1
|
Guyonnet AEM, Racicot KJ, Brinkman B, Iwaniuk AN. The quantitative anatomy of the hippocampal formation in homing pigeons and other pigeon breeds: implications for spatial cognition. Brain Struct Funct 2024; 230:9. [PMID: 39688732 DOI: 10.1007/s00429-024-02882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/30/2024] [Indexed: 12/18/2024]
Abstract
Artificial selection for specific behavioural and physical traits in domesticated animals has resulted in a wide variety of breeds. One of the most widely recognized examples of behavioural selection is the homing pigeon (Columba livia), which has undergone intense selection for fast and efficient navigation, likely resulting in significant anatomical changes to the hippocampal formation. Previous neuroanatomical comparisons between homing and other pigeon breeds yielded mixed results, but only focused on volumes. We completed a more systematic test for differences in hippocampal formation anatomy between homing and other pigeon breeds by measuring volumes, neuron numbers and neuron densities in the hippocampal formation and septum across homing pigeons and seven other breeds. Overall, we found few differences in hippocampal formation volume across breeds, but large, significant differences in neuron numbers and densities. More specifically, homing pigeons have significantly more hippocampal neurons and at higher density than most other pigeon breeds, with nearly twice as many neurons as feral pigeons. These findings suggest that neuron numbers may be an important component of homing behaviour in homing pigeons. Our data also provide the first evidence that neuronal density can be modified by artificial selection, which has significant implications for the study of domestication and interbreed variation in anatomy and behaviour.
Collapse
Affiliation(s)
- Audrey E M Guyonnet
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Kelsey J Racicot
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Benjamin Brinkman
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
2
|
Arya H, Tamta K, Kumar A, Arya S, Maurya RC. Unpredictable chronic mild stress shows neuronal remodeling in multipolar projection neurons of hippocampal complex in postnatal chicks. Anat Sci Int 2024; 99:254-267. [PMID: 38448780 DOI: 10.1007/s12565-024-00758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
The hippocampal complex of birds is a narrow-curved strip of tissue that plays a crucial role in learning, memory, spatial navigation, and emotional and sexual behavior. This study was conducted to evaluate the effect of unpredictable chronic mild stress in multipolar neurons of 3-, 5-, 7-, and 9-week-old chick's hippocampal complex. This study revealed that chronic stress results in neuronal remodeling by causing alterations in dendritic field, axonal length, secondary branching, corrected spine number, and dendritic branching at 25, 50, 75, and 100 µm. Due to stress, the overall dendritic length was significantly retracted in 3-week-old chick, whereas no significant difference was observed in 5- and 7-week-old chick, but again it was significantly retracted in 9-week-old chick along with the axonal length. So, this study indicates that during initial days of stress exposure, the dendritic field shows retraction, but when the stress continues up to a certain level, the neurons undergo structural modifications so that chicks adapt and survive in stressful conditions. The repeated exposure to chronic stress for longer duration leads to the neuronal structural disruption by retraction in the dendritic length as well as axonal length. Another characteristic which leads to structural alterations is the dendritic spines which significantly decreased in all age groups of stressed chicks and eventually leads to less synaptic connections, disturbance in physiology, and neurology, which affects the learning, memory, and coping ability of an individual.
Collapse
Affiliation(s)
- Hemlata Arya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, Uttarakhand, India
- Kumaun University, Nainital, Uttarakhand, India
| | - Kavita Tamta
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, Uttarakhand, India
- Kumaun University, Nainital, Uttarakhand, India
| | - Adarsh Kumar
- Department of Applied Science, Dr. K.N. Modi University, Newai-Tonk, Rajasthan, 304021, India
| | - Shweta Arya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Ram Chandra Maurya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, Uttarakhand, India.
- Kumaun University, Nainital, Uttarakhand, India.
| |
Collapse
|
3
|
Racicot KJ, Ham JR, Augustine JK, Henriksen R, Wright D, Iwaniuk AN. A Comparison of Telencephalon Composition among Chickens, Junglefowl, and Wild Galliforms. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:13-24. [PMID: 38368854 DOI: 10.1159/000537844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Domestication is the process of modifying animals for human benefit through selective breeding in captivity. One of the traits that often diverges is the size of the brain and its constituent regions; almost all domesticated species have relatively smaller brains and brain regions than their wild ancestors. Although the effects of domestication on the brain have been investigated across a range of both mammal and bird species, almost nothing is known about the neuroanatomical effects of domestication on the world's most common bird: the chicken (Gallus gallus). METHODS We compared the quantitative neuroanatomy of the telencephalon of white leghorn chickens with red junglefowl, their wild counterpart, and several wild galliform species. We focused specifically on the telencephalon because telencephalic regions typically exhibit the biggest differences in size in domesticate-wild comparisons. RESULTS Relative telencephalon size was larger in chickens than in junglefowl and ruffed grouse (Bonasa umbellus). The relative size of telencephalic regions did not differ between chickens and junglefowl, but did differ in comparison with ruffed grouse. Ruffed grouse had larger hyperpallia and smaller entopallial, nidopallial, and striatal volumes than chickens and junglefowl. Multivariate analyses that included an additional three wild grouse species corroborated these findings: chicken and junglefowl have relatively larger nidopallial and striatal volumes than grouse. Conversely, the mesopallial and hyperpallial volumes tended to be relatively smaller in chickens and junglefowl. CONCLUSION From this suite of comparisons, we conclude that chickens do not follow a pattern of widespread decreases in telencephalic region sizes that is often viewed as typical of domestication. Instead, chickens have undergone a mosaic of changes with some regions increasing and others decreasing in size, and there are few differences between chickens and junglefowl.
Collapse
Affiliation(s)
- Kelsey J Racicot
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jackson R Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jacqueline K Augustine
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Lima, Lima, Ohio, USA
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linkoping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linkoping, Sweden
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
4
|
Anderson KL, Colón L, Doolittle V, Rosario Martinez R, Uraga J, Whitney O. Context-dependent activation of a social behavior brain network during learned vocal production. Brain Struct Funct 2023; 228:1785-1797. [PMID: 37615758 DOI: 10.1007/s00429-023-02693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Neural activation in brain regions for vocal control is social context dependent. This context-dependent brain activation reflects social context-appropriate vocal behavior but has unresolved mechanisms. Studies of non-vocal social behaviors in multiple organisms suggest a functional role for several evolutionarily conserved and highly interconnected brain regions. Here, we use neural activity-dependent gene expression to evaluate the functional connectivity of this social behavior network within zebra finches in non-social and social singing contexts. We found that activity in one social behavior network region, the medial preoptic area (POM), was strongly associated with the amount of non-social undirected singing in zebra finches. In addition, in all regions of the social behavior network and the paraventricular nucleus (PVN), a higher percentage of EGR1 expression was observed during a social female-directed singing context compared to a non-social undirected singing context. Furthermore, we observed distinct patterns of significantly correlated activity between regions of the social behavior network during non-social undirected and social female-directed singing. Our results suggest that non-social vs. social contexts differentially activate this social behavior network and PVN. Moreover, neuronal activity within this social behavior network, PVN, and POM may alter context-appropriate vocal production.
Collapse
Affiliation(s)
- Katherine L Anderson
- Biology Department, City College, City University of New York, New York, NY, USA
- Graduate Center, Molecular, Cellular, and Developmental Biology Program, City University of New York, New York, NY, USA
| | - Lionel Colón
- Biology Department, City College, City University of New York, New York, NY, USA
| | - Violet Doolittle
- Biology Department, City College, City University of New York, New York, NY, USA
| | | | - Joseph Uraga
- Biology Department, City College, City University of New York, New York, NY, USA
| | - Osceola Whitney
- Biology Department, City College, City University of New York, New York, NY, USA.
- Graduate Center, Molecular, Cellular, and Developmental Biology Program, City University of New York, New York, NY, USA.
| |
Collapse
|
5
|
Anderson KL, Colón L, Doolittle V, Martinez RR, Uraga J, Whitney O. Context-dependent activation of a social behavior brain network associates with learned vocal production. RESEARCH SQUARE 2023:rs.3.rs-2587773. [PMID: 36824963 PMCID: PMC9949236 DOI: 10.21203/rs.3.rs-2587773/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In zebra finches, an avian brain network for vocal control undergoes context-dependent patterning of song-dependent activation. Previous studies in zebra finches also implicate the importance of dopaminergic input in producing context-appropriate singing behavior. In mice, it has been shown that oxytocinergic neurons originated in the paraventricular nucleus of the hypothalamus (PVN) synapse directly onto dopamine neurons in the ventral tegmental area (VTA), implicating the necessity of oxytocin signaling from the PVN for producing a context-appropriate song. Both avian and non-avian axonal tract-tracing studies indicate high levels of PVN innervation by the social behavior network. Here, we hypothesize that the motivation for PVN oxytocin neurons to trigger dopamine release originates in the social behavior network, a highly conserved and interconnected collection of six regions implicated in various social and homeostatic behaviors. We found that expression of the neuronal activity marker EGR1 was not strongly correlated with song production in any of the regions of the social behavior network. However, when EGR1 expression levels were normalized to the singing rate, we found significantly higher levels of expression in the social behavior network regions except the medial preoptic area during a social female-directed singing context compared to a non-social undirected singing context. Our results suggest neuronal activity within the male zebra finch social behavior network influences the synaptic release of oxytocin from PVN onto dopaminergic projection neurons in the VTA, which in turn signals to the vocal control network to allow for context-appropriate song production.
Collapse
|
6
|
Sailer LL, Park AH, Galvez A, Ophir AG. Lateral septum DREADD activation alters male prairie vole prosocial and antisocial behaviors, not partner preferences. Commun Biol 2022; 5:1299. [PMID: 36435943 PMCID: PMC9701193 DOI: 10.1038/s42003-022-04274-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Although much has been written on the topic of social behavior, many terms referring to different aspects of social behavior have become inappropriately conflated and the specific mechanisms governing them remains unclear. It is therefore critical that we disentangle the prosocial and antisocial elements associated with different forms of social behavior to fully understand the social brain. The lateral septum (LS) mediates social behaviors, emotional processes, and stress responses necessary for individuals to navigate day-to-day social interactions. The LS is particularly important in general and selective prosocial behavior (monogamy) but its role in how these two behavioral domains intersect is unclear. Here, we investigate the effects of chemogenetic-mediated LS activation on social responses in male prairie voles when they are 1) sex-naïve and generally affiliative and 2) after they become pair-bonded and display selective aggression. Amplifying neural activity in the LS augments same-sex social approach behaviors. Despite partner preference formation remaining unaltered, LS activation in pair-bonded males leads to reduced selective aggression while increasing social affiliative behaviors. These results suggest that LS activation alters behavior within certain social contexts, by increasing sex-naïve affiliative behaviors and reducing pair bonding-induced selective aggression with same-sex conspecifics, but not altering bonding with opposite-sex individuals.
Collapse
Affiliation(s)
- Lindsay L. Sailer
- grid.5386.8000000041936877XDepartment of Psychology, Cornell University, Ithaca, NY 14853 USA
| | - Ashley H. Park
- grid.5386.8000000041936877XDepartment of Psychology, Cornell University, Ithaca, NY 14853 USA
| | - Abigail Galvez
- grid.5386.8000000041936877XDepartment of Psychology, Cornell University, Ithaca, NY 14853 USA
| | - Alexander G. Ophir
- grid.5386.8000000041936877XDepartment of Psychology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
7
|
Senft RA, Dymecki SM. Neuronal pericellular baskets: neurotransmitter convergence and regulation of network excitability. Trends Neurosci 2021; 44:915-924. [PMID: 34565612 PMCID: PMC8551026 DOI: 10.1016/j.tins.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
A pericellular basket is a presynaptic configuration of numerous axonal boutons outlining a target neuron soma and its proximal dendrites. Recent studies show neurochemical diversity of pericellular baskets and suggest that neurotransmitter usage together with the dense, soma-proximal boutons may permit strong input effects on different timescales. Here we review the development, distribution, neurochemical phenotypes, and possible functions of pericellular baskets. As an example, we highlight pericellular baskets formed by projections of certain Pet1/Fev neurons of the serotonergic raphe nuclei. We propose that pericellular baskets represent convergence sites of competition or facilitation between neurotransmitter systems on downstream circuitry, especially in limbic brain regions, where pericellular baskets are widespread. Study of these baskets may enhance our understanding of monoamine regulation of memory, social behavior, and brain oscillations.
Collapse
Affiliation(s)
- Rebecca A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Susan M Dymecki
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Neural basis of unfamiliar conspecific recognition in domestic chicks (Gallus Gallus domesticus). Behav Brain Res 2020; 397:112927. [PMID: 32980353 DOI: 10.1016/j.bbr.2020.112927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/27/2022]
Abstract
Domestic chickens are able to distinguish familiar from unfamiliar conspecifics, however the neuronal mechanisms mediating this behaviour are almost unknown. Moreover, the lateralisation of chicks' social recognition has only been investigated at the behavioural level, but not at the neural level. The aim of the present study was to test the hypothesis that exposure to unfamiliar conspecifics will selectively activate septum, hippocampus or nucleus taeniae of the amygdala of young domestic chicks. Moreover we also wanted to test the lateralisation of this response. For this purpose, we used the immediate early gene product c-Fos to map neural activity. Chicks were housed in pairs for one week. At test, either one of the two chicks was exchanged by an unfamiliar individual (experimental 'unfamiliar' group) or the familiar individual was briefly removed and then placed back in its original cage (control 'familiar' group). Analyses of chicks' interactions with the familiar/unfamiliar social companion revealed a higher number of social pecks directed towards unfamiliar individuals, compared to familiar controls. Moreover, in the group exposed to the unfamiliar individual a significantly higher activation was present in the dorsal and ventral septum of the left hemisphere and in the ventral hippocampus of the right hemisphere, compared to the control condition. These effects were neither present in other subareas of hippocampus or septum, nor in the nucleus taeniae of the amygdala. Our study thus indicates selective lateralised involvement of domestic chicks' septal and hippocampal subregions in responses to unfamiliar conspecific.
Collapse
|
9
|
Kelly AM, Ong JY, Witmer RA, Ophir AG. Paternal deprivation impairs social behavior putatively via epigenetic modification to lateral septum vasopressin receptor. SCIENCE ADVANCES 2020; 6:eabb9116. [PMID: 32917597 PMCID: PMC7467705 DOI: 10.1126/sciadv.abb9116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/17/2020] [Indexed: 05/06/2023]
Abstract
Although it is well appreciated that the early-life social environment asserts subsequent long-term consequences on offspring brain and behavior, the specific mechanisms that account for this relationship remain poorly understood. Using a novel assay that forced biparental pairs or single mothers to prioritize caring for offspring or themselves, we investigated the impact of parental variation on adult expression of nonapeptide-modulated behaviors in prairie voles. We demonstrated that single mothers compensate for the lack of a co-parent. Moreover, mothers choose to invest in offspring over themselves when faced with a tradeoff, whereas fathers choose to invest in themselves. Furthermore, our study suggests a pathway whereby variation in parental behavior (specifically paternal care) may lead to alterations in DNA methylation within the vasopressin receptor 1a gene and gene expression in the lateral septum. These differences are concomitant with changes in social approach, a behavior closely associated with septal vasopressin receptor function.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Jie Yuen Ong
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA
| | - Ruth A Witmer
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, 211 Uris Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Billings BK, Behroozi M, Helluy X, Bhagwandin A, Manger PR, Güntürkün O, Ströckens F. A three-dimensional digital atlas of the Nile crocodile (Crocodylus niloticus) forebrain. Brain Struct Funct 2020; 225:683-703. [PMID: 32009190 DOI: 10.1007/s00429-020-02028-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
The phylogenetic position of crocodilians in relation to birds and mammals makes them an interesting animal model for investigating the evolution of the nervous system in amniote vertebrates. A few neuroanatomical atlases are available for reptiles, but with a growing interest in these animals within the comparative neurosciences, a need for these anatomical reference templates is becoming apparent. With the advent of MRI being used more frequently in comparative neuroscience, the aim of this study was to create a three-dimensional MRI-based atlas of the Nile crocodile (Crocodylus niloticus) brain to provide a common reference template for the interpretation of the crocodilian, and more broadly reptilian, brain. Ex vivo MRI acquisitions in combination with histological data were used to delineate crocodilian brain areas at telencephalic, diencephalic, mesencephalic, and rhombencephalic levels. A total of 50 anatomical structures were successfully identified and outlined to create a 3-D model of the Nile crocodile brain. The majority of structures were more readily discerned within the forebrain of the crocodile with the methods used to produce this atlas. The anatomy outlined herein corresponds with both classical and recent crocodilian anatomical analyses, barring a few areas of contention predominantly related to a lack of functional data and conflicting nomenclature.
Collapse
Affiliation(s)
- Brendon K Billings
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mehdi Behroozi
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Xavier Helluy
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Adhil Bhagwandin
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.,Faculty of Health Sciences, Department of Human Biology, Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Onur Güntürkün
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Felix Ströckens
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
11
|
Longitudinal developmental analysis of prethalamic eminence derivatives in the chick by mapping of Tbr1 in situ expression. Brain Struct Funct 2020; 225:481-510. [DOI: 10.1007/s00429-019-02015-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
|
12
|
Prounis GS, Ophir AG. One cranium, two brains not yet introduced: Distinct but complementary views of the social brain. Neurosci Biobehav Rev 2020; 108:231-245. [PMID: 31743724 PMCID: PMC6949399 DOI: 10.1016/j.neubiorev.2019.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/04/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Social behavior is pervasive across the animal kingdom, and elucidating how the brain enables animals to respond to social contexts is of great interest and profound importance. Our understanding of 'the social brain' has been fractured as it has matured. Two drastically different conceptualizations of the social brain have emerged with relatively little awareness of each other. In this review, we briefly recount the history behind the two dominant definitions of a social brain. The divide that has emerged between these visions can, in part, be attributed to differential attention to cortical or sub-cortical regions in the brain, and differences in methodology, comparative perspectives, and emphasis on functional specificity or generality. We discuss how these factors contribute to a lack of communication between research efforts, and propose ways in which each version of the social brain can benefit from the perspectives, tools, and approaches of the other. Interface between the two characterizations of social brain networks is sure to provide essential insight into what the social brain encompasses.
Collapse
Affiliation(s)
- George S Prounis
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Sobrido-Cameán D, Yáñez-Guerra LA, Lamanna F, Conde-Fernández C, Kaessmann H, Elphick MR, Anadón R, Rodicio MC, Barreiro-Iglesias A. Galanin in an Agnathan: Precursor Identification and Localisation of Expression in the Brain of the Sea Lamprey Petromyzon marinus. Front Neuroanat 2019; 13:83. [PMID: 31572131 PMCID: PMC6753867 DOI: 10.3389/fnana.2019.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Galanin is a neuropeptide that is widely expressed in the mammalian brain, where it regulates many physiological processes, including feeding and nociception. Galanin has been characterized extensively in jawed vertebrates (gnathostomes), but little is known about the galanin system in the most ancient extant vertebrate class, the jawless vertebrates or agnathans. Here, we identified and cloned a cDNA encoding the sea lamprey (Petromyzon marinus) galanin precursor (PmGalP). Sequence analysis revealed that PmGalP gives rise to two neuropeptides that are similar to gnathostome galanins and galanin message-associated peptides. Using mRNA in situ hybridization, the distribution of PmGalP-expressing neurons was mapped in the brain of larval and adult sea lampreys. This revealed PmGalP-expressing neurons in the septum, preoptic region, striatum, hypothalamus, prethalamus, and displaced cells in lateral areas of the telencephalon and diencephalon. In adults, the laterally migrated PmGalP-expressing neurons are observed in an area that extends from the ventral pallium to the lateral hypothalamus and prethalamus. The striatal and laterally migrated PmGalP-expressing cells of the telencephalon were not observed in larvae. Comparison with studies on jawed vertebrates reveals that the presence of septal and hypothalamic galanin-expressing neuronal populations is highly conserved in vertebrates. However, compared to mammals, there is a more restricted pattern of expression of the galanin transcript in the brain of lampreys. This work provides important new information on the early evolution of the galanin system in vertebrates and provides a genetic and neuroanatomical basis for functional analyses of the galanin system in lampreys.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Francesco Lamanna
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Candela Conde-Fernández
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ramón Anadón
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
The expression of DARPP-32 in adult male zebra finches (Taenopygia guttata). Brain Struct Funct 2019; 224:2939-2972. [PMID: 31473781 DOI: 10.1007/s00429-019-01947-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
Although the catecholaminergic circuitry in the zebra finch brain has been well studied, there is little information regarding the postsynaptic targets of dopamine. To answer this question, we looked at overall patterns of immunoreactivity for DARPP-32 (a dopamine and cAMP-regulated phosphoprotein, present mostly in dopaminoceptive neurons) in adult male zebra finches. Our results demonstrated that as in mammals and other avian species, DARPP-32 expression was highest in both medial and lateral striatum. Interestingly, a specific pattern of immunoreactivity was observed in the song control system, with 'core' song control regions, that is, LMANcore (lateral magnocellular nucleus of the anterior nidopallium), RA (nucleus robustus arcopallialis) and HVC being less immunoreactive for DARPP-32 than 'shell' areas such as LMANshell, RAcup, AId (intermediate arcopallium) and HVCshelf. Our results suggest that whereas dopamine may modulate the shell pathways at various levels of the AFP, dopaminergic modulation of the core pathway occurs mainly through Area X, a basal ganglia nucleus. Further, secondary sensory cortices including the perientopallial belt, Fields L1 and L3 had higher DARPP-32-immunoreactivity than primary sensory cortical areas such as the pallial basolateral nucleus, entopallium proper and Field L2, corresponding to somatosensory, visual and auditory systems, respectively. We also found DARPP-32-rich axon terminals surrounding dopaminergic neurons in the ventral tegmental area-substantia nigra complex which in turn project to the striatum, suggesting that there may be a reciprocal modulation between these regions. Overall, DARPP-32 expression appears to be higher in areas involved in integrating sensory information, which further supports the role of this protein as a molecular integrator of different signal processing pathways.
Collapse
|
15
|
Fazekas EA, Morvai B, Zachar G, Dóra F, Székely T, Pogány Á, Dobolyi A. Neuronal activation in zebra finch parents associated with reintroduction of nestlings. J Comp Neurol 2019; 528:363-379. [PMID: 31423585 DOI: 10.1002/cne.24761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/23/2022]
Abstract
Recent studies of the brain mechanisms of parental behaviors have mainly focused on rodents. Using other vertebrate taxa, such as birds, can contribute to a more comprehensive, evolutionary view. In the present study, we investigated a passerine songbird, the zebra finch (Taeniopygia guttata), with a biparental caring system. Parenting-related neuronal activation was induced by first temporarily removing the nestlings, and then, either reuniting the focal male or female parent with the nestlings (parental group) or not (control group). To identify activated neurons, the immediate early gene product, Fos protein, was labeled. Both parents showed an increased level of parental behavior following reunion with the nestlings, and no sexual dimorphism occurred in the neuronal activation pattern. Offspring-induced parental behavior-related neuronal activation was found in the preoptic, ventromedial (VMH), paraventricular hypothalamic nuclei, and in the bed nucleus of the stria terminalis. In addition, the number of Fos-immunoreactive (Fos-ir) neurons in the nucleus accumbens predicted the frequency of the feeding of the nestlings. No difference was found in Fos expression when the effect of isolation or the presence of the mate was examined. Thus, our study identified a number of nuclei involved in parental care in birds and suggests similar regulatory mechanisms in caring females and males. The activated brain regions show similarities to rodents, while a generally lower number of brain regions were activated in the zebra finch. Furthermore, future studies are necessary to establish the role of the apparently avian-specific neuronal activation in the VMH of zebra finch parents.
Collapse
Affiliation(s)
- Emese A Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungary Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.,Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Boglárka Morvai
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Fanni Dóra
- SE-NAP-Human Brain Tissue Bank Microdissection Laboratory and Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Tamás Székely
- Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungary Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
16
|
Loveland JL, Stewart MG, Vallortigara G. Effects of oxytocin‐family peptides and substance P on locomotor activity and filial preferences in visually naïve chicks. Eur J Neurosci 2019; 50:3674-3687. [DOI: 10.1111/ejn.14520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jasmine L. Loveland
- Center for Mind/Brain Sciences (CIMeC) University of Trento Rovereto Italy
- Behavioural Genetics and Evolutionary Ecology Research Group Max Planck Institute for Ornithology Seewiesen Germany
| | - Michael G. Stewart
- Department of Life, Health and Chemical Sciences The Open University Milton Keynes UK
| | | |
Collapse
|
17
|
Sen S, Parishar P, Pundir AS, Reiner A, Iyengar S. The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol 2019; 527:1801-1836. [PMID: 30697741 DOI: 10.1002/cne.24649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/27/2023]
Abstract
Birds of the family Corvidae which includes diverse species such as crows, rooks, ravens, magpies, jays, and jackdaws are known for their amazing abilities at problem-solving. Since the catecholaminergic system, especially the neurotransmitter dopamine, plays a role in cognition, we decided to study the distribution of tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamines in the brain of house crows (Corvus splendens). We also studied the expression of DARPP-32 (dopamine and cAMP-regulated phosphoprotein), which is expressed in dopaminoceptive neurons. Our results demonstrated that as in other avian species, the expression of both TH and DARPP-32 was highest in the house crow striatum. The caudolateral nidopallium (NCL, the avian analogue of the mammalian prefrontal cortex) could be differentiated from the surrounding pallial regions based on a larger number of TH-positive "baskets" of fibers around neurons in this region and greater intensity of DARPP-32 staining in the neuropil in this region. House crows also possessed distinct nuclei in their brains which corresponded to song control regions in other songbirds. Whereas immunoreactivity for TH was higher in the vocal control region Area X compared to the surrounding MSt (medial striatum) in house crows, staining in RA and HVC was not as prominent. Furthermore, the arcopallial song control regions RA (nucleus robustus arcopallialis) and AId (intermediate arcopallium) were strikingly negative for DARPP-32 staining, in contrast to the surrounding arcopallium. Patterns of immunoreactivity for TH and DARPP-32 in "limbic" areas such as the hippocampus, septum, and extended amygdala have also been described.
Collapse
Affiliation(s)
- Shankhamala Sen
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Pooja Parishar
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Arvind Singh Pundir
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States.,Department of Ophthalmology, University of Tennessee, Memphis, Tennessee, United States
| | - Soumya Iyengar
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| |
Collapse
|
18
|
Horton BM, Ryder TB, Moore IT, Balakrishnan CN. Gene expression in the social behavior network of the wire-tailed manakin (Pipra filicauda) brain. GENES BRAIN AND BEHAVIOR 2019; 19:e12560. [PMID: 30756473 DOI: 10.1111/gbb.12560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/22/2019] [Accepted: 02/10/2019] [Indexed: 12/16/2022]
Abstract
The vertebrate basal forebrain and midbrain contain a set of interconnected nuclei that control social behavior. Conserved anatomical structures and functions of these nuclei have now been documented among fish, amphibians, reptiles, birds and mammals, and these brain regions have come to be known as the vertebrate social behavior network (SBN). While it is known that nuclei (nodes) of the SBN are rich in steroid and neuropeptide activity linked to behavior, simultaneous variation in the expression of neuroendocrine genes among several SBN nuclei has not yet been described in detail. In this study, we use RNA-seq to profile gene expression across seven brain regions representing five nodes of the vertebrate SBN in a passerine bird, the wire-tailed manakin Pipra filicauda. Using weighted gene co-expression network analysis, we reconstructed sets of coregulated genes, showing striking patterns of variation in neuroendocrine gene expression across the SBN. We describe regional variation in gene networks comprising a broad set of hormone receptors, neuropeptides, steroidogenic enzymes, catecholamines and other neuroendocrine signaling molecules. Our findings show heterogeneous patterns of brain gene expression across nodes of the avian SBN and provide a foundation for future analyses of how the regulation of gene networks may mediate social behavior. These results highlight the importance of region-specific sampling in studies of the mechanisms of behavior.
Collapse
Affiliation(s)
- Brent M Horton
- Department of Biology, Millersville University, Millersville, Pennsylvania
| | - Thomas B Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, Front Royal, Virginia
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
19
|
Wilson LC, Goodson JL, Kingsbury MA. Neural responses to familiar conspecifics are modulated by a nonapeptide receptor in a winter flocking sparrow. Physiol Behav 2018; 196:165-175. [PMID: 30196086 DOI: 10.1016/j.physbeh.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022]
Abstract
The social behavior network, a collection of reciprocally connected areas within the basal forebrain and midbrain, plays a conserved role in the regulation of vertebrate social behavior. Specific behaviors are associated with patterns of activity across the network, and these activity profiles vary with species and context. We investigated how the social behavior network responds to familiar social stimuli in a seasonally flocking songbird. Further, we explored how socially-induced neural responses are modulated by endogenous nonapeptide receptor blockade. Winter flocking dark-eyed juncos were exposed to either familiar conspecifics or a familiar empty aviary following a peripheral injection of either saline or [desGly-NH2,d(CH2)5, Tyr(Me)2,Thr4]-ornithine vasotocin, an VT3 receptor antagonist. Socially-exposed animals exhibited greater Fos induction across the social behavior network. Sex and drug effects were site-specific, with females tending to exhibit greater Fos responses to social stimuli and a greater sensitivity to VT3 antagonism. We suggest that in flocking animals, VT3 activation during social interaction may shift the pattern of neural activity towards the dorsocaudal lateral septum and rostral arcopallium and away from the extended amygdala, anterior and ventromedial hypothalamus, and the caudal ventral/ventrolateral lateral septum.
Collapse
Affiliation(s)
- Leah C Wilson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Marcy A Kingsbury
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Hiura LC, Kelly AM, Ophir AG. Age-specific and context-specific responses of the medial extended amygdala in the developing prairie vole. Dev Neurobiol 2018; 78:1231-1245. [PMID: 30354021 DOI: 10.1002/dneu.22648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/07/2022]
Abstract
The social needs of organisms change as they mature. Yet, little is known about the mechanisms that subserve processing social interactions or how these systems develop. The medial extended amygdala (meEA) is comprised of the medial bed nucleus of the stria terminalis (BSTm) and the medial amygdala (MeA). This neural complex holds great promise for understanding how the social brain processes information. We assessed expression of the immediate early gene cFos and the enzyme tyrosine hydroxylase (TH) at three developmental time-points (postnatal day [PND] 2, 9, and 21) to determine how developing prairie voles process familial social contact, separation, and reunion. We demonstrate that (1) BSTm cFos responses were sensitive to separation from family units at PND 9 and PND 21, but not at PND 2; (2) MeA cFos responses were sensitive to reunion with the family, but only in PND 21 pups; (3) BSTm TH neurons did not exhibit differential responses to social condition at any age; and (4) MeA TH neurons responded strongly to social contact (remaining with family or following reunion), but only at PND 21. Our results suggest that the sub-units of the meEA become functionally responsive at different developmental time points, and are differentially activated in response to distinct social contexts. Overall, our results support the notion that interconnected regions of the meEA follow divergent developmental timelines and are sensitive to distinct properties of social contexts.
Collapse
Affiliation(s)
- Lisa C Hiura
- Department of Psychology, Cornell University, Ithaca, NY, 14853
| | - Aubrey M Kelly
- Department of Psychology, Cornell University, Ithaca, NY, 14853
| | | |
Collapse
|
21
|
Li S, Yip A, Bird J, Seok BS, Chan A, Godden KE, Tam LD, Ghelardoni S, Balaban E, Martinez-Gonzalez D, Pompeiano M. Melanin-concentrating hormone (MCH) neurons in the developing chick brain. Brain Res 2018; 1700:19-30. [PMID: 30420052 DOI: 10.1016/j.brainres.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
Abstract
The present study was undertaken because no previous developmental studies exist on MCH neurons in any avian species. After validating a commercially-available antibody for use in chickens, immunohistochemical examinations first detected MCH neurons around embryonic day (E) 8 in the posterior hypothalamus. This population increased thereafter, reaching a numerical maximum by E20. MCH-positive cell bodies were found only in the posterior hypothalamus at all ages examined, restricted to a region showing very little overlap with the locations of hypocretin/orexin (H/O) neurons. Chickens had fewer MCH than H/O neurons, and MCH neurons also first appeared later in development than H/O neurons (the opposite of what has been found in rodents). MCH neurons appeared to originate from territories within the hypothalamic periventricular organ that partially overlap with the source of diencephalic serotonergic neurons. Chicken MCH fibers developed exuberantly during the second half of embryonic development, and they became abundant in the same brain areas as in rodents, including the hypothalamus (by E12), locus coeruleus (by E12), dorsal raphe nucleus (by E20) and septum (by E20). These observations suggest that MCH cells may play different roles during development in chickens and rodents; but once they have developed, MCH neurons exhibit similar phenotypes in birds and rodents.
Collapse
Affiliation(s)
- SiHan Li
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Alissa Yip
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Jaimie Bird
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Bong Soo Seok
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Aimee Chan
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Kyle E Godden
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Laurel D Tam
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Evan Balaban
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Maria Pompeiano
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
22
|
Sewall KB, Anderson RC, Soha JA, Peters S, Nowicki S. Early life conditions that impact song learning in male zebra finches also impact neural and behavioral responses to song in females. Dev Neurobiol 2018; 78:10.1002/dneu.22600. [PMID: 29675841 PMCID: PMC6195868 DOI: 10.1002/dneu.22600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/02/2018] [Accepted: 04/18/2018] [Indexed: 01/27/2023]
Abstract
Early life stressors can impair song in songbirds by negatively impacting brain development and subsequent learning. Even in species in which only males sing, early life stressors might also impact female behavior and its underlying neural mechanisms, but fewer studies have examined this possibility. We manipulated brood size in zebra finches to simultaneously examine the effects of developmental stress on male song learning and female behavioral and neural response to song. Although adult male HVC volume was unaffected, we found that males from larger broods imitated tutor song less accurately. In females, early condition did not affect the direction of song preference: all females preferred tutor song over unfamiliar song in an operant test. However, treatment did affect the magnitude of behavioral response to song: females from larger broods responded less during song preference trials. This difference in activity level did not reflect boldness per se, as a separate measure of this trait did not differ with brood size. Additionally, in females we found a treatment effect on expression of the immediate early gene ZENK in response to tutor song in brain regions involved in song perception (dNCM) and social motivation (LSc.vl, BSTm, TnA), but not in a region implicated in song memory (CMM). These results are consistent with the hypothesis that developmental stressors that impair song learning in male zebra finches also influence perceptual and/or motivational processes in females. However, our results suggest that the learning of tutor song by females is robust to disturbance by developmental stress. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
- Kendra B. Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Rindy C. Anderson
- Department Biological Sciences, Florida Atlantic University, Davie, FL, USA
| | - Jill A. Soha
- Biology Department, Duke University, Durham, NC, USA
| | - Susan Peters
- Biology Department, Duke University, Durham, NC, USA
| | - Stephen Nowicki
- Biology Department, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| |
Collapse
|
23
|
Kingsbury MA, Wilson LC. The Role of VIP in Social Behavior: Neural Hotspots for the Modulation of Affiliation, Aggression, and Parental Care. Integr Comp Biol 2018; 56:1238-1249. [PMID: 27940615 DOI: 10.1093/icb/icw122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although the modulation of social behaviors by most major neurochemical systems has been explored, there are still standouts, including the study of vasoactive intestinal polypeptide (VIP). VIP is a modulator of circadian, reproductive, and seasonal rhythms and is well known for its role in reproductive behavior, as it is the main vertebrate prolactin-releasing hormone. Originally isolated as a gut peptide, VIP and its cognate receptors are present in virtually every brain area that is important for social behavior, including all nodes of the core "social behavior network" (SBN). Furthermore, VIP cells show increased transcriptional activity throughout the SBN in response to social stimuli. Using a combination of comparative and mechanistic approaches in socially diverse species of estrildid finches and emberizid sparrows, we have identified neural "hotspots" in the SBN that relate to avian affiliative behavior, as well as neural "hotspots" that may represent critical nodes underlying a trade-off between aggression and parental care. Specifically, we have found that: (1) VIP fiber densities and VIP receptor binding in specific brain sites, such as the lateral septum, medial extended amygdala, arcopallium, and medial nidopallium, correlate with species and/or seasonal differences in flocking behavior, and (2) VIP cells and fibers within the anterior hypothalamus-caudocentral septal circuit relate positively to aggression and negatively to parental care while VIP elements in the mediobasal hypothalamus relate negatively to aggression and positively to parental care. Thus, while a given behavior or social context likely activates VIP circuitry throughout the SBN and beyond, key brain sites emerge as potential "hotspots" for the modulation of affiliation, aggression, and parental care.
Collapse
Affiliation(s)
- Marcy A Kingsbury
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Leah C Wilson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
24
|
Co-localization patterns of neurotensin receptor 1 and tyrosine hydroxylase in brain regions involved in motivation and social behavior in male European starlings. J Chem Neuroanat 2018; 89:1-10. [PMID: 29407461 DOI: 10.1016/j.jchemneu.2018.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/29/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
Animals communicate in distinct social contexts to convey information specific to those contexts, such as sexual or agonistic motivation. In seasonally-breeding male songbirds, seasonal changes in day length and increases in testosterone stimulate sexually-motivated song directed at females for courtship and reproduction. Dopamine and testosterone may act in the same brain regions to stimulate sexually-motivated singing. The neuropeptide neurotensin, acting at the neurotensin receptor 1 (NTR1), can strongly influence dopamine transmission. The goal of this study was to gain insight into the degree to which seasonal changes in physiology modify interactions between neurotensin and dopamine to adjust context-appropriate communication. Male European starlings were examined in physiological conditions that stimulate season-typical forms of communication: late summer/early fall non-breeding condition (low testosterone; birds sing infrequently), late fall non-breeding condition (low testosterone; birds produce non-sexually motivated song), and spring breeding condition (high testosterone; males produce sexually-motivated song). Double fluorescent immunolabeling was performed to detect co-localization patterns between tyrosine hydroxylase (TH; the rate-limiting enzyme in dopamine synthesis) and NTR1 in brain regions implicated in motivation and song production (the ventral tegmental area, medial preoptic nucleus, periaqueductal gray, and lateral septum). Co-localization between TH and NTR1 was present in the ventral tegmental area for all physiological conditions, and the number of co-localized cells did not differ across conditions. Immunolabeling for TH and NTR1 was also present in the other examined regions, although no co-localization was seen. These results support the hypothesis that interactions between NTR1 and dopamine in the ventral tegmental area may modulate vocalizations, but suggest that testosterone- or photoperiod-induced changes in NTR1/TH co-localization do not underlie seasonally-appropriate adjustment of communication.
Collapse
|
25
|
Kuenzel WJ. Mapping the brain of the chicken (Gallus gallus), with emphasis on the septal-hypothalamic region. Gen Comp Endocrinol 2018; 256:4-15. [PMID: 28923430 DOI: 10.1016/j.ygcen.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
There has been remarkable progress in discoveries made in the avian brain, particularly over the past two decades. This review first highlights some of the discoveries made in the forebrain and credits the Avian Brain Nomenclature Forum, responsible for changing many of the terms found in the cerebrum and for stimulating collaborative research thereafter. The Forum facilitated communication among comparative neurobiologists by eliminating confusing and inaccurate names. The result over the past 15yearshas been a standardized use of avian forebrain terms. Nonetheless, additional changes are needed. The goal of the paper is to encourage a continuing effort to unify the nomenclature throughout the entire avian brain. To emphasize the need for consensus for a single name for each neural structure, I have selected specific structures in the septum and hypothalamus that our laboratory has been investigating, to demonstrate a lack of uniformity in names applied to conservative brain regions compared to the forebrain. The specific areas reviewed include the distributions of gonadotropin-releasing hormone neurons and their terminal fields in circumventricular organs, deep-brain photoreceptors, gonadotropin inhibitory neurons and a complex structure and function of the nucleus of the hippocampal commissure.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
26
|
Nagarajan G, Jurkevich A, Kang SW, Kuenzel WJ. Anatomical and functional implications of corticotrophin-releasing hormone neurones in a septal nucleus of the avian brain: an emphasis on glial-neuronal interaction via V1a receptors in vitro. J Neuroendocrinol 2017; 29. [PMID: 28614607 DOI: 10.1111/jne.12494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 01/30/2023]
Abstract
Previously, we showed that corticotrophin-releasing hormone immunoreactive (CRH-IR) neurones in a septal structure are associated with stress and the hypothalamic-pituitary-adrenal axis in birds. In the present study, we focused upon CRH-IR neurones located within the septal structure called the nucleus of the hippocampal commissure (NHpC). Immunocytochemical and gene expression analyses were used to identify the anatomical and functional characteristics of cells within the NHpC. A comparative morphometry analysis showed that CRH-IR neurones in the NHpC were significantly larger than CRH-IR parvocellular neurones in the paraventricular nucleus of the hypothalamus (PVN) and lateral bed nucleus of the stria terminalis. Furthermore, these large neurones in the NHpC usually have more than two processes, showing characteristics of multipolar neurones. Utilisation of an organotypic slice culture method enabled testing of how CRH-IR neurones could be regulated within the NHpC. Similar to the PVN, CRH mRNA levels in the NHpC were increased following forskolin treatment. However, dexamethasone decreased forskolin-induced CRH gene expression only in the PVN and not in the NHpC, indicating differential inhibitory mechanisms in the PVN and the NHpC of the avian brain. Moreover, immunocytochemical evidence also showed that CRH-IR neurones reside in the NHpC along with the vasotocinergic system, comprising arginine vasotocin (AVT) nerve terminals and immunoreactive vasotocin V1a receptors (V1aR) in glia. Hence, we hypothesised that AVT acts as a neuromodulator within the NHpC to modulate activity of CRH neurones via glial V1aR. Gene expression analysis of cultured slices revealed that AVT treatment increased CRH mRNA levels, whereas a combination of AVT and a V1aR antagonist treatment decreased CRH mRNA expression. Furthermore, an attempt to identify an intercellular mechanism in glial-neuronal communication in the NHpC revealed that brain-derived neurotrophic factor (BDNF) and its receptor (TrkB) could be involved in the signalling mechanism. Immunocytochemical results further showed that both BDNF and TrkB receptors were found in glia of the NHpC. Interestingly, in cultured brain slices containing the NHpC, the use of a selective TrkB antagonist decreased the AVT-induced increase in CRH gene expression levels. The results from the present study collectively suggest that CRH neuronal activity is modulated by AVT via V1aR involving BDNF and TrkB glia in the NHpC.
Collapse
Affiliation(s)
- G Nagarajan
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - A Jurkevich
- Molecular Cytology Research Core Facility, University of Missouri, Columbia, MO, USA
| | - S W Kang
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - W J Kuenzel
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
27
|
Sewall KB, Davies S. Two Neural Measures Differ between Urban and Rural Song Sparrows after Conspecific Song Playback. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
28
|
Di Giorgio E, Loveland JL, Mayer U, Rosa-Salva O, Versace E, Vallortigara G. Filial responses as predisposed and learned preferences: Early attachment in chicks and babies. Behav Brain Res 2017; 325:90-104. [DOI: 10.1016/j.bbr.2016.09.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022]
|
29
|
Mayer U, Rosa-Salva O, Morbioli F, Vallortigara G. The motion of a living conspecific activates septal and preoptic areas in naive domestic chicks (Gallus gallus). Eur J Neurosci 2017; 45:423-432. [DOI: 10.1111/ejn.13484] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Francesca Morbioli
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| |
Collapse
|
30
|
First exposure to an alive conspecific activates septal and amygdaloid nuclei in visually-naïve domestic chicks (Gallus gallus). Behav Brain Res 2017; 317:71-81. [DOI: 10.1016/j.bbr.2016.09.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 12/29/2022]
|
31
|
Wilson LC, Goodson JL, Kingsbury MA. Seasonal Variation in Group Size Is Related to Seasonal Variation in Neuropeptide Receptor Density. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:111-126. [PMID: 27788503 DOI: 10.1159/000448372] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022]
Abstract
In many species, seasonal variation in grouping behavior is widespread, with shifts towards territoriality in the breeding season and grouping in the winter. Compared to the hormonal and neural mechanisms of seasonal territorial aggression, the mechanisms that promote seasonal grouping have received little attention. We collected brains in spring and winter from wild-caught males of two species of emberizid sparrows that seasonally flock (the field sparrow, Spizella pusilla, and the dark-eyed junco, Junco hyemalis) and two species that do not seasonally flock (the song sparrow, Melospiza melodia, and the eastern towhee, Pipilo erythrophthalmus). We used receptor autoradiography to quantify seasonal plasticity in available binding sites for three neuropeptides known to influence social behavior. We examined binding sites for 125I-vasoactive intestinal polypeptide (VIP), 125I-sauvagine (SG, a ligand for corticotropin-releasing hormone receptors) and 125I-ornithine vasotocin analog (OVTA, a ligand for the VT3 nonapeptide). For all species and ligands, brain areas that exhibited a seasonal pattern in binding density were characterized by a winter increase. Compared to nonflocking species, seasonally flocking species showed different binding patterns in multiple brain areas. Furthermore, we found that winter flocking was associated with elevated winter 125I-VIP binding density in the medial amygdala, as well as 125I-VIP and 125I-OVTA binding density in the rostral arcopallium. While the functional significance of the avian rostral arcopallium is unclear, it may incorporate parts of the pallial amygdala. Our results point to this previously undescribed area as a likely hot spot of social modulation.
Collapse
Affiliation(s)
- Leah C Wilson
- Department of Biology, Indiana University, Bloomington, Ind., USA
| | | | | |
Collapse
|
32
|
Gutierrez-Ibanez C, Iwaniuk AN, Jensen M, Graham DJ, Pogány Á, Mongomery BC, Stafford JL, Luksch H, Wylie DR. Immunohistochemical localization of cocaine- and amphetamine-regulated transcript peptide (CARTp) in the brain of the pigeon (Columba livia) and zebra finch (Taeniopygia guttata). J Comp Neurol 2016; 524:3747-3773. [DOI: 10.1002/cne.24028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | - Andrew N. Iwaniuk
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience; University of Lethbridge; Lethbridge AB T1K 3M4 Canada
| | - Megan Jensen
- Neurosciences and Mental Health Institute; University of Alberta; Edmonton AB T6G 2E9 Canada
| | - David J. Graham
- Neurosciences and Mental Health Institute; University of Alberta; Edmonton AB T6G 2E9 Canada
| | - Ákos Pogány
- Department of Ethology; Eötvös Loránd University; H-1117 Budapest Hungary
| | - Benjamin C. Mongomery
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G 2E9 Canada
| | - James L. Stafford
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G 2E9 Canada
| | - Harald Luksch
- Department of Zoology; Technical University of Munich; 85354 Freising-Weihenstephan Germany
| | - Douglas R. Wylie
- Neurosciences and Mental Health Institute; University of Alberta; Edmonton AB T6G 2E9 Canada
| |
Collapse
|
33
|
Singh O, Kumar S, Singh U, Kumar V, Lechan RM, Singru PS. Cocaine- and amphetamine-regulated transcript peptide (CART) in the brain of zebra finch,Taeniopygia guttata: Organization, interaction with neuropeptide Y, and response to changes in energy status. J Comp Neurol 2016; 524:3014-41. [DOI: 10.1002/cne.24004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Santosh Kumar
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Uday Singh
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| | - Vinod Kumar
- DST-IRHPA Centre for Excellence in Biological Rhythms Research and Indo-US Centre for Biological Timing, Department of Zoology; University of Delhi; Delhi India
| | - Ronald M. Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute; Tufts Medical Center; Boston Massachusetts USA
- Department of Neuroscience; Tufts University School of Medicine; Boston Massachusetts USA
| | - Praful S. Singru
- School of Biological Sciences; National Institute of Science Education and Research (NISER)-Bhubaneswar; Odisha India
| |
Collapse
|
34
|
Schubloom HE, Woolley SC. Variation in social relationships relates to song preferences and EGR1 expression in a female songbird. Dev Neurobiol 2016; 76:1029-40. [PMID: 26713856 DOI: 10.1002/dneu.22373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/15/2015] [Accepted: 12/25/2015] [Indexed: 11/09/2022]
Abstract
Social experiences can profoundly shape social behavior and the underlying neural circuits. Across species, the formation of enduring social relationships is associated with both neural and behavioral changes. However, it remains unclear how longer-term relationships between individuals influence brain and behavior. Here, we investigated how variation in social relationships relates to variation in female preferences for and neural responses to song in a pair-bonding songbird. We assessed variation in the interactions between individuals in male-female zebra finch pairs and found that female preferences for their mate's song were correlated with the degree of affiliation and amount of socially modulated singing, but not with the frequency of aggressive interactions. Moreover, variation in measures of pair quality and preference correlated with variation in the song-induced expression of EGR1, an immediate early gene related to neural activity and plasticity, in brain regions important for auditory processing and social behavior. For example, females with weaker preferences for their mate's song had greater EGR1 expression in the nucleus Taeniae, the avian homologue of the mammalian medial amygdala, in response to playback of their mate's courtship song. Our data indicate that the quality of social interactions within pairs relates to variation in song preferences and neural responses to ethologically relevant stimuli and lend insight into neural circuits sensitive to social information. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1029-1040, 2016.
Collapse
Affiliation(s)
- Hannah E Schubloom
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Sarah C Woolley
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Oldfield RG, Harris RM, Hofmann HA. Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems. Front Zool 2015; 12 Suppl 1:S16. [PMID: 26813803 PMCID: PMC4722349 DOI: 10.1186/1742-9994-12-s1-s16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ultimate-level factors that drive the evolution of mating systems have been well studied, but an evolutionarily conserved neural mechanism involved in shaping behaviour and social organization across species has remained elusive. Here, we review studies that have investigated the role of neural arginine vasopressin (AVP), vasotocin (AVT), and their receptor V1a in mediating variation in territorial behaviour. First, we discuss how aggression and territoriality are a function of population density in an inverted-U relationship according to resource defence theory, and how territoriality influences some mating systems. Next, we find that neural AVP, AVT, and V1a expression, especially in one particular neural circuit involving the lateral septum of the forebrain, are associated with territorial behaviour in males of diverse species, most likely due to their role in enhancing social cognition. Then we review studies that examined multiple species and find that neural AVP, AVT, and V1a expression is associated with territory size in mammals and fishes. Because territoriality plays an important role in shaping mating systems in many species, we present the idea that neural AVP, AVT, and V1a expression that is selected to mediate territory size may also influence the evolution of different mating systems. Future research that interprets proximate-level neuro-molecular mechanisms in the context of ultimate-level ecological theory may provide deep insight into the brain-behaviour relationships that underlie the diversity of social organization and mating systems seen across the animal kingdom.
Collapse
Affiliation(s)
- Ronald G Oldfield
- Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX 77341 USA; Department of Biology, Case Western Reserve University, Cleveland, OH 44106 USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Rayna M Harris
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
36
|
Coen CW, Kalamatianos T, Oosthuizen MK, Poorun R, Faulkes CG, Bennett NC. Sociality and the telencephalic distribution of corticotrophin-releasing factor, urocortin 3, and binding sites for CRF type 1 and type 2 receptors: A comparative study of eusocial naked mole-rats and solitary Cape mole-rats. J Comp Neurol 2015; 523:2344-71. [PMID: 25921928 DOI: 10.1002/cne.23796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023]
Abstract
Various aspects of social behavior are influenced by the highly conserved corticotrophin-releasing factor (CRF) family of peptides and receptors in the mammalian telencephalon. This study has mapped and compared the telencephalic distribution of the CRF receptors, CRF1 and CRF2 , and two of their ligands, CRF and urocortin 3, respectively, in African mole-rat species with diametrically opposed social behavior. Naked mole-rats live in large eusocial colonies that are characterized by exceptional levels of social cohesion, tolerance, and cooperation in burrowing, foraging, defense, and alloparental care for the offspring of the single reproductive female. Cape mole-rats are solitary; they tolerate conspecifics only fleetingly during the breeding season. The telencephalic sites at which the level of CRF1 binding in naked mole-rats exceeds that in Cape mole-rats include the basolateral amygdaloid nucleus, hippocampal CA3 subfield, and dentate gyrus; in contrast, the level is greater in Cape mole-rats in the shell of the nucleus accumbens and medial habenular nucleus. For CRF2 binding, the sites with a greater level in naked mole-rats include the basolateral amygdaloid nucleus and dentate gyrus, but the septohippocampal nucleus, lateral septal nuclei, amygdalostriatal transition area, bed nucleus of the stria terminalis, and medial habenular nucleus display a greater level in Cape mole-rats. The results are discussed with reference to neuroanatomical and behavioral studies of various species, including monogamous and promiscuous voles. By analogy with findings in those species, we speculate that the abundance of CRF1 binding in the nucleus accumbens of Cape mole-rats reflects their lack of affiliative behavior.
Collapse
Affiliation(s)
- Clive W Coen
- Reproductive Neurobiology, Division of Women's Health, School of Medicine, King's College London, London SE1 1UL, United Kingdom
| | - Theodosis Kalamatianos
- Reproductive Neurobiology, Division of Women's Health, School of Medicine, King's College London, London SE1 1UL, United Kingdom
| | - Maria K Oosthuizen
- Reproductive Neurobiology, Division of Women's Health, School of Medicine, King's College London, London SE1 1UL, United Kingdom.,Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa
| | - Ravi Poorun
- Reproductive Neurobiology, Division of Women's Health, School of Medicine, King's College London, London SE1 1UL, United Kingdom
| | - Christopher G Faulkes
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
37
|
Merullo DP, Cordes MA, Stevenson SA, Riters LV. Neurotensin immunolabeling relates to sexually-motivated song and other social behaviors in male European starlings (Sturnus vulgaris). Behav Brain Res 2015; 282:133-43. [PMID: 25595421 DOI: 10.1016/j.bbr.2015.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 01/20/2023]
Abstract
The brain regions involved in vocal communication are well described for some species, including songbirds, but less is known about the neural mechanisms underlying motivational aspects of communication. Mesolimbic dopaminergic projections from the ventral tegmental area (VTA) are central to mediating motivated behaviors. In songbirds, VTA provides dopaminergic innervation to brain regions associated with motivation and social behavior that are also involved in sexually-motivated song production. Neurotensin (NT) is a neuropeptide that strongly modulates dopamine activity, co-localizes with dopamine in VTA, and is found in regions where dopaminergic cells project from VTA. Yet, little is known about how NT contributes to vocal communication or other motivated behaviors. We examined the relationships between sexually-motivated song produced by male European starlings (Sturnus vulgaris) and NT immunolabeling in brain regions involved in social behavior and motivation. Additionally, we observed relationships between NT labeling, non-vocal courtship behaviors (another measure of sexual motivation), and agonistic behavior to begin to understand NT's role in socially-motivated behaviors. NT labeling in VTA, lateral septum, and bed nucleus of the stria terminalis correlated with sexually-motivated singing and non-vocal courtship behaviors. NT labeling in VTA, lateral septum, medial preoptic nucleus, and periaqueductal gray was associated with agonistic behavior. This study is the first to suggest NT's involvement in song, and one of the few to implicate NT in social behaviors more generally. Additionally, our results are consistent with the idea that distinct patterns of neuropeptide activity in brain areas involved in social behavior and motivation underlie differentially motivated behaviors.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| | - Melissa A Cordes
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Lauren V Riters
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
38
|
Kuenzel WJ. Research advances made in the avian brain and their relevance to poultry scientists. Poult Sci 2014; 93:2945-52. [DOI: 10.3382/ps.2014-04408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
39
|
Nagarajan G, Tessaro BA, Kang SW, Kuenzel WJ. Identification of arginine vasotocin (AVT) neurons activated by acute and chronic restraint stress in the avian septum and anterior diencephalon. Gen Comp Endocrinol 2014; 202:59-68. [PMID: 24780118 DOI: 10.1016/j.ygcen.2014.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 01/21/2023]
Abstract
Effects of acute and chronic psychological stress in the brain of domestic avian species have not been extensively studied. Experiments were performed using restraint stress to determine groups of neurons activated in the septum and diencephalon of chickens. Using FOS immunoreactivity six brain structures were shown activated by acute stress including: the lateral hypothalamic area (LHy), ventrolateral thalamic nucleus (VLT), lateral septum (LS), lateral bed nucleus of the stria terminalis (BSTL), nucleus of the hippocampal commissure (NHpC) and the core region of the paraventricular nucleus (PVNc). Additionally, the LHy and PVNc showed increased FOS immunoreactive (-ir) cells in the birds chronically stressed when compared to controls. In contrast, the NHpC showed decreased FOS-ir cells following the 10day chronic stress imposed. Thereafter, restraint stress experiments were performed to identify activated arginine vasotocin (AVT) neurons (parvocellular or magnocellular) using immunocytochemistry. Of the six FOS activated structures, the PVN was known to contain distinct size groups of AVT-ir neurons, parvocellular (small), medium sized and magnocellular (large). Using dual immunostaining (AVT/FOS), AVT-ir parvocellular neurons in the PVNc were found activated in both acute and chronic stress. To determine whether these AVT-ir parvocellular neurons are co-localized with corticotropin releasing hormone (CRH), an attempt was made to visualize CRH-ir neurons using colchicine. Although AVT-ir and CRH-ir parvocellular neurons occur in the PVNc, only a few neurons were shown co-localized with AVT and CRH after acute restraint stress. Results of this study suggest that the NHpC, LS, VLT, BSTL, LHy and AVT-ir parvocellular neurons in the PVNc are associated with psychological stress in birds.
Collapse
Affiliation(s)
- Gurueswar Nagarajan
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Brian A Tessaro
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Seong W Kang
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wayne J Kuenzel
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
40
|
Montagnese CM, Székely T, Gray D, Balázsa T, Zachar G. Immunoreactivity Distribution of Vasotocin and Vasoactive Intestinal Peptide in Brain Nuclei of Two Songbird Species with Different Breeding Systems. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:140-9. [DOI: 10.1159/000357831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022]
|
41
|
Grozhik AV, Horoszko CP, Horton BM, Hu Y, Voisin DA, Maney DL. Hormonal regulation of vasotocin receptor mRNA in a seasonally breeding songbird. Horm Behav 2014; 65:254-63. [PMID: 24333848 PMCID: PMC4399805 DOI: 10.1016/j.yhbeh.2013.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/29/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
Abstract
Behaviors associated with breeding are seasonally modulated in a variety of species. These changes in behavior are mediated by sex steroids, levels of which likewise vary with season. The effects of androgens on behaviors associated with breeding may in turn be partly mediated by the nonapeptides vasopressin (VP) and oxytocin (OT) in mammals, and vasotocin (VT) in birds. The effects of testosterone (T) on production of these neuropeptides have been well-studied; however, the regulation of VT receptors by T is not well understood. In this study, we investigated steroid-dependent regulation of VT receptor (VTR) mRNA in a seasonally breeding songbird, the white-throated sparrow (Zonotrichia albicollis). We focused on VTR subtypes that have been most strongly implicated in social behavior: V1a and oxytocin-like receptor (OTR). Using in situ hybridization, we show that T-treatment of non-breeding males altered V1a and OTR mRNA expression in several regions associated with seasonal reproductive behaviors. For example, T-treatment increased V1a mRNA expression in the medial preoptic area, bed nucleus of the stria terminalis, and ventromedial hypothalamus. T-treatment also affected both V1a and OTR mRNA expression in nuclei of the song system; some of these effects depended on the presence or absence of a chromosomal rearrangement that affects singing behavior, plasma T, and VT immunolabeling in this species. Overall, our results strengthen evidence that VT helps mediate the behavioral effects of T in songbirds, and suggest that the chromosomal rearrangement in this species may affect the sensitivity of the VT system to seasonal changes in T.
Collapse
Affiliation(s)
- Anya V Grozhik
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | | - Brent M Horton
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Yuchen Hu
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Dene A Voisin
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
42
|
Kelly AM, Goodson JL. Personality is tightly coupled to vasopressin-oxytocin neuron activity in a gregarious finch. Front Behav Neurosci 2014; 8:55. [PMID: 24611041 PMCID: PMC3933816 DOI: 10.3389/fnbeh.2014.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/04/2014] [Indexed: 11/23/2022] Open
Abstract
Nonapeptides of the vasopressin-oxytocin family modulate social processes differentially in relation to sex, species, behavioral phenotype, and human personality. However, the mechanistic bases for these differences are not well understood, in part because multidimensional personality structures remain to be described for common laboratory animals. Based upon principal components (PC) analysis of extensive behavioral measures in social and nonsocial contexts, we now describe three complex dimensions of phenotype (“personality”) for the zebra finch, a species that exhibits a human-like social organization that is based upon biparental nuclear families embedded within larger social groups. These dimensions can be characterized as Social competence/dominance, Gregariousness, and Anxiety. We further demonstrate that the phasic Fos responses of nonapeptide neurons in the paraventricular nucleus of the hypothalamus and medial bed nucleus of the stria terminalis are significantly predicted by personality, sex, social context, and their interactions. Furthermore, the behavioral PCs are each associated with a distinct suite of neural PCs that incorporate both peptide cell numbers and their phasic Fos responses, indicating that personality is reflected in complex patterns of neuromodulation arising from multiple peptide cell groups. These findings provide novel insights into the mechanisms underlying sex- and phenotype-specific modulation of behavior, and should be broadly relevant, given that vasopressin-oxytocin systems are strongly conserved across vertebrates.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University Bloomington, IN, USA
| | - James L Goodson
- Department of Biology, Indiana University Bloomington, IN, USA
| |
Collapse
|
43
|
Klatt JD, Goodson JL. Sex-specific activity and function of hypothalamic nonapeptide neurons during nest-building in zebra finches. Horm Behav 2013; 64:818-24. [PMID: 24126135 DOI: 10.1016/j.yhbeh.2013.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
Vertebrate species from fish to humans engage in a complex set of preparatory behaviors referred to as nesting; yet despite its phylogenetic ubiquity, the physiological and neural mechanisms that underlie nesting are not well known. We here test the hypothesis that nesting behavior is influenced by the vasopressin-oxytocin (VP-OT) peptides, based upon the roles they play in parental behavior in mammals. We quantified nesting behavior in male and female zebra finches following both peripheral and central administrations of OT and V1a receptor (OTR and V1aR, respectively) antagonists. Peripheral injections of the OTR antagonist profoundly reduce nesting behavior in females, but not males, whereas comparable injections of V1aR antagonist produce relatively modest effects in both sexes. However, central antagonist infusions produce no effects on nesting, and OTR antagonist injections into the breast produce significantly weaker effects than those into the inguinal area, suggesting that antagonist effects are mediated peripherally, likely via the oviduct. Finally, immunocytochemistry was used to quantify nesting-induced Fos activation of nonapeptide neurons in the paraventricular and supraoptic nuclei of the hypothalamus and the medial bed nucleus of the stria terminalis. Nest-building induced Fos expression within paraventricular VP neurons of females but not males. Because the avian forms of OT (Ile(8)-OT; mesotocin) and VP (Ile(3)-VP; vasotocin) exhibit high affinity for the avian OTR, and because both peptide forms modulate uterine contractility, we hypothesize that nesting-related stimuli induce peptide release from paraventricular vasotocin neurons, which then promote female nesting via peripheral feedback from OTR binding in the oviduct uterus.
Collapse
Affiliation(s)
- James D Klatt
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
44
|
Aste N, Sakamoto E, Kagami M, Saito N. Vasotocin mRNA expression is sensitive to testosterone and oestradiol in the bed nucleus of the stria terminalis in female Japanese quail. J Neuroendocrinol 2013; 25:811-25. [PMID: 23841557 DOI: 10.1111/jne.12076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 06/21/2013] [Accepted: 07/07/2013] [Indexed: 11/29/2022]
Abstract
Vasotocin-producing parvocellular neurones in the medial part of the bed nucleus of the stria terminalis (BSTM) of many species of birds and mammals show sexual dimorphism and great plasticity in response to hormonal and environmental stimuli. In the BSTM of Japanese quail, vasotocin-immunoreactive neurones are visible and sensitive to testosterone exclusively in males. In males, gonadectomy decreases and testosterone restores vasotocin-immunoreactive cells and fibres by acting on vasotocin mRNA transcription. The insensitivity of female vasotocin-immunoreactive neurones to the activating effects of testosterone is the result of organisational effects of early exposure to oestradiol. Female quail also show vasotocin mRNA-expressing neurones in the BSTM, although it is not known whether the insensitivity of the vasotocinergic neurones to testosterone originates at the level of vasotocin gene transcription in this sex. Therefore, initially, the present study analysed the effects of acute treatment with testosterone on vasotocin mRNA expression in the BSTM of gonadectomised male and female quail using in situ hybridisation. Gonadectomy decreased (and a single injection of testosterone increased) the number of vasotocin mRNA-expressing neurones and intensity of the vasotocin mRNA hybridisation signal similarly in both sexes. Notably, testosterone increased vasotocin mRNA expression in ovariectomised females over that shown by intact quail. However, this treatment had no effect on vasotocin immunoreactivity. A second experiment analysed the effects of testosterone metabolites, oestradiol and 5α-dihydrotestosterone, on vasotocin mRNA expression in female quail. Oestradiol (but not 5α-dihydrotestosterone) fully mimicked the effects of testosterone on the number of vasotocin mRNA-expressing neurones and the intensity of the vasotocin mRNA hybridisation signal. Taken together, these results show, for the first time, that gonadal steroids strongly activate vasotocin mRNA expression in the BSTM of female quail.
Collapse
Affiliation(s)
- N Aste
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| | | | | | | |
Collapse
|
45
|
Zhao C, Eisinger B, Gammie SC. Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One 2013; 8:e73750. [PMID: 23967349 PMCID: PMC3742568 DOI: 10.1371/journal.pone.0073750] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/26/2013] [Indexed: 01/02/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) neurotransmission in the lateral septum (LS) is implicated in modulating various behavioral processes, including emotional reactivity and maternal behavior. However, identifying the phenotype of GABAergic neurons in the CNS has been hampered by the longstanding inability to reliably detect somal immunoreactivity for GABA or glutamic acid decarboxylase (GAD), the enzyme that produces GABA. In this study, we designed unique probes for both GAD65 (GAD2) and GAD67 (GAD1), and used fluorescence in Situ hybridization (FISH) with tyramide signal amplification (TSA) to achieve unequivocal detection of cell bodies of GABAergic neurons by GAD mRNAs. We quantitatively characterized the expression and chemical phenotype of GABAergic neurons across each subdivision of LS and in cingulate cortex (Cg) and medial preoptic area (MPOA) in female mice. Across LS, almost all GAD65 mRNA-expressing neurons were found to contain GAD67 mRNA (approximately 95-98%), while a small proportion of GAD67 mRNA-containing neurons did not express GAD65 mRNA (5-14%). Using the neuronal marker NeuN, almost every neuron in LS (> 90%) was also found to be GABA-positive. Interneuron markers using calcium-binding proteins showed that LS GABAergic neurons displayed immunoreactivity for calbindin (CB) or calretinin (CR), but not parvalbumin (PV); almost all CB- or CR-immunoreactive neurons (98-100%) were GABAergic. The proportion of GABAergic neurons immunoreactive for CB or CR varied depending on the subdivisions examined, with the highest percentage of colocalization in the caudal intermediate LS (LSI) (approximately 58% for CB and 35% for CR). These findings suggest that the vast majority of GABAergic neurons within the LS have the potential for synthesizing GABA via the dual enzyme systems GAD65 and GAD67, and each subtype of GABAergic neurons identified by distinct calcium-binding proteins may exert unique roles in the physiological function and neuronal circuitry of the LS.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
46
|
Goodson JL, Kingsbury MA. What's in a name? Considerations of homologies and nomenclature for vertebrate social behavior networks. Horm Behav 2013; 64:103-12. [PMID: 23722238 PMCID: PMC4038951 DOI: 10.1016/j.yhbeh.2013.05.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
Abstract
Behavioral neuroendocrinology is an integrative discipline that spans a wide range of taxa and neural systems, and thus the appropriate designation of homology (sameness) across taxa is critical for clear communication and extrapolation of findings from one taxon to another. In the present review we address issues of homology that relate to neural circuits of social behavior and associated systems that mediate reward and aversion. We first address a variety of issues related to the so-called "social behavior network" (SBN), including homologies that are only partial (e.g., whereas the preoptic area of fish and amphibians contains the major vasopressin-oxytocin cell groups, these populations lie in the hypothalamus of other vertebrates). We also discuss recent evidence that clarifies anterior hypothalamus and periaqueductal gray homologies in birds. Finally, we discuss an expanded network model, the "social decision-making network" (SDM) which includes the mesolimbic dopamine system and other structures that provide an interface between the mesolimbic system and the SBN. This expanded model is strongly supported in mammals, based on a wide variety of evidence. However, it is not yet clear how readily the SDM can be applied as a pan-vertebrate model, given insufficient data on numerous proposed homologies and a lack of social behavior data for SDM components (beyond the SBN nodes) for amphibians, reptiles or fish. Functions of SDM components are also poorly known for birds. Nonetheless, we contend that the SDM model provides a very sound and important framework for the testing of many hypotheses in nonmammalian vertebrates.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
47
|
Zhao C, Driessen T, Gammie SC. Glutamic acid decarboxylase 65 and 67 expression in the lateral septum is up-regulated in association with the postpartum period in mice. Brain Res 2012; 1470:35-44. [PMID: 22750123 DOI: 10.1016/j.brainres.2012.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 12/31/2022]
Abstract
The postpartum period in mammals undergoes a variety of physiological adaptations, including metabolic, behavioral and neuroendocrine alterations. GABA signaling has been strongly linked to various emotional states, stress responses and offspring protection. However, whether GABA signaling may change in the lateral septum (LS), a core brain region for regulating behavioral, emotional and stress responses in postpartum mice has not previously been examined. In this study, we tested whether the expression of two isoforms of glutamic acid decarboxylase (GAD), GAD65 (GAD2) and GAD67 (GAD1), the rate-limiting enzyme for GABA synthesis, exhibits altered expression in postpartum mice relative to nonmaternal, virgin mice. Using microdissected septal tissue from virgin and age-matched postpartum females, quantitative real-time PCR and Western blotting were carried out to assess GAD mRNA and protein expression, respectively. We found both protein and mRNA expression of GAD67 in the whole septum was up-regulated in postpartum mice. By contrast, no significant difference in the whole septum was observed in GAD65 expression. We then conducted a finer level of analysis using smaller microdissections and found GAD67 to be significantly increased in rostral LS, but not in caudal LS or medial septum (MS). Further, GAD65 mRNA expression in rostral LS, but not in caudal LS or MS was also significantly elevated in postpartum mice. These findings suggest that an increased GABA production in rostral LS of the postpartum mice via elevated GAD65 and GAD67 expression may contribute to multiple alterations in behavioral and emotional states, and responses to stress that occur during the postpartum period. Given that rostral LS contains GABA neurons that are projection neurons or local interneurons, it still needs to be determined whether the function of elevated GABA is for local or distant action or both.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA.
| | | | | |
Collapse
|
48
|
Goodson JL, Wilson LC, Schrock SE. To flock or fight: neurochemical signatures of divergent life histories in sparrows. Proc Natl Acad Sci U S A 2012; 109 Suppl 1:10685-92. [PMID: 22723363 PMCID: PMC3386873 DOI: 10.1073/pnas.1203394109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many bird species exhibit dramatic seasonal switches between territoriality and flocking, but whereas neuroendocrine mechanisms of territorial aggression have been extensively studied, those of seasonal flocking are unknown. We collected brains in spring and winter from male field sparrows (Spizella pusilla), which seasonally flock, and male song sparrows (Melospiza melodia), which are territorial year-round in much of their range. Spring collections were preceded by field-based assessments of aggression. Tissue series were immunofluorescently multilabeled for vasotocin, mesotocin (MT), corticotropin-releasing hormone (CRH), vasoactive intestinal polypeptide, tyrosine hydroxylase, and aromatase, and labeling densities were measured in many socially relevant brain areas. Extensive seasonal differences are shared by both species. Many measures correlate significantly with both individual and species differences in aggression, likely reflecting evolved mechanisms that differentiate the less aggressive field sparrow from the more aggressive song sparrow. Winter-specific species differences include a substantial increase of MT and CRH immunoreactivity in the dorsal lateral septum (LS) and medial amygdala of field sparrows but not song sparrows. These species differences likely relate to flocking rather than the suppression of winter aggression in field sparrows, because similar winter differences were found for two other emberizids that are not territorial in winter--dark-eyed juncos (Junco hyemalis), which seasonally flock, and eastern towhees (Pipilo erythropthalmus), which do not flock. MT signaling in the dorsal LS is also associated with year-round species differences in grouping in estrildid finches, suggesting that common mechanisms are targeted during the evolution of different life histories.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
49
|
O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 2012; 519:3599-639. [PMID: 21800319 DOI: 10.1002/cne.22735] [Citation(s) in RCA: 711] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision-making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract-tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision-making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
50
|
Stevenson TJ, Calabrese MD, Ball GF. Variation in enkephalin immunoreactivity in the social behavior network and song control system of male European starlings (Sturnus vulgaris) is dependent on breeding state and gonadal condition. J Chem Neuroanat 2012; 43:87-95. [DOI: 10.1016/j.jchemneu.2011.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/12/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
|