1
|
Kaplan HS, Logeman BL, Zhang K, Santiago C, Sohail N, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory Input, Sex, and Function Shape Hypothalamic Cell Type Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576835. [PMID: 38328205 PMCID: PMC10849564 DOI: 10.1101/2024.01.23.576835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mammalian behavior and physiology undergo dramatic changes in early life. Young animals rely on conspecifics to meet their homeostatic needs, until weaning and puberty initiate nutritional independence and sex-specific social interactions, respectively. How neuronal populations regulating homeostatic functions and social behaviors develop and mature during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioral control have been identified1-6. These data reveal a remarkable diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioral or physiological function of the corresponding cell types. We identify key stages of preoptic development, including the perinatal emergence of sex differences, postnatal maturation and subsequent refinement of signaling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide novel insights into the development of neurons controlling homeostatic functions and social behaviors and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S. Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
- Current address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, ON, Canada
| | - Shannan J. Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D. Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
2
|
Lanzillo M, Gervais M, Croizier S. Ontogeny of the Projections From the Dorsomedial Division of the Anterior Bed Nucleus of the Stria Terminalis to Hypothalamic Nuclei. Front Neurosci 2021; 15:748186. [PMID: 34916896 PMCID: PMC8669758 DOI: 10.3389/fnins.2021.748186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a telencephalic structure well-connected to hypothalamic regions known to control goal-oriented behaviors such as feeding. In particular, we showed that the dorsomedial division of the anterior BNST innervate neurons of the paraventricular (PVH), dorsomedial (DMH), and arcuate (ARH) hypothalamic nuclei as well as the lateral hypothalamic area (LHA). While the anatomy of these projections has been characterized in mice, their ontogeny has not been studied. In this study, we used the DiI-based tract tracing approach to study the development of BNST projections innervating several hypothalamic areas including the PVH, DMH, ARH, and LHA. These results indicate that projections from the dorsomedial division of the anterior BNST to hypothalamic nuclei are immature at birth and substantially reach the PVH, DMH, and the LHA at P10. In the ARH, only sparse fibers are observed at P10, but their density increased markedly between P12 and P14. Collectively, these findings provide new insight into the ontogeny of hypothalamic circuits, and highlight the importance of considering the developmental context as a direct modulator in their proper formation.
Collapse
Affiliation(s)
- Marc Lanzillo
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Manon Gervais
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sophie Croizier
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Delli V, Silva MSB, Prévot V, Chachlaki K. The KiNG of reproduction: Kisspeptin/ nNOS interactions shaping hypothalamic GnRH release. Mol Cell Endocrinol 2021; 532:111302. [PMID: 33964320 DOI: 10.1016/j.mce.2021.111302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the master regulator of the hypothalamic-pituitary-gonadal (HPG) axis, and therefore of fertility and reproduction. The release pattern of GnRH by the hypothalamus includes both pulses and surges. However, despite a considerable body of evidence in support of a determinant role for kisspeptin, the mechanisms regulating a GnRH pulse and surge remain a topic of debate. In this review we challenge the view of kisspeptin as an absolute "monarch", and instead present the idea of a Kisspeptin-nNOS-GnRH or "KiNG" network that is responsible for generating the "GnRH pulse" and "GnRH surge". In particular, the neuromodulator nitric oxide (NO) has opposite effects to kisspeptin on GnRH secretion in many respects, acting as the Yin to kisspeptin's Yang and creating a dynamic system in which kisspeptin provides the "ON" signal, promoting GnRH release, while NO mediates the "OFF" signal, acting as a tonic brake on GnRH secretion. This interplay between an activator and an inhibitor, which is in turn fine-tuned by the gonadal steroid environment, thus leads to the generation of GnRH pulses and surges and is crucial for the proper development and function of the reproductive axis.
Collapse
Affiliation(s)
- Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France; University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
4
|
Smedlund KB, Hill JW. The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 2020; 518:110996. [PMID: 32860862 DOI: 10.1016/j.mce.2020.110996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is controlled by gonadotropin-releasing hormone (GnRH) released by the hypothalamus. Disruption of this system leads to impaired reproductive maturation and function, a condition known as hypogonadotropic hypogonadism (HH). Most studies to date have focused on genetic causes of HH that impact neuronal development and function. However, variants may also impact the functioning of non-neuronal cells known as glia. Glial cells make up 50% of brain cells of humans, primates, and rodents. They include radial glial cells, microglia, astrocytes, tanycytes, oligodendrocytes, and oligodendrocyte precursor cells. Many of these cells influence the hypothalamic neuroendocrine system controlling fertility. Indeed, glia regulate GnRH neuronal activity and secretion, acting both at their cell bodies and their nerve endings. Recent work has also made clear that these interactions are an essential aspect of how the HPG axis integrates endocrine, metabolic, and environmental signals to control fertility. Recognition of the clinical importance of interactions between glia and the GnRH network may pave the way for the development of new treatment strategies for dysfunctions of puberty and adult fertility.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
5
|
Olvera-Juárez E, Silva CC, Flores A, Arrieta-Cruz I, Mendoza-Garcés L, Martínez-Coria H, López-Valdés HE, Cárdenas M, Domínguez R, Gutiérrez-Juárez R, Cruz ME. The content of gonadotropin-releasing hormone (GnRH), kisspeptin, and estrogen receptors (ERα/ERβ) in the anteromedial hypothalamus displays daily variations throughout the rat estrous cycle. Cell Tissue Res 2020; 381:451-460. [PMID: 32710274 DOI: 10.1007/s00441-020-03258-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The content of gonadotropin-releasing hormone (GnRH), its mRNA, and estrogen receptor alpha (ERα) and beta (ERβ) in the hypothalamus varies throughout the estrous cycle. Furthermore, the abundance of these molecules displays asymmetry between the right and left side. In the present study, we investigated the changes in the content of ERα, ERβ, kisspeptin, and GnRH by western blot in the left and right anteromedial hypothalamus, at four different times during each stage of the rat estrous cycle. The serum levels of the follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were also measured. ERα and ERβ levels changed depending on the stage of the estrous cycle, meanwhile that of kisspeptin was modified according to both the hour of the day and the stage of the cycle. Except in estrus day, ERβ was higher in the right hypothalamus, while ERα was similar in both sides. During both proestrus and estrus, the content of kisspeptin and GnRH was higher in the right hypothalamus. The highest levels of FSH and LH occurred at 17:00 h of proestrus. But at estrus, the highest FSH levels were observed at 08:00 h and the lowest at 17:00 h. Thus, the current results show that the content of ERα, ERβ, kisspeptin, and GnRH in the anteromedial hypothalamus are regulated as a function of the stage of the estrous cycle and the hour of the day. Furthermore, the content of these proteins is regularly higher in the right anteromedial hypothalamus, regardless of the stage of the cycle or time of the day.
