1
|
Agricola H, Bräunig P. The complex neurochemistry of the cockroach antennal heart. Cell Tissue Res 2024; 398:139-160. [PMID: 39240336 PMCID: PMC11525290 DOI: 10.1007/s00441-024-03915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The innervation of the antennal heart of the cockroach Periplaneta americana was studied with immunocytochemical techniques on both the light and electron microscopic levels. The antennal heart is innervated by two efferent systems, both using one biogenic amine in combination with neuropeptides. In one, we found co-localization of serotonin with proctolin and allatostatin. These fibers most likely originate from paired neurons located in the suboesophageal ganglion. In the second system, we found octopamine co-localized with the short neuropeptide F. The source of this second system is dorsal unpaired median (DUM) neurons, also located in the suboesophageal ganglion. The possible effects of these neuromediators on different targets are discussed.
Collapse
Affiliation(s)
- Hans Agricola
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745, Jena, Germany.
| | - Peter Bräunig
- Department of Biology II (Zoology), RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
2
|
Selcho M. Octopamine in the mushroom body circuitry for learning and memory. Learn Mem 2024; 31:a053839. [PMID: 38862169 PMCID: PMC11199948 DOI: 10.1101/lm.053839.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 06/13/2024]
Abstract
Octopamine, the functional analog of noradrenaline, modulates many different behaviors and physiological processes in invertebrates. In the central nervous system, a few octopaminergic neurons project throughout the brain and innervate almost all neuropils. The center of memory formation in insects, the mushroom bodies, receive octopaminergic innervations in all insects investigated so far. Different octopamine receptors, either increasing or decreasing cAMP or calcium levels in the cell, are localized in Kenyon cells, further supporting the release of octopamine in the mushroom bodies. In addition, different mushroom body (MB) output neurons, projection neurons, and dopaminergic PAM cells are targets of octopaminergic neurons, enabling the modulation of learning circuits at different neural sites. For some years, the theory persisted that octopamine mediates rewarding stimuli, whereas dopamine (DA) represents aversive stimuli. This simple picture has been challenged by the finding that DA is required for both appetitive and aversive learning. Furthermore, octopamine is also involved in aversive learning and a rather complex interaction between these biogenic amines seems to modulate learning and memory. This review summarizes the role of octopamine in MB function, focusing on the anatomical principles and the role of the biogenic amine in learning and memory.
Collapse
Affiliation(s)
- Mareike Selcho
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Nonkhwao S, Rungsa P, Buraphaka H, Klaynongsruang S, Daduang J, Kornthong N, Daduang S. Characterization and Localization of Sol g 2.1 Protein from Solenopsis geminata Fire Ant Venom in the Central Nervous System of Injected Crickets ( Acheta domestica). Int J Mol Sci 2023; 24:14814. [PMID: 37834262 PMCID: PMC10573061 DOI: 10.3390/ijms241914814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Solenopsis geminata is recognized for containing the allergenic proteins Sol g 1, 2, 3, and 4 in its venom. Remarkably, Sol g 2.1 exhibits hydrophobic binding and has a high sequence identity (83.05%) with Sol i 2 from S. invicta. Notably, Sol g 2.1 acts as a mediator, causing paralysis in crickets. Given its structural resemblance and biological function, Sol g 2.1 may play a key role in transporting hydrophobic potent compounds, which induce paralysis by releasing the compounds through the insect's nervous system. To investigate this further, we constructed and characterized the recombinant Sol g 2.1 protein (rSol g 2.1), identified with LC-MS/MS. Circular dichroism spectroscopy was performed to reveal the structural features of the rSol g 2.1 protein. Furthermore, after treating crickets with S. geminata venom, immunofluorescence and immunoblotting results revealed that the Sol g 2.1 protein primarily localizes to the neuronal cell membrane of the brain and thoracic ganglia, with distribution areas related to octopaminergic neuron cell patterns. Based on protein-protein interaction predictions, we found that the Sol g 2.1 protein can interact with octopamine receptors (OctRs) in neuronal cell membranes, potentially mediating Sol g 2.1's localization within cricket central nervous systems. Here, we suggest that Sol g 2.1 may enhance paralysis in crickets by acting as carriers of active molecules and releasing them onto target cells through pH gradients. Future research should explore the binding properties of Sol g 2.1 with ligands, considering its potential as a transporter for active molecules targeting pest nervous systems, offering innovative pest control prospects.
Collapse
Affiliation(s)
- Siriporn Nonkhwao
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (P.R.); (H.B.)
| | - Prapenpuksiri Rungsa
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (P.R.); (H.B.)
| | - Hathairat Buraphaka
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (P.R.); (H.B.)
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jureerut Daduang
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand;
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (P.R.); (H.B.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
4
|
Wystrach A. Movements, embodiment and the emergence of decisions. Insights from insect navigation. Biochem Biophys Res Commun 2021; 564:70-77. [PMID: 34023071 DOI: 10.1016/j.bbrc.2021.04.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
We readily infer that animals make decisions, but what this implies is usually not clearly defined. The notion of 'decision-making' ultimately stems from human introspection, and is thus loaded with anthropomorphic assumptions. Notably, the decision is made internally, is based on information, and precedes the goal directed behaviour. Also, making a decision implies that 'something' did it, thus hints at the presence of a cognitive mind, whose existence is independent of the decision itself. This view may convey some truth, but here I take the opposite stance. Using examples from research in insect navigation, this essay highlights how apparent decisions can emerge without a brain, how actions can precede information or how sophisticated goal directed behaviours can be implemented without neural decisions. This perspective requires us to shake off the idea that behaviour is a consequence of the brain; and embrace the concept that movements arise from - as much as participate in - distributed interactions between various computational centres - including the body - that reverberate in closed-loop with the environment. From this perspective we may start to picture how a cognitive mind can be the consequence, rather than the cause, of such neural and body movements.
Collapse
Affiliation(s)
- Antoine Wystrach
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route deNarbonne, F-31062, Toulouse, France.
| |
Collapse
|
5
|
Kennedy A, Peng T, Glaser SM, Linn M, Foitzik S, Grüter C. Use of waggle dance information in honey bees is linked to gene expression in the antennae, but not in the brain. Mol Ecol 2021; 30:2676-2688. [PMID: 33742503 DOI: 10.1111/mec.15893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Communication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e., private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression differences in different parts of the nervous system. We trained bees to collect food from sugar water feeders and observed whether they utilize social or private information when exposed to dances for a new food source. We performed transcriptome analysis of four brain parts (11-16 bees per tissue type) critical for cognition: the subesophageal ganglion, the central brain, the mushroom bodies, and the antennal lobes but, unexpectedly, detected no differences between social or private information users. In contrast, we found 413 differentially expressed genes in the antennae, suggesting that variation in sensory perception mediates the decision to use social information. Social information users were characterized by the upregulation of biogenic amine genes, while private information users upregulated several genes coding for odour perception. These results highlight that decision-making in honey bees might also depend on peripheral processes of perception rather than higher-order brain centres of information integration.
Collapse
Affiliation(s)
- Anissa Kennedy
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tianfei Peng
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.,College of Plant Science, Jilin University, Changchun, China
| | - Simone M Glaser
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melissa Linn
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.,School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Stolz T, Diesner M, Neupert S, Hess ME, Delgado-Betancourt E, Pflüger HJ, Schmidt J. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects. J Neurophysiol 2019; 122:2388-2413. [DOI: 10.1152/jn.00196.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuromodulatory neurons located in the brain can influence activity in locomotor networks residing in the spinal cord or ventral nerve cords of invertebrates. How inputs to and outputs of neuromodulatory descending neurons affect walking activity is largely unknown. With the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunohistochemistry, we show that a population of dorsal unpaired median (DUM) neurons descending from the gnathal ganglion to thoracic ganglia of the stick insect Carausius morosus contains the neuromodulatory amine octopamine. These neurons receive excitatory input coupled to the legs’ stance phases during treadmill walking. Inputs did not result from connections with thoracic central pattern-generating networks, but, instead, most are derived from leg load sensors. In excitatory and inhibitory retractor coxae motor neurons, spike activity in the descending DUM (desDUM) neurons increased depolarizing reflexlike responses to stimulation of leg load sensors. In these motor neurons, descending octopaminergic neurons apparently functioned as components of a positive feedback network mainly driven by load-detecting sense organs. Reflexlike responses in excitatory extensor tibiae motor neurons evoked by stimulations of a femur-tibia movement sensor either are increased or decreased or were not affected by the activity of the descending neurons, indicating different functions of desDUM neurons. The increase in motor neuron activity is often accompanied by a reflex reversal, which is characteristic for actively moving animals. Our findings indicate that some descending octopaminergic neurons can facilitate motor activity during walking and support a sensory-motor state necessary for active leg movements. NEW & NOTEWORTHY We investigated the role of descending octopaminergic neurons in the gnathal ganglion of stick insects. The neurons become active during walking, mainly triggered by input from load sensors in the legs rather than pattern-generating networks. This report provides novel evidence that octopamine released by descending neurons on stimulation of leg sense organs contributes to the modulation of leg sensory-evoked activity in a leg motor control system.
Collapse
Affiliation(s)
- Thomas Stolz
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | - Max Diesner
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Susanne Neupert
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Martin E. Hess
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | | | - Hans-Joachim Pflüger
- Institute für Biologie und Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Joachim Schmidt
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Delahunt CB, Kutz JN. Putting a bug in ML: The moth olfactory network learns to read MNIST. Neural Netw 2019; 118:54-64. [PMID: 31228724 DOI: 10.1016/j.neunet.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
Abstract
We seek to (i) characterize the learning architectures exploited in biological neural networks for training on very few samples, and (ii) port these algorithmic structures to a machine learning context. The moth olfactory network is among the simplest biological neural systems that can learn, and its architecture includes key structural elements and mechanisms widespread in biological neural nets, such as cascaded networks, competitive inhibition, high intrinsic noise, sparsity, reward mechanisms, and Hebbian plasticity. These structural biological elements, in combination, enable rapid learning. MothNet is a computational model of the moth olfactory network, closely aligned with the moth's known biophysics and with in vivo electrode data collected from moths learning new odors. We assign this model the task of learning to read the MNIST digits. We show that MothNet successfully learns to read given very few training samples (1-10 samples per class). In this few-samples regime, it outperforms standard machine learning methods such as nearest-neighbors, support-vector machines, and neural networks (NNs), and matches specialized one-shot transfer-learning methods but without the need for pre-training. The MothNet architecture illustrates how algorithmic structures derived from biological brains can be used to build alternative NNs that may avoid the high training data demands of many current engineered NNs.
Collapse
Affiliation(s)
- Charles B Delahunt
- Department of Applied Mathematics, University of Washington, Seattle, United States; Computational Neuroscience Center, University of Washington, Seattle, United States.
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, United States.
| |
Collapse
|
8
|
Gu S, Wang F, Patel NP, Bourgeois JA, Huang JH. A Model for Basic Emotions Using Observations of Behavior in Drosophila. Front Psychol 2019; 10:781. [PMID: 31068849 PMCID: PMC6491740 DOI: 10.3389/fpsyg.2019.00781] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/21/2019] [Indexed: 01/21/2023] Open
Abstract
Emotion plays a crucial role, both in general human experience and in psychiatric illnesses. Despite the importance of emotion, the relative lack of objective methodologies to scientifically studying emotional phenomena limits our current understanding and thereby calls for the development of novel methodologies, such us the study of illustrative animal models. Analysis of Drosophila and other insects has unlocked new opportunities to elucidate the behavioral phenotypes of fundamentally emotional phenomena. Here we propose an integrative model of basic emotions based on observations of this animal model. The basic emotions are internal states that are modulated by neuromodulators, and these internal states are externally expressed as certain stereotypical behaviors, such as instinct, which is proposed as ancient mechanisms of survival. There are four kinds of basic emotions: happiness, sadness, fear, and anger, which are differentially associated with three core affects: reward (happiness), punishment (sadness), and stress (fear and anger). These core affects are analogous to the three primary colors (red, yellow, and blue) in that they are combined in various proportions to result in more complex “higher order” emotions, such as love and aesthetic emotion. We refer to our proposed model of emotions as called the “Three Primary Color Model of Basic Emotions.”
Collapse
Affiliation(s)
- Simeng Gu
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China.,Department of Psychology, Jiangsu University, Zhenjiang, China
| | - Nitesh P Patel
- College of Medicine, Texas A&M University, College Station, TX, United States
| | - James A Bourgeois
- College of Medicine, Texas A&M University, College Station, TX, United States.,Department of Psychiatry, Baylor Scott & White Health, Dallas, TX, United States
| | - Jason H Huang
- Department of Psychology, Jiangsu University, Zhenjiang, China.,College of Medicine, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Solari P, Sollai G, Masala C, Maccioni R, Crnjar R, Liscia A. Octopamine modulates the activity of motoneurons related to calling behavior in the gypsy moth Lymantria dispar. INSECT SCIENCE 2018; 25:797-808. [PMID: 29473996 DOI: 10.1111/1744-7917.12580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/31/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
A morphofunctional investigation of the different neuronal subpopulations projecting through each of the nerves IV-VI emerging bilaterally from the terminal abdominal ganglion (TAG) was correlated with the octopaminergic activity in the ganglion that controls the ovipositor movements associated with calling behavior in the female gypsy moth Lymantria dispar. Tetramethylrodamine-dextran backfills from nerve stumps resulted in a relatively low number of TAG projections, ranging from 12 to 13 for nerve pair IV, 12 to 14 for nerve pair V, and 8 to 9 for nerve pair VI. Furthermore, as assessed by electrophysiological recordings, a number of fibers within each of these nerves displays spontaneous tonic activity, also when the ganglion is fully disconnected from the ventral nerve cord (VNC). Octopamine (OA) applications to the TAG strongly enhanced the activity of these nerves, either by increasing the firing rate of a number of spontaneously firing units or by recruiting new ones. This octopaminergic activity affected calling behavior, and specifically the muscle activity leading to cycling extensions of the intersegmental membrane (IM) between segments VIII and IX (ovipositor). Our results indicate that in the female gypsy moth the octopaminergic neural activity of the TAG is coupled with extensions and retractions of IM for the purpose of releasing pheromone, where motor units innervated by nerve pair IV appear antagonistic with respect to those innervated by nerve pair V.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Carla Masala
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| | - Anna Liscia
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, CA, Italy
| |
Collapse
|
10
|
3D virtual histology at the host/parasite interface: visualisation of the master manipulator, Dicrocoelium dendriticum, in the brain of its ant host. Sci Rep 2018; 8:8587. [PMID: 29872086 PMCID: PMC5988677 DOI: 10.1038/s41598-018-26977-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/21/2018] [Indexed: 11/08/2022] Open
Abstract
Some parasites are able to manipulate the behaviour of their hosts to their own advantage. One of the most well-established textbook examples of host manipulation is that of the trematode Dicrocoelium dendriticum on ants, its second intermediate host. Infected ants harbour encysted metacercariae in the gaster and a non-encysted metacercaria in the suboesophageal ganglion (SOG); however, the mechanisms that D. dendriticum uses to manipulate the ant behaviour remain unknown, partly because of a lack of a proper and direct visualisation of the physical interface between the parasite and the ant brain tissue. Here we provide new insights into the potential mechanisms that this iconic manipulator uses to alter its host's behaviour by characterising the interface between D. dendriticum and the ant tissues with the use of non-invasive micro-CT scanning. For the first time, we show that there is a physical contact between the parasite and the ant brain tissue at the anteriormost part of the SOG, including in a case of multiple brain infection where only the parasite lodged in the most anterior part of the SOG was in contact with the ant brain tissue. We demonstrate the potential of micro-CT to further understand other parasite/host systems in parasitological research.
Collapse
|
11
|
Stocker B, Bochow C, Damrau C, Mathejczyk T, Wolfenberg H, Colomb J, Weber C, Ramesh N, Duch C, Biserova NM, Sigrist S, Pflüger HJ. Structural and Molecular Properties of Insect Type II Motor Axon Terminals. Front Syst Neurosci 2018; 12:5. [PMID: 29615874 PMCID: PMC5867341 DOI: 10.3389/fnsys.2018.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 11/25/2022] Open
Abstract
A comparison between the axon terminals of octopaminergic efferent dorsal or ventral unpaired median neurons in either desert locusts (Schistocerca gregaria) or fruit flies (Drosophila melanogaster) across skeletal muscles reveals many similarities. In both species the octopaminergic axon forms beaded fibers where the boutons or varicosities form type II terminals in contrast to the neuromuscular junction (NMJ) or type I terminals. These type II terminals are immunopositive for both tyramine and octopamine and, in contrast to the type I terminals, which possess clear synaptic vesicles, only contain dense core vesicles. These dense core vesicles contain octopamine as shown by immunogold methods. With respect to the cytomatrix and active zone peptides the type II terminals exhibit active zone-like accumulations of the scaffold protein Bruchpilot (BRP) only sparsely in contrast to the many accumulations of BRP identifying active zones of NMJ type I terminals. In the fruit fly larva marked dynamic changes of octopaminergic fibers have been reported after short starvation which not only affects the formation of new branches (“synaptopods”) but also affects the type I terminals or NMJs via octopamine-signaling (Koon et al., 2011). Our starvation experiments of Drosophila-larvae revealed a time-dependency of the formation of additional branches. Whereas after 2 h of starvation we find a decrease in “synaptopods”, the increase is significant after 6 h of starvation. In addition, we provide evidence that the release of octopamine from dendritic and/or axonal type II terminals uses a similar synaptic machinery to glutamate release from type I terminals of excitatory motor neurons. Indeed, blocking this canonical synaptic release machinery via RNAi induced downregulation of BRP in neurons with type II terminals leads to flight performance deficits similar to those observed for octopamine mutants or flies lacking this class of neurons (Brembs et al., 2007).
Collapse
Affiliation(s)
- Bettina Stocker
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Christina Bochow
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Christine Damrau
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Thomas Mathejczyk
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Heike Wolfenberg
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Julien Colomb
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Claudia Weber
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Niraja Ramesh
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Carsten Duch
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Natalia M Biserova
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Stephan Sigrist
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
12
|
Lizbinski KM, Dacks AM. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing. Front Cell Neurosci 2018; 11:424. [PMID: 29375314 PMCID: PMC5767172 DOI: 10.3389/fncel.2017.00424] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/18/2017] [Indexed: 12/03/2022] Open
Abstract
Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a “memory” by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.
Collapse
Affiliation(s)
- Kristyn M Lizbinski
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
13
|
Hartenstein V, Omoto JJ, Ngo KT, Wong D, Kuert PA, Reichert H, Lovick JK, Younossi-Hartenstein A. Structure and development of the subesophageal zone of the Drosophila brain. I. Segmental architecture, compartmentalization, and lineage anatomy. J Comp Neurol 2018; 526:6-32. [PMID: 28730682 PMCID: PMC5963519 DOI: 10.1002/cne.24287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023]
Abstract
The subesophageal zone (SEZ) of the Drosophila brain houses the circuitry underlying feeding behavior and is involved in many other aspects of sensory processing and locomotor control. Formed by the merging of four neuromeres, the internal architecture of the SEZ can be best understood by identifying segmentally reiterated landmarks emerging in the embryo and larva, and following the gradual changes by which these landmarks become integrated into the mature SEZ during metamorphosis. In previous works, the system of longitudinal fibers (connectives) and transverse axons (commissures) has been used as a scaffold that provides internal landmarks for the neuromeres of the larval ventral nerve cord. We have extended the analysis of this scaffold to the SEZ and, in addition, reconstructed the tracts formed by lineages and nerves in relationship to the connectives and commissures. As a result, we establish reliable criteria that define boundaries between the four neuromeres (tritocerebrum, mandibular neuromere, maxillary neuromere, labial neuromere) of the SEZ at all stages of development. Fascicles and lineage tracts also demarcate seven columnar neuropil domains (ventromedial, ventro-lateral, centromedial, central, centrolateral, dorsomedial, dorsolateral) identifiable throughout development. These anatomical subdivisions, presented in the form of an atlas including confocal sections and 3D digital models for the larval, pupal and adult stage, allowed us to describe the morphogenetic changes shaping the adult SEZ. Finally, we mapped MARCM-labeled clones of all secondary lineages of the SEZ to the newly established neuropil subdivisions. Our work will facilitate future studies of function and comparative anatomy of the SEZ.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jaison J. Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathy T. Ngo
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Darren Wong
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | - Jennifer K. Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Zhao XC, Chen QY, Guo P, Xie GY, Tang QB, Guo XR, Berg BG. Glomerular identification in the antennal lobe of the male mothHelicoverpa armigera. J Comp Neurol 2016; 524:2993-3013. [DOI: 10.1002/cne.24003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Qiu-Yan Chen
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Pei Guo
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Gui-Ying Xie
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Qing-Bo Tang
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Xian-Ru Guo
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
- Collaborative Innovation Center of Henan Grain Crops; Zhengzhou 450002 China
| | - Bente G. Berg
- Department of Psychology; Norwegian University of Science and Technology; Trondheim 7489 Norway
| |
Collapse
|
15
|
Bradley SP, Chapman PD, Lizbinski KM, Daly KC, Dacks AM. A Flight Sensory-Motor to Olfactory Processing Circuit in the Moth Manduca sexta. Front Neural Circuits 2016; 10:5. [PMID: 26909026 PMCID: PMC4754697 DOI: 10.3389/fncir.2016.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/25/2016] [Indexed: 12/02/2022] Open
Abstract
Neural circuits projecting information from motor to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir) neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL) glomeruli. Furthermore, within the AL we show that the M. sexta histamine B receptor (MsHisClB) is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight.
Collapse
Affiliation(s)
- Samual P Bradley
- Department of Biology, West Virginia University, Morgantown WV, USA
| | | | | | - Kevin C Daly
- Department of Biology, West Virginia University, Morgantown WV, USA
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown WV, USA
| |
Collapse
|
16
|
Hillier NK, Kavanagh RMB. Differential Octopaminergic Modulation of Olfactory Receptor Neuron Responses to Sex Pheromones in Heliothis virescens. PLoS One 2015; 10:e0143179. [PMID: 26650832 PMCID: PMC4674078 DOI: 10.1371/journal.pone.0143179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
Octopamine is an important neuromodulator of neural function in invertebrates. Octopamine increases male moth sensitivity to female sex pheromones, however, relatively little is known as to the role of octopamine in the female olfactory system, nor its possible effects on the reception of non-pheromone odorants. The purpose of this study was to determine relative effects of octopamine on the sensitivity of the peripheral olfactory system in male and female Heliothis virescens. Single sensillum recording was conducted in both sexes following injection with octopamine or Ringer solution, and during odorant stimulation with conspecific female sex pheromone or host plant volatiles. Results indicate that octopamine plays a significant modulatory role in female sex pheromone detection in female moths; and that male and female pheromone detection neurons share distinct pharmacological and physiological similarities in H. virescens despite sexual dimorphism at the antennal level.
Collapse
Affiliation(s)
- N. Kirk Hillier
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia, B4P 2R6, Canada
- * E-mail:
| | - Rhys M. B. Kavanagh
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia, B4P 2R6, Canada
| |
Collapse
|
17
|
Reisenman CE, Riffell JA. The neural bases of host plant selection in a Neuroecology framework. Front Physiol 2015; 6:229. [PMID: 26321961 PMCID: PMC4532911 DOI: 10.3389/fphys.2015.00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of “Neuroecology” seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California Berkeley, CA, USA
| | | |
Collapse
|
18
|
Schendzielorz T, Schirmer K, Stolte P, Stengl M. Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta. PLoS One 2015; 10:e0121230. [PMID: 25785721 PMCID: PMC4364694 DOI: 10.1371/journal.pone.0121230] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 01/01/2023] Open
Abstract
The biogenic amine octopamine (OA) mediates reward signals in olfactory learning and memory as well as circadian rhythms of sleep and activity. In the crepuscular hawkmoth Manduca sexta, OA changed pheromone detection thresholds daytime-dependently, suggesting that OA confers circadian control of olfactory transduction. Thus, with enzyme-linked immunosorbent assays we searched hawkmoth antennae for daytime-dependent changes in the concentration of OA and its respective second messengers. Antennal stimulation with OA raised cAMP- and IP3 levels. Furthermore, antennae expressed daytime-dependent changes in the concentration of OA, with maxima at Zeitgebertime (ZT) 20 when moths were active and also maximal concentrations of cAMP occurred. Maximal IP3 levels at ZT 18 and 23 correlated with maximal flight activity of male moths, while minimal IP3 levels at dusk correlated with peaks of feeding activity. Half maximal effective concentration (EC50) for activation of the OA-receptor decreased during the moth’s activity phase suggesting daytime-dependent changes in OA receptor sensitivity. With an antiserum against tyramine, the precursor of OA, two centrifugal neurons were detected projecting out into the sensory cell layer of the antenna, possibly mediating more rapid stimulus-dependent OA actions. Indeed, in fast kinetic assays OA receptor stimulation increased cAMP concentrations within 50 msec. Thus, we hypothesize that fast, stimulus-dependent centrifugal control of OA-release in the antenna occurs. Additional slow systemic OA actions might be based upon circadian release of OA into the hemolymph mediating circadian rhythms of antennal second messenger levels. The resulting rhythms of odor sensitivity are suggested to underlie circadian rhythms in odor-mediated behavior.
Collapse
Affiliation(s)
| | - Katja Schirmer
- University of Kassel, Biology, Animal Physiology, 34132, Kassel, Germany
| | - Paul Stolte
- University of Kassel, Biology, Animal Physiology, 34132, Kassel, Germany
| | - Monika Stengl
- University of Kassel, Biology, Animal Physiology, 34132, Kassel, Germany
- * E-mail:
| |
Collapse
|
19
|
Liu Y, Cao Z, Zhang L, Li Y, Tan G, Wang B, Gao X. Monoclonal antibody-based immunoassay for analysis of octopamine in housefly. Monoclon Antib Immunodiagn Immunother 2014; 33:275-9. [PMID: 25171008 DOI: 10.1089/mab.2014.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Octopamine (OA) is one of the biogenic monoamines in the housefly, which acts as an important neurohormone in the physiological process of this pest. In this study, a new hapten of OA was synthesized via aldol condensation. With the hapten, monoclonal antibodies (MAb) were generated and their characterizations were investigated. An indirect competitive enzyme-linked immunosorbent assay (icELISA) based on MAb 3C11-E3 was established, which required simple sample pre-treatments and had low cross-reactivity with OA structural analogise. The half maximal inhibition concentration (IC50) and the detected range (IC20-IC80) of the icELISA were 128 ng/mL and 12-1438 ng/mL, respectively. Average recoveries of OA ranged from 73 to 129% in the housefly.
Collapse
Affiliation(s)
- Yujing Liu
- College of Agronomy and Biotechnology, China Agricultural University , Beijing, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Haverkamp A, Smid HM. Octopamine-like immunoreactive neurons in the brain and subesophageal ganglion of the parasitic wasps Nasonia vitripennis and N. giraulti. Cell Tissue Res 2014; 358:313-29. [PMID: 25107606 DOI: 10.1007/s00441-014-1960-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/03/2014] [Indexed: 10/24/2022]
Abstract
Octopamine is an important neuromodulator in the insect nervous system, influencing memory formation, sensory perception and motor control. In this study, we compare the distribution of octopamine-like immunoreactive neurons in two parasitic wasp species of the Nasonia genus, N. vitripennis and N. giraulti. These two species were previously described as differing in their learning and memory formation, which raised the question as to whether morphological differences in octopaminergic neurons underpinned these variations. Immunohistochemistry in combination with confocal laser scanning microscopy was used to reveal and compare the somata and major projections of the octopaminergic neurons in these wasps. The brains of both species showed similar staining patterns, with six different neuron clusters being identified in the brain and five different clusters in the subesophageal ganglion. Of those clusters found in the subesophageal ganglion, three contained unpaired neurons, whereas the other three consisted in paired neurons. The overall pattern of octopaminergic neurons in both species was similar, with no differences in the numbers or projections of the ventral unpaired median (VUM) neurons, which are known to be involved in memory formation in insects. In one other cluster in the brain, located in-between the optic lobe and the antennal lobe, we detected more neurons in N. vitripennis compared with N. giraulti. Combining our results with findings made previously in other Hymenopteran species, we discuss possible functions and some of the ultimate factors influencing the evolution of the octopaminergic system in the insect brain.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, The Netherlands
| | | |
Collapse
|
21
|
Fusca D, Husch A, Baumann A, Kloppenburg P. Choline acetyltransferase-like immunoreactivity in a physiologically distinct subtype of olfactory nonspiking local interneurons in the cockroach (periplaneta americana). J Comp Neurol 2014; 521:3556-69. [PMID: 23749599 DOI: 10.1002/cne.23371] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 11/10/2022]
Abstract
Behavioral and physiological studies have shown that local interneurons are pivotal for processing odor information in the insect antennal lobe. They mediate inhibitory and excitatory interactions between the glomerular pathways and ultimately shape the tuning profile of projection neurons. To identify putative cholinergic local interneurons in the antennal lobe of Periplaneta americana, an antibody raised against the biosynthetic enzyme choline acetyltransferase (ChAT) was applied to individual morphologically and electrophysiologically characterized local interneurons. In nonspiking type IIa1 local interneurons, which were classified in this study, we found ChAT-like immunoreactivity suggesting that they are most likely excitatory. This is a well-defined population of neurons that generates Ca(2+) -driven spikelets upon depolarization and stimulation with odorants, but not Na(+) -driven action potentials, because they lack voltage-activated transient Na(+) currents. The nonspiking type IIa2 and type IIb local interneurons, in which Ca(2+) -driven spikelets were absent, had no ChAT-like immunoreactivity. The GABA-like immunoreactive, spiking type I local interneurons had no ChAT-like immunoreactivity. In addition, we showed that uniglomerular projection neurons with cell bodies located in the ventral portion of the ventrolateral somata group and projections along the inner antennocerebral tract exhibited ChAT-like immunoreactivity. Assigning potential transmitters and neuromodulators to distinct morphological and electrophysiological types of antennal lobe neurons is an important prerequisite for a detailed understanding of odor information processing in insects.
Collapse
Affiliation(s)
- Debora Fusca
- Biocenter, Institute for Zoology, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany
| | | | | | | |
Collapse
|
22
|
Zhao XC, Pfuhl G, Surlykke A, Tro J, Berg BG. A multisensory centrifugal neuron in the olfactory pathway of heliothine moths. J Comp Neurol 2013; 521:152-68. [PMID: 22684993 DOI: 10.1002/cne.23166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/21/2011] [Accepted: 06/05/2012] [Indexed: 11/07/2022]
Abstract
We have characterized, by intracellular recording and staining, a unique type of centrifugal neuron in the brain olfactory center of two heliothine moth species; one in Heliothis virescens and one in Helicoverpa armigera. This unilateral neuron, which is not previously described in any moth, has fine processes in the dorsomedial region of the protocerebrum and extensive neuronal branches with blebby terminals in all glomeruli of the antennal lobe. Its soma is located dorsally of the central body close to the brain midline. Mass-fills of antennal-lobe connections with protocerebral regions showed that the centrifugal neuron is, in each brain hemisphere, one within a small group of neurons having their somata clustered. In both species the neuron was excited during application of non-odorant airborne signals, including transient sound pulses of broad bandwidth and air velocity changes. Additional responses to odors were recorded from the neuron in Heliothis virescens. The putative biological significance of the centrifugal antennal-lobe neuron is discussed with regard to its morphological and physiological properties. In particular, a possible role in multisensory processes underlying the moth's ability to adapt its odor-guided behaviors according to the sound of an echo-locating bat is considered.
Collapse
Affiliation(s)
- Xin-Cheng Zhao
- Department of Psychology, Neuroscience Unit, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
23
|
Context-dependent olfactory learning monitored by activities of salivary neurons in cockroaches. Neurobiol Learn Mem 2012; 97:30-6. [DOI: 10.1016/j.nlm.2011.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/05/2011] [Accepted: 08/19/2011] [Indexed: 11/22/2022]
|
24
|
Rigby LM, Merritt DJ. Roles of biogenic amines in regulating bioluminescence in the Australian glowworm Arachnocampa flava. J Exp Biol 2011; 214:3286-93. [DOI: 10.1242/jeb.060509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SUMMARY
The glowworm Arachnocampa flava is a carnivorous fly larva (Diptera) that uses light to attract prey into its web. The light organ is derived from cells of the Malpighian tubules, representing a bioluminescence system that is unique to the genus. Bioluminescence is modulated through the night although light levels change quite slowly compared with the flashing of the better-known fireflies (Coleoptera). The existing model for the neural regulation of bioluminescence in Arachnocampa, based on use of anaesthetics and ligations, is that bioluminescence is actively repressed during the non-glowing phase and the repression is partially released during the bioluminescence phase. The effect of the anaesthetic, carbon dioxide, on the isolated light organ from the present study indicates that the repression is at least partially mediated at the light organ itself rather than less directly through the central nervous system. Blocking of neural signals from the central nervous system through ligation leads to uncontrolled release of bioluminescence but light is emitted at relatively low levels compared with under anaesthesia. Candidate biogenic amines were introduced by several methods: feeding prey items injected with test solution, injecting the whole larva, injecting a ligated section containing the light organ or bathing the isolated light organ in test solution. Using these methods, dopamine, serotonin and tyramine do not affect bioluminescence output. Exposure to elevated levels of octopamine via feeding, injection or bathing of the isolated light organ indicates that it is involved in the regulation of repression. Administration of the octopamine antagonists phentolamine or mianserin results in very high bioluminescence output levels, similar to the effect of anaesthetics, but only mianserin acts directly on the light organ.
Collapse
Affiliation(s)
- Lisa M. Rigby
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Merritt
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
25
|
Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, Lei H, Hildebrand JG. The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 2011; 95:427-47. [PMID: 21963552 DOI: 10.1016/j.pneurobio.2011.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/10/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
The simplicity and accessibility of the olfactory systems of insects underlie a body of research essential to understanding not only olfactory function but also general principles of sensory processing. As insect olfactory neurobiology takes advantage of a variety of species separated by millions of years of evolution, the field naturally has yielded some conflicting results. Far from impeding progress, the varieties of insect olfactory systems reflect the various natural histories, adaptations to specific environments, and the roles olfaction plays in the life of the species studied. We review current findings in insect olfactory neurobiology, with special attention to differences among species. We begin by describing the olfactory environments and olfactory-based behaviors of insects, as these form the context in which neurobiological findings are interpreted. Next, we review recent work describing changes in olfactory systems as adaptations to new environments or behaviors promoting speciation. We proceed to discuss variations on the basic anatomy of the antennal (olfactory) lobe of the brain and higher-order olfactory centers. Finally, we describe features of olfactory information processing including gain control, transformation between input and output by operations such as broadening and sharpening of tuning curves, the role of spiking synchrony in the antennal lobe, and the encoding of temporal features of encounters with an odor plume. In each section, we draw connections between particular features of the olfactory neurobiology of a species and the animal's life history. We propose that this perspective is beneficial for insect olfactory neurobiology in particular and sensory neurobiology in general.
Collapse
Affiliation(s)
- Joshua P Martin
- Department of Neuroscience, College of Science, University of Arizona, 1040 East Fourth Street, Tucson, AZ 85721-0077, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Riffell JA. The Neuroecology of a Pollinator's Buffet: Olfactory Preferences and Learning in Insect Pollinators. Integr Comp Biol 2011; 51:781-93. [DOI: 10.1093/icb/icr094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
|
28
|
Sinakevitch I, Mustard JA, Smith BH. Distribution of the octopamine receptor AmOA1 in the honey bee brain. PLoS One 2011; 6:e14536. [PMID: 21267078 PMCID: PMC3022584 DOI: 10.1371/journal.pone.0014536] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 12/01/2010] [Indexed: 11/19/2022] Open
Abstract
Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera) octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma) and medial (beta) lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions) and olfactory (lip and inner basal ring region) calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons.
Collapse
Affiliation(s)
- Irina Sinakevitch
- Arizona State University, School of Life Sciences, Tempe, Arizona, United States of America
| | - Julie A. Mustard
- Arizona State University, School of Life Sciences, Tempe, Arizona, United States of America
| | - Brian H. Smith
- Arizona State University, School of Life Sciences, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
29
|
Dacks AM, Nighorn AJ. The organization of the antennal lobe correlates not only with phylogenetic relationship, but also life history: a Basal hymenopteran as exemplar. Chem Senses 2010; 36:209-20. [PMID: 21059697 DOI: 10.1093/chemse/bjq121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structure of the brain is a consequence of selective pressures and the ancestral brain structures modified by those pressures. The Hymenoptera are one of the most behaviorally complex insect orders, and the olfactory system of honeybees (one of the most derived members) has been extensively studied. To understand the context in which the olfactory system of the Hymenoptera evolved, we performed a variety of immunocytochemical and anatomical labeling techniques on the antennal lobes (ALs) of one of its most primitive members, the sawflies, to provide a comparison between the honeybee and other insect model species. The olfactory receptor neurons project from the antennae to fill the entire glomerular volume but do not form distinct tracts as in the honeybee. Labeling of projection neurons revealed 5 output tracts similar to those in moths and immunolabeling for several transmitters revealed distinct populations of local interneurons and centrifugal neurons that were also similar to moths. There were, however, no histaminergic or dopaminergic AL neurons. The similarities between sawflies and moths suggest that along with the great radiation and increased complexity of behavioral repertoire of the Hymenoptera, there were extensive modifications of AL structure.
Collapse
Affiliation(s)
- Andrew M Dacks
- Department of Neuroscience, The University of Arizona, 1040 East 4th Street, Tucson, AZ 85721, USA.
| | | |
Collapse
|
30
|
Certel SJ, Leung A, Lin CY, Perez P, Chiang AS, Kravitz EA. Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males. PLoS One 2010; 5:e13248. [PMID: 20967276 PMCID: PMC2953509 DOI: 10.1371/journal.pone.0013248] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/05/2010] [Indexed: 11/18/2022] Open
Abstract
Situations requiring rapid decision-making in response to dynamic environmental demands occur repeatedly in natural environments. Neuromodulation can offer important flexibility to the output of neural networks in coping with changing conditions, but the contribution of individual neuromodulatory neurons in social behavior networks remains relatively unknown. Here we manipulate the Drosophila octopaminergic system and assay changes in adult male decision-making in courtship and aggression paradigms. When the functional state of OA neural circuits is enhanced, males exhibit elevated courtship behavior towards other males in both behavioral contexts. Eliminating the expression of the male form of the neural sex determination factor, Fruitless (Fru(M)), in three OA suboesophageal ganglia (SOG) neurons also leads to increased male-male courtship behavior in these same contexts. We analyzed the fine anatomical structure through confocal examination of labeled single neurons to determine the arborization patterns of each of the three Fru(M)-positive OA SOG neurons. These neurons send processes that display mirror symmetric, widely distributed arbors of endings within brain regions including the ventrolateral protocerebra, the SOG and the peri-esophageal complex. The results suggest that a small subset of OA neurons have the potential to provide male selective modulation of behavior at a single neuron level.
Collapse
Affiliation(s)
- Sarah J Certel
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
31
|
Duportets L, Barrozo RB, Bozzolan F, Gaertner C, Anton S, Gadenne C, Debernard S. Cloning of an octopamine/tyramine receptor and plasticity of its expression as a function of adult sexual maturation in the male moth Agrotis ipsilon. INSECT MOLECULAR BIOLOGY 2010; 19:489-499. [PMID: 20491982 DOI: 10.1111/j.1365-2583.2010.01009.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the male moth Agrotis ipsilon behavioural response and antennal lobe (AL) neuron sensitivity to the female-produced sex pheromone increase with age and juvenile hormone (JH) level. We recently showed that the neuromodulator, octopamine (OA), interacts with JH in this age-dependent olfactory plasticity. To further elucidate its role, we cloned a full cDNA encoding a protein that presents biochemical features essential to OA/tyramine receptor (AipsOAR/TAR) function. The AipsOAR/TAR transcript was detected predominantly in the antennae, the brain and, more specifically, in ALs where its expression level varied concomitantly with age. This expression plasticity indicates that AipsOAR/TAR might be involved in central processing of the pheromone signal during maturation of sexual behaviour in A. ipsilon.
Collapse
Affiliation(s)
- L Duportets
- UMR 1272, UPMC-INRA, Physiologie de l'Insecte: Signalisation et Communication, Université Paris VI, Bât A, 7 quai Saint Bernard, Paris, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger HJ, Blenau W, Broeck JV. The role of octopamine in locusts and other arthropods. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:854-867. [PMID: 20621695 DOI: 10.1016/j.jinsphys.2010.05.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 05/29/2023]
Abstract
The biogenic amine octopamine and its biological precursor tyramine are thought to be the invertebrate functional homologues of the vertebrate adrenergic transmitters. Octopamine functions as a neuromodulator, neurotransmitter and neurohormone in insect nervous systems and prompts the whole organism to "dynamic action". A growing number of studies suggest a prominent role for octopamine in modulating multiple physiological and behavioural processes in invertebrates, as for example the phase transition in Schistocerca gregaria. Both octopamine and tyramine exert their effects by binding to specific receptor proteins that belong to the superfamily of G protein-coupled receptors. Since these receptors do not appear to be present in vertebrates, they may present very suitable and specific insecticide and acaricide targets.
Collapse
Affiliation(s)
- Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
Verlinden H, Vleugels R, Marchal E, Badisco L, Tobback J, Pflüger HJ, Blenau W, Vanden Broeck J. The cloning, phylogenetic relationship and distribution pattern of two new putative GPCR-type octopamine receptors in the desert locust (Schistocerca gregaria). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:868-875. [PMID: 20223248 DOI: 10.1016/j.jinsphys.2010.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 05/28/2023]
Abstract
The biogenic amine octopamine functions as a neuromodulator, neurotransmitter and neurohormone in insect nervous systems. It plays a prominent role in modulating multiple physiological and behavioural processes in invertebrates. Octopamine exerts its effects by binding to specific receptor proteins that belong to the superfamily of G protein-coupled receptors. We found two partial sequences of putative octopamine receptors in the desert locust Schistocerca gregaria (SgOctalphaR and SgOctbetaR) and investigated their transcript levels in males and females of both phases and during the transition between long-term solitarious and gregarious locusts. The transcript levels of SgOctalphaR are the highest in the central nervous system, whereas those of SgOctbetaR are the highest in the flight muscles, followed by the central nervous system. Both SgOctalphaR and SgOctbetaR show higher transcript levels in long-term gregarious locusts as compared to solitarious ones. The rise of SgOctbetaR transcript levels already appears during the first 4h of gregarisation, during which also the behavioural changes take place.
Collapse
Affiliation(s)
- Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gal R, Libersat F. A wasp manipulates neuronal activity in the sub-esophageal ganglion to decrease the drive for walking in its cockroach prey. PLoS One 2010; 5:e10019. [PMID: 20383324 PMCID: PMC2850919 DOI: 10.1371/journal.pone.0010019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/11/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey's cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile 'zombie', incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors. METHODOLOGY AND PRINCIPAL FINDINGS We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls. CONCLUSIONS AND SIGNIFICANCE We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach's drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the parasitoid Jewel Wasp selectively manipulates the cockroach's motivation to initiate walking without interfering with other non-related behaviors.
Collapse
Affiliation(s)
- Ram Gal
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- * E-mail: (RG); (FL)
| | - Frederic Libersat
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Institut de Neurobiologie de la Méditerranée INSERM U901, Université de la Méditerranée, Parc Scientifique de Luminy, Marseille, France
- * E-mail: (RG); (FL)
| |
Collapse
|
35
|
Martínez-Rubio C, Serrano GE, Miller MW. Octopamine promotes rhythmicity but not synchrony in a bilateral pair of bursting motor neurons in the feeding circuit of Aplysia. J Exp Biol 2010; 213:1182-94. [PMID: 20228355 PMCID: PMC2837736 DOI: 10.1242/jeb.040378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2009] [Indexed: 11/20/2022]
Abstract
Octopamine-like immunoreactivity was localized to a limited number (<40) of neurons in the Aplysia central nervous system, including three neurons in the paired buccal ganglia (BG) that control feeding movements. Application of octopamine (OA) to the BG circuit produced concentration-dependent (10(-8)-10(-4) mol l(-1)) modulatory actions on the spontaneous burst activity of the bilaterally paired B67 pharyngeal motor neurons (MNs). OA increased B67's burst duration and the number of impulses per burst. These effects reflected actions of OA on the intrinsic tetrodotoxin-resistant driver potential (DP) that underlies B67 bursting. In addition to its effects on B67's burst parameters, OA also increased the rate and regularity of burst timing. Although the bilaterally paired B67 MNs both exhibited rhythmic bursting in the presence of OA, they did not become synchronized. In this respect, the response to OA differed from that of dopamine, another modulator of the feeding motor network, which produces both rhythmicity and synchrony of bursting in the paired B67 neurons. It is proposed that modulators can regulate burst synchrony of MNs by exerting a dual control over their intrinsic rhythmicity and their reciprocal capacity to generate membrane potential perturbations. In this simple system, dopaminergic and octopaminergic modulation could influence whether pharyngeal contractions occur in a bilaterally synchronous or asynchronous fashion.
Collapse
Affiliation(s)
- C. Martínez-Rubio
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd del Valle, San Juan, 00901, Puerto Rico
| | | | - M. W. Miller
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd del Valle, San Juan, 00901, Puerto Rico
| |
Collapse
|
36
|
Cholewa J, Pflüger HJ. Descending unpaired median neurons with bilaterally symmetrical axons in the suboesophageal ganglion of Manduca sexta larvae. ZOOLOGY 2009; 112:251-62. [DOI: 10.1016/j.zool.2008.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/09/2008] [Accepted: 10/10/2008] [Indexed: 11/15/2022]
|
37
|
Jarriault D, Barrozo RB, de Carvalho Pinto CJ, Greiner B, Dufour MC, Masante-Roca I, Gramsbergen JB, Anton S, Gadenne C. Age-dependent plasticity of sex pheromone response in the moth, Agrotis ipsilon: combined effects of octopamine and juvenile hormone. Horm Behav 2009; 56:185-91. [PMID: 19409391 DOI: 10.1016/j.yhbeh.2009.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/20/2009] [Accepted: 04/23/2009] [Indexed: 11/28/2022]
Abstract
Male moths use sex pheromones to find their mating partners. In the moth, Agrotis ipsilon, the behavioral response and the neuron sensitivity within the primary olfactory centre, the antennal lobe (AL), to sex pheromone increase with age and juvenile hormone (JH) biosynthesis. By manipulating the JH level, we previously showed that JH controls this age-dependent neuronal plasticity, and that its effects are slow (within 2 days). We hypothesized that the hormonal effect might be indirect, and one neuromodulator candidate, which might serve as a mediator, is octopamine (OA). Here, we studied the effects of OA and an OA receptor antagonist, mianserin, on behavioral and AL neuron responses of mature and immature males during stimulation with sex pheromone. Our results indicate that, although OA injections enhanced the behavioral pheromone response in mature males, OA had no significant effect on behavior in immature males. However, mianserin injections decreased the behavioral response in mature males. AL neuron sensitivity increased after OA treatment in immature males, and decreased after mianserin treatment in mature males. Determination of OA levels in ALs of immature and mature males did not reveal any difference. To study the possible interactive effects of JH and OA, the behavioral pheromone response was analyzed in JH-deprived mature males injected with OA, and in immature males injected with fenoxycarb, a JH agonist, and mianserin. Results show that both JH and OA are necessary to elicit a behavioral response of A. ipsilon males to sex pheromone.
Collapse
Affiliation(s)
- David Jarriault
- INRA, UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Busch S, Selcho M, Ito K, Tanimoto H. A map of octopaminergic neurons in the Drosophila brain. J Comp Neurol 2009; 513:643-67. [PMID: 19235225 DOI: 10.1002/cne.21966] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biogenic amine octopamine modulates diverse behaviors in invertebrates. At the single neuron level, the mode of action is well understood in the peripheral nervous system owing to its simple structure and accessibility. For elucidating the role of individual octopaminergic neurons in the modulation of complex behaviors, a detailed analysis of the connectivity in the central nervous system is required. Here we present a comprehensive anatomical map of candidate octopaminergic neurons in the adult Drosophila brain: including the supra- and subesophageal ganglia. Application of the Flp-out technique enabled visualization of 27 types of individual octopaminergic neurons. Based on their morphology and distribution of genetic markers, we found that most octopaminergic neurons project to multiple brain structures with a clear separation of dendritic and presynaptic regions. Whereas their major dendrites are confined to specific brain regions, each cell type targets different, yet defined, neuropils distributed throughout the central nervous system. This would allow them to constitute combinatorial modules assigned to the modulation of distinct neuronal processes. The map may provide an anatomical framework for the functional constitution of the octopaminergic system. It also serves as a model for the single-cell organization of a particular neurotransmitter in the brain.
Collapse
Affiliation(s)
- Sebastian Busch
- Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Germany
| | | | | | | |
Collapse
|
39
|
Tyramine as an independent transmitter and a precursor of octopamine in the locust central nervous system: An immunocytochemical study. J Comp Neurol 2009; 512:433-52. [DOI: 10.1002/cne.21911] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Brigaud I, Grosmaître X, François MC, Jacquin-Joly E. Cloning and expression pattern of a putative octopamine/tyramine receptor in antennae of the noctuid moth Mamestra brassicae. Cell Tissue Res 2008; 335:455-63. [PMID: 19034524 DOI: 10.1007/s00441-008-0722-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/10/2008] [Indexed: 11/26/2022]
Abstract
In insects, biogenic amines have been shown to play an important role in olfactory plasticity. In a first attempt to decipher the underlying molecular mechanisms, we report the molecular cloning and precise expression pattern of a newly identified octopamine/tyramine-receptor-encoding gene in the antennae of the noctuid moth Mamestra brassicae (MbraOAR/TAR). A full-length cDNA has been obtained through homology cloning in combination with rapid amplification of cDNA ends/polymerase chain reaction; the deduced protein exhibits high identities with previously identified octopamine/tyramine receptors in other moths. In situ hybridization within the antennae has revealed that MbraOAR/TAR is expressed at the bases of both pheromone-sensitive and non-sensitive olfactory sensilla and in cells with a neurone-like shape. In accordance with previous physiological studies that have revealed a role of biogenic amines in the electrical activity of the receptor neurones, our results suggest that biogenic amines (either octopamine or tyramine) target olfactory receptor neurones to modulate olfactory coding as early as the antennal level.
Collapse
Affiliation(s)
- Isabelle Brigaud
- INRA, UMR 1272 INRA-UPMC-AgroParisTech PISC Physiologie de l'Insecte: Signalisation et Communication, Route de Saint-Cyr, 78000 Versailles, France
| | | | | | | |
Collapse
|
41
|
Ito I, Ong RCY, Raman B, Stopfer M. Sparse odor representation and olfactory learning. Nat Neurosci 2008; 11:1177-84. [PMID: 18794840 PMCID: PMC3124899 DOI: 10.1038/nn.2192] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 07/25/2008] [Indexed: 01/01/2023]
Abstract
Sensory systems create neural representations of environmental stimuli and these representations can be associated with other stimuli through learning. Are spike patterns the neural representations that get directly associated with reinforcement during conditioning? In the moth Manduca sexta, we found that odor presentations that support associative conditioning elicited only one or two spikes on the odor's onset (and sometimes offset) in each of a small fraction of Kenyon cells. Using associative conditioning procedures that effectively induced learning and varying the timing of reinforcement relative to spiking in Kenyon cells, we found that odor-elicited spiking in these cells ended well before the reinforcement was delivered. Furthermore, increasing the temporal overlap between spiking in Kenyon cells and reinforcement presentation actually reduced the efficacy of learning. Thus, spikes in Kenyon cells do not constitute the odor representation that coincides with reinforcement, and Hebbian spike timing-dependent plasticity in Kenyon cells alone cannot underlie this learning.
Collapse
Affiliation(s)
- Iori Ito
- National Institute of Child Health and Human Development, US National Institutes of Health, Building 35, Room 3A-102, Bethesda, Maryland 20982, USA
| | | | | | | |
Collapse
|
42
|
Sinakevitch I, Sjöholm M, Hansson BS, Strausfeld NJ. Global and local modulatory supply to the mushroom bodies of the moth Spodoptera littoralis. ARTHROPOD STRUCTURE & DEVELOPMENT 2008; 37:260-272. [PMID: 18406668 PMCID: PMC4876857 DOI: 10.1016/j.asd.2008.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 01/05/2008] [Accepted: 01/08/2008] [Indexed: 05/26/2023]
Abstract
The moth Spodoptera littoralis, is a major pest of agriculture whose olfactory system is tuned to odorants emitted by host plants and conspecifics. As in other insects, the paired mushroom bodies are thought to play pivotal roles in behaviors that are elicited by contextual and multisensory signals, amongst which those of specific odors dominate. Compared with species that have elaborate behavioral repertoires, such as the honey bee Apis mellifera or the cockroach Periplaneta americana, the mushroom bodies of S. littoralis were originally viewed as having a simple cellular organization. This has been since challenged by observations of putative transmitters and neuromodulators. As revealed by immunocytology, the spodopteran mushroom bodies, like those of other taxa, are subdivided longitudinally into discrete neuropil domains. Such divisions are further supported by the present study, which also demonstrates discrete affinities to different mushroom body neuropils by antibodies raised against two putative transmitters, glutamate and gamma-aminobutyric acid, and against three putative neuromodulatory substances: serotonin, A-type allatostatin, and tachykinin-related peptides. The results suggest that in addition to longitudinal divisions of the lobes, circuits in the calyces and lobes are likely to be independently modulated.
Collapse
Affiliation(s)
- Irina Sinakevitch
- IBDML-UMR 6216, Case 907 Parc Scientifique de Luminy, 13288 Marseille, Cedex 9, France
| | - Marcus Sjöholm
- Department of Crop Science, Swedish University of Agricultural Sciences, SE-23053, Alnarp, Sweden
| | - Bill S. Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Nicholas J. Strausfeld
- Arizona Research Laboratories Division of Neurobiology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
43
|
Schipanski A, Yarali A, Niewalda T, Gerber B. Behavioral analyses of sugar processing in choice, feeding, and learning in larval Drosophila. Chem Senses 2008; 33:563-73. [PMID: 18511478 PMCID: PMC2467463 DOI: 10.1093/chemse/bjn024] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Gustatory stimuli have at least 2 kinds of function: They can support immediate, reflexive responses (such as substrate choice and feeding) and they can drive internal reinforcement. We provide behavioral analyses of these functions with respect to sweet taste in larval Drosophila. The idea is to use the dose–effect characteristics as behavioral “fingerprints” to dissociate reflexive and reinforcing functions. For glucose and trehalose, we uncover relatively weak preference. In contrast, for fructose and sucrose, preference responses are strong and the effects on feeding pronounced. Specifically, larvae are attracted to, and feeding is stimulated most strongly for, intermediate concentrations of either sugar: Using very high concentrations (4 M) results in weakened preference and suppression of feeding. In contrast to such an optimum function regarding choice and feeding, an asymptotic dose–effect function is found for reinforcement learning: Learning scores reach asymptote at 2 M and remain stable for a 4-M concentration. A similar parametric discrepancy between the reflexive (choice and feeding) and reinforcing function is also seen for sodium chloride (Niewalda T, Singhal S, Fiala A, Saumweber T, Wegener S, Gerber B, in preparation). We discuss whether these discrepancies are based either on inhibition from high-osmolarity sensors upon specifically the reflexive pathways or whether different sensory pathways, with different effective dose–response characteristics, may have preferential access to drive either reflex responses or modulatory neurons mediating internal reinforcement, respectively.
Collapse
Affiliation(s)
- Angela Schipanski
- Universität Würzburg, Lehrstuhl für Genetik und Neurobiologie, Biozentrum, Am Hubland, 970 74 Würzburg, Germany
| | | | | | | |
Collapse
|
44
|
Farooqui T. Octopamine-mediated neuromodulation of insect senses. Neurochem Res 2007; 32:1511-29. [PMID: 17484052 DOI: 10.1007/s11064-007-9344-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
Octopamine functions as a neuromodulator, neurotransmitter, and neurohormone in insect nervous systems. Octopamine has a prominent role in influencing multiple physiological events: (a) as a neuromodulator, it regulates desensitization of sensory inputs, arousal, initiation, and maintenance of various rhythmic behaviors and complex behaviors such as learning and memory; (b) as a neurotransmitter, it regulates endocrine gland activity; and (c) as a neurohormone, it induces mobilization of lipids and carbohydrates. Octopamine exerts its effects by binding to specific proteins that belong to the superfamily of G protein-coupled receptors and share the structural motif of seven transmembrane domains. The activation of octopamine receptors is coupled with different second messenger pathways depending on species, tissue source, receptor type and cell line used for the expression of cloned receptor. The second messengers include adenosine 3',5'-cyclic monophosphate (cAMP), calcium, diacylglycerol (DAG), and inositol 1,4,5-trisphosphate (IP3). The cAMP activates protein kinase A, calcium and DAG activate protein kinase C, and IP3 mobilizes calcium from intracellular stores. Octopamine-mediated generation of these second messengers is associated with changes in cellular response affecting insect behaviors. The main objective of this review is to discuss significance of octopamine-mediated neuromodulation in insect sensory systems.
Collapse
Affiliation(s)
- Tahira Farooqui
- Department of Entomology, The Ohio State University, 400 Aronoff Laboratory, 318 West 12th Ave., Columbus, OH 43210-1220, USA.
| |
Collapse
|
45
|
Certel SJ, Savella MG, Schlegel DCF, Kravitz EA. Modulation of Drosophila male behavioral choice. Proc Natl Acad Sci U S A 2007; 104:4706-11. [PMID: 17360588 PMCID: PMC1810337 DOI: 10.1073/pnas.0700328104] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Indexed: 11/18/2022] Open
Abstract
The reproductive and defensive behaviors that are initiated in response to specific sensory cues can provide insight into how choices are made between different social behaviors. We manipulated both the activity and sex of a subset of neurons and found significant changes in male social behavior. Results from aggression assays indicate that the neuromodulator octopamine (OCT) is necessary for Drosophila males to coordinate sensory cue information presented by a second male and respond with the appropriate behavior: aggression rather than courtship. In competitive male courtship assays, males with no OCT or with low OCT levels do not adapt to changing sensory cues and court both males and females. We identified a small subset of neurons in the suboesophageal ganglion region of the adult male brain that coexpress OCT and male forms of the neural sex determination factor, Fruitless (Fru(M)). A single Fru(M)-positive OCT neuron sends extensive bilateral arborizations to the suboesophageal ganglion, the lateral accessory lobe, and possibly the posterior antennal lobe, suggesting a mechanism for integrating multiple sensory modalities. Furthermore, eliminating the expression of Fru(M) by transformer expression in OCT/tyramine neurons changes the aggression versus courtship response behavior. These results provide insight into how complex social behaviors are coordinated in the nervous system and suggest a role for neuromodulators in the functioning of male-specific circuitry relating to behavioral choice.
Collapse
Affiliation(s)
- Sarah J. Certel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Mary Grace Savella
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Dana C. F. Schlegel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Edward A. Kravitz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
46
|
Dacks AM, Dacks JB, Christensen TA, Nighorn AJ. The cloning of one putative octopamine receptor and two putative serotonin receptors from the tobacco hawkmoth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:741-7. [PMID: 16935223 PMCID: PMC1794002 DOI: 10.1016/j.ibmb.2006.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 07/12/2006] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
Serotonin and octopamine (OA) are biogenic amines that are active throughout the nervous systems of insects, affecting sensory processing, information coding and behavior. As an initial step towards understanding the modulatory roles of these amines in olfactory processing we cloned two putative serotonin receptors (Ms5HT1A and Ms5HT1B) and one putative OA (MsOAR) receptor from the moth Manduca sexta. Ms5HT1A and Ms5HT1B were both similar to 5HT1-type receptors but differed from each other in their N-terminus and 3rd cytoplasmic loop. Ms5HT1A was nearly identical to a serotonin receptor from Heliothis virescens and Ms5HT1B was almost identical to a serotonin receptor from Bombyx mori. The sequences for homologs of Ms5HT1A from B. mori and Ms5HT1B from H. virescens were also obtained, suggesting that the Lepidoptera likely have at least two serotonin receptors. The MsOAR shares significant sequence homology with pharmacologically characterized OA receptors, but less similarity to putative OA/tyramine receptors from the moths B. mori and H. virescens. Using the MsOAR sequence, fragments encoding putative OA receptors were obtained from B. mori and H. virescens, suggesting that MsOAR is the first OA receptor cloned from a lepidopteran.
Collapse
Affiliation(s)
- Andrew M Dacks
- Arizona Research Laboratories, Division of Neurobiology, The University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
47
|
Wicher D, Agricola HJ, Söhler S, Gundel M, Heinemann SH, Wollweber L, Stengl M, Derst C. Differential Receptor Activation by Cockroach Adipokinetic Hormones Produces Differential Effects on Ion Currents, Neuronal Activity, and Locomotion. J Neurophysiol 2006; 95:2314-25. [PMID: 16319199 DOI: 10.1152/jn.01007.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adipokinetic hormone (AKH) peptides in insects serve the endocrine control of energy supply. They also produce, however, neuronal, vegetative, and motor effects, suggesting that AKHs orchestrate adaptive behavior by multiple actions. We have cloned, for Periplaneta americana, the AKH receptor to determine its localization and, based on current measurements in neurons and heterologous expression systems, the mechanisms of AKH actions. Apart from fat body, various neurons express the AKH receptor, among them abdominal dorsal unpaired median (DUM) neurons, which release the biogenic amine octopamine. They are part of the arousal system and are involved in the control of circulation and respiration. Both the two Periplaneta AKHs activate the Gspathway, and AKH I also potently activates Gq. AKH I and—with much less efficacy—AKH II accelerate spiking of DUM neurons through an increase of the pacemaking Ca2+current. Because the AKHs are released from the corpora cardiaca into the hemolymph, they must penetrate the blood-brain barrier for acting on neurons. That this happens was shown electrophysiologically by applying AKH I to an intact ganglion. Systemically injected AKH I stimulates locomotion potently in striking contrast to AKH II. This behavioral difference can be traced back conclusively to the different effectiveness of the AKHs on the level of G proteins. Our findings also show that AKHs act through the same basic mechanisms on neuronal and nonneuronal cells, and they support an integration of metabolic and neuronal effects in homoeostatic mechanisms.
Collapse
Affiliation(s)
- Dieter Wicher
- Department of Neurohormones,Saxon Academy of Sciences, Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|