1
|
Corrales Parada CD, Mayer U, Chagnaud BP. The Dorsal Part of the Anterior Tuberal Nucleus Responds to Auditory Stimulation in Zebrafish ( Danio rerio). eNeuro 2024; 11:ENEURO.0062-24.2024. [PMID: 38918052 PMCID: PMC11236576 DOI: 10.1523/eneuro.0062-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The zebrafish, a widely used model in neurobiology, relies on hearing in aquatic environments. Unfortunately, its auditory pathways have mainly been studied in larvae. In this study, we examined the involvement of the anterior tuberal nucleus (AT) in auditory processing in adult zebrafish. Our tract-tracing experiments revealed that the dorsal subdivision of AT is strongly bidirectionally connected to the central nucleus of the torus semicircularis (TSc), a major auditory nucleus in fishes. Immunohistochemical visualization of the ribosomal protein S6 (pS6) phosphorylation to map neural activity in response to auditory stimulation substantiated this finding: the dorsal but not the ventral part of AT responded strongly to auditory stimulation. A similar response to auditory stimulation was present in the TSc but not in the nucleus isthmi, a visual region, which we used as a control for testing if the pS6 activation was specific to the auditory stimulation. We also measured the time course of pS6 phosphorylation, which was previously unreported in teleost fish. After auditory stimulation, we found that pS6 phosphorylation peaked between 100 and 130 min and returned to baseline levels after 190 min. This information will be valuable for the design of future pS6 experiments. Our results suggest an anatomical and functional subdivision of AT, where only the dorsal part connects to the auditory network and processes auditory information.
Collapse
Affiliation(s)
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 TN, Italy
| | - Boris P Chagnaud
- Institute for Biology, Karl-Franzens-University Graz, Graz 8010 ST, Austria
| |
Collapse
|
2
|
Oka Y. Neural Control of Sexual Behavior in Fish. Zoolog Sci 2023; 40:128-140. [PMID: 37042692 DOI: 10.2108/zs220108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 03/17/2023]
Abstract
Many vertebrate species show breeding periods and exhibit series of characteristic species-specific sexual behaviors only during the breeding period. Here, secretion of gonadal sex hormones from the mature gonads has been considered to facilitate sexual behaviors. Thus, the sexual behavior has long been considered to be regulated by neural and hormonal mechanisms. In this review, we discuss recent progress in the study of neural control mechanisms of sexual behavior with a focus on studies using fish, which have often been the favorite animals used by many researchers who study instinctive animal behaviors. We first discuss control mechanisms of sexual behaviors by sex steroids in relation to the anatomical studies of sex steroid-concentrating neurons in various vertebrate brains, which are abundantly distributed in evolutionarily conserved areas such as preoptic area (POA) and anterior hypothalamus. We then focus on another brain area called the ventral telencephalic area, which has also been suggested to contain sex steroid-concentrating neurons and has been implicated in the control of sexual behaviors, especially in teleosts. We also discuss control of sex-specific behaviors and sexual preference influenced by estrogenic signals or by olfactory/pheromonal signals. Finally, we briefly summarize research on the modulatory control of motivation for sexual behaviors by a group of peptidergic neurons called terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which are known to be especially developed in fishes among various vertebrate species.
Collapse
Affiliation(s)
- Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Umatani C, Yoshida N, Yamamoto E, Akazome Y, Mori Y, Kanda S, Okubo K, Oka Y. Co-existing Neuropeptide FF and Gonadotropin-Releasing Hormone 3 Coordinately Modulate Male Sexual Behavior. Endocrinology 2022; 163:6486464. [PMID: 34962983 DOI: 10.1210/endocr/bqab261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were delayed, not disrupted, in gnrh3 and npff single knockout males, while the double knockout appeared to alleviate the significant defects that were observed in single knockouts. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which co-existing peptides of the TN-GnRH neurons, NPFF, and GnRH3 coordinately modulate certain neuronal circuit for the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to sensory information from the external environments.
Collapse
Affiliation(s)
- Chie Umatani
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Nagisa Yoshida
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Eri Yamamoto
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Yasuhisa Akazome
- Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yasutaka Mori
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Neural substrates involved in the cognitive information processing in teleost fish. Anim Cogn 2021; 24:923-946. [PMID: 33907938 PMCID: PMC8360893 DOI: 10.1007/s10071-021-01514-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023]
Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts (and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation of a particular brain area.
Collapse
|
5
|
Chen ZF, Tian YS, Ma WH, Zhai JM. Gene expression changes in response to low temperatures in embryos of the kelp grouper, Epinephelus moara. Cryobiology 2020; 97:159-167. [PMID: 32628925 DOI: 10.1016/j.cryobiol.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023]
Abstract
The kelp grouper Epinephelus moara has high economic value and is popular in fisheries and aquaculture in China. In the previous study, we treated the embryos at 16-22 somite stage at 4 °C, -25.7 °C, -140 °C and -196 °C, and successfully obtained surviving embryos in each group. To better understand the molecular changes affected by the low temperatures, we conducted a comparative transcriptome analysis among embryos exposed at 4 °C for 30 min, embryos exposed at -25.7 °C for 30 min and the control group. qPCR assays were conducted for the validation. Signal transduction pathways were highly enriched for the differentially expressed genes. c-Fos, c-Jun, JunD, GADD45, involved in MAPK signaling pathway, were upregulated when embryos were treated at low temperatures. As immediate early genes, Egr-1a and b, and IER2, that respond quickly to the environment stress, their expression increased as well. Hsp70 showed similar expression pattern as immediate early genes. Meanwhile, transcription factors Sox, HES, TFIID, muscle movement and protein synthesis-related genes were downregulated. Taken together, our findings suggest that cooling disrupts gene expression patterns in E. moara embryos. The differentially expressed genes may be involved in cellular resistance against low temperatures, possibly through neural activation, apoptosis, proliferation, differentiation, cellular recovery and heat shock regulation. This study also provides transcriptome dataset of E. moara embryos exposed to cold temperatures for future studies focusing on the molecular effects of cryopreservation.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Yong-Sheng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Wen-Hui Ma
- Ming Bo Aquatic Co. Ltd., Laizhou, 261400, China
| | | |
Collapse
|
6
|
Otsuka A, Nomura C, Miura K, Honda A, Kagawa N. Immediate Early Gene Expression in Brain Regions Associated with the Social Behavioral Network After Male Competition in Medaka Fish. Zoolog Sci 2020; 37:391-398. [PMID: 32972079 DOI: 10.2108/zs200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
In this study, we used the immediate early gene, egr-1, as a marker for neural activation and examined whether egr-1 expression is affected in brain regions associated with the social behavioral network (SBN) when social rank is determined and changed in male medaka fish (Oryzias latipes). Based on the behavioral contest protocol used in this study, we obtained four types of males: social ascending, social descending, dominant, and subordinate. In some brain regions associated with the SBN, we detected higher egr-1 expression in ascending and descending males than in dominant and subordinate males. Social-rank stable males (i.e., dominant and subordinate male fish) showed a similar level of egr-1 expression as the control male fish, which were housed without social stimulus of encountering another conspecific. These findings suggested that the transitioning of social rank could enhance neural activity in some brain regions associated with the SBN in male medaka. The use of medaka fish has many advantages in various fields of research such as genetics, developmental biology, environmental biology, and behavioral neurology. The findings of this study would contribute to future research exploring the roles of the SBN regions in regulating physiological and behavioral events associated with social-rank transition.
Collapse
Affiliation(s)
- Airi Otsuka
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Chihomi Nomura
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Kensuke Miura
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Akira Honda
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| | - Nao Kagawa
- Department of Life Science, Faculty of Science and Technology, Kindai University, Higashiosaka, Osaka 577-8502, Japan,
| |
Collapse
|
7
|
Lewis V, Laberge F, Heyland A. Temporal Profile of Brain Gene Expression After Prey Catching Conditioning in an Anuran Amphibian. Front Neurosci 2020; 13:1407. [PMID: 31992968 PMCID: PMC6971186 DOI: 10.3389/fnins.2019.01407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
A key goal in modern neurobiology is to understand the mechanisms underlying learning and memory. To that end, it is essential to identify the patterns of gene expression and the temporal sequence of molecular events associated with learning and memory processes. It is also important to ascertain if and how these molecular events vary between organisms. In vertebrates, learning and memory processes are characterized by distinct phases of molecular activity involving gene transcription, structural change, and long-term maintenance of such structural change in the nervous system. Utilizing next generation sequencing techniques, we profiled the temporal expression patterns of genes in the brain of the fire-bellied toad Bombina orientalis after prey catching conditioning. The fire-bellied toad is a basal tetrapod whose neural architecture and molecular pathways may help us understand the ancestral state of learning and memory mechanisms in tetrapods. Differential gene expression following conditioning revealed activity in molecular pathways related to immediate early genes (IEG), cytoskeletal modification, axon guidance activity, and apoptotic processes. Conditioning induced early IEG activity coinciding with transcriptional activity and neuron structural modification, followed by axon guidance and cell adhesion activity, and late neuronal pruning. While some of these gene expression patterns are similar to those found in mammals submitted to conditioning, some interesting divergent expression profiles were seen, and differential expression of some well-known learning-related mammalian genes is missing altogether. These results highlight the importance of using a comparative approach in the study of the mechanisms of leaning and memory and provide molecular resources for a novel vertebrate model in the relatively poorly studied Amphibia.
Collapse
Affiliation(s)
- Vern Lewis
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | - Andreas Heyland
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Alfonso S, Sadoul B, Gesto M, Joassard L, Chatain B, Geffroy B, Bégout ML. Coping styles in European sea bass: The link between boldness, stress response and neurogenesis. Physiol Behav 2019; 207:76-85. [PMID: 31047951 DOI: 10.1016/j.physbeh.2019.04.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
Abstract
Coping styles consist of a coherent set of individual physiological and behavioral differences in stress responses that are consistent across time and context. Such consistent inter-individual differences in behavior have already been shown in European sea bass (Dicentrarchus labrax), but the associated mechanisms are still poorly understood. Here, we combine physiological measurements with individual behavioral responses in order to characterize coping styles in fish. Fish were tagged and placed in a tank for group risk-taking tests (GRT) at 8 months of age to evaluate boldness using the proxy latency of leaving a sheltered area towards an open area. A subsample of these fish were individually challenged 16 months later using an open field test (OFT), in which the boldness was assessed after being placed in a shelter within an open arena. Latency to exit the shelter, time spent in the shelter, and distance travelled were recorded for this purpose. The blood and brain were then collected to evaluate plasma cortisol concentration and neurotransmitter levels (dopamine, norepinephrine, serotonin, and related metabolites), as well as brain transcription of key genes involved in stress axis regulation (gr1, gr2, mr, crf), neurogenesis (neurod1, neurod2, pcna), and neuronal development (egr1). Fish acting bolder in the GRT were not necessarily those acting bolder in the OFT, highlighting the relatively low consistency across different types of tests performed with a 16-months interval. There was, however, a significant correlation between stress markers and boldness. Indeed, mRNA levels of mr, crf, gr2, egr1, and neurod2, as well as norepinephrine levels were higher in shy than bold fish, whereas brain serotonergic activity was lower in shy fish. Overall, our study highlights the fact that boldness was not consistent over time when testing context differed (group vs. alone). This is in agreement with previous literature suggesting that social context play a key role in boldness measurement and that the particular life history of each individual may account in shaping the personality fate of a fish.
Collapse
Affiliation(s)
- Sébastien Alfonso
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots, France; Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, F-17137 L'Houmeau, France.
| | - Bastien Sadoul
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots, France
| | - Manuel Gesto
- Technical University of Denmark, Willemoesvej 2 Building Hovedbygning, D-9850 Hirtshals, Denmark
| | - Lucette Joassard
- Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, F-17137 L'Houmeau, France
| | - Béatrice Chatain
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots, France
| | - Benjamin Geffroy
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots, France
| | - Marie-Laure Bégout
- Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, F-17137 L'Houmeau, France
| |
Collapse
|
9
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
10
|
Kasper C, Colombo M, Aubin-Horth N, Taborsky B. Brain activation patterns following a cooperation opportunity in a highly social cichlid fish. Physiol Behav 2018; 195:37-47. [DOI: 10.1016/j.physbeh.2018.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022]
|
11
|
Immediate-Early Promoter-Driven Transgenic Reporter System for Neuroethological Research in a Hemimetabolous Insect. eNeuro 2018; 5:eN-MNT-0061-18. [PMID: 30225346 PMCID: PMC6140108 DOI: 10.1523/eneuro.0061-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 01/04/2023] Open
Abstract
Genes expressed in response to increased neuronal activity are widely used as activity markers in recent behavioral neuroscience. In the present study, we established transgenic reporter system for whole-brain activity mapping in the two-spotted cricket Gryllus bimaculatus, a hemimetabolous insect used in neuroethology and behavioral ecology. In the cricket brain, a homolog of early growth response-1 (Gryllus egr-B) was rapidly induced as an immediate-early gene (IEG) in response to neuronal hyperexcitability. The upstream genomic fragment of Gryllus egr-B contains potential binding sites for transcription factors regulated by various intracellular signaling pathways, as well as core promoter elements conserved across insect/crustacean egr-B homologs. Using the upstream genomic fragment of Gryllus egr-B, we established an IEG promoter-driven transgenic reporter system in the cricket. In the brain of transgenic crickets, the reporter gene (a nuclear-targeted destabilized EYFP) was induced in response to neuronal hyperexcitability. Inducible expression of reporter protein was detected in almost all neurons after neuronal hyperexcitability. Using our novel reporter system, we successfully detected neuronal activation evoked by feeding in the cricket brain. Our IEG promoter-driven activity reporting system allows us to visualize behaviorally relevant neural circuits at cellular resolution in the cricket brain.
Collapse
|
12
|
Immediate early gene expression related to learning and retention of a visual discrimination task in bamboo sharks (Chiloscyllium griseum). Brain Struct Funct 2018; 223:3975-4003. [PMID: 30109492 DOI: 10.1007/s00429-018-1728-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Using the expression of the immediate early gene (IEG) egr-1 as a neuronal activity marker, brain regions potentially involved in learning and long-term memory functions in the grey bamboo shark were assessed with respect to selected visual discrimination abilities. Immunocytochemistry revealed a significant up-regulation of egr-1 expression levels in a small region of the telencephalon of all trained sharks (i.e., 'early' and 'late learners', 'recallers') when compared to three control groups (i.e., 'controls', 'undisturbed swimmers', 'constant movers'). There was also a well-defined difference in egr-1 expression patterns between the three control groups. Additionally, some staining was observed in diencephalic and mesencephalic sections; however, staining here was weak and occurred only irregularly within and between groups. Therefore, it could have either resulted from unintentional cognitive or non-cognitive inducements (i.e., relating to the mental processes of perception, learning, memory, and judgment, as contrasted with emotional and volitional processes) rather than being a training effect. Present findings emphasize a relationship between the training conditions and the corresponding egr-1 expression levels found in the telencephalon of Chiloscyllium griseum. Results suggest important similarities in the neuronal plasticity and activity-dependent IEG expression of the elasmobranch brain with other vertebrate groups. The presence of the egr-1 gene seems to be evolutionarily conserved and may therefore be particularly useful for identifying functional neural responses within this group.
Collapse
|
13
|
Tsakogiannis A, Manousaki T, Lagnel J, Sterioti A, Pavlidis M, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The transcriptomic signature of different sexes in two protogynous hermaphrodites: Insights into the molecular network underlying sex phenotype in fish. Sci Rep 2018; 8:3564. [PMID: 29476120 PMCID: PMC5824801 DOI: 10.1038/s41598-018-21992-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/14/2018] [Indexed: 01/22/2023] Open
Abstract
Sex differentiation is a puzzling problem in fish due to the variety of reproductive systems and the flexibility of their sex determination mechanisms. The Sparidae, a teleost family, reflects this remarkable diversity of sexual mechanisms found in fish. Our aim was to capture the transcriptomic signature of different sexes in two protogynous hermaphrodite sparids, the common pandora Pagellus erythrinus and the red porgy Pagrus pagrus in order to shed light on the molecular network contributing to either the female or the male phenotype in these organisms. Through RNA sequencing, we investigated sex-specific differences in gene expression in both species' brains and gonads. The analysis revealed common male and female specific genes/pathways between these protogynous fish. Whereas limited sex differences found in the brain indicate a sexually plastic tissue, in contrast, the great amount of sex-biased genes observed in gonads reflects the functional divergence of the transformed tissue to either its male or female character. Α common "crew" of well-known molecular players is acting to preserve either sex identity of the gonad in these fish. Lastly, this study lays the ground for a deeper understanding of the complex process of sex differentiation in two species with an evolutionary significant reproductive system.
Collapse
Affiliation(s)
- A Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - T Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - J Lagnel
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - A Sterioti
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - M Pavlidis
- Department of Biology, University of Crete, Heraklion, Greece
| | - N Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - C C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - C S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece.
| |
Collapse
|
14
|
Cabrera-Álvarez MJ, Swaney WT, Reader SM. Forebrain activation during social exposure in wild-type guppies. Physiol Behav 2017; 182:107-113. [DOI: 10.1016/j.physbeh.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022]
|
15
|
Nyman C, Fischer S, Aubin-Horth N, Taborsky B. Effect of the early social environment on behavioural and genomic responses to a social challenge in a cooperatively breeding vertebrate. Mol Ecol 2017; 26:3186-3203. [DOI: 10.1111/mec.14113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Cecilia Nyman
- Division of Behavioural Ecology; Institute for Ecology and Evolution; University of Bern; Wohlenstrasse 50A CH-3032 Hinterkappelen Switzerland
| | - Stefan Fischer
- Institute of Integrative Biology; University of Liverpool; Leahurst Campus Chester High Road Neston CH64 7TE UK
| | - Nadia Aubin-Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes; Université Laval; Quebec Canada G1V OA6
| | - Barbara Taborsky
- Division of Behavioural Ecology; Institute for Ecology and Evolution; University of Bern; Wohlenstrasse 50A CH-3032 Hinterkappelen Switzerland
| |
Collapse
|
16
|
Abstract
How do animal social skills influence evolution? Complex animal social behaviors require many cognitive skills including individual recognition and observational learning. For social systems to evolve, these abilities need to be transmitted genetically or culturally and supported by the evolution of underlying neural systems. Because animal skill sets are so varied, it seems best to describe animal cognitive behaviors as being a social calculus that can change with experience, which has evolved to match and facilitate the complexity of the social system where it arose. That is, acquiring and using social information in response to a rapidly changing complex world leads to social competence enabling success in essential behavioral interactions. Here, we describe the remarkable suite of social skills discovered in the African cichlid fish Astatotilapia burtoni, including an attention hierarchy, male deception, transitive inference, the mechanistic bases of social dominance, female mate choice and the neural control of female reproductive behavior. The social calculus of this species is presented as an example of a potential causal factor in the evolution of sophisticated social behavior necessary for the evolutionary success of their social system.
Collapse
|
17
|
Chen X, Rahman R, Guo F, Rosbash M. Genome-wide identification of neuronal activity-regulated genes in Drosophila. eLife 2016; 5. [PMID: 27936378 PMCID: PMC5148613 DOI: 10.7554/elife.19942] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022] Open
Abstract
Activity-regulated genes (ARGs) are important for neuronal functions like long-term memory and are well-characterized in mammals but poorly studied in other model organisms like Drosophila. Here we stimulated fly neurons with different paradigms and identified ARGs using high-throughput sequencing from brains as well as from sorted neurons: they included a narrow set of circadian neurons as well as dopaminergic neurons. Surprisingly, many ARGs are specific to the stimulation paradigm and very specific to neuron type. In addition and unlike mammalian immediate early genes (IEGs), fly ARGs do not have short gene lengths and are less enriched for transcription factor function. Chromatin assays using ATAC-sequencing show that the transcription start sites (TSS) of ARGs do not change with neural firing but are already accessible prior to stimulation. Lastly based on binding site enrichment in ARGs, we identified transcription factor mediators of firing and created neuronal activity reporters. DOI:http://dx.doi.org/10.7554/eLife.19942.001
Collapse
Affiliation(s)
- Xiao Chen
- Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, United States
| | - Reazur Rahman
- Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, United States
| | - Fang Guo
- Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, United States
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
18
|
Loveland JL, Fernald RD. Differential activation of vasotocin neurons in contexts that elicit aggression and courtship. Behav Brain Res 2016; 317:188-203. [PMID: 27609648 DOI: 10.1016/j.bbr.2016.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
Abstract
Despite continued study on the neurobiological bases of aggressive and sexual behaviors, it is still not well understood how the brain integrates social information with physiological and neural states to produce context-specific behavioral outcomes. In fishes, manipulation of endogenous levels of arginine vasotocin (AVT) through peripheral and intracerebroventricular pharmacological injections results in significant changes in social behaviors, including aggressive and reproduction-related behaviors. In addition, many features of AVT neurons have been shown to correlate with social status and associated behavioral phenotypes. In this study, we used the immediate early gene egr-1 as a marker for neuronal activity and quantified the number of AVT neurons that were positive for egr-1 mRNA by in situ hybridization in Astatotilapia burtoni males that were exposed to either a social context that would elicit aggression or to one that would elicit courtship. In these social settings, focal males readily displayed context- appropriate bouts of aggression (towards the opponent) or bouts of courting (towards females). We found that males that fought had higher levels of egr-1 expression in the preoptic area compared to courting males. A greater proportion of AVT cells was positive for egr-1 after a fight than after a bout of courting. We mapped mRNA distribution of AVT V1a receptor subtypes v1a1 and v1a2 in the brain and identified overlapping areas of expression in nuclei in the ventral telencephalon, hypothalamus and thalamus as key areas for AVT signaling in males.
Collapse
Affiliation(s)
- Jasmine L Loveland
- Dept. of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Russell D Fernald
- Dept. of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Moltesen M, Vindas MA, Winberg S, Ebbesson L, de Lourdes Ruiz-Gomez M, Skov PV, Dabelsteen T, Øverli Ø, Höglund E. Cognitive appraisal of aversive stimulus differs between individuals with contrasting stress coping styles; evidences from selected rainbow trout (Oncorhynchus mykiss) strains. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In animals, personality variations in response to stress and energy demands have been established. Cognitive processing of negative stimuli correlates with stress response patterns. Still, the relative contribution of cognitive appraisal or physiological demands to the behavioural output needs to be clarified. In this study we utilized reactive (high-responsive, HR) and proactive (low-responsive, LR) rainbow trout strains to investigate how contrasting reactions to hypoxia are related to individual variation in metabolism and/or cognition. The HR-LR strains did not differ in standard metabolic rate or hypoxia tolerance. HR trout displayed more pronounced avoidance to a signal cue after being conditioned with hypoxia, suggesting that they experienced this stimulus more aversive than LR trout. Together with differences in forebrain c-fos activation patterns in dorsomedial pallium, these results suggest cognitive differences between the strains. These results demonstrate that differences in personality/stress coping style can be related to contrasts in cognition, which are independent of metabolic differences.
Collapse
Affiliation(s)
- Maria Moltesen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, building 3, 4th floor, DK-2100 Copenhagen Ø, Denmark
- Section for Aquaculture, Institute for Aquatic Resources, Danish Technical University, P.O. Box 101, DK-9850 Hirtshals, Denmark
| | - Marco Antonio Vindas
- Integrative Fish Biology, Uni Research Environment, Uni Research, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Svante Winberg
- Department of Neuroscience, Uppsala University, P.O. Box 593, SE-75124 Uppsala, Sweden
| | - Lars Ebbesson
- Integrative Fish Biology, Uni Research Environment, Uni Research, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Maria de Lourdes Ruiz-Gomez
- Facultad de Ciencias, Universidad Autónoma del Estado de Mexico, Instituto Literario Numero 100 Centro, Toluca, C.P. 50000, Mexico
| | - Peter Vilhelm Skov
- Section for Aquaculture, Institute for Aquatic Resources, Danish Technical University, P.O. Box 101, DK-9850 Hirtshals, Denmark
| | - Torben Dabelsteen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, building 3, 4th floor, DK-2100 Copenhagen Ø, Denmark
| | - Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Erik Höglund
- Section for Aquaculture, Institute for Aquatic Resources, Danish Technical University, P.O. Box 101, DK-9850 Hirtshals, Denmark
- Niva Region South, Norsk institutt for vannforskning, Gaustadalléen 21, NO-0349 Oslo, Norway
| |
Collapse
|
20
|
Desjardins JK, Becker L, Fernald RD. The effect of observers on behavior and the brain during aggressive encounters. Behav Brain Res 2015; 292:174-83. [PMID: 26097004 DOI: 10.1016/j.bbr.2015.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022]
Abstract
What effect does an audience have on an animal's behavior and where is this influence registered in the brain? To answer these questions, we analyzed male cichlid fish fighting in the presence of audiences of various compositions and measured expression of immediate early genes in the brain as a proxy for neural activity. We hypothesized their behavior would change depending on who was watching them. We measured behavioral responses from both the "watchers" and the "watched" during aggressive encounters and found that males fighting in the presence of an audience were more aggressive than males fighting without an audience. Depending on the nature of the audience, immediate early gene expression in key brain nuclei was differentially influenced. Both when an audience of larger males watched fighting males, and when they were watching larger males fighting, nuclei in the brain considered homologous with mammalian nuclei known to be associated with anxiety showed increased activity. When males were in the presence of any audience or when males saw any other males fighting, nuclei in the brain known to be involved in reproduction and aggression were differentially activated relative to control animals. In all cases, there was a close relationship between patterns of brain gene expression between fighters and observers. This suggests that the network of brain regions known as the social behavior network, common across vertebrates, are activated not only in association with the expression of social behavior but also by the reception of social information.
Collapse
Affiliation(s)
- Julie K Desjardins
- Department of Biology Gilbert Building, Rm. 316 Stanford University Stanford, CA 94305-5020, USA
| | - Lisa Becker
- Department of Biology Gilbert Building, Rm. 316 Stanford University Stanford, CA 94305-5020, USA
| | - Russell D Fernald
- Department of Biology Gilbert Building, Rm. 316 Stanford University Stanford, CA 94305-5020, USA.
| |
Collapse
|
21
|
Fernald RD. Cognitive Skills Needed for Social Hierarchies. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 79:229-36. [PMID: 25746062 PMCID: PMC5501702 DOI: 10.1101/sqb.2014.79.024752] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dominance hierarchies are ubiquitous in social species that require social cognition to maintain. Status may be established initially through physical conflict but is maintained by social signals between individuals that depend critically on the relative social status of those interacting. How do individuals collect information they need to modulate their behavior? Using a particularly suitable fish model system living in a complex social environment, we describe how the social context of behavior shapes the brain and, in turn, alters the behavior of animals as they interact. These fish observe social interactions carefully to gather information vicariously that guides future behavior. Social opportunities produce rapid changes in gene expression in key brain nuclei, and both social success and failure produce changes in neuronal cell size and connectivity in reproductive centers of the brain. It remains unknown how social information is transduced into cellular and molecular changes. Understanding the cellular and molecular changes underlying animal cognition will yield unique insights into how the brain works.
Collapse
|
22
|
Korzan WJ, Grone BP, Fernald RD. Social regulation of cortisol receptor gene expression. ACTA ACUST UNITED AC 2014; 217:3221-8. [PMID: 25013108 DOI: 10.1242/jeb.104430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression.
Collapse
Affiliation(s)
- Wayne J Korzan
- Department of Biology, Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Brian P Grone
- Department of Biology, Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Russell D Fernald
- Department of Biology, Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Veyrac A, Besnard A, Caboche J, Davis S, Laroche S. The transcription factor Zif268/Egr1, brain plasticity, and memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:89-129. [PMID: 24484699 DOI: 10.1016/b978-0-12-420170-5.00004-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The capacity to remember our past experiences and organize our future draws on a number of cognitive processes that allow our brain to form and store neural representations that can be recalled and updated at will. In the brain, these processes require mechanisms of neural plasticity in the activated circuits, brought about by cellular and molecular changes within the neurons activated during learning. At the cellular level, a wealth of experimental data accumulated in recent years provides evidence that signaling from synapses to nucleus and the rapid regulation of the expression of immediate early genes encoding inducible, regulatory transcription factors is a key step in the mechanisms underlying synaptic plasticity and the modification of neural networks required for the laying down of memories. In the activated neurons, these transcriptional events are thought to mediate the activation of selective gene programs and subsequent synthesis of proteins, leading to stable functional and structural remodeling of the activated networks, so that the memory can later be reactivated upon recall. Over the past few decades, novel insights have been gained in identifying key transcriptional regulators that can control the genomic response of synaptically activated neurons. Here, as an example of this approach, we focus on one such activity-dependent transcription factor, Zif268, known to be implicated in neuronal plasticity and memory formation. We summarize current knowledge about the regulation and function of Zif268 in different types of brain plasticity and memory processes.
Collapse
Affiliation(s)
- Alexandra Veyrac
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| | - Antoine Besnard
- Harvard Stem Cell Institute, Harvard Medical School, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jocelyne Caboche
- INSERM, UMRS 952, Physiopathologie des Maladies du Système Nerveux Central, Paris, France; CNRS, UMR7224, Physiopathologie des Maladies du Système Nerveux Central, Paris, France; UPMC University Paris 6, Paris, France
| | - Sabrina Davis
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| | - Serge Laroche
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| |
Collapse
|
24
|
Ugajin A, Kunieda T, Kubo T. Identification and characterization of an Egr ortholog as a neural immediate early gene in the European honeybee (Apis mellifera L.). FEBS Lett 2013; 587:3224-30. [PMID: 23994532 DOI: 10.1016/j.febslet.2013.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
To date, there are only few reports of immediate early genes (IEGs) available in insects. Aiming at identifying a conserved IEG in insects, we characterized an Egr homolog of the honeybee (AmEgr: Apis mellifera Egr). AmEgr was transiently induced in whole worker brains after seizure induction. In situ hybridization for AmEgr indicated that neural activity of a certain mushroom body (a higher brain center) neuron subtype, which is the same as that we previously identified using another non-coding IEG, termed kakusei, is more enhanced in forager brains. These findings suggest that Egr can be utilized as an IEG in insects.
Collapse
Affiliation(s)
- Atsushi Ugajin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
25
|
Abstract
Songbirds have unique value as a model for memory and learning. In their natural social life, they communicate through vocalizations that they must learn to produce and recognize. Song communication elicits abrupt changes in gene expression in regions of the forebrain responsible for song perception and production--what is the functional significance of this genomic response? For 20 years, the focus of research was on just a few genes [primarily ZENK, now known as egr1 (early gene response 1)]. Recently, however, DNA microarrays have been developed and applied to songbird behavioral research, and in 2010 the initial draft assembly of the zebra finch genome was published. Together, these new data reveal that the genomic involvement in song processing is far more complex than anticipated. The concepts of neurogenomic computation and biological embedding are introduced as frameworks for future research.
Collapse
Affiliation(s)
- David F Clayton
- Biological and Experimental Psychology Division, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom;
| |
Collapse
|
26
|
Maruska KP, Becker L, Neboori A, Fernald RD. Social descent with territory loss causes rapid behavioral, endocrine and transcriptional changes in the brain. ACTA ACUST UNITED AC 2013; 216:3656-66. [PMID: 23788709 DOI: 10.1242/jeb.088617] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In social species that form hierarchies where only dominant males reproduce, lower-ranking individuals may challenge higher-ranking ones, often resulting in changes in relative social status. How does a losing animal respond to loss of status? Here, using the African cichlid fish Astatotilapia burtoni, we manipulated the social environment, causing males to descend in rank, and then examined changes in behavior, circulating steroids and immediate early gene (IEG) expression (cfos, egr-1) in micro-dissected brain regions as a proxy for neuronal activation. In particular, we examined changes in the conserved 'social behavior network' (SBN), a collection of brain nuclei known to regulate social behaviors across vertebrates. Astatotilapia burtoni has rapidly reversible dominant-subordinate male phenotypes, so that within minutes, descending males lost their bright body coloration, switched to submissive behaviors and expressed higher plasma cortisol levels compared with non-descending and control males. Descending males had higher IEG expression throughout the SBN, but each brain region showed a distinct IEG-specific response in either cfos or egr-1 levels, but not both. Overall, SBN IEG patterns in descending males were distinctly different from the pattern observed in males ascending (subordinate to dominant) in social status. These results reveal that the SBN rapidly coordinates the perception of social cues about status that are of opposite valence, and translates them into appropriate phenotypic changes. This shows for the first time in a non-mammalian vertebrate that dropping in social rank rapidly activates specific socially relevant brain nuclei in a pattern that differs from when males rise to a higher status position.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
27
|
Chen WJ, Lavoué S, Mayden RL. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution 2013; 67:2218-39. [PMID: 23888847 DOI: 10.1111/evo.12104] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/15/2013] [Indexed: 11/26/2022]
Abstract
The biogeography of the mega-diverse, freshwater, and globally distributed Otophysi has received considerable attention. This attraction largely stems from assumptions as to their ancient origin, the clade being almost exclusively freshwater, and their suitability as to explanations of trans-oceanic distributions. Despite multiple hypotheses explaining present-day distributions, problems remain, precluding more parsimonious explanations. Underlying previous hypotheses are alternative phylogenies for Otophysi, uncertainties as to temporal diversification and assumptions integral to various explanations. We reexamine the origin and early diversification of this clade based on a comprehensive time-calibrated, molecular-based phylogenetic analysis and event-based approaches for ancestral range inference of lineages. Our results do not corroborate current phylogenetic classifications of otophysans. We demonstrate Siluriformes are never sister to Gymnotiformes and Characiformes are most likely nonmonophyletic. Divergence time estimates specify a split between Cypriniformes and Characiphysi with the fragmentation of Pangea. The early diversification of characiphysans either predated, or was contemporary with, the separation of Africa and South America, and involved a combination of within- and between-continental divergence events for these lineages. The intercontinental diversification of siluroids and characoids postdated major intercontinental tectonic fragmentations (<90 Mya). Post-tectonic drift dispersal events are hypothesized to account for their current distribution patterns.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Institute of Oceanography, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan.
| | | | | |
Collapse
|
28
|
Maruska KP, Zhang A, Neboori A, Fernald RD. Social opportunity causes rapid transcriptional changes in the social behaviour network of the brain in an African cichlid fish. J Neuroendocrinol 2013; 25:145-57. [PMID: 22958303 PMCID: PMC3537875 DOI: 10.1111/j.1365-2826.2012.02382.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/11/2012] [Accepted: 09/02/2012] [Indexed: 10/27/2022]
Abstract
Animals constantly integrate external stimuli with their own internal physiological state to make appropriate behavioural decisions. Little is known, however, about where in the brain the salience of these signals is evaluated, or which neural and transcriptional mechanisms link this integration to adaptive behaviours. We used an African cichlid fish Astatotilapia burtoni to test the hypothesis that a new social opportunity activates the conserved 'social behaviour network' (SBN), a collection of brain nuclei known to regulate social behaviours across vertebrates. We measured mRNA levels of immediate early genes (IEGs) in microdissected brain regions as a proxy for neuronal activation, and discovered that IEGs were higher in all SBN nuclei in males that were given an opportunity to rise in social rank compared to control stable subordinate and dominant individuals. Furthermore, because the presence of sex-steroid receptors is one defining criteria of SBN nuclei, we also tested whether social opportunity or status influenced androgen and oestrogen receptor mRNA levels within these same regions. There were several rapid region-specific changes in receptor mRNA levels induced by social opportunity, most notably in oestrogen receptor subtypes in areas that regulate social aggression and reproduction, suggesting that oestrogenic signalling pathways play an important role in regulating male status. Several receptor mRNA changes occurred in regions with putative homologies to the mammalian septum and extended amygdala, two regions shared by SBN and reward circuits, suggesting an important role in the integration of social salience, stressors, hormonal state and adaptive behaviours. We also demonstrated increases in plasma sex- and stress-steroids at 30 min after a rise in social rank. This rapid endocrine and transcriptional response suggests that the SBN is involved in the integration of social inputs with internal hormonal state to facilitate the transition to dominant status, which ultimately leads to improved fitness for the previously reproductively-suppressed individual.
Collapse
Affiliation(s)
- K P Maruska
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | | | | |
Collapse
|
29
|
Kress S, Wullimann MF. Correlated basal expression of immediate early gene egr1 and tyrosine hydroxylase in zebrafish brain and downregulation in olfactory bulb after transitory olfactory deprivation. J Chem Neuroanat 2012; 46:51-66. [DOI: 10.1016/j.jchemneu.2012.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 02/02/2023]
|
30
|
Abstract
Social plasticity is a ubiquitous feature of animal behaviour. Animals must adjust the expression of their social behaviour to the nuances of daily social life and to the transitions between life-history stages, and the ability to do so affects their Darwinian fitness. Here, an integrative framework is proposed for understanding the proximate mechanisms and ultimate consequences of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of the neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different brain genomic and epigenetic states correspond to different behavioural responses and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. At the evolutionary scale, social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. In cases when social plasticity is too costly or incomplete, behavioural consistency can emerge by directional selection that recruits gene modules corresponding to favoured behavioural states in that environment. As a result of this integrative approach, how knowledge of the proximate mechanisms underlying social plasticity is crucial to understanding its costs, limits and evolutionary consequences is shown, thereby highlighting the fact that proximate mechanisms contribute to the dynamics of selection. The role of teleosts as a premier model to study social plasticity is also highlighted, given the diversity and plasticity that this group exhibits in terms of social behaviour. Finally, the proposed integrative framework to social plasticity also illustrates how reciprocal causation analysis of biological phenomena (i.e. considering the interaction between proximate factors and evolutionary explanations) can be a more useful approach than the traditional proximate-ultimate dichotomy, according to which evolutionary processes can be understood without knowledge on proximate causes, thereby black-boxing developmental and physiological mechanisms.
Collapse
Affiliation(s)
- R F Oliveira
- Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal.
| |
Collapse
|
31
|
Ebbesson LOE, Braithwaite VA. Environmental effects on fish neural plasticity and cognition. JOURNAL OF FISH BIOLOGY 2012; 81:2151-2174. [PMID: 23252732 DOI: 10.1111/j.1095-8649.2012.03486.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Most fishes experiencing challenging environments are able to adjust and adapt their physiology and behaviour to help them cope more effectively. Much of this flexibility is supported and influenced by cognition and neural plasticity. The understanding of fish cognition and the role played by different regions of the brain has improved significantly in recent years. Techniques such as lesioning, tract tracing and quantifying changes in gene expression help in mapping specialized brain areas. It is now recognized that the fish brain remains plastic throughout a fish's life and that it continues to be sensitive to environmental challenges. The early development of fish brains is shaped by experiences with the environment and this can promote positive and negative effects on both neural plasticity and cognitive ability. This review focuses on what is known about the interactions between the environment, the telencephalon and cognition. Examples are used from a diverse array of fish species, but there could be a lot to be gained by focusing research on neural plasticity and cognition in fishes for which there is already a wealth of knowledge relating to their physiology, behaviour and natural history, e.g. the Salmonidae.
Collapse
Affiliation(s)
- L O E Ebbesson
- Uni Research AS, Thormøhlensgate 49B, 5006 Bergen, Norway.
| | | |
Collapse
|
32
|
Abstract
In the course of evolution, social behavior has been a strikingly potent selective force in shaping brains to control action. Physiological, cellular, and molecular processes reflect this evolutionary force, particularly in the regulation of reproductive behavior and its neural circuitry. Typically, experimental analysis is directed at how the brain controls behavior, but the brain is also changed by behavior over evolution, during development, and through its ongoing function. Understanding how the brain is influenced by behavior offers unusual experimental challenges. General principles governing the social regulation of the brain are most evident in the control of reproductive behavior. This is most likely because reproduction is arguably the most important event in an animal's life and has been a powerful and essential selective force over evolution. Here I describe the mechanisms through which behavior changes the brain in the service of reproduction using a teleost fish model system.
Collapse
Affiliation(s)
- Russell D Fernald
- Biology Department, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
33
|
Schumer M, Krishnakant K, Renn SCP. Comparative gene expression profiles for highly similar aggressive phenotypes in male and female cichlid fishes (Julidochromis). ACTA ACUST UNITED AC 2012; 214:3269-78. [PMID: 21900474 DOI: 10.1242/jeb.055467] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Julidochromis marlieri and Julidochromis transcriptus are two closely related Tanganyikan cichlids that have evolved different behavior and mating strategies since they diverged from their common ancestor. While J. transcriptus follows the ancestral pattern of male dominance, male-biased sexual size dimorphism and territoriality, the pattern is reversed in J. marlieri. In J. marlieri, females show all of these behavioral and morphological characteristics. This raises the question of whether female J. marlieri achieve the dominant phenotype by expressing the same genes as J. transcriptus males or whether novel brain gene expression patterns have evolved to produce a similar behavioral phenotype in the females of J. marlieri. This study used cDNA microarrays to investigate whether female J. marlieri and male J. transcriptus show conserved or divergent patterns of brain gene expression. Analysis of microarray data in both species showed certain gene expression patterns associated with sex role independent of gonadal sex and, to a lesser extent, gene expression patterns associated with sex independent of sex role. In general, these data suggest that while there has been substantial divergence in gene expression patterns between J. transcriptus and J. marlieri, we can detect a highly significant overlap for a core set of genes related to aggression in both species. These results suggest that the proximate mechanisms regulating aggressive behavior in J. transcriptus and J. marlieri may be shared.
Collapse
Affiliation(s)
- Molly Schumer
- Department of Biology, Reed College, 3203 S. E. Woodstock Boulevard, Portland, OR 97202, USA
| | | | | |
Collapse
|
34
|
Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome. BMC Genomics 2011; 12:202. [PMID: 21507250 PMCID: PMC3113783 DOI: 10.1186/1471-2164-12-202] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 04/20/2011] [Indexed: 12/03/2022] Open
Abstract
Background Next-generation sequencing is providing researchers with a relatively fast and affordable option for developing genomic resources for organisms that are not among the traditional genetic models. Here we present a de novo assembly of the guppy (Poecilia reticulata) transcriptome using 454 sequence reads, and we evaluate potential uses of this transcriptome, including detection of sex-specific transcripts and deployment as a reference for gene expression analysis in guppies and a related species. Guppies have been model organisms in ecology, evolutionary biology, and animal behaviour for over 100 years. An annotated transcriptome and other genomic tools will facilitate understanding the genetic and molecular bases of adaptation and variation in a vertebrate species with a uniquely well known natural history. Results We generated approximately 336 Mbp of mRNA sequence data from male brain, male body, female brain, and female body. The resulting 1,162,670 reads assembled into 54,921 contigs, creating a reference transcriptome for the guppy with an average read depth of 28×. We annotated nearly 40% of this reference transcriptome by searching protein and gene ontology databases. Using this annotated transcriptome database, we identified candidate genes of interest to the guppy research community, putative single nucleotide polymorphisms (SNPs), and male-specific expressed genes. We also showed that our reference transcriptome can be used for RNA-sequencing-based analysis of differential gene expression. We identified transcripts that, in juveniles, are regulated differently in the presence and absence of an important predator, Rivulus hartii, including two genes implicated in stress response. For each sample in the RNA-seq study, >50% of high-quality reads mapped to unique sequences in the reference database with high confidence. In addition, we evaluated the use of the guppy reference transcriptome for gene expression analyses in a congeneric species, the sailfin molly (Poecilia latipinna). Over 40% of reads from the sailfin molly sample aligned to the guppy transcriptome. Conclusions We show that next-generation sequencing provided a reliable and broad reference transcriptome. This resource allowed us to identify candidate gene variants, SNPs in coding regions, and sex-specific gene expression, and permitted quantitative analysis of differential gene expression.
Collapse
|
35
|
Rajan KE, Ganesh A, Dharaneedharan S, Radhakrishnan K. Spatial learning-induced egr-1 expression in telencephalon of gold fish Carassius auratus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:153-159. [PMID: 20714804 DOI: 10.1007/s10695-010-9425-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/29/2010] [Indexed: 05/29/2023]
Abstract
The immediate-early gene (egr-1) expression was used to examine the neuron's response in telencephalon of goldfish during spatial learning in small space. Fishes were pre-exposed in the experimental apparatus and trained to pick food from the tray in a rectangular-shaped arena. The apparatus was divided into identical compartments comprising three gates to provide different spatial tasks. After the fish learned to pass through the gate one, two more gates were introduced one by one. Fish made more number of attempts and took longer time (P < 0.05) to pass through the first gate than the gate two or three. This active learning induces the expression of egr-1 in telencephalon as established by western blot analysis. Subsequently, the fish learn quickly to cross the similar type of second and third gate and make fewer errors with a corresponding decline in the level of egr-1 expression. As the fish learned to pass through all the three gates, third gate was replaced by modified gate three. Interestingly, the level of egr-1 expression increased again, when the fish exhibit a high exploratory behavior to cross the modified gate three. The present study shows that egr-1 expression is induced in the telencephalon of goldfish while intensively acquiring geometric spatial information to pass through the gates.
Collapse
Affiliation(s)
- K Emmanuvel Rajan
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.
| | | | | | | |
Collapse
|
36
|
O'Connell LA, Matthews BJ, Crews D. Neuronal nitric oxide synthase as a substrate for the evolution of pseudosexual behaviour in a parthenogenetic whiptail lizard. J Neuroendocrinol 2011; 23:244-53. [PMID: 21126273 PMCID: PMC4509676 DOI: 10.1111/j.1365-2826.2010.02099.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolution of neuroendocrine mechanisms governing sex-typical behaviour is poorly understood. An outstanding animal model is the whiptail lizard (Cnemidophorus) because both the ancestral and descendent species still exist. The ancestral little striped whiptail, Cnemidophorus inornatus, consists of males and females, which exhibit sex-specific mating behaviours. The descendent desert grassland whiptail, Cnemidophorus uniparens, consists only of females that alternately exhibit both female-like and male-like pseudosexual behaviour. Castrated male C. inornatus will mount a conspecific in response to exogenous androgen, although some are also sensitive to progesterone. This polymorphism in progesterone sensitivity in the ancestral species may have been involved in evolution of progesterone-mediated male-typical behaviour in the descendant unisexual lizards. We tested whether progesterone activates a typically androgenic signalling pathway by investigating hormonal regulation of neuronal nitric oxide synthase (nNOS) using in situ hybridisation and NADPH diaphorase histochemistry, a stain for nNOS protein. NADPH diaphorase is widely distributed throughout the brain of both species, although only in the periventricular nucleus of the preoptic area (pvPOA) are there differences between mounting and non-mounting individuals. The number of cells expressing nNOS mRNA and NADPH diaphorase is higher in the pvPOA of individuals that mount in response to progesterone or androgen. Furthermore, the nNOS promoter has both androgen and progesterone response elements, and NADPH diaphorase colocalises with the progesterone receptor in the pvPOA. These data suggest that a polymorphism in progesterone sensitivity in the sexual ancestor reflects a differential regulation of nNOS and may account for the male-typical behaviour in unisexual whiptail lizards.
Collapse
Affiliation(s)
- Lauren A. O'Connell
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78705, USA
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | - Bryan J. Matthews
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | - David Crews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78705, USA
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
- All correspondence and requests for reprints should to addressed to: David Crews Section of Integrative Biology University of Texas at Austin, Austin, TX 78712 Phone: 512-471-1113
| |
Collapse
|
37
|
Arch VS, Burmeister SS, Feng AS, Shen JX, Narins PM. Ultrasound-evoked immediate early gene expression in the brainstem of the Chinese torrent frog, Odorrana tormota. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:667-75. [PMID: 21298385 PMCID: PMC3098967 DOI: 10.1007/s00359-011-0626-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 01/16/2011] [Accepted: 01/17/2011] [Indexed: 11/26/2022]
Abstract
The concave-eared torrent frog, Odorrana tormota, has evolved the extraordinary ability to communicate ultrasonically (i.e., using frequencies > 20 kHz), and electrophysiological experiments have demonstrated that neurons in the frog’s midbrain (torus semicircularis) respond to frequencies up to 34 kHz. However, at this time, it is unclear which region(s) of the torus and what other brainstem nuclei are involved in the detection of ultrasound. To gain insight into the anatomical substrate of ultrasound detection, we mapped expression of the activity-dependent gene, egr-1, in the brain in response to a full-spectrum mating call, a filtered, ultrasound-only call, and no sound. We found that the ultrasound-only call elicited egr-1 expression in the superior olivary and principal nucleus of the torus semicircularis. In sampled areas of the principal nucleus, the ultrasound-only call tended to evoke higher egr-1 expression than the full-spectrum call and, in the center of the nucleus, induced significantly higher egr-1 levels than the no-sound control. In the superior olivary nucleus, the full-spectrum and ultrasound-only calls evoked similar levels of expression that were significantly greater than the control, and egr-1 induction in the laminar nucleus showed no evidence of acoustic modulation. These data suggest that the sampled areas of the principal nucleus are among the regions sensitive to ultrasound in this species.
Collapse
|
38
|
Wood LS, Desjardins JK, Fernald RD. Effects of stress and motivation on performing a spatial task. Neurobiol Learn Mem 2010; 95:277-85. [PMID: 21145980 DOI: 10.1016/j.nlm.2010.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/21/2010] [Accepted: 12/06/2010] [Indexed: 11/29/2022]
Abstract
Learning is ubiquitous in the animal kingdom but has been studied extensively in only a handful of species. Moreover, learning studied under laboratory conditions is typically unrelated to the animal's natural environment or life history. Here, we designed a task relevant to the natural behavior of male African cichlid fish (Astatotilapia burtoni), to determine if they could be trained on a spatial task to gain access to females and shelter. We measured both how successfully animals completed this task over time and whether and how immediate early gene and hormone expression profiles were related to success. While training fish in a maze, we measured time to task completion, circulating levels of three key hormones (cortisol, 11-ketotestosterone, and testosterone) and mRNA abundance of seven target genes including three immediate early genes (that served proxies for brain activity) in nine brain regions. Data from our subjects fell naturally into three phenotypes: fish that could be trained (learners), fish that could not be trained (non-learners) and fish that never attempted the task (non-attempters). Learners and non-learners had lower levels of circulating cortisol compared to fish that never attempted the task. Learners had the highest immediate early gene mRNA levels in the homologue of the hippocampus (dorsolateral telencephalon; Dl), lower cortisol (stress) levels and were more motivated to accomplish the task as measured by behavioral observations. Fish that never attempted the task showed the lowest activity within the Dl, high stress levels and little to no apparent motivation. Data from non-learners fell between these two extremes in behavior, stress, and motivation.
Collapse
Affiliation(s)
- Lauren S Wood
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|
39
|
Okuyama T, Suehiro Y, Imada H, Shimada A, Naruse K, Takeda H, Kubo T, Takeuchi H. Induction of c-fos transcription in the medaka brain (Oryzias latipes) in response to mating stimuli. Biochem Biophys Res Commun 2010; 404:453-7. [PMID: 21138730 DOI: 10.1016/j.bbrc.2010.11.143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/30/2010] [Indexed: 01/06/2023]
Abstract
Immediate-early genes (IEGs) are useful for mapping active brain regions in various vertebrates. Here we identified a c-fos homologue gene in medaka and demonstrated that the amounts of c-fos transcripts and proteins in the medaka brain increased in relation to an artificially evoked seizure, suggesting that the homologue gene has the characteristics of IEGs, which are used as markers of neural activity. Next, quantitative reverse-transcription-polymerase chain reaction revealed that female mating behaviors upregulated c-fos transcription in some brain regions including the telencephalon, optic tectum, and cerebellum. In addition, we performed in situ hybridization with a c-fos intron probe to detect the de novo synthesis of c-fos transcripts and confirmed induction of c-fos transcription in these brain regions after mating. This is the first report of IEG induction in response to mating stimuli in teleost fish. Our results indicated that c-fos expression was induced in response to behavioral stimuli in the medaka brain and that medaka c-fos could be a useful marker of neural activity.
Collapse
Affiliation(s)
- Teruhiro Okuyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Females should be choosier than males about prospective mates because of the high costs of inappropriate mating decisions. Both theoretical and empirical studies have identified factors likely to influence female mate choices. However, male-male social interactions also can affect mating decisions, because information about a potential mate can trigger changes in female reproductive physiology. We asked how social information about a preferred male influenced neural activity in females, using immediate early gene (IEG) expression as a proxy for brain activity. A gravid female cichlid fish (Astatotilapia burtoni) chose between two socially equivalent males and then saw fights between these two males in which her preferred male either won or lost. We measured IEG expression levels in several brain nuclei including those in the vertebrate social behavior network (SBN), a collection of brain nuclei known to be important in social behavior. When the female saw her preferred male win a fight, SBN nuclei associated with reproduction were activated, but when she saw her preferred male lose a fight, the lateral septum, a nucleus associated with anxiety, was activated instead. Thus social information alone, independent of actual social interactions, activates specific brain regions that differ significantly depending on what the female sees. In female brains, reproductive centers are activated when she chooses a winner, and anxiety-like response centers are activated when she chooses a loser. These experiments assessing the role of mate-choice information on the brain using a paradigm of successive presentations of mate information suggest ways to understand the consequences of social information on animals using IEG expression.
Collapse
|
41
|
Grone BP, Maruska KP, Korzan WJ, Fernald RD. Social status regulates kisspeptin receptor mRNA in the brain of Astatotilapia burtoni. Gen Comp Endocrinol 2010; 169:98-107. [PMID: 20688063 PMCID: PMC2951738 DOI: 10.1016/j.ygcen.2010.07.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/22/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022]
Abstract
The brain controls reproduction in response to relevant external and internal cues. Central to this process in vertebrates is gonadotropin-releasing hormone (GnRH1) produced in neurons of the hypothalamic-preoptic area (POA). GnRH1 released from the POA stimulates pituitary release of gonadotropins, which in males causes sperm production and concomitant steroid hormone release from the testes. Kisspeptin, a neuropeptide acting via the kisspeptin receptor (Kiss1r), increases GnRH1 release and is linked to development of the reproductive system in mammals and other vertebrates. In both fish and mammals, kiss1r mRNA levels increase in the brain around the time of puberty but the environmental and other stimuli regulating kisspeptin signaling to GnRH1 neurons remain unknown. To understand where kiss1r is expressed and how it is regulated in the brain of a cichlid fish, Astatotilapia burtoni, we measured expression of a kiss1r homolog mRNA by in situ hybridization and quantitative reverse transcription-PCR (qRT-PCR). We found kiss1r mRNA localized in the olfactory bulb, specific nuclei in the telencephalon, diencephalon, mesencephalon, and rhombencephalon, as well as in GnRH1 and GnRH3 neurons. Since males' sexual physiology and behavior depend on social status in A. burtoni, we also tested how status influenced kiss1r mRNA levels. We found higher kiss1r mRNA levels in whole brains of high status territorial males and lower levels in low status non-territorial males. Our results are consistent with the hypothesis that Kiss1r regulates many functions in the brain, making it a strong candidate for mediating differences in reproductive physiology between territorial and non-territorial phenotypes.
Collapse
Affiliation(s)
- Brian P Grone
- Department of Biology, Stanford University, Palo Alto, CA 94304, United States.
| | | | | | | |
Collapse
|
42
|
Distress call-induced gene expression in the brain of the Indian short-nosed fruit bat, Cynopterus sphinx. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:155-64. [DOI: 10.1007/s00359-009-0502-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 01/26/2023]
|
43
|
Deguchi T, Fujimori KE, Kawasaki T, Xianghai L, Yuba S. Expression patterns of the Egr1 and Egr3 genes during medaka embryonic development. Gene Expr Patterns 2009; 9:209-14. [DOI: 10.1016/j.gep.2008.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 01/08/2023]
|
44
|
Chen WJ, Miya M, Saitoh K, Mayden RL. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study. Gene 2008; 423:125-34. [PMID: 18703121 DOI: 10.1016/j.gene.2008.07.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/17/2008] [Accepted: 07/17/2008] [Indexed: 12/11/2022]
Abstract
After the completion of several entire genome projects and a remarkable increase in public genetic databases in the recent years the results of post-genomic analyses can facilitate a better understanding of the genomic evolution underlying the diversity of organisms and the complexity of gene function. This influx of genomic information and resources is also beneficial to the discipline of systematic biology. In this paper, we describe a set of 6 previous and 22 new PCR/sequencing primers for RAG1, Rhodopsin and four novel nuclear markers from IRBP, EGR1, EGR2B and EGR3 that we developed through an approach making use of public genetic/genomic data mining for one of the ongoing tree of life projects aimed at understanding the evolutionary relationships of the planet's largest clade of freshwater fishes--the Cypriniformes. The primers and laboratory protocols presented here were successfully tested in 33 species comprising all cypriniform family and subfamily groups. Phylogenetic performance of each gene, as well as their implications in the investigation of the evolution of cypriniform fishes were assessed and discussed.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103-2010, USA.
| | | | | | | |
Collapse
|
45
|
Acoustic modulation of immediate early gene expression in the auditory midbrain of female túngara frogs. Brain Res 2008; 1190:105-14. [DOI: 10.1016/j.brainres.2007.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/04/2007] [Accepted: 11/06/2007] [Indexed: 11/21/2022]
|
46
|
Nikitin VP, Kozyrev SA. Effects of antisense oligonucleotides to mRNA for the early gene zif268 on the mechanisms of synapse-specific plasticity. ACTA ACUST UNITED AC 2007; 37:607-12. [PMID: 17657432 DOI: 10.1007/s11055-007-0059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 02/27/2006] [Indexed: 10/23/2022]
Abstract
Acquisition of nociceptive sensitization in common snails was accompanied by long-term facilitation of the responses of defensive behavior command neuron LPl1 to sensory stimulation of chemoreceptors on the head and mechanoreceptors on the head and foot. Acquisition of sensitization during intracellular administration of antisense oligonucleotides to mRNA encoding the early gene zif268 showed suppression of synaptic facilitation in the responses of neuron LPl1 to tactile and chemical stimulation of the snail's head. Synaptic facilitation in the responses to tactile stimulation of the foot developed as in neurons of control sensitized animals. These results suggest that the early gene zif268 is selectively involved in the mechanisms of the specific regulation of the synaptic inputs of neuron LPl1 from sensory receptors on the snail's head.
Collapse
Affiliation(s)
- V P Nikitin
- P. K. Anokhin Research Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow.
| | | |
Collapse
|
47
|
HARBOTT LENEK, BURMEISTER SABRINAS, WHITE RICHARDB, VAGELL MIKE, FERNALD RUSSELLD. Androgen receptors in a cichlid fish, Astatotilapia burtoni: structure, localization, and expression levels. J Comp Neurol 2007; 504:57-73. [PMID: 17614300 PMCID: PMC2743600 DOI: 10.1002/cne.21435] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Androgens are an important output of the hypothalamic-pituitary-gonadal (HPG) axis that controls reproduction in all vertebrates. In male teleosts two androgens, testosterone and 11-ketotestosterone, control sexual differentiation and development in juveniles and reproductive behavior in adults. Androgenic signals provide feedback at many levels of the HPG axis, including the hypothalamic neurons that synthesize and release gonadotropin-releasing hormone 1 (GnRH1), but the precise cellular site of androgen action in the brain is not known. Here we describe two androgen receptor subtypes, ARalpha and ARbeta, in the cichlid Astatotilapia burtoni and show that these subtypes are differentially located throughout the adult brain in nuclei known to function in the control of reproduction. ARalpha was expressed in the ventral part of the ventral telencephalon, the preoptic area (POA) of the hypothalamus and the ventral hypothalamus, whereas ARbeta was more widely expressed in the dorsal and ventral telencephalon, the POA, and the ventral and dorsal hypothalamus. We provide the first evidence in any vertebrate that the GnRH1-releasing neurons, which serve as the central control point of the HPG axis, express both subtypes of AR. Using quantitative real-time PCR, we show that A. burtoni AR subtypes have different expression levels in adult tissue, with ARalpha showing significantly higher expression than ARbeta in the pituitary, and ARbeta expressed at a higher level than ARalpha in the anterior and middle brain. These data provide important insight into the role of androgens in regulating the vertebrate reproductive axis.
Collapse
Affiliation(s)
| | | | | | | | - RUSSELL D. FERNALD
- Correspondence to: R.D. Fernald, Department of Biological Sciences, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020.
| |
Collapse
|
48
|
Burmeister SS. Genomic Responses to Behavioral Interactions in an African Cichlid Fish: Mechanisms and Evolutionary Implications. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:247-56. [PMID: 17914256 DOI: 10.1159/000105488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phenotypic plasticity in Astatotilapia burtoni allows individual males to alternate between dominant and subordinate status, two physiologically and behaviorally distinct phenotypes. Because these phenotypes are completely reversible, they provide an excellent model for studying the molecular mechanisms of phenotypic plasticity. The ability to express alternate phenotypes in A. burtoni depends on the ability to regulate gene expression on both short- and long-term time scales. Previous studies have demonstrated that dominant males, who have increased reproductive capacity, have higher expression of several genes involved in reproduction (e.g., genes for steroid receptors). These differences in gene expression and reproductive physiology are controlled by interactions among males. Recently, it was found that the same interactions that lead to stable long-term changes in gene expression also induce short-term and transient changes in expression of egr-1, an immediate-early gene transcription factor. This immediate-early gene response is part of a general mechanism for mediating changes in gene expression that underlie phenotypic plasticity. Longer stable changes in gene expression must involve other mechanisms, such as dynamic modifications of the epigenome. Recent data suggests a direct link between the immediate-early gene response and epigenetic modifications. These mechanisms which link behavioral interactions to changes in gene expression allow phenotypic variation to occur without corresponding changes in the genome and, as a consequence, they have implications for evolution. In the case of A. burtoni, phenotypic plasticity is likely to slow evolution because it produces highly adapted phenotypes under the primary niches encountered in the life-history of the species and the plasticity itself is likely to be an adaptive trait.
Collapse
Affiliation(s)
- Sabrina S Burmeister
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
49
|
Chen CC, Fernald RD. Distributions of two gonadotropin-releasing hormone receptor types in a cichlid fish suggest functional specialization. J Comp Neurol 2006; 495:314-23. [PMID: 16440293 DOI: 10.1002/cne.20877] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gonadotropin-releasing hormone 1 (GnRH1) from the brain controls reproduction in vertebrates via a GnRH-specific receptor in the pituitary; however, other forms of GnRH are found in all species, suggesting additional roles for this family of peptides. GnRH action depends critically on the location of its cognate receptors in the brain. To understand the potential roles of additional GnRH forms, we localized two known GnRH receptor types in a cichlid fish, Astatotilapia burtoni, in which GnRH1 is socially regulated. Using in situ hybridization, we describe the mRNA expression pattern of these GnRH receptor (GnRH-R) subtypes in the brain, specifically with respect to GnRH-producing neurons. Our data suggest that following a gene duplication, the two GnRH receptors have evolved to serve different functions. The type 1 receptor (GnRH-R1) is expressed less widely than the type 2 receptor (GnRH-R2). Specifically, GnRH-R1 is expressed in groups of neurons in the telencephalon, preoptic area, ventral hypothalamus, thalamus, and pituitary. In contrast, GnRH-R2 is expressed in many more brain areas, including the olfactory bulb, telencephalon, preoptic area, hypothalamus, thalamus, midbrain, optic tectum, cerebellum, hindbrain, and pituitary. The specific distribution of GnRH-R2 suggests that the GnRH ligands may act via this receptor to influence behavior in A. burtoni. Moreover, only GnRH-R2 mRNA is colocalized in the three known groups of GnRH-containing neurons, suggesting that any direct feedback regulation of GnRH by itself must act through this receptor type. Taken together, these data suggest that the two GnRH receptor types serve different functional roles in A. burtoni.
Collapse
Affiliation(s)
- Chun-Chun Chen
- Neurosciences Program, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
50
|
Burmeister SS, Jarvis ED, Fernald RD. Rapid behavioral and genomic responses to social opportunity. PLoS Biol 2005; 3:e363. [PMID: 16216088 PMCID: PMC1255743 DOI: 10.1371/journal.pbio.0030363] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 08/23/2005] [Indexed: 01/20/2023] Open
Abstract
From primates to bees, social status regulates reproduction. In the cichlid fish Astatotilapia (Haplochromis) burtoni, subordinate males have reduced fertility and must become dominant to reproduce. This increase in sexual capacity is orchestrated by neurons in the preoptic area, which enlarge in response to dominance and increase expression of gonadotropin-releasing hormone 1 (GnRH1), a peptide critical for reproduction. Using a novel behavioral paradigm, we show for the first time that subordinate males can become dominant within minutes of an opportunity to do so, displaying dramatic changes in body coloration and behavior. We also found that social opportunity induced expression of the immediate-early gene egr-1 in the anterior preoptic area, peaking in regions with high densities of GnRH1 neurons, and not in brain regions that express the related peptides GnRH2 and GnRH3. This genomic response did not occur in stable subordinate or stable dominant males even though stable dominants, like ascending males, displayed dominance behaviors. Moreover, egr-1 in the optic tectum and the cerebellum was similarly induced in all experimental groups, showing that egr-1 induction in the anterior preoptic area of ascending males was specific to this brain region. Because egr-1 codes for a transcription factor important in neural plasticity, induction of egr-1 in the anterior preoptic area by social opportunity could be an early trigger in the molecular cascade that culminates in enhanced fertility and other long-term physiological changes associated with dominance. Cichlid fish can rise to dominance over subordinate males within minutes of the opportunity to do so; and this behavioural change is accompanied by changes in hypothalamic gene expression.
Collapse
Affiliation(s)
- Sabrina S Burmeister
- Biological Sciences, Stanford University, Stanford, California, United States of America.
| | | | | |
Collapse
|