc neurons, we find that multiple NPY receptors regulate excitatory synaptic transmission in a cell-type specific manner. At excitatory synapses onto D1+ MSNs, Y1r activity enhances transmission while Y2r suppresses transmission. At excitatory synapses onto D1- MSNs, Y5r activity enhances transmission while Y2r suppresses transmission. Directly infusing NPY or the Y1r agonist [Leu31, Pro34]-NPY into the NAc significantly increases social interaction with an unfamiliar conspecific. Inhibition of an enzyme that breaks down NPY, dipeptidyl peptidase IV (DPP-IV), shifts the effect of NPY on D1+ MSNs to a Y1r dominated phenotype. Together, these results increase our understanding of how NPY regulates neurotransmission in the NAc and identify a novel mechanism underlying the control of social behavior. Further, they reveal a potential strategy to shift NPY signaling for therapeutic gain.
Collapse
Affiliation(s)
- Nicholas K. Smith
- Neuroscience Graduate Program, Vanderbilt University; Nashville, TN 37232, USA
| | - Veronika Kondev
- Neuroscience Graduate Program, Vanderbilt University; Nashville, TN 37232, USA
| | - Thomas R. Hunt
- College of Arts and Sciences, Vanderbilt University; Nashville, TN 37232, USA
| | - Brad A. Grueter
- Vanderbilt Brain Institute, Vanderbilt University; Nashville, TN 37232, USA,Department of Anesthesiology, Vanderbilt University Medical Center; Nashville, TN 37232, USA,Vanderbilt Center for Addiction Research, Vanderbilt University; Nashville, TN 37232, USA,Department of Molecular Physiology and Biophysics, Vanderbilt University; Nashville, TN 37232, USA,Department of Pharmacology, Vanderbilt University; Nashville, TN, 37232, USA,Corresponding author. 1161 21st Avenue South * T4202-MCN Nashville, TN, 37232-2520, USA, (B.A. Grueter)
| |
Collapse
|
8
|
Obara-Michlewska M. The contribution of astrocytes to obesity-associated metabolic disturbances. J Biomed Res 2022; 36:299-311. [PMID: 36131679 PMCID: PMC9548436 DOI: 10.7555/jbr.36.20200020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
- Marta Obara-Michlewska, Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, Warsaw 02-106, Poland. Tel/Fax: +48-22-6046416, E-mail:
| |
Collapse
|
9
|
Birdogan A, Salur E, Tuzcu F, Gokmen RC, Ozturk Bintepe M, Aypar B, Keser A, Balkan B, Koylu EO, Kanit L, Gozen O. Chronic oral nicotine administration and withdrawal regulate the expression of neuropeptide Y and its receptors in the mesocorticolimbic system. Neuropeptides 2021; 90:102184. [PMID: 34425507 DOI: 10.1016/j.npep.2021.102184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are involved in the regulation of mood, stress, and anxiety. In parallel, NPY signaling may play a vital role in the negative affective state induced by drug withdrawal. This study examined the changes in the transcript levels of NPY, Y1, Y2, and Y5 receptors in the mesocorticolimbic system during chronic nicotine exposure and withdrawal. Rats were administered with nicotine (initial dose: 25 μg/ml, maintenance dose: 50 μg/ml, free base) in drinking water for 12 weeks. Control group received only tap water. In the final week of the study, some of the nicotine-treated animals continued to receive nicotine (0-W), whereas some were withdrawn for either 24 (24-W) or 48 (48-W) h. All animals were decapitated after the evaluation of somatic signs (frequency of gasps, eye blinks, ptosis, shakes, teeth chatter) and the duration of locomotor activity and immobility. mRNA levels of NPY, Y1, Y2, and Y5 receptors in the mesocorticolimbic system were measured by quantitative real-time PCR (qRT-PCR). Results showed that nicotine withdrawal increased overall somatic signs. Moreover, chronic nicotine treatment increased the duration of locomotor activity, whereas withdrawal increased the duration of immobility. qRT-PCR analysis revealed that chronic nicotine treatment increased NPY mRNA levels in the hippocampus. On the other hand, 24- and 48-h withdrawals increased NPY mRNA levels in the amygdala and medial prefrontal cortex (mPFC), Y1 and Y2 mRNA levels in the nucleus accumbens and mPFC, and Y5 mRNA levels in the mPFC. These findings suggest that nicotine withdrawal enhances NPY signaling in the mesocorticolimbic system, which could be an important mechanism involved in regulating the negative affective state triggered during nicotine withdrawal.
Collapse
Affiliation(s)
- Ali Birdogan
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey
| | - Elif Salur
- Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey
| | - Fulya Tuzcu
- Ege University, School of Medicine, Department of Physiology, Izmir, Turkey
| | - Ramazan C Gokmen
- Ege University, School of Medicine, Department of Physiology, Izmir, Turkey
| | | | - Buket Aypar
- Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey
| | - Aysegul Keser
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Burcu Balkan
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Ersin O Koylu
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Lutfiye Kanit
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Oguz Gozen
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey.
| |
Collapse
|
10
|
Tanaka M, Yamada S, Watanabe Y. The Role of Neuropeptide Y in the Nucleus Accumbens. Int J Mol Sci 2021; 22:ijms22147287. [PMID: 34298907 PMCID: PMC8307209 DOI: 10.3390/ijms22147287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5300
| | - Shunji Yamada
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
11
|
Petrovich GD. The Function of Paraventricular Thalamic Circuitry in Adaptive Control of Feeding Behavior. Front Behav Neurosci 2021; 15:671096. [PMID: 33986649 PMCID: PMC8110711 DOI: 10.3389/fnbeh.2021.671096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is a complex area that is uniquely embedded across the core feeding, reward, arousal, and stress circuits. The PVT role in the control of feeding behavior is discussed here within a framework of adaptive behavioral guidance based on the body’s energy state and competing drives. The survival of an organism depends on bodily energy resources and promotion of feeding over other behaviors is adaptive except when in danger or sated. The PVT is structurally set up to respond to homeostatic and hedonic needs to feed, and to integrate those signals with physiological and environmental stress, as well as anticipatory needs and other cognitive inputs. It can regulate both food foraging (seeking) and consumption and may balance their expression. The PVT is proposed to accomplish these functions through a network of connections with the brainstem, hypothalamic, striatal, and cortical areas. The connectivity of the PVT further indicates that it could broadcast the information about energy use/gain and behavioral choice to impact cognitive processes—learning, memory, and decision-making—through connections with the medial and lateral prefrontal cortical areas, the hippocampal formation, and the amygdala. The PVT is structurally complex and recent evidence for specific PVT pathways in different aspects of feeding behavior will be discussed.
Collapse
Affiliation(s)
- Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
12
|
Sex differences in behavioral and metabolic effects of gene inactivation: The neuropeptide Y and Y receptors in the brain. Neurosci Biobehav Rev 2020; 119:333-347. [PMID: 33045245 DOI: 10.1016/j.neubiorev.2020.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Brain and gonadal hormones interplay controls metabolic and behavioral functions in a sex-related manner. However, most translational neuroscience research related to animal models of endocrine and psychiatric disorders are often carried out in male animals only. The Neuropeptide Y (NPY) system shows sex-dependent differences and is sensitive to gonadal steroids. Based on published data from our and other laboratories, in this review we will discuss the sex related differences of NPY action on energy balance, bone homeostasis and behavior in rodents with the genetic manipulation of genes encoding NPY and its Y1, Y2 and Y5 cognate receptors. Comparative analyses of the phenotype of transgenic and knockout NPY and Y receptor rodents unravels sex dependent differences in the functions of this neurotransmission system, potentially helping to develop therapeutics for a variety of sex-related disorders including metabolic syndrome, osteoporosis and ethanol addiction.