Collapse
Affiliation(s)
- Esteban Olvera-Juárez
- Neuroendocrinology Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Carlos-Camilo Silva
- Chronobiology of Reproduction Research Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Angélica Flores
- Neuroendocrinology Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Department of Basic Research, National Institute of Geriatrics, Ministry of Health, 10200, Mexico City, Mexico.
| | - Luciano Mendoza-Garcés
- Department of Basic Research, National Institute of Geriatrics, Ministry of Health, 10200, Mexico City, Mexico
| | - Hilda Martínez-Coria
- Division of Research, Faculty of Medicine, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Héctor E López-Valdés
- Division of Research, Faculty of Medicine, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Mario Cárdenas
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Ministry of Health, 14080, Mexico City, Mexico
| | - Roberto Domínguez
- Neuroendocrinology Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
- Chronobiology of Reproduction Research Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Roger Gutiérrez-Juárez
- Department of Biomedical Sciences, School of Medicine, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - María-Esther Cruz
- Neuroendocrinology Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| |
Collapse
|
6
|
McCarthy MM. A new view of sexual differentiation of mammalian brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:369-378. [PMID: 31705197 PMCID: PMC7196030 DOI: 10.1007/s00359-019-01376-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Establishment of enduring sex differences in brain and behavior occurs during pre- or perinatal development, depending on species. For over 50 years the focus has been on gonadal steroid production by male fetuses and the impact on developing brain. An increasing awareness of the importance of sex chromosome complement has broadened the focus but identifying specific roles in development has yet to be achieved. Recent emphasis on transcriptomics has revealed myriad and unexpected differences in gene expression in specific regions of male and female brains which may produce sex differences, serve a compensatory role or provide latent sex differences revealed only in response to challenge. More surprising, however, has been the consistent observation of a central role for inflammatory signaling molecules and immune cells in masculinization of brain and behavior. The signal transduction pathways and specific immune cells vary by brain region, as does the neuroanatomical substrate subject to differentiation, reflecting substantial complexity emerging from what may be a common origin, the maternal immune system. A working hypothesis integrating these various ideas is proposed.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, University of Maryland, School of Medicine, MD, Baltimore, USA.
| |
Collapse
|
7
|
Neurochemical Characterization of Neurons Expressing Estrogen Receptor β in the Hypothalamic Nuclei of Rats Using in Situ Hybridization and Immunofluorescence. Int J Mol Sci 2019; 21:ijms21010115. [PMID: 31877966 PMCID: PMC6981915 DOI: 10.3390/ijms21010115] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Estrogens play an essential role in multiple physiological functions in the brain, including reproductive neuroendocrine, learning and memory, and anxiety-related behaviors. To determine these estrogen functions, many studies have tried to characterize neurons expressing estrogen receptors known as ERα and ERβ. However, the characteristics of ERβ-expressing neurons in the rat brain still remain poorly understood compared to that of ERα-expressing neurons. The main aim of this study is to determine the neurochemical characteristics of ERβ-expressing neurons in the rat hypothalamus using RNAscope in situ hybridization (ISH) combined with immunofluorescence. Strong Esr2 signals were observed especially in the anteroventral periventricular nucleus (AVPV), bed nucleus of stria terminalis, hypothalamic paraventricular nucleus (PVN), supraoptic nucleus, and medial amygdala, as previously reported. RNAscope ISH with immunofluorescence revealed that more than half of kisspeptin neurons in female AVPV expressed Esr2, whereas few kisspeptin neurons were found to co-express Esr2 in the arcuate nucleus. In the PVN, we observed a high ratio of Esr2 co-expression in arginine-vasopressin neurons and a low ratio in oxytocin and corticotropin-releasing factor neurons. The detailed neurochemical characteristics of ERβ-expressing neurons identified in the current study can be very essential to understand the estrogen signaling via ERβ.
Collapse
|
8
|
Kanaya M, Iwata K, Ozawa H. Distinct dynorphin expression patterns with low- and high-dose estrogen treatment in the arcuate nucleus of female rats. Biol Reprod 2018; 97:709-718. [PMID: 29069289 DOI: 10.1093/biolre/iox131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/20/2017] [Indexed: 01/25/2023] Open
Abstract
Kisspeptin (KISS1; encoded by Kiss1) neurons in the arcuate nucleus (ARC) coexpress tachykinin 3 (TAC3; also known as neurokinin B) and dynorphin A (PDYN). Accordingly, they are termed KNDy neurons and considered to be crucial in generating pulsatile release of gonadotropin-releasing hormone. Accumulating evidence suggests that Kiss1 and Tac3 are negatively regulated by estrogen. However, it has not been fully determined whether and how estrogen modulates Pdyn and PDYN. Here, we examined the expression of Pdyn mRNA and PDYN by in situ hybridization and immunohistochemistry, respectively, in the ARC of female rats after ovariectomy (OVX) and OVX plus low- or high-dose beta-estradiol (E2) replacement. We also investigated the effect of E2 on expression of Kiss1, KISS1, Tac3, and TAC3. Furthermore, colocalization of PDYN and estrogen receptor alpha (ESR1) was determined. Subsequently, we found that low-dose E2 treatment had no effect on Pdyn mRNA-expressing cells, but increased PDYN-immunoreactive (ir) cell numbers. In contrast, high-dose E2 treatment resulted in prominent reductions in both Pdyn mRNA-expressing and PDYN-ir cell numbers. Changes induced by low or high doses of E2 were similarly observed in the expression of Kiss1, KISS1, Tac3, and TAC3. The majority of PDYN-ir neurons coexpressed ESR1 in all groups. Our results indicate that E2 regulates the expression of PDYN, as well as KISS1 and TAC3, with regulation by E2 differing according to its levels.
Collapse
Affiliation(s)
- Moeko Kanaya
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kinuyo Iwata
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
9
|
Nesan D, Kurrasch DM. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 2016; 438:3-17. [PMID: 27720896 DOI: 10.1016/j.mce.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
10
|
Clarkson J, Herbison AE. Hypothalamic control of the male neonatal testosterone surge. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150115. [PMID: 26833836 PMCID: PMC4785901 DOI: 10.1098/rstb.2015.0115] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 11/12/2022] Open
Abstract
Sex differences in brain neuroanatomy and neurophysiology underpin considerable physiological and behavioural differences between females and males. Sexual differentiation of the brain is regulated by testosterone secreted by the testes predominantly during embryogenesis in humans and the neonatal period in rodents. Despite huge advances in understanding how testosterone, and its metabolite oestradiol, sexually differentiate the brain, little is known about the mechanism that actually generates the male-specific neonatal testosterone surge. This review examines the evidence for the role of the hypothalamus, and particularly the gonadotropin-releasing hormone (GnRH) neurons, in generating the neonatal testosterone surge in rodents and primates. Kisspeptin-GPR54 signalling is well established as a potent and critical regulator of GnRH neuron activity during puberty and adulthood, and we argue here for an equally important role at birth in driving the male-specific neonatal testosterone surge in rodents. The presence of a male-specific population of preoptic area kisspeptin neurons that appear transiently in the perinatal period provide one possible source of kisspeptin drive to neonatal GnRH neurons in the mouse.