Collapse
|
13
|
Nahvi RJ, Sabban EL. Sex Differences in the Neuropeptide Y System and Implications for Stress Related Disorders. Biomolecules 2020; 10:biom10091248. [PMID: 32867327 PMCID: PMC7564266 DOI: 10.3390/biom10091248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
The neuropeptide Y (NPY) system is emerging as a promising therapeutic target for neuropsychiatric disorders by intranasal delivery to the brain. However, the vast majority of underlying research has been performed with males despite females being twice as susceptible to many stress-triggered disorders such as posttraumatic stress disorder, depression, anorexia nervosa, and anxiety disorders. Here, we review sex differences in the NPY system in basal and stressed conditions and how it relates to varied susceptibility to stress-related disorders. The majority of studies demonstrate that NPY expression in many brain areas under basal, unstressed conditions is lower in females than in males. This could put them at a disadvantage in dealing with stress. Knock out animals and Flinders genetic models show that NPY is important for attenuating depression in both sexes, while its effects on anxiety appear more pronounced in males. In females, NPY expression after exposure to stress may depend on age, timing, and nature and duration of the stressors and may be especially pronounced in the catecholaminergic systems. Furthermore, alterations in NPY receptor expression and affinity may contribute to the sex differences in the NPY system. Overall, the review highlights the important role of NPY and sex differences in manifestation of neuropsychiatric disorders.
Collapse
|
14
|
Michaelson SD, Miranda Tapia AP, McKinty A, Silveira Villarroel H, Mackay JP, Urban JH, Colmers WF. Contribution of NPY Y 5 Receptors to the Reversible Structural Remodeling of Basolateral Amygdala Dendrites in Male Rats Associated with NPY-Mediated Stress Resilience. J Neurosci 2020; 40:3231-3249. [PMID: 32144180 PMCID: PMC7159890 DOI: 10.1523/jneurosci.2621-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 11/21/2022] Open
Abstract
Endogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y5 receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons. Repeated treatment of OTCs with NPY followed by an identical treatment with CRF, or vice versa, inhibited or reversed all structural changes in OTCs. These structural responses to NPY or CRF required calcineurin or CaMKII, respectively. Finally, repeated intra-BLA injections of NPY or a Y5 receptor agonist increased social interaction, a validated behavior for anxiety, and recapitulated structural changes in BLA neurons seen in OTCs, while a Y5 receptor antagonist prevented NPY's effects both on behavior and on structure. These results implicate the Y5 receptor in the long-term, anxiolytic-like effects of NPY in the BLA, consistent with an intrinsic role in stress buffering, and highlight a remarkable mechanism by which BLA neurons may adapt to different levels of stress. Moreover, BLA OTCs offer a robust model to study mechanisms associated with resilience and vulnerability to stress in BLA.SIGNIFICANCE STATEMENT Within the basolateral amygdala (BLA), neuropeptide Y (NPY) is associated with buffering the neural stress response induced by corticotropin releasing factor, and promoting stress resilience. We used a novel organotypic slice culture model of BLA, complemented with in vivo studies, to examine the cellular mechanisms associated with the actions of NPY. In organotypic slice cultures, repeated NPY treatment reduces the complexity of the dendritic extent of anxiogenic BLA principal neurons, making them less excitable. NPY, via activation of Y5 receptors, additionally inhibits and reverses the increases in dendritic extent and excitability induced by the stress hormone, corticotropin releasing factor. This NPY-mediated neuroplasticity indicates that resilience or vulnerability to stress may thus involve neuropeptide-mediated dendritic remodeling in BLA principal neurons.
Collapse
Affiliation(s)
- Sheldon D Michaelson
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Ana Pamela Miranda Tapia
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Amanda McKinty
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Heika Silveira Villarroel
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - James P Mackay
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Janice H Urban
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - William F Colmers
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| |
Collapse
|
15
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
16
|
Seki S, Tanaka S, Yamada S, Tsuji T, Enomoto A, Ono Y, Chandler SH, Kogo M. Neuropeptide Y modulates membrane excitability in neonatal rat mesencephalic V neurons. J Neurosci Res 2020; 98:921-935. [DOI: 10.1002/jnr.24583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Soju Seki
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
- Department of Integrative Biology and Physiology and the Brain Research Institute University of California Los Angeles CA USA
| | - Susumu Tanaka
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
| | - Saori Yamada
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
| | - Tadataka Tsuji
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
| | - Akifumi Enomoto
- Department of Oral and Maxillofacial Surgery Faculty of Medicine Kindai University Osakasayama Japan
| | - Yudai Ono
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
| | - Scott H. Chandler
- Department of Integrative Biology and Physiology and the Brain Research Institute University of California Los Angeles CA USA
| | - Mikihiko Kogo
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
| |
Collapse
|
17
|
Maejima Y, Kato S, Horita S, Ueta Y, Takenoshita S, Kobayashi K, Shimomura K. The hypothalamus to brainstem circuit suppresses late-onset body weight gain. Sci Rep 2019; 9:18360. [PMID: 31798010 PMCID: PMC6892811 DOI: 10.1038/s41598-019-54870-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Body weight (BW) is regulated in age-dependent manner; it continues to increase during growth period, and reaches a plateau once reaching adulthood. However, its underlying mechanism remains unknown. Regarding such mechanisms in the brain, we here report that neural circuits from the hypothalamus (paraventricular nucleus: PVN) to the brainstem (dorsal vagal complex: DVC) suppress late-onset BW gain without affecting food intake. The genetic suppression of the PVN-DVC circuit induced BW increase only in aged rats, indicating that this circuit contributes to suppress the BW at a fixed level after reaching adulthood. PVN neurons in the hypothalamus were inactive in younger rats but active in aged rats. The density of neuropeptide Y (NPY) terminal/fiber is reduced in the aged rat PVN area. The differences in neuronal activity, including oxytocin neurons in the PVN, were affected by the application of NPY or its receptor inhibitor, indicating that NPY is a possible regulator of this pathway. Our data provide new insights into understanding age-dependent BW regulation.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Seiichi Takenoshita
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
18
|
Bello NT, Yeh CY, James MH. Reduced Sensory-Evoked Locus Coeruleus-Norepinephrine Neural Activity in Female Rats With a History of Dietary-Induced Binge Eating. Front Psychol 2019; 10:1966. [PMID: 31551861 PMCID: PMC6737582 DOI: 10.3389/fpsyg.2019.01966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Noradrenergic pathways have been implicated in eating pathologies. These experiments sought to examine how dietary-induced binge eating influences the neuronal activity of the locus coeruleus (LC)-norepinephrine (NE) system. Young adult female Sprague Dawley rats (7-8 weeks old) were exposed to a repeated intermittent (twice weekly) cycle of 30-min access to a highly palatable sweetened fat (i.e., vegetable shortening with 10% sucrose) with or without intermittent (24 h) calorie restriction (Restrict Binge or Binge groups, respectively). Age- and weight-matched female control rats were exposed to standard chow feeding (Naive group) or intermittent chow feeding (Restrict group). The Binge and Restrict Binge groups demonstrated an escalation in sweet-fat food intake after 2.5 weeks. On week 3, in vivo single-unit LC electrophysiological activity was recorded under isoflurane anesthesia. Restrict Binge (20 cells from six rats) and Binge (27 cells from six rats) had significantly reduced (approximate 20% and 26%, respectively) evoked LC discharge rates compared with naive rats (22 cells, seven rats). Spontaneous and tonic discharge rates were not different among the groups. Signal-to-noise ratio was reduced in the groups with intermittent sweetened fat exposure. In order to investigate the neuropeptide alterations as a consequence of dietary binge eating, relative gene expression of neuropeptide Y (NPY), glucagon-like peptide 1 receptor (GLP-1r), prodynorphin, and related genes were measured in LC and hypothalamic arcuate (Arc) regions. Glp-1r, Npy2r, and Pdyn in LC region were reduced with repeated intermittent restriction. Npy1r was reduced by approximately 27% in ARC of Restrict compared with Naive group. Such data indicate that dietary-induced binge eating alters the neural response of LC neurons to sensory stimuli and dampens the neural stress response.
Collapse
Affiliation(s)
- Nicholas T. Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Chung-Yang Yeh
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Morgan H. James
- Rutgers Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, United States
- Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
19
|
Marvizon JC, Chen W, Fu W, Taylor BK. Neuropeptide Y release in the rat spinal cord measured with Y1 receptor internalization is increased after nerve injury. Neuropharmacology 2019; 158:107732. [PMID: 31377198 DOI: 10.1016/j.neuropharm.2019.107732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY) modulates nociception in the spinal cord, but little is known about its mechanisms of release. We measured NPY release in situ using the internalization of its Y1 receptor in dorsal horn neurons. Y1 receptor immunoreactivity was normally localized to the cell surface, but addition of NPY to spinal cord slices increased the number of neurons with Y1 internalization in a biphasic fashion (EC50s of 1 nM and 1 μM). Depolarization with KCl, capsaicin, or the protein kinase A activator 6-benzoyl-cAMP also induced Y1 receptor internalization, presumably by releasing NPY. NMDA receptor activation in the presence of BVT948, an inhibitor of protein tyrosine phosphatases, also released NPY. Electrical stimulation of the dorsal horn frequency-dependently induced NPY release; and this was decreased by the Y1 antagonist BIBO3304, the Nav channel blocker lidocaine, or the Cav2 channel blocker ω-conotoxin MVIIC. Dorsal root immersion in capsaicin, but not its electrical stimulation, also induced NPY release. This was blocked by CNQX, suggesting that part of the NPY released by capsaicin was from dorsal horn neurons receiving synapses from primary afferents and not from the afferent themselves. Mechanical stimulation in vivo, with rub or clamp of the hindpaw, elicited robust Y1 receptor internalization in rats with spared nerve injury but not sham surgery. In summary, NPY is released from dorsal horn interneurons or primary afferent terminals by electrical stimulation and by activation of TRPV1, PKA or NMDA receptors in. Furthermore, NPY release evoked by noxious and tactile stimuli increases after peripheral nerve injury.
Collapse
Affiliation(s)
- Juan Carlos Marvizon
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA, 90073, USA.
| | - Wenling Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA, 90073, USA.
| | - Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA.
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA; Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Nwokafor C, Serova LI, Sabban EL. Preclinical findings on the potential of intranasal neuropeptide Y for treating hyperarousal features of PTSD. Ann N Y Acad Sci 2019; 1455:149-159. [PMID: 31250475 DOI: 10.1111/nyas.14172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/10/2023]
Abstract
Acoustic startle response (ASR) assesses hyperarousal, a core symptom of posttraumatic stress disorder (PTSD). Intranasal neuropeptide Y (NPY) administration was shown to prevent hyperarousal in single prolonged stress (SPS) rodent PTSD model. However, it is unclear how ASR itself alters responses to stress. Rats (A-S-A) were exposed to acoustic startle (AS) 1 day before SPS (ASR1) and 2 weeks afterward (ASR2). Other groups were exposed in parallel to either AS (A-A) or SPS or neither. SPS enhanced ASR2. In relevant brain areas, mRNA levels were determined by qRT-PCR. In mediobasal hypothalamus, AS or SPS each increased CRH mRNA levels without an additive effect. Exposure to AS appeared to dampen some responses to SPS. The SPS-triggered reduction of GR and FKBP5 gene expression was not observed in A-S-A group. In locus coeruleus, SPS increased CRHR1 and reduced Y2R mRNAs, but not in A-S-A group. In both regions, AS altered NPY receptor gene expression, which may mediate dampening responses to SPS. In second experiment, intranasal NPY administered 2 weeks after SPS reversed hyperarousal symptoms for at least 7 days. This study reveals important effects of AS on the NPY system and demonstrates that intranasal NPY elicits long-lasting reversal of traumatic stress-triggered hyperarousal.
Collapse
Affiliation(s)
- Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| |
Collapse
|
21
|
Facilitation of neuropathic pain by the NPY Y1 receptor-expressing subpopulation of excitatory interneurons in the dorsal horn. Sci Rep 2019; 9:7248. [PMID: 31076578 PMCID: PMC6510760 DOI: 10.1038/s41598-019-43493-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/16/2019] [Indexed: 01/24/2023] Open
Abstract
Endogenous neuropeptide Y (NPY) exerts long-lasting spinal inhibitory control of neuropathic pain, but its mechanism of action is complicated by the expression of its receptors at multiple sites in the dorsal horn: NPY Y1 receptors (Y1Rs) on post-synaptic neurons and both Y1Rs and Y2Rs at the central terminals of primary afferents. We found that Y1R-expressing spinal neurons contain multiple markers of excitatory but not inhibitory interneurons in the rat superficial dorsal horn. To test the relevance of this spinal population to the development and/or maintenance of acute and neuropathic pain, we selectively ablated Y1R-expressing interneurons with intrathecal administration of an NPY-conjugated saporin ribosomal neurotoxin that spares the central terminals of primary afferents. NPY-saporin decreased spinal Y1R immunoreactivity but did not change the primary afferent terminal markers isolectin B4 or calcitonin-gene-related peptide immunoreactivity. In the spared nerve injury (SNI) model of neuropathic pain, NPY-saporin decreased mechanical and cold hypersensitivity, but disrupted neither normal mechanical or thermal thresholds, motor coordination, nor locomotor activity. We conclude that Y1R-expressing excitatory dorsal horn interneurons facilitate neuropathic pain hypersensitivity. Furthermore, this neuronal population remains sensitive to intrathecal NPY after nerve injury. This neuroanatomical and behavioral characterization of Y1R-expressing excitatory interneurons provides compelling evidence for the development of spinally-directed Y1R agonists to reduce chronic neuropathic pain.
Collapse
|
22
|
NPY 2 Receptors Reduce Tonic Action Potential-Independent GABA B Currents in the Basolateral Amygdala. J Neurosci 2019; 39:4909-4930. [PMID: 30971438 DOI: 10.1523/jneurosci.2226-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023] Open
Abstract
Although NPY has potent anxiolytic actions within the BLA, selective activation of BLA NPY Y2 receptors (Y2Rs) acutely increases anxiety by an unknown mechanism. Using ex vivo male rat brain slice electrophysiology, we show that the selective Y2R agonist, [ahx5-24]NPY, reduced the frequency of GABAA-mediated mIPSCs in BLA principal neurons (PNs). [ahx5-24]NPY also reduced tonic activation of GABAB receptors (GABABR), which increased PN excitability through inhibition of a tonic, inwardly rectifying potassium current (KIR ). Surprisingly, Y2R-sensitive GABABR currents were action potential-independent, persisting after treatment with TTX. Additionally, the Ca2+-dependent, slow afterhyperpolarizing K+ current (IsAHP ) was enhanced in approximately half of the Y2R-sensitive PNs, possibly from enhanced Ca2+ influx, permitted by reduced GABABR tone. In male and female mice expressing tdTomato in Y2R-mRNA cells (tdT-Y2R mice), immunohistochemistry revealed that BLA somatostatin interneurons express Y2Rs, as do a significant subset of BLA PNs. In tdT-Y2R mice, [ahx5-24]NPY increased excitability and suppressed the KIR in nearly all BLA PNs independent of tdT-Y2R fluorescence, consistent with presynaptic Y2Rs on somatostatin interneurons mediating the above effects. However, only tdT-Y2R-expressing PNs responded to [ahx5-24]NPY with an enhancement of the IsAHP Ultimately, increased PN excitability via acute Y2R activation likely correlates with enhanced BLA output, consistent with reported Y2R-mediated anxiogenesis. Furthermore, we demonstrate the following: (1) a novel mechanism whereby activity-independent GABA release can powerfully dampen BLA neuronal excitability via postsynaptic GABABRs; and (2) that this tonic inhibition can be interrupted by neuromodulation, here by NPY via Y2Rs.SIGNIFICANCE STATEMENT Within the BLA, NPY is potently anxiolytic. However, selective activation of NPY2 receptors (Y2Rs) increases anxiety by an unknown mechanism. We show that activation of BLA Y2Rs decreases tonic GABA release onto BLA principal neurons, probably from Y2R-expressing somatostatin interneurons, some of which coexpress NPY. This increases principal neuron excitability by reducing GABAB receptor (GABABR)-mediated activation of G-protein-coupled, inwardly rectifying K+ currents. Tonic, Y2R-sensitive GABABR currents unexpectedly persisted in the absence of action potential firing, revealing, to our knowledge, the first report of substantial, activity-independent GABABR activation. Ultimately, we provide a plausible explanation for Y2R-mediated anxiogenesis in vivo and describe a novel and modulatable means of damping neuronal excitability.
Collapse
|
23
|
Serova LI, Nwokafor C, Van Bockstaele EJ, Reyes BAS, Lin X, Sabban EL. Single prolonged stress PTSD model triggers progressive severity of anxiety, altered gene expression in locus coeruleus and hypothalamus and effected sensitivity to NPY. Eur Neuropsychopharmacol 2019; 29:482-492. [PMID: 30878321 DOI: 10.1016/j.euroneuro.2019.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
PTSD is heterogeneous disorder that can be long lasting and often has delayed onset following exposure to a traumatic event. Therefore, it is important to take a staging approach to evaluate progression of biological mechanisms of the disease. Here, we begin to evaluate the temporal trajectory of changes following exposure to traumatic stressors in the SPS rat PTSD model. The percent of animals displaying severe anxiety on EPM increased from 17.5% at one week to 57.1% two weeks after SPS stressors, indicating delayed onset or progressive worsening of the symptoms. The LC displayed prolonged activation, and dysbalance of the CRH/NPY systems, with enhanced CRHR1 gene expression, coupled with reduced mRNAs for NPY and Y2R. In the mediobasal hypothalamus, increased CRH mRNA levels were sustained, but there was a flip in alterations of HPA regulatory molecules, GR and FKBP5 and Y5 receptor at two weeks compared to one week. Two weeks after SPS, intranasal NPY at 300 µg/rat, but not 150 µg which was effective after one week, reversed SPS triggered elevated anxiety. It also reversed SPS elicited depressive/despair symptoms and hyperarousal. Overall, the results reveal time-dependent progression in development of anxiety symptoms and molecular impairments in gene expression for CRH and NPY systems in LC and mediobasal hypothalamus by SPS. With longer time afterwards only a higher dose of NPY was effective in reversing behavioral impairments triggered by SPS, indicating that therapeutic approaches should be adjusted according to the degree of biological progression of the disorder.
Collapse
Affiliation(s)
- Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College Valhalla, Basic Sciences Building, New York, NY 10595, USA
| | - Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College Valhalla, Basic Sciences Building, New York, NY 10595, USA
| | | | - Beverly A S Reyes
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA 19012, USA
| | - Xiaoping Lin
- Department of Biochemistry and Molecular Biology, New York Medical College Valhalla, Basic Sciences Building, New York, NY 10595, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College Valhalla, Basic Sciences Building, New York, NY 10595, USA.
| |
Collapse
|
24
|
Wang J, Matias J, Gilbert ER, Tachibana T, Cline MA. Hypothalamic mechanisms associated with corticotropin-releasing factor-induced anorexia in chicks. Neuropeptides 2019; 74:95-102. [PMID: 30739813 DOI: 10.1016/j.npep.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/07/2023]
Abstract
Central administration of corticotropin-releasing factor (CRF), a 41-amino acid peptide, is associated with potent anorexigenic effects in rodents and chickens. However, the mechanism underlying this effect remains unclear. Hence, the objective of the current study was to elucidate the hypothalamic mechanisms that mediate CRF-induced anorexia in 4 day-old Cobb-500 chicks. After intracerebroventricular (ICV) injection of 0.02 nmol of CRF, CRF-injected chicks ate less than vehicle chicks while no effect on water intake was observed at 30 min post-injection. In subsequent experiments, the hypothalamus samples were processed at 60 min post-injection. The CRF-injected chicks had more c-Fos immunoreactive cells in the arcuate nucleus (ARC), dorsomedial nucleus (DMN), ventromedial hypothalamus (VMH), and paraventricular nucleus (PVN) of the hypothalamus than vehicle-treated chicks. CRF injection was associated with decreased whole hypothalamic mRNA abundance of neuropeptide Y receptor sub-type 1 (NPYR1). In the ARC, CRF-injected chicks expressed more CRF and CRF receptor sub-type 2 (CRFR2) mRNA but less agouti-related peptide (AgRP), NPY, and NPYR1 mRNA than vehicle-injected chicks. CRF-treated chicks expressed greater amounts of CRFR2 and mesotocin mRNA than vehicle chicks in the PVN and VMH, respectively. In the DMN, CRF injection was associated with reduced NPYR1 mRNA. In conclusion, the results provide insights into understanding CRF-induced hypothalamic actions and suggest that the anorexigenic effect of CRF involves increased CRFR2-mediated signaling in the ARC and PVN that overrides the effects of NPY and other orexigenic factors.
Collapse
Affiliation(s)
- Jinxin Wang
- Department of Animal and Poultry Sciences, School of Neuroscience, USA
| | - Justin Matias
- Department of Animal and Poultry Sciences, School of Neuroscience, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, School of Neuroscience, USA; Virginia Polytechnic Institute and State University, Blacksburg 24061, VA, USA
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, School of Neuroscience, USA; Virginia Polytechnic Institute and State University, Blacksburg 24061, VA, USA.
| |
Collapse
|
25
|
Zimmer MR, Schmitz AE, Dietrich MO. Activation of Agrp neurons modulates memory-related cognitive processes in mice. Pharmacol Res 2019; 141:303-309. [PMID: 30610962 PMCID: PMC6400640 DOI: 10.1016/j.phrs.2018.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 01/05/2023]
Abstract
Hypothalamic Agrp neurons are critical regulators of food intake in adult mice. In addition to food intake, these neurons have been involved in other cognitive processes, such as the manifestation of stereotyped behaviors. Here, we evaluated the extent to which Agrp neurons modulate mouse behavior in spatial memory-related tasks. We found that activation of Agrp neurons did not affect spatial learning but altered behavioral flexibility using a modified version of the Barnes Maze task. Furthermore, using the Y-maze test to probe working memory, we found that chemogenetic activation of Agrp neurons reduced spontaneous alternation behavior mediated by the neuropeptide Y receptor-5 signaling. These findings suggest novel functional properties of Agrp neurons in memory-related cognitive processes.
Collapse
Affiliation(s)
- Marcelo R Zimmer
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035, Brazil
| | - Ariana E Schmitz
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040, Brazil
| | - Marcelo O Dietrich
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA; Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035, Brazil.
| |
Collapse
|
26
|
Czarnecka M, Lu C, Pons J, Maheswaran I, Ciborowski P, Zhang L, Cheema A, Kitlinska J. Neuropeptide Y receptor interactions regulate its mitogenic activity. Neuropeptides 2019; 73:11-24. [PMID: 30503694 PMCID: PMC6532649 DOI: 10.1016/j.npep.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/15/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Neuropeptide Y (NPY) is a multifunctional neurotransmitter acting via G protein-coupled receptors - Y1R, Y2R and Y5R. NPY activities, such as its proliferative effects, are mediated by multiple receptors, which have the ability to dimerize. However, the role of this receptor interplay in NPY functions remains unclear. The goal of the current study was to identify NPY receptor interactions, focusing on the ligand-binding fraction, and determine their impact on the mitogenic activity of the peptide. Y1R, Y2R and Y5R expressed in CHO-K1 cells formed homodimers detectable on the cell surface by cross-linking. Moreover, Y1R and Y5R heterodimerized, while no Y2R/Y5R heterodimers were detected. Nevertheless, Y5R failed to block internalization of its cognate receptor in both Y1R/Y5R and Y2R/Y5R transfectants, indicating Y5R transactivation upon stimulation of the co-expressed receptor. These receptor interactions correlated with an augmented mitogenic response to NPY. In Y1R/Y5R and Y2R/Y5R transfectants, the proliferative response started at picomolar NPY concentrations, while nanomolar concentrations were needed to trigger proliferation in cells transfected with single receptors. Thus, our data identify direct and indirect heterotypic NPY receptor interactions as the mechanism amplifying its activity. Understanding these processes is crucial for the design of treatments targeting the NPY system.
Collapse
Affiliation(s)
- Magdalena Czarnecka
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| | - Congyi Lu
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA; New York Genome Center, New York, NY, USA
| | - Jennifer Pons
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| | - Induja Maheswaran
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lihua Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Amrita Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Joanna Kitlinska
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
27
|
Theisen CC, Reyes BA, Sabban E, Van Bockstaele EJ. Ultrastructural Characterization of Corticotropin-Releasing Factor and Neuropeptide Y in the Rat Locus Coeruleus: Anatomical Evidence for Putative Interactions. Neuroscience 2018; 384:21-40. [DOI: 10.1016/j.neuroscience.2018.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
|
28
|
Longo A, Fadda M, Brasso C, Mele P, Palanza P, Nanavaty I, Bertocchi I, Oberto A, Eva C. Conditional inactivation of Npy1r gene in mice induces behavioural inflexibility and orbitofrontal cortex hyperactivity that are reversed by escitalopram. Neuropharmacology 2018; 133:12-22. [PMID: 29353053 DOI: 10.1016/j.neuropharm.2018.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
Cognitive flexibility is the ability to rapidly adapt established patterns of behaviour in the face of changing circumstance and depends critically on the orbitofrontal cortex (OFC). Impaired flexibility also results from altered serotonin transmission in the OFC. The Y1 (Y1R) and Y5 (Y5R) receptors for neuropeptide Y (NPY) colocalize in several brain regions and have overlapping functions in regulating cognition and emotional behaviour. The targeted disruption of gene encoding Y1R (Npy1r gene) in Y5R containing neurons (Npy1rY5R-/- mice) increases anxiety-like behaviour and spatial reference memory. Here we used the same conditional system to analyse whether the coordinated expression of the Y1R and Y5R might be required for behavioural flexibility in reversal learning tasks, OFC serotoninergic tone and OFC neural activity, as detected by immunohistochemical quantification of the immediate-early gene, c-Fos. In addition, we investigated whether the acute treatment of Npy1rY5R-/- mice with the selective serotonin reuptake inhibitor escitalopram affected behavioural flexibility and OFC c-Fos expression. Npy1rY5R-/- male mice exhibit an impairment in performing the reversal task of the Morris water maze and the water T-maze but normal spatial learning, working memory and sociability, compared to their control siblings. Furthermore, Npy1rY5R-/- male mice display decreased 5-hydroxytriptamine (5-HT) positive fibres and increased baseline neural activity in OFC. Importantly, escitalopram normalizes OFC neural activity and restores behavioural flexibility of Npy1rY5R-/- male mice. These findings suggest that the inactivation of Y1R in Y5R containing neurons increases pyramidal neuron activity and dysregulates serotoninergic tone in OFC, whereby contributing to reversal learning impairment.
Collapse
Affiliation(s)
- Angela Longo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Melissa Fadda
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Claudio Brasso
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Paolo Mele
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Paola Palanza
- Department of Medicine - Neuroscience Unit, University of Parma, Parma, Italy
| | - Ishira Nanavaty
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Ilaria Bertocchi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Neuroscience Institute of Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Carola Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Neuroscience Institute of Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy.
| |
Collapse
|
29
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Maejima Y, Yokota S, Nishimori K, Shimomura K. The Anorexigenic Neural Pathways of Oxytocin and Their Clinical Implication. Neuroendocrinology 2018; 107:91-104. [PMID: 29660735 DOI: 10.1159/000489263] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/15/2018] [Indexed: 12/21/2022]
Abstract
Oxytocin was discovered in 1906 as a peptide that promotes delivery and milk ejection; however, its additional physiological functions were determined 100 years later. Many recent articles have reported newly discovered effects of oxytocin on social communication, bonding, reward-related behavior, adipose tissue, and muscle and food intake regulation. Because oxytocin neurons project to various regions in the brain that contribute to both feeding reward (hedonic feeding) and the regulation of energy balance (homeostatic feeding), the mechanisms of oxytocin on food intake regulation are complicated and largely unknown. Oxytocin neurons in the paraventricular nucleus (PVN) receive neural projections from the arcuate nucleus (ARC), which is an important center for feeding regulation. On the other hand, these neurons in the PVN and supraoptic nucleus project to the ARC. PVN oxytocin neurons also project to the brain stem and the reward-related limbic system. In addition to this, oxytocin induces lipolysis and decreases fat mass. However, these effects in feeding and adipose tissue are known to be dependent on body weight (BW). Oxytocin treatment is more effective in food intake regulation and fat mass decline for individuals with leptin resistance and higher BW, but is known to be less effective in individuals with normal BW. In this review, we present in detail the recent findings on the physiological role of oxytocin in feeding regulation and the anorexigenic neural pathway of oxytocin neurons, as well as the advantage of oxytocin usage for anti-obesity treatment.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
31
|
Vázquez-León P, Mendoza-Ruiz LG, Juan ERS, Chamorro-Cevallos GA, Miranda-Páez A. Analgesic and anxiolytic effects of [Leu 31,Pro 34]-neuropeptide Y microinjected into the periaqueductal gray in rats. Neuropeptides 2017; 66:81-89. [PMID: 29042065 DOI: 10.1016/j.npep.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022]
Abstract
Several reports have demonstrated that neuropeptide Y (NPY) is involved in food intake, epilepsy, circadian rhythms, drug seeking, pain and anxiety, and other physiological or pathological conditions. On the other hand, periaqueductal gray (PAG) is a key brain center for modulating pain, anxiety and fear. It is the main structure implicated in integrated defensive behaviors. One such behavior, tonic immobility (TI), resembles fear and is able to induce analgesia. After microinjection of [Leu31,Pro34]-Neuropeptide Y ([Leu31,Pro34]-NPY) into the PAG dorsal (D) or ventrolateral (VL) of adult male Wistar rats, the following parameters were assessed: i) the analgesic effect by means of the tail-flick test (TF), ii) the duration of TI as a passive defensive behavioral response and as an anxiety/fear model (considering both TF and TI as single behaviors), iii) TI-induced analgesia by the combination of TF/TI, and iv) the anxious-like state through the elevated plus maze (EPM), and defensive burying behavior (DBB). The results show that the microinjection of [Leu31,Pro34]-NPY into the PAG produced an analgesic effect (increasing the TF latency); overall decreased the TI duration, which might represent an important anti-fear effect. Moreover, [Leu31,Pro34]-NPY microinjected into the PAG allows for a TI-induced analgesic effect, as well as, a substantial anxiolytic effect (evidenced by the EPM and DBB models). Hence, [Leu31,Pro34]-NPY microinjected into the PAG, especially at 0.47nmol/0.5μL produces both analgesic and anxiolytic effects, in a higher magnitude within ventrolateral area.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - Luis G Mendoza-Ruiz
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - Eduardo Ramírez-San Juan
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - German Alberto Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, CP: 07738 Mexico City, Mexico.
| |
Collapse
|
32
|
West KS, Roseberry AG. Neuropeptide-Y alters VTA dopamine neuron activity through both pre- and postsynaptic mechanisms. J Neurophysiol 2017; 118:625-633. [PMID: 28469002 DOI: 10.1152/jn.00879.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/22/2022] Open
Abstract
The mesocorticolimbic dopamine system, the brain's reward system, regulates many different behaviors including food intake, food reward, and feeding-related behaviors, and there is increasing evidence that hypothalamic feeding-related neuropeptides alter dopamine neuron activity to affect feeding. For example, neuropeptide-Y (NPY), a strong orexigenic hypothalamic neuropeptide, increases motivation for food when injected into the ventral tegmental area (VTA). How NPY affects the activity of VTA dopamine neurons to regulate feeding behavior is unknown, however. In these studies we have used whole cell patch-clamp electrophysiology in acute brain slices from mice to examine how NPY affects VTA dopamine neuron activity. NPY activated an outward current that exhibited characteristics of a G protein-coupled inwardly rectifying potassium channel current in ~60% of dopamine neurons tested. In addition to its direct effects on VTA dopamine neurons, NPY also decreased the amplitude and increased paired-pulse ratios of evoked excitatory postsynaptic currents in a subset of dopamine neurons, suggesting that NPY decreases glutamatergic transmission through a presynaptic mechanism. Interestingly, NPY also strongly inhibited evoked inhibitory postsynaptic currents onto dopamine neurons by a presynaptic mechanism. Overall these studies demonstrate that NPY utilizes multiple mechanisms to affect VTA dopamine neuron activity, and they provide an important advancement in our understanding of how NPY acts in the VTA to control feeding behavior.NEW & NOTEWORTHY Neuropeptide-Y (NPY) has been shown to act on mesolimbic dopamine circuits to increase motivated behaviors toward food, but it is unclear exactly how NPY causes these responses. Here, we demonstrate that NPY directly inhibited a subset of ventral tegmental area (VTA) dopamine neurons through the activation of G protein-coupled inwardly rectifying potassium currents, and it inhibited both excitatory postsynaptic currents and inhibitory postsynaptic currents onto subsets of dopamine neurons through a presynaptic mechanism. Thus NPY uses multiple mechanisms to dynamically control VTA dopamine neuron activity.
Collapse
Affiliation(s)
- Katherine Stuhrman West
- Department of Biology, Georgia State University, Atlanta, Georgia.,The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Aaron G Roseberry
- Department of Biology, Georgia State University, Atlanta, Georgia; .,The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and.,The Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
33
|
Murase SI, Shiiya T, Higuchi H. Neuropeptide Y Y 5 receptor localization in mouse central nervous system. Brain Res 2017; 1655:216-232. [PMID: 27984021 DOI: 10.1016/j.brainres.2016.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
Neuropeptide Y (NPY) and its receptors affect blood pressure, feeding behavior, and neurogenesis. In this study, the distribution of neurons expressing NPY Y5 receptor (Y5) was examined in adult mouse central nervous system by immunohistochemistry. Y5 protein localization was investigated using polyclonal anti-Y5 antibody, which was successfully preabsorbed with Y5 knockout brain tissues. The preabsorbed anti-Y5 antibody did not react with Y5 knockout brain tissues, thus meeting the "hard specificity criterion," which is the absence of staining in tissues genetically deficient for the antigen (Pradidarcheep et al., 2008). Y5-positive neurons were found in most brain areas. Most Y5 immunoreactivities were observed as dot-like structures adjacent to the plasma membrane, as expected for a cell membrane receptor. In situ hybridization showed that the Y5 mRNA expression was correlated with the Y5 protein level in each case and that it was probably controlled by the transcriptional regulation of the Y5 gene. In the nuclei where Y5 was expressed, Y5 immunoreactivities were found mainly in the somatic and dendritic areas. The distribution patterns of the Y5-positive cells that were broader than previously expected suggest important biological activities of the Y5 in many brain areas.
Collapse
Affiliation(s)
- Shin-Ichi Murase
- Division of Pharmacology, Niigata University, Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| | - Tomohiro Shiiya
- Division of Pharmacology, Niigata University, Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hiroshi Higuchi
- Division of Pharmacology, Niigata University, Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
34
|
Domin H, Przykaza Ł, Jantas D, Kozniewska E, Boguszewski PM, Śmiałowska M. Neuropeptide Y Y2 and Y5 receptors as promising targets for neuroprotection in primary neurons exposed to oxygen-glucose deprivation and in transient focal cerebral ischemia in rats. Neuroscience 2017; 344:305-325. [PMID: 28057538 DOI: 10.1016/j.neuroscience.2016.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023]
Abstract
It was postulated that neuropeptide Y (NPY)-ergic system could be involved in the ischemic pathophysiology, however, the role of particular subtypes of NPY receptors (YRs) in neuroprotection against ischemia is still not well known. Therefore, we investigated the effect of NPY and YR ligands using in vitro and in vivo experimental ischemic stroke models. Our in vitro findings showed that NPY (0.5-1μM) and specific agonists of Y2R (0.1-1μM) and Y5R (0.5-1μM) but not that of Y1R produced neuroprotective effects against oxygen-glucose deprivation (OGD)-induced neuronal cell death, being also effective when given 30min after the end of OGD. The neuroprotective effects of Y2R and Y5R agonists were reversed by appropriate antagonists. Neuroprotection mediated by NPY, Y2R and Y5R agonists was accompanied by the inhibition of both OGD-induced calpain activation and glutamate release. Data from in vivo studies demonstrated that Y2R agonist (10μg/6μl; i.c.v.) not only diminished the infarct volume in rats subjected to transient middle cerebral artery occlusion (MCAO) but also improved selected gait parameters in CatWalk behavioral test, being also effective after delayed treatment. Moreover, we found that a Y5R agonist (10μg/6μl; i.c.v.) did not reduce MCAO-evoked brain damage but improved stride length, when it was given 30min after starting the occlusion. In conclusion, our studies indicate that Y5 and especially Y2 receptors may be promising targets for neuroprotection against ischemic damage.
Collapse
Affiliation(s)
- Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland.
| | - Łukasz Przykaza
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Department of Neurosurgery, Laboratory of Experimental Neurosurgery, Pawińskiego Street 5, 02-106 Warsaw, Poland
| | - Danuta Jantas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Kraków, Smętna Street 12, Poland
| | - Ewa Kozniewska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Department of Neurosurgery, Laboratory of Experimental Neurosurgery, Pawińskiego Street 5, 02-106 Warsaw, Poland; Medical University of Warsaw, Department of Experimental and Clinical Physiology, Pawińskiego Street 3C, 02-106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Maria Śmiałowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland
| |
Collapse
|
35
|
Gumbs MC, van den Heuvel JK, la Fleur SE. The effect of obesogenic diets on brain Neuropeptide Y. Physiol Behav 2016; 162:161-73. [DOI: 10.1016/j.physbeh.2016.04.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
|
36
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
37
|
Borrow AP, Stranahan AM, Suchecki D, Yunes R. Neuroendocrine Regulation of Anxiety: Beyond the Hypothalamic-Pituitary-Adrenal Axis. J Neuroendocrinol 2016; 28. [PMID: 27318180 DOI: 10.1111/jne.12403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
Abstract
The central nervous system regulates and responds to endocrine signals, and this reciprocal relationship determines emotional processing and behavioural anxiety. Although the hypothalamic-pituitary-adrenal (HPA) axis remains the best-characterised system for this relationship, other steroid and peptide hormones are increasingly recognised for their effects on anxiety-like behaviour and reward. The present review examines recent developments related to the role of a number of different hormones in anxiety, including pregnane neurosteroids, gut peptides, neuropeptides and hormonal signals derived from fatty acids. Findings from both basic and clinical studies suggest that these alternative systems may complement or occlude stress-induced changes in anxiety and anxiety-like behaviour. By broadening the scope of mechanisms for depression and anxiety, it may be possible to develop novel strategies to attenuate stress-related psychiatric conditions. The targets for these potential therapies, as discussed in this review, encompass multiple circuits and systems, including those outside of the HPA axis.
Collapse
Affiliation(s)
- A P Borrow
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - A M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - D Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R Yunes
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad de Mendoza, Mendoza, Argentina
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
38
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
39
|
Leitermann RJ, Rostkowski AB, Urban JH. Neuropeptide Y input to the rat basolateral amygdala complex and modulation by conditioned fear. J Comp Neurol 2016; 524:2418-39. [PMID: 26779765 DOI: 10.1002/cne.23960] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
Within the basolateral amygdaloid complex (BLA), neuropeptide Y (NPY) buffers against protracted anxiety and fear. Although the importance of NPY's actions in the BLA is well documented, little is known about the source(s) of NPY fibers to this region. The current studies identified sources of NPY projections to the BLA by using a combination of anatomical and neurochemical approaches. NPY innervation of the BLA was assessed in rats by examining the degree of NPY coexpression within interneurons or catecholaminergic fibers with somatostatin and tyrosine hydroxylase (TH) or dopamine β-hydroxylase (DβH), respectively. Numerous NPY(+) /somatostatin(+) and NPY(+) /somatostatin(-) fibers were observed, suggesting at least two populations of NPY fibers within the BLA. No colocalization was noted between NPY and TH or DβH immunoreactivities. Additionally, Fluorogold (FG) retrograde tracing with immunohistochemistry was used to identify the precise origin of NPY projections to the BLA. FG(+) /NPY(+) cells were identified within the amygdalostriatal transition area (AStr) and stria terminalis and scattered throughout the bed nucleus of the stria terminalis. The subpopulation of NPY neurons in the AStr also coexpressed somatostatin. Subjecting animals to a conditioned fear paradigm increased NPY gene expression within the AStr, whereas no changes were observed within the BLA or stria terminalis. Overall, these studies identified limbic regions associated with stress circuits providing NPY input to the BLA and demonstrated that a unique NPY projection from the AStr may participate in the regulation of conditioned fear. J. Comp. Neurol. 524:2418-2439, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Randy J Leitermann
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Amanda B Rostkowski
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Janice H Urban
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
40
|
Abstract
Stress is defined as an adverse condition that disturbs the homeostasis of the body and activates adaptation responses. Among the many pathways and mediators involved, neuropeptide Y (NPY) stands out due to its unique stress-relieving, anxiolytic and neuroprotective properties. Stress exposure alters the biosynthesis of NPY in distinct brain regions, the magnitude and direction of this effect varying with the duration and type of stress. NPY is expressed in particular neurons of the brainstem, hypothalamus and limbic system, which explains why NPY has an impact on stress-related changes in emotional-affective behaviour and feeding as well as on stress coping. The biological actions of NPY in mammals are mediated by the Y1, Y2, Y4 and Y5 receptors, Y1 receptor stimulation being anxiolytic whereas Y2 receptor activation is anxiogenic. Emerging evidence attributes NPY a role in stress resilience, the ability to cope with stress. Thus there is a negative correlation between stress-induced behavioural disruption and cerebral NPY expression in animal models of post-traumatic stress disorder. Exogenous NPY prevents the negative consequences of stress, and polymorphisms of the NPY gene are predictive of impaired stress processing and increased risk of neuropsychiatric diseases. Stress is also a factor contributing to, and resulting from, neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease, in which NPY appears to play an important neuroprotective role. This review summarizes the evidence for an implication of NPY in stress-related and neurodegenerative pathologies and addresses the cerebral NPY system as a therapeutic target.
Collapse
Affiliation(s)
- Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| |
Collapse
|
41
|
An Indirect Action Contributes to C-Fos Induction in Paraventricular Hypothalamic Nucleus by Neuropeptide Y. Sci Rep 2016; 6:19980. [PMID: 26813148 PMCID: PMC4728490 DOI: 10.1038/srep19980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/17/2015] [Indexed: 12/03/2022] Open
Abstract
Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively to examine the underlying NPY orexigenic neural pathways. However, PVH C-Fos induction is in discordance with the abundant expression of NPY receptors, a group of inhibitory Gi protein coupled receptors in the PVH, and with the overall role of PVH neurons in feeding inhibition, suggesting a mechanism of indirect action. Here we showed that the ability of NPY on C-Fos induction in the PVH was blunted in conditions of insulin deficiency and fasting, a condition associated with a high level of NPY and a low level of insulin. Moreover, insulin insufficiency blunted C-Fos induction in the PVH by fasting-induced re-feeding, and insulin and NPY induced c-Fos induction in the same group of PVH neurons. Finally, NPY produced normal C-Fos induction in the PVH with disruption of GABA-A receptors. Thus, our results revealed that PVH C-Fos induction by NPY is mediated by an indirect action, which is at least partially mediated by insulin action, but not GABA-A receptors.
Collapse
|
42
|
Longo A, Oberto A, Mele P, Mattiello L, Pisu MG, Palanza P, Serra M, Eva C. NPY-Y1 coexpressed with NPY-Y5 receptors modulate anxiety but not mild social stress response in mice. GENES BRAIN AND BEHAVIOR 2015; 14:534-42. [PMID: 26178014 DOI: 10.1111/gbb.12232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/02/2015] [Accepted: 07/05/2015] [Indexed: 12/18/2022]
Abstract
The Y1 and Y5 receptors for neuropeptide Y have overlapping functions in regulating anxiety. We previously demonstrated that conditional removal of the Y1 receptor in the Y5 receptor expressing neurons in juvenile Npy1r(Y5R-/-) mice leads to higher anxiety but no changes in hypothalamus-pituitary-adrenocortical axis activity, under basal conditions or after acute restraint stress. In the present study, we used the same conditional system to analyze the specific contribution of limbic neurons coexpressing Y1 and Y5 receptors on the emotional and neuroendocrine responses to social chronic stress, using different housing conditions (isolation vs. group-housing) as a model. We demonstrated that control Npy1r(2lox) male mice housed in groups show increased anxiety and hypothalamus-pituitary-adrenocortical axis activity compared with Npy1r(2lox) mice isolated for six weeks immediately after weaning. Conversely, Npy1r(Y5R-/-) conditional mutants display an anxious-like behavior but no changes in hypothalamus-pituitary-adrenocortical axis activity as compared with their control littermates, independently of housing conditions. These results suggest that group housing constitutes a mild social stress for our B6129S mouse strain and they confirm that the conditional inactivation of Y1 receptors specifically in Y5 receptor containing neurons increases stress-related anxiety without affecting endocrine stress responses.
Collapse
Affiliation(s)
- A Longo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation Orbassano (Turin), Turin.,Department of Neuroscience, University of Turin, Turin
| | - A Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation Orbassano (Turin), Turin.,Department of Neuroscience, University of Turin, Turin.,Neuroscience Institute of Turin, Turin
| | - P Mele
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation Orbassano (Turin), Turin.,Department of Neuroscience, University of Turin, Turin
| | - L Mattiello
- Department of Clinical and Biological Sciences, University of Turin, Turin
| | - M G Pisu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - P Palanza
- Department of Neuroscience, University of Parma, Parma
| | - M Serra
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy.,Department of Life and Environmental Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - C Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation Orbassano (Turin), Turin.,Department of Neuroscience, University of Turin, Turin.,Neuroscience Institute of Turin, Turin
| |
Collapse
|
43
|
Tulloch AJ, Murray S, Vaicekonyte R, Avena NM. Neural responses to macronutrients: hedonic and homeostatic mechanisms. Gastroenterology 2015; 148:1205-18. [PMID: 25644095 DOI: 10.1053/j.gastro.2014.12.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023]
Abstract
The brain responds to macronutrients via intricate mechanisms. We review how the brain's neural systems implicated in homeostatic control of feeding and hedonic responses are influenced by the ingestion of specific types of food. We discuss how these neural systems are dysregulated in preclinical models of obesity. Findings from these studies can increase our understanding of overeating and, perhaps in some cases, the development of obesity. In addition, a greater understanding of the neural circuits affected by the consumption of specific macronutrients, and by obesity, might lead to new treatments and strategies for preventing unhealthy weight gain.
Collapse
Affiliation(s)
- Alastair J Tulloch
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Susan Murray
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Regina Vaicekonyte
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Nicole M Avena
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York.
| |
Collapse
|
44
|
van den Heuvel JK, Furman K, Gumbs MC, Eggels L, Opland DM, Land BB, Kolk SM, Narayanan N, Fliers E, Kalsbeek A, DiLeone RJ, la Fleur SE. Neuropeptide Y activity in the nucleus accumbens modulates feeding behavior and neuronal activity. Biol Psychiatry 2015; 77:633-41. [PMID: 25109664 PMCID: PMC4295932 DOI: 10.1016/j.biopsych.2014.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Neuropeptide Y (NPY) is a hypothalamic neuropeptide that plays a prominent role in feeding and energy homeostasis. Expression of the NPY Y1 receptor (Y1R) is highly concentrated in the nucleus accumbens (Acb), a region important in the regulation of palatable feeding. In this study, we performed a number of experiments to investigate the actions of NPY in the Acb. METHODS First, we determined caloric intake and food choice after bilateral administration of NPY in the Acb in rats on a free-choice diet of saturated fat, 30% sucrose solution, and standard chow and whether this was mediated by the Y1R. Second, we measured the effect of intra-Acb NPY on neuronal activity using in vivo electrophysiology. Third, we examined co-localization of Y1R with enkephalin and dynorphin neurons and the effect of NPY on preproenkephalin messenger RNA levels in the striatum using fluorescent and radioactive in situ hybridization. Finally, using retrograde tracing, we examined whether NPY neurons in the arcuate nucleus projected to the Acb. RESULTS In rats on the free-choice, high-fat, high-sugar diet, intra-Acb NPY increased intake of fat, but not sugar or chow, and this was mediated by the Y1R. Intra-Acb NPY reduced neuronal firing, as well as preproenkephalin messenger RNA expression in the striatum. Moreover, Acb enkephalin neurons expressed Y1R and arcuate nucleus NPY neurons projected to the Acb. CONCLUSIONS NPY reduces neuronal firing in the Acb resulting in increased palatable food intake. Together, our neuroanatomical, pharmacologic, and neuronal activity data support a role and mechanism for intra-Acb NPY-induced fat intake.
Collapse
|
45
|
Areias MFC, Prada PO. Mechanisms of insulin resistance in the amygdala: Influences on food intake. Behav Brain Res 2015; 282:209-17. [DOI: 10.1016/j.bbr.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022]
|
46
|
Dietrich MO, Zimmer MR, Bober J, Horvath TL. Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding. Cell 2015; 160:1222-32. [PMID: 25748653 PMCID: PMC4484787 DOI: 10.1016/j.cell.2015.02.024] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 02/07/2023]
Abstract
The nervous system evolved to coordinate flexible goal-directed behaviors by integrating interoceptive and sensory information. Hypothalamic Agrp neurons are known to be crucial for feeding behavior. Here, however, we show that these neurons also orchestrate other complex behaviors in adult mice. Activation of Agrp neurons in the absence of food triggers foraging and repetitive behaviors, which are reverted by food consumption. These stereotypic behaviors that are triggered by Agrp neurons are coupled with decreased anxiety. NPY5 receptor signaling is necessary to mediate the repetitive behaviors after Agrp neuron activation while having minor effects on feeding. Thus, we have unmasked a functional role for Agrp neurons in controlling repetitive behaviors mediated, at least in part, by neuropeptidergic signaling. The findings reveal a new set of behaviors coupled to the energy homeostasis circuit and suggest potential therapeutic avenues for diseases with stereotypic behaviors.
Collapse
Affiliation(s)
- Marcelo O Dietrich
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035, Brazil.
| | - Marcelo R Zimmer
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035, Brazil
| | - Jeremy Bober
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience at Yale University, New Haven, CT 06520, USA
| |
Collapse
|
47
|
Liu S, Borgland S. Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 2015; 289:19-42. [DOI: 10.1016/j.neuroscience.2014.12.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/27/2014] [Accepted: 12/31/2014] [Indexed: 12/30/2022]
|
48
|
Bari A, Dec A, Lee AW, Lee J, Song D, Dale E, Peterson J, Zorn S, Huang X, Campbell B, Robbins TW, West AR. Enhanced inhibitory control by neuropeptide Y Y5 receptor blockade in rats. Psychopharmacology (Berl) 2015; 232:959-73. [PMID: 25194952 DOI: 10.1007/s00213-014-3730-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/24/2014] [Indexed: 12/25/2022]
Abstract
RATIONALE The neuropeptide Y (NPY) system acts in synergy with the classic neurotransmitters to regulate a large variety of functions including autonomic, affective, and cognitive processes. Research on the effects of NPY in the central nervous system has focused on food intake control and affective processes, but growing evidence of NPY involvement in attention-deficit/hyperactivity disorder (ADHD) and other psychiatric conditions motivated the present study. OBJECTIVES We tested the effects of the novel and highly selective NPY Y5 receptor antagonist Lu AE00654 on impulsivity and the underlying cortico-striatal circuitry in rats to further explore the possible involvement of the NPY system in pathologies characterized by inattention and impulsive behavior. RESULTS A low dose of Lu AE00654 (0.03 mg/kg) selectively facilitated response inhibition as measured by the stop-signal task, whereas no effects were found at higher doses (0.3 and 3 mg/kg). Systemic administration of Lu AE00654 also enhanced the inhibitory influence of the dorsal frontal cortex on neurons in the caudate-putamen, this fronto-striatal circuitry being implicated in the executive control of behavior. Finally, by locally injecting a Y5 agonist, we observed reciprocal activation between dorsal frontal cortex and caudate-putamen neurons. Importantly, the effects of the Y5 agonist were attenuated by pretreatment with Lu AE00654, confirming the presence of Y5 binding sites modulating functional interactions within frontal-subcortical circuits. CONCLUSIONS These results suggest that the NPY system modulates inhibitory neurotransmission in brain areas important for impulse control, and may be relevant for the treatment of pathologies such as ADHD and drug abuse.
Collapse
Affiliation(s)
- A Bari
- Behavioral and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang Y, Sun Y, Guo Y, Li TC, Duan H. Salpingectomy and Proximal Tubal Occlusion for Hydrosalpinx Prior to In Vitro Fertilization. Obstet Gynecol Surv 2015; 70:33-8. [DOI: 10.1097/ogx.0000000000000139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ. Targeting the Neuropeptide Y System in Stress-related Psychiatric Disorders. Neurobiol Stress 2015; 1:33-43. [PMID: 25506604 PMCID: PMC4260418 DOI: 10.1016/j.ynstr.2014.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Repeated, extreme, or traumatic stressors can elicit pathological effects leading to many negative physical and psychological outcomes. Stressors can precipitate the onset of psychiatric diseases, or exacerbate pre-existing disorders including various anxiety and mood disorders. As stressors can negatively impact human psychiatric health, it is essential to identify neurochemicals that may confer protection from the negative sequelae of repeated or extreme stress exposure. Elucidating the neurobiological underpinnings of stress resilience will enhance our ability to promote resilience to, or recovery from, stress-related psychiatric disease. Herein, we will review the evidence for neuropeptide Y as an endogenous mediator of resilience and its potential relevance for the treatment of stress-related psychiatric diseases. Overview of neuropeptide Y and receptor subtypes in the central nervous system. Alterations of neuropeptide Y in human stress-related psychiatric disorders. Evidence for neuropeptide Y in resilience to stress-related emotionality in rodent behavioral models. Pharmacotherapeutic implications for neuropeptide Y in the treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Paul McGonigle
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | | |
Collapse
|