Collapse
Affiliation(s)
- Jenny Clarkson
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
11
|
Parent AS, Franssen D, Fudvoye J, Gérard A, Bourguignon JP. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: Revision of human observations and mechanistic insight from rodents. Front Neuroendocrinol 2015; 38:12-36. [PMID: 25592640 DOI: 10.1016/j.yfrne.2014.12.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Puberty presents remarkable individual differences in timing reaching over 5 years in humans. We put emphasis on the two edges of the age distribution of pubertal signs in humans and point to an extended distribution towards earliness for initial pubertal stages and towards lateness for final pubertal stages. Such distortion of distribution is a recent phenomenon. This suggests changing environmental influences including the possible role of nutrition, stress and endocrine disruptors. Our ability to assess neuroendocrine effects and mechanisms is very limited in humans. Using the rodent as a model, we examine the impact of environmental factors on the individual variations in pubertal timing and the possible underlying mechanisms. The capacity of environmental factors to shape functioning of the neuroendocrine system is thought to be maximal during fetal and early postnatal life and possibly less important when approaching the time of onset of puberty.
Collapse
Affiliation(s)
- Anne-Simone Parent
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Delphine Franssen
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium
| | - Julie Fudvoye
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Arlette Gérard
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Jean-Pierre Bourguignon
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium.
| |
Collapse
|
12
|
Abstract
Sex differences in brain function underlie robust differences between males and females in both normal and disease states. Although alternative mechanisms exist, sexual differentiation of the male mammalian brain is initiated predominantly by testosterone secreted by the testes during the perinatal period. Despite considerable advances in understanding how testosterone and its metabolite estradiol sexually differentiate the brain, little is known about the mechanism that generates the male-specific perinatal testosterone surge. In mice, we show that a male-specific activation of GnRH neurons occurs 0-2 h following birth and that this correlates with the male-specific surge of testosterone occurring up to 5 h after birth. The necessity of GnRH signaling for the sexually differentiating effects of the perinatal testosterone surge was demonstrated by the persistence of female-like brain characteristics in adult male, GnRH receptor knock-out mice. Kisspeptin neurons have recently been identified to be potent, direct activators of GnRH neurons. We demonstrate that a population of kisspeptin neurons appears in the preoptic area of only the male between E19 and P1. The importance of kisspeptin inputs to GnRH neurons for the process of sexual differentiation was demonstrated by the lack of a normal neonatal testosterone surge, and disordered brain sexual differentiation of male mice in which the kisspeptin receptor was deleted selectively from GnRH neurons. These observations demonstrate the necessity of perinatal GnRH signaling for driving brain sexual differentiation and indicate that kisspeptin inputs to GnRH neurons are essential for this process to occur.
Collapse
|
13
|
Makarenko IG. DiI tracing of the hypothalamic projection systems during perinatal development. Front Neuroanat 2014; 8:144. [PMID: 25538571 PMCID: PMC4255665 DOI: 10.3389/fnana.2014.00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/13/2014] [Indexed: 01/20/2023] Open
Abstract
The hypothalamus is the higher neuroendocrine center of the brain and therefore possesses numerous intrinsic axonal connections and is connected by afferent and efferent fiber systems with other brain structures. These projection systems have been described in detail in the adult but data on their early development is sparse. Here I review studies of the time schedule and features of the development of the major hypothalamic axonal systems. In general, anterograde tracing experiments have been used to analyze short distance projections from the arcuate and anteroventral periventricular nuclei (Pe), while hypothalamic projections to the posterior and intermediate pituitary lobes (IL) and median eminence, mammillary body tracts and reciprocal septohypothalamic connections have been described with retrograde tracing. The available data demonstrate that hypothalamic connections develop with a high degree of spatial and temporal specificity, innervating each target with a unique developmental schedule which in many cases can be correlated with the functional maturity of the projection system.
Collapse
Affiliation(s)
- Irina G. Makarenko
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
14
|
Reddy VDK, Jagota A. Effect of restricted feeding on nocturnality and daily leptin rhythms in OVLT in aged male Wistar rats. Biogerontology 2014; 15:245-56. [PMID: 24619733 DOI: 10.1007/s10522-014-9494-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/28/2014] [Indexed: 01/08/2023]
Abstract
Circadian system has direct relevance to the problems of modern lifestyle, shift workers, jet lag etc. To understand non-photic regulation of biological clock, the effects of restricted feeding (RF) on locomotor activity and daily leptin immunoreactivity (ir) rhythms in three age groups [3, 12 and 24 months (m)] of male Wistar rats maintained in light:dark (LD) 12:12 h conditions were studied. Leptin-ir was examined in the suprachiasmatic nucleus (SCN), the medial preoptic area (MPOA) and organum vasculosum of the lamina terminalis (OVLT). Reversal of feeding time due to restricted food availability during daytime resulted in switching of the animals from nocturnality to diurnality with significant increase in day time activity and decrease in night time activity. The RF resulted in % diurnality of approximately 32, 29 and 73 from % nocturnality of 82, 92 and 89 in control rats of 3, 12 and 24 m age, respectively. The increase in such switching from nocturnality to diurnality with restricted feeding was found to be robust in 24 m rats. The OVLT region showed daily leptin-ir rhythms with leptin-ir maximum at ZT-0 in all the three age groups. However leptin-ir levels were minimum at ZT-12 in 3 and 12 m though at ZT-18 in 24 m. In addition the mean leptin-ir levels decreased with increase in food intake and body weight significantly in RF aged rats. Thus we report here differential effects of food entrained regulation in switching nocturnality to diurnality and daily leptin-ir rhythms in OVLT in aged rats.
Collapse
Affiliation(s)
- V D K Reddy
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Andhra Pradesh, India
| | | |
Collapse
|
15
|
Ayala C, Pennacchio GE, Soaje M, Carreño NB, Bittencourt JC, Jahn GA, Celis ME, Valdez SR. Effects of thyroid status on NEI concentration in specific brain areas related to reproduction during the estrous cycle. Peptides 2013; 49:74-80. [PMID: 24028792 DOI: 10.1016/j.peptides.2013.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 01/10/2023]
Abstract
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.
Collapse
Affiliation(s)
- Carolina Ayala
- Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CP 5000 Córdoba, Argentina; Sección de Desarrollo Cerebral Perinatal (SPBD), Instituto de Histología y Embriología Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Parque General San Martín, CP 5500 Mendoza, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Brock O, Bakker J. The two kisspeptin neuronal populations are differentially organized and activated by estradiol in mice. Endocrinology 2013; 154:2739-49. [PMID: 23744640 DOI: 10.1210/en.2013-1120] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rodents, kisspeptin-expressing neurons are localized in 2 hypothalamic brain nuclei (anteroventral periventricular nucleus/periventricular nucleus continuum [AVPv/PeN] and arcuate nucleus [ARC]) and modulated by sex steroids. By using wild-type (WT) and aromatase knockout (ArKO) mice (which cannot convert testosterone into estradiol) and immunohistochemistry, we observed that WT females showed a continuous increase in kisspeptin peptide expression in the ARC across postnatal ages (postnatal day 5 [P5] to P25), whereas WT males did not show any expression before P25. Kisspeptin peptide expression was also present in ArKO females but did not increase over this early postnatal period, suggesting that kisspeptin peptide expression in the ARC is organized by estradiol-dependent and -independent mechanisms. We also compared kisspeptin peptide expression between groups of adult male and female mice that were left gonadally intact or gonadectomized and treated or not with estradiol (E(2)) or DHT. In the ARC, kisspeptin peptide expression decreased after gonadectomy but was completely rescued by either E(2) or DHT treatment in each sex/genotype. However, kisspeptin peptide expression was lower in ArKO compared with WT subjects. In the AVPv/PeN, ArKO females showed a male-typical kisspeptin peptide expression, and adult E(2) treatment partially restored kisspeptin peptide expression. Finally, we showed that, after E2 treatment of WT and ArKO mice between either P5 and P15 or P15 and P25, AVPv/PeN kisspeptin peptide expression could be still masculinized at P5, but was feminized from P15 onward. In conclusion, the 2 kisspeptin neuronal populations (AVPv/PeN vs ARC) seem to be differentially organized and activated by E(2).
Collapse
Affiliation(s)
- Olivier Brock
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands.
| | | |
Collapse
|
17
|
Knoll JG, Clay CM, Bouma GJ, Henion TR, Schwarting GA, Millar RP, Tobet SA. Developmental profile and sexually dimorphic expression of kiss1 and kiss1r in the fetal mouse brain. Front Endocrinol (Lausanne) 2013; 4:140. [PMID: 24130552 PMCID: PMC3795359 DOI: 10.3389/fendo.2013.00140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/24/2013] [Indexed: 01/09/2023] Open
Abstract
The hypothalamic-pituitary-gonadal axis (HPG) is a complex neuroendocrine circuit involving multiple levels of regulation. Kisspeptin neurons play essential roles in controlling the HPG axis from the perspectives of puberty onset, oscillations of gonadotropin releasing hormone (GnRH) neuron activity, and the pre-ovulatory LH surge. The current studies focus on the expression of kisspeptin during murine fetal development using in situ hybridization (ISH), quantitative reverse transcription real-time PCR (QPCR), and immunocytochemistry. Expression of mRNA coding for kisspeptin (KISS1) and its receptor KISS1R was observed at embryonic (E) day 13 by ISH. At E13 and other later ages examined, Kiss1 signal in individual cells within the arcuate nucleus (ARC) appeared stronger in females than males. ISH examination of agonadal steroidogenic factor-1 (Sf1) knockout mice revealed that E17 XY knockouts (KO) resembled wild-type (WT) XX females. These findings raise the possibility that gonadal hormones modulate the expression of Kiss1 in the ARC prior to birth. The sex and genotype differences were tested quantitatively by QPCR experiments in dissected hypothalami from mice at E17 and adulthood. Females had significantly more Kiss1 than males at both ages, even though the number of cells detected by ISH was similar. In addition, QPCR revealed a significant difference in the amount of Kiss1 mRNA in Sf1 mice with WT XY mice expressing less than XY KO and XX mice of both genotypes. The detection of immunoreactive KISS1 in perikarya of the ARC at E17 indicates that early mRNA is translated to peptide. The functional significance of this early expression of Kiss1 awaits elucidation.
Collapse
Affiliation(s)
| | - Colin M. Clay
- Biomedical Science, Colorado State University, Fort Collins, CO, USA
| | - Gerrit J. Bouma
- Biomedical Science, Colorado State University, Fort Collins, CO, USA
| | - Timothy R. Henion
- Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Robert P. Millar
- MRC Receptor Biology Unit, University of Cape Town, Cape Town, South Africa
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Stuart A. Tobet
- Biomedical Science, Colorado State University, Fort Collins, CO, USA
- Biomedical Science and Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- *Correspondence: Stuart A. Tobet, Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA e-mail:
| |
Collapse
|
18
|
Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J Neurosci 2012; 32:11486-94. [PMID: 22895731 DOI: 10.1523/jneurosci.6074-11.2012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is increasingly accepted that alterations of the early life environment may have lasting impacts on physiological functions. In particular, epidemiological and animal studies have indicated that changes in growth and nutrition during childhood and adolescence can impair reproductive function. However, the precise biological mechanisms that underlie these programming effects of neonatal nutrition on reproduction are still poorly understood. Here, we used a mouse model of divergent litter size to investigate the effects of early postnatal overnutrition and undernutrition on the maturation of hypothalamic circuits involved in reproductive function. Neonatally undernourished females display attenuated postnatal growth associated with delayed puberty and defective development of axonal projections from the arcuate nucleus to the preoptic region. These alterations persist into adulthood and specifically affect the organization of neural projections containing kisspeptin, a key neuropeptide involved in pubertal activation and fertility. Neonatal overfeeding also perturbs the development of neural projections from the arcuate nucleus to the preoptic region, but it does not result in alterations in kisspeptin projections. These studies indicate that alterations in the early nutritional environment cause lasting and deleterious effects on the organization of neural circuits involved in the control of reproduction, and that these changes are associated with lifelong functional perturbations.
Collapse
|
19
|
Petersen SL, Krishnan S, Aggison LK, Intlekofer KA, Moura PJ. Sexual differentiation of the gonadotropin surge release mechanism: a new role for the canonical NfκB signaling pathway. Front Neuroendocrinol 2012; 33:36-44. [PMID: 21741397 DOI: 10.1016/j.yfrne.2011.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 12/30/2022]
Abstract
Sex differences in luteinizing hormone (LH) release patterns are controlled by the hypothalamus, established during the perinatal period and required for fertility. Female mammals exhibit a cyclic surge pattern of LH release, while males show a tonic release pattern. In rodents, the LH surge pattern is dictated by the anteroventral periventricular nucleus (AVPV), an estrogen receptor-rich structure that is larger and more cell-dense in females. Sex differences result from mitochondrial cell death triggered in perinatal males by estradiol derived from aromatization of testosterone. Herein we provide an historical perspective and an update describing evidence that molecules important for cell survival and cell death in the immune system also control these processes in the developing AVPV. We conclude with a new model proposing that development of the female AVPV requires constitutive activation of the Tnfα, Tnf receptor 2, NfκB and Bcl2 pathway that is blocked by induction of Tnf receptor-associated factor 2-inhibiting protein (Traip) in the male.
Collapse
Affiliation(s)
- Sandra L Petersen
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | | | | | | | | |
Collapse
|
20
|
Frequency-dependent recruitment of fast amino acid and slow neuropeptide neurotransmitter release controls gonadotropin-releasing hormone neuron excitability. J Neurosci 2011; 31:2421-30. [PMID: 21325509 DOI: 10.1523/jneurosci.5759-10.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anteroventral periventricular nucleus (AVPV) is thought to play a key role in regulating the excitability of gonadotropin-releasing hormone (GnRH) neurons that control fertility. Using an angled, parahorizontal brain slice preparation we have undertaken a series of electrophysiological experiments to examine how the AVPV controls GnRH neurons in adult male and female mice. More than half (59%) of GnRH neurons located in the rostral preoptic area were found to receive monosynaptic inputs from the AVPV in a sex-dependent manner. AVPV stimulation frequencies <1 Hz generated short-latency action potentials in GnRH neurons with GABA and glutamate mediating >90% of the evoked fast synaptic currents. The AVPV GABA input was dominant and found to excite or inhibit GnRH neurons in a cell-dependent manner. Increasing the AVPV stimulation frequency to 5-10 Hz resulted in the appearance of additional poststimulus inhibitory as well as delayed excitatory responses in GnRH neurons that were independent of ionotropic amino acid receptors. The inhibition observed immediately following the end of the stimulation period was mediated partly by GABA(B) receptors, while the delayed activation was mediated by the neuropeptide kisspeptin. The latter response was essentially absent in Gpr54 knock-out mice and abolished by a Gpr54 antagonist. Together, these studies show that AVPV neurons provide direct amino acid and neuropeptidergic inputs to GnRH neurons. Low-frequency activation generates predominant GABA/glutamate release with higher frequency activation recruiting release of kisspeptin. This frequency-dependent release of amino acid and neuropeptide neurotransmitters greatly expands the range of AVPV control of GnRH neuron excitability.
Collapse
|
21
|
Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol 2010; 31:400-19. [PMID: 20347861 PMCID: PMC3074428 DOI: 10.1016/j.yfrne.2010.03.003] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 02/07/2023]
Abstract
Phytoestrogens are plant derived compounds found in a wide variety of foods, most notably soy. A litany of health benefits including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms, are frequently attributed to phytoestrogens but many are also considered endocrine disruptors, indicating that they have the potential to cause adverse health effects as well. Consequently, the question of whether or not phytoestrogens are beneficial or harmful to human health remains unresolved. The answer is likely complex and may depend on age, health status, and even the presence or absence of specific gut microflora. Clarity on this issue is needed because global consumption is rapidly increasing. Phytoestrogens are present in numerous dietary supplements and widely marketed as a natural alternative to estrogen replacement therapy. Soy infant formula now constitutes up to a third of the US market, and soy protein is now added to many processed foods. As weak estrogen agonists/antagonists with molecular and cellular properties similar to synthetic endocrine disruptors such as Bisphenol A (BPA), the phytoestrogens provide a useful model to comprehensively investigate the biological impact of endocrine disruptors in general. This review weighs the evidence for and against the purported health benefits and adverse effects of phytoestrogens.
Collapse
|
22
|
Anatomy of the kisspeptin neural network in mammals. Brain Res 2010; 1364:90-102. [PMID: 20858464 DOI: 10.1016/j.brainres.2010.09.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 01/17/2023]
Abstract
Kisspeptin has been recognized as a key regulator of GnRH secretion during puberty and adulthood, conveying the feedback influence of endogenous gonadal steroids onto the GnRH system. Understanding the functional roles of this peptide depends on knowledge of the anatomical framework in which it acts, including the location of kisspeptin-expressing cells in the brain and their connections. In this paper, we review current data on the anatomy of the kisspeptin neuronal network, including its colocalization with gonadal steroid hormone receptors, anatomical sites of interaction with the GnRH system, and recent evidence of neurochemical heterogeneity among different kisspeptin neuronal populations. Evidence to date suggests that kisspeptin cells in mammals comprise an interconnected network, with reciprocal connections both within and between separate cell populations, and with GnRH neurons. At the same time, there is more functional and anatomical heterogeneity in this system than originally thought, and many unanswered questions remain concerning anatomical relationships of kisspeptin neurons with other neuroendocrine and neural systems in the brain.
Collapse
|
23
|
Clarkson J, Han SK, Liu X, Lee K, Herbison AE. Neurobiological mechanisms underlying kisspeptin activation of gonadotropin-releasing hormone (GnRH) neurons at puberty. Mol Cell Endocrinol 2010; 324:45-50. [PMID: 20109523 DOI: 10.1016/j.mce.2010.01.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 01/19/2023]
Abstract
Studies undertaken in many species indicate that kisspeptin-Gpr54 signaling is essential for the activation of gonadotropin-releasing hormone (GnRH) neurons to bring about puberty. Investigations in transgenic mouse models, in particular, have highlighted the importance of kisspeptin signaling at the level of the GnRH neuron itself in this process. This review aims to highlight current understanding of the neurobiological mechanisms underlying the kisspeptin activation of postnatal GnRH neurons. The three key features of the kisspeptin-Gpr54-GnRH neuron axis leading up to puberty are (i) the expression of adult-like levels of Gpr54 mRNA in GnRH neurons well in advance of puberty, (ii) a modest increase in the electrical response of GnRH neurons to Gpr54 activation across postnatal development and (iii), the "sudden" appearance of kisspeptin fibers surrounding GnRH neuron cell bodies/proximal dendrites just prior to puberty onset. These kisspeptin fibers are likely to originate from the kisspeptin population located in the rostral periventricular region of the third ventricle (RP3V). Together, available data suggest that the key step in the kisspeptin control of puberty lies in the control of kisspeptin synthesis within RP3V kisspeptin neurons that innervate GnRH neurons. This has recently been shown to be dependent upon circulating estradiol concentrations. As such, we propose that RP3V kisspeptin neurons represent a critical estradiol-dependent amplification mechanism brought into play relatively late in pubertal development to activate GnRH neurons and complete the process of puberty onset. Subsequently, in the adult female, this same circuitry is used to activate GnRH neurons to generate the cyclical preovulatory GnRH/LH surge.
Collapse
Affiliation(s)
- Jenny Clarkson
- Centre for Neuroendocrinology, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
24
|
Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev 2010; 31:544-77. [PMID: 20237240 PMCID: PMC3365847 DOI: 10.1210/er.2009-0023] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 02/18/2010] [Indexed: 12/14/2022]
Abstract
Ovarian steroids normally exert homeostatic negative feedback on GnRH release. During sustained exposure to elevated estradiol in the late follicular phase of the reproductive cycle, however, the feedback action of estradiol switches to positive, inducing a surge of GnRH release from the brain, which signals the pituitary LH surge that triggers ovulation. In rodents, this switch appears dependent on a circadian signal that times the surge to a specific time of day (e.g., late afternoon in nocturnal species). Although the precise nature of this daily signal and the mechanism of the switch from negative to positive feedback have remained elusive, work in the past decade has provided much insight into the role of circadian/diurnal and estradiol-dependent signals in GnRH/LH surge regulation and timing. Here we review the current knowledge of the neurobiology of the GnRH surge, in particular the actions of estradiol on GnRH neurons and their synaptic afferents, the regulation of GnRH neurons by fast synaptic transmission mediated by the neurotransmitters gamma-aminobutyric acid and glutamate, and the host of excitatory and inhibitory neuromodulators including kisspeptin, vasoactive intestinal polypeptide, catecholamines, neurokinin B, and RFamide-related peptides, that appear essential for GnRH surge regulation, and ultimately ovulation and fertility.
Collapse
Affiliation(s)
- Catherine A Christian
- Departments of Medicine and Cell Biology, University of Virginia, Charlottesville, 22908, USA.
| | | |
Collapse
|
25
|
Wang SJ, Zhu B, Ren XX, Tan LH. Experimental study on acupuncture activating the gonadotropin-releasing hormone neurons in hypothalamus. J TRADIT CHIN MED 2010; 30:30-9. [PMID: 20397460 DOI: 10.1016/s0254-6272(10)60009-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To probe into the most effective site, extra-ordinary point, acupoint and channel for regulating reproductive endocrine function by means of the study on acupuncture activating the gonadotropin-releasing hormone neurons (GnRH) in hypothalamus. METHODS Female SD rats of reproductive age were used, and the in vivo study on GnRH neurons in hypothalamus was made with mimic sexual stimulation and feedback regulation. The neuron-activating effects of the acupoints on the channels pertaining to the zang- and fu-organs related with reproductive endocrine and the extra-ordinary points in different regions were studied using the discharge of the neuron as index, and then the neurons were labeled with horseradish peroxidase (HRP). RESULTS Acupuncture was given at two acupoints each on the three yin channels of foot, the three yang channels of foot, the Conception Vessel and the Governor Vessel. The order of the mean increasing percentage in the hypothalamic GnRH neuron electric activity was: the Gallbladder Channel > the Spleen Channel > the Stomach Channel/the Bladder Channel/the Conception Vessel > the Liver Channel > the Kidney Channel > the Governor Vessel; for different acupoints, it was: Guanyuan (CV 4) > Sanyinjiao (SP 6) > Zusanli (ST 36) > Daimai (GB 26)/Yanglingquan (GB 34) > Shenshu (BL 23) > Weizhong (BL 40) > Yaoyangguan (GV 3)/Liangmen (ST 21)/Fujie (SP 14) > Qimen (LR 14)/Yingu (KI 10) > Tangzhong (CV 17)/Zhiyang (GV 9); for different positions, it was: the lower abdominal part/the lower limb part > the thoracodorsal part; for the extra-ordinary points, it was: Zigong (EX-CA1) > Dannang (EX-LE6)/Yaoyan (EX-B7) > Baichongwo (EX-LE3)/Qianzheng > Jingbi/Bizhong/Taiyang (EX-HN5) > Erbai (EX-UE2)/ Dingchun; and for the distribution sites of the extra-ordinary points: lower abdominal region > the lower limb region > the craniofacial region > the upper limb region/the thoracodorsal region. CONCLUSION For regulating the reproductive endocrine function, the acupoints located at the same neural segment with the reproductive organ should be selected as the main points, and it is necessary to combine with syndrome differentiation of the viscera and channels.
Collapse
Affiliation(s)
- Shao-Jun Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | | | | | | |
Collapse
|
26
|
Homma T, Sakakibara M, Yamada S, Kinoshita M, Iwata K, Tomikawa J, Kanazawa T, Matsui H, Takatsu Y, Ohtaki T, Matsumoto H, Uenoyama Y, Maeda KI, Tsukamura H. Significance of neonatal testicular sex steroids to defeminize anteroventral periventricular kisspeptin neurons and the GnRH/LH surge system in male rats. Biol Reprod 2009; 81:1216-25. [PMID: 19684332 DOI: 10.1095/biolreprod.109.078311] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The brain mechanism regulating gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release is sexually differentiated in rodents. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) have been suggested to be sexually dimorphic and involved in the GnRH/LH surge generation. The present study aimed to determine the significance of neonatal testicular androgen to defeminize AVPV kisspeptin expression and the GnRH/LH surge-generating system. To this end, we tested whether neonatal castration feminizes AVPV kisspeptin neurons and the LH surge-generating system in male rats and whether neonatal estradiol benzoate (EB) treatment suppresses the kisspeptin expression and the LH surge in female rats. Immunohistochemistry, in situ hybridization, and quantitative real-time RT-PCR were performed to investigate kisspeptin and Kiss1 mRNA expressions. Male rats were castrated immediately after birth, and females were treated with EB on postnatal Day 5. Neonatal castration caused an increase in AVPV kisspeptin expression at peptide and mRNA levels in the genetically male rats, and the animals showed surge-like LH release in the presence of the preovulatory level of estradiol (E2) at adulthood. On the other hand, neonatal EB treatment decreased the number of AVPV kisspeptin neurons and caused an absence of E2-induced LH surge in female rats. Semiquantitative RT-PCR analysis showed that neonatal steroidal manipulation affects Kiss1 expression but does not significantly affect gene expressions of neuropeptides (neurotensin and galanin) and enzymes or transporter for neurotransmitters (gamma-aminobutyric acid, glutamate, and dopamine) in the AVPV, suggesting that the manipulation specifically affects Kiss1 expressions. Taken together, our present results provide physiological evidence that neonatal testicular androgen causes the reduction of AVPV kisspeptin expression and failure of LH surge in genetically male rats. Thus, it is plausible that perinatal testicular androgen causes defeminization of the AVPV kisspeptin system, resulting in the loss of the surge system in male rats.
Collapse
Affiliation(s)
- Tamami Homma
- Laboratory of Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Regulation of Kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. J Neurosci 2009; 29:9390-5. [PMID: 19625529 DOI: 10.1523/jneurosci.0763-09.2009] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kisspeptin is a product of the Kiss1 gene and is expressed in the forebrain. Neurons that express Kiss1 play a crucial role in the regulation of pituitary luteinizing hormone secretion and reproduction. These neurons are the direct targets for the action of estradiol-17beta (E(2)), which acts via the estrogen receptor alpha isoform (ER alpha) to regulate Kiss1 expression. In the arcuate nucleus (Arc), where the dynorphin gene (Dyn) is expressed in Kiss1 neurons, E(2) inhibits the expression of Kiss1 mRNA. However, E(2) induces the expression of Kiss1 in the anteroventral periventricular nucleus (AVPV). The mechanism for differential regulation of Kiss1 in the Arc and AVPV by E(2) is unknown. ER alpha signals through multiple pathways, which can be categorized as either classical, involving the estrogen response element (ERE), or nonclassical, involving ERE-independent mechanisms. To elucidate the molecular basis for the action of E(2) on Kiss1 and Dyn expression, we studied the effects of E(2) on Kiss1 and Dyn mRNAs in the brains of mice bearing targeted alterations in the ER alpha signaling pathways. We found that stimulation of Kiss1 expression by E(2) in the AVPV and inhibition of Dyn in the Arc required an ERE-dependent pathway, whereas the inhibition of Kiss1 expression by E(2) in the Arc involved ERE-independent mechanisms. Thus, distinct ER alpha signaling pathways can differentially regulate the expression of identical genes across different brain regions, and E(2) can act within the same neuron through divergent ER alpha signaling pathways to regulate different neurotransmitter genes.
Collapse
|
28
|
Patisaul HB, Adewale HB. Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front Behav Neurosci 2009; 3:10. [PMID: 19587848 PMCID: PMC2706654 DOI: 10.3389/neuro.08.010.2009] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/10/2009] [Indexed: 01/05/2023] Open
Abstract
It is well established that, over the course of development, hormones shape the vertebrate brain such that sex specific physiology and behaviors emerge. Much of this occurs in discrete developmental windows that span gestation through the prenatal period, although it is now becoming clear that at least some of this process continues through puberty. Perturbation of this developmental progression can permanently alter the capacity for reproductive success. Wildlife studies have revealed that exposure to endocrine disrupting compounds (EDCs), either naturally occurring or man made, can profoundly alter reproductive physiology and ultimately impact entire populations. Laboratory studies in rodents and other species have elucidated some of the mechanisms by which this occurs and strongly indicate that humans are also vulnerable to disruption. Use of hormonally active compounds in human medicine has also unfortunately revealed that the developing fetus can be exposed to and affected by endocrine disruptors, and that it might take decades for adverse effects to manifest. Research within the field of environmental endocrine disruption has also contributed to the general understanding of how early life experiences can alter reproductive physiology and behavior through non-genomic, epigenetic mechanisms such as DNA methylation and histone acetylation. These types of effects have the potential to impact future generations if the germ line is affected. This review provides an overview of how exposure to EDCs, particularly those that interfere with estrogen action, impacts reproductive physiology and behaviors in vertebrates.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biology, North Carolina State University Raleigh, NC 27695, USA.
| | | |
Collapse
|
29
|
Abstract
Ovulation is central to mammalian fertility, yet the precise mechanism through which oestrogen triggers the gonadotrophin-releasing hormone (GnRH) surge that generates the pre-ovulatory luteinising hormone (LH) surge has remained elusive. The recent discovery that kisspeptin-GPR54 signalling is an essential regulator of the neuroendocrine axis at puberty has led investigators to evaluate the role of kisspeptin in the pre-ovulatory GnRH surge mechanism. Kisspeptin neurones are known to express oestrogen and progesterone receptors and have their cell bodies located in brain regions implicated in the positive-feedback mechanism in several mammalian species. In rodents, kisspeptin neurones located in the rostral periventricular area of the third ventricle (RP3V) are positively regulated by oestrogen and most likely are activated by oestrogen at the time of positive feedback. A similar scenario appears to exist for a sub-population of kisspeptin neurones located in the mediobasal hypothalamus of sheep and primates. The majority of GnRH neurones express GPR54, and kisspeptin causes an intense electrical activation of these cells. In concordance with this, kisspeptin administration in vivo results in an abrupt and prolonged release of LH in all mammalian species examined to date. Functional evidence from immunoneutralisation and knockout studies suggests that RP3V kisspeptin neurones projecting to GnRH neurones are an essential component of the surge mechanism in rodents. Taken together, the studies undertaken to date provide substantial evidence in support of a key role of kisspeptin-GPR54 signalling in the generation of the oestrogen-induced pre-ovulatory surge mechanism in mammals.
Collapse
Affiliation(s)
- J Clarkson
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
30
|
Patisaul HB, Todd KL, Mickens JA, Adewale HB. Impact of neonatal exposure to the ERalpha agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats. Neurotoxicology 2009; 30:350-7. [PMID: 19442818 DOI: 10.1016/j.neuro.2009.02.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 11/16/2022]
Abstract
Neonatal exposure to endocrine disrupting compounds (EDCs) can impair reproductive physiology, but the specific mechanisms by which this occurs remain largely unknown. Growing evidence suggests that kisspeptin (KISS) neurons play a significant role in the regulation of pubertal onset and ovulation, therefore disruption of KISS signaling could be a mechanism by which EDCs impair reproductive maturation and function. We have previously demonstrated that neonatal exposure to phytoestrogens decreases KISS fiber density in the anterior hypothalamus of female rats, an effect which was associated with early persistent estrus and the impaired activation gonadotropin releasing hormone (GnRH) neurons. The goals of the present study were to (1) determine if an ERalpha selective agonist (PPT) or bisphenol-A (BPA) could produce similar effects on hypothalamic KISS content in female rats and (2) to determine if male KISS fiber density was also vulnerable to disruption by EDCs. We first examined the effects of neonatal exposure to PPT, a low (50 microg/kg bw) BPA dose, and a high (50 mg/kg bw) BPA dose on KISS immunoreactivity (-ir) in the anterior ventral periventricular (AVPV) and arcuate (ARC) nuclei of adult female rats, using estradiol benzoate (EB) and a sesame oil vehicle as controls. AVPV KISS-ir, following ovariectomy (OVX) and hormone priming, was significantly lower in the EB and PPT groups but not the BPA groups. ARC KISS-ir levels were significantly diminished in the EB and high dose BPA groups, and there was a nonsignificant trend for lower KISS-ir in the PPT group. We next examined effects of neonatal exposure to a low (50 microg/kg bw) dose of BPA and the phytoestrogens genistein (GEN) and equol (EQ) on KISS-ir in the AVPV and ARC of adult male rats, using OVX females as an additional control group. None of the compounds affected KISS-ir in the male hypothalamus. Our results suggest that the organization of hypothalamic KISS fibers may be vulnerable to disruption by EDC exposure and that females might be more sensitive than males.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biology, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
31
|
Kurunczi A, Hoyk Z, Csakvari E, Gyenes A, Párducz Á. 17β-Estradiol-induced remodeling of GABAergic axo-somatic synapses on estrogen receptor expressing neurons in the anteroventral periventricular nucleus of adult female rats. Neuroscience 2009; 158:553-7. [DOI: 10.1016/j.neuroscience.2008.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 11/06/2008] [Indexed: 11/28/2022]
|
32
|
Alpeeva EV, Makarenko IG. Perinatal development of the mammillothalamic tract and innervation of the anterior thalamic nuclei. Brain Res 2008; 1248:1-13. [PMID: 19026995 DOI: 10.1016/j.brainres.2008.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 01/07/2023]
Abstract
Axonal projections originating from the mammillary bodies represent important pathways that are essential for spatial information processing. Mammillothalamic tract is one of the main efferent projection systems of the mammillary body belonging to the limbic "Papez circuit". This study was aimed to describe the schedule of the mammillothalamic tract development in the rat using carbocyanine dye tracing. It was shown for the first time that fibers of the mammillothalamic tract being the collaterals of the mammillotegmental tract axons start bifurcating from the mammillotegmental tract on E17. The axons of the mammillothalamic tract grow simultaneously and reach the ventral region of the anterior thalamus where they form first terminal arborizations on E20-E21. Ipsilateral projections from the medial mammillary nucleus to the anteromedial and anteroventral thalamic nuclei develop from E20 to P6. Bilateral projections from the lateral mammillary nucleus to the anterodorsal thalamic nuclei develop later, on P3-P6, after the formation of the thalamic decussation of the mammillary body axons. Unique spatial and temporal pattern of the perinatal development of ascending mammillary body projections to the anterior thalamic nuclei may reflect the importance of these connections within the limbic circuitry.
Collapse
Affiliation(s)
- E V Alpeeva
- Optical Research Group, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., 119334 Moscow, Russian Federation
| | | |
Collapse
|
33
|
Bateman HL, Patisaul HB. Disrupted female reproductive physiology following neonatal exposure to phytoestrogens or estrogen specific ligands is associated with decreased GnRH activation and kisspeptin fiber density in the hypothalamus. Neurotoxicology 2008; 29:988-97. [PMID: 18656497 DOI: 10.1016/j.neuro.2008.06.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/04/2008] [Accepted: 06/18/2008] [Indexed: 01/20/2023]
Abstract
It is well established that estrogen administration during neonatal development can advance pubertal onset and prevent the maintenance of regular estrous cycles in female rats. This treatment paradigm also eliminates the preovulatory rise of gonadotropin releasing hormone (GnRH). It remains unclear, however, through which of the two primary forms of the estrogen receptor (ERalpha or ERbeta) this effect is mediated. It is also unclear whether endocrine disrupting compounds (EDCs) can produce similar effects. Here we compared the effect of neonatal exposure to estradiol benzoate (EB), the ERalpha specific agonist 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), the ERbeta specific agonist diarylpropionitrile (DPN) and the naturally occurring EDCs genistein (GEN) and equol (EQ) on pubertal onset, estrous cyclicity, GnRH activation, and kisspeptin content in the anteroventral periventricular (AVPV) and arcuate (ARC) nuclei. Vaginal opening was significantly advanced by EB and GEN. By 10 weeks post-puberty, irregular estrous cycles were observed in all groups except the control group. GnRH activation, as measured by the percentage of immunopositive GnRH neurons that were also immunopositive for Fos, was significantly lower in all treatment groups except the DPN group compared to the control group. GnRH activation was absent in the PPT group. These data suggest that neonatal exposure to EDCs can suppress GnRH activity in adulthood, and that ERalpha plays a pivotal role in this process. Kisspeptins (KISS) have recently been characterized to be potent stimulators of GnRH secretion. Therefore we quantified the density of KISS immunolabeled fibers in the AVPV and ARC. In the AVPV, KISS fiber density was significantly lower in the EB and GEN groups compared to the control group but only in the EB and PPT groups in the ARC. The data suggest that decreased stimulation of GnRH neurons by KISS could be a mechanism by which EDCs can impair female reproductive function.
Collapse
Affiliation(s)
- Heather L Bateman
- Department of Zoology, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
34
|
Abstract
Oestrogen receptor beta (ERbeta) was discovered more than 10 years ago. It is widely distributed in the brain. In some areas, such as the entorhinal cortex, it is present as the only ER, whereas in other regions, such as the bed nucleus of the stria terminalis and preoptic area, it can be found co-expressed with ERalpha, often within the same neurones. These ERs share ligands, and there are several complex relationships between the two receptors. Initially, the relationship between them was labelled as 'yin/yang', meaning that the actions of each complemented those of the other, but now, years later, other relationships have been described. Based on evidence from neuroendocrine and behavioural studies, three types of interactions between the two oestrogen receptors are described in this review. The first relationship is antagonistic; this is evident from studies on the role of oestrogen in spatial learning. When oestradiol is given in a high, chronic dose, spatial learning is impaired. This action of oestradiol requires ERalpha, and when ERbeta is not functional, lower doses of oestradiol have this negative effect on behaviour. The second relationship between the two receptors is one that is synergistic, and this is illustrated in the combined effects of the two receptors on the production of the neuropeptide oxytocin and its receptor. The third relationship is sequential; separate actions of the two receptors are postulated in activation and organisation of sexually dimorphic reproductive behaviours. Future studies on all of these topics will inform us about how ER selective ligands might affect oestrogen functions at the organismal level.
Collapse
Affiliation(s)
- E F Rissman
- Department of Biochemistry and Molecular Genetics, Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
35
|
Gore AC. Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Front Neuroendocrinol 2008; 29:358-74. [PMID: 18394690 PMCID: PMC2702520 DOI: 10.1016/j.yfrne.2008.02.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 01/01/2023]
Abstract
The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as develop the potential ability to intervene when development is disrupted.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, Institute for Neuroscience and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A1915, Austin, TX 78712, USA.
| |
Collapse
|
36
|
Cogliati T, Delgado-Romero P, Norwitz ER, Guduric-Fuchs J, Kaiser UB, Wray S, Kirsch IR. Pubertal impairment in Nhlh2 null mice is associated with hypothalamic and pituitary deficiencies. Mol Endocrinol 2007; 21:3013-27. [PMID: 17717072 DOI: 10.1210/me.2005-0337] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pubertal development is impaired in mice lacking the basic helix-loop-helix transcription factor Nhlh2. The mechanisms underlying changes in reproduction in Nhlh2-deficient mice (Nhlh2(-/-)) are unclear. Here we show that hypothalamic GnRH-1 content is reduced in adult Nhlh2(-/-) mice as is the number of GnRH-1 neurons localized to mid- and caudal hypothalamic regions. This reduction was detected postnatally after normal migration of GnRH-1 neurons within nasal regions had occurred. Phenotype rescue experiments showed that female Nhlh2(-/-) mice were responsive to estrogen treatment. In contrast, puberty could not be primed in female Nhlh2(-/-) mice with a GnRH-1 regimen. The adenohypophysis of Nhlh2(-/-) mice was hypoplastic although it contained a full complement of the five anterior pituitary cell types. GnRH-1 receptors (GnRHRs) were reduced in Nhlh2(-/-) pituitary gonadotropes as compared with wild type. In vitro assays indicated that Nhlh2 expression is regulated in parallel with GnRHR expression. However, direct transcriptional activity of Nhlh2 on the GnRHR promoter was not found. These results indicate that Nhlh2 plays a role in the development and functional maintenance of the hypothalamic-pituitary-gonadal axis at least at two levels: 1) in the hypothalamus by regulating the number and distribution of GnRH-1 neurons and, 2) in the developing and mature adenohypophysis.
Collapse
Affiliation(s)
- Tiziana Cogliati
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20889, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Patisaul HB, Polston EK. Influence of endocrine active compounds on the developing rodent brain. ACTA ACUST UNITED AC 2007; 57:352-62. [PMID: 17822772 DOI: 10.1016/j.brainresrev.2007.06.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 11/25/2022]
Abstract
Changes in the volumes of sexually dimorphic brain nuclei are often used as a biomarker for developmental disruption by endocrine-active compounds (EACs). However, these gross, morphological analyses do not reliably predict disruption of cell phenotype or neuronal function. Therefore, an experimental approach that simultaneously assesses anatomical, physiological and behavioral endpoints is required when developing risk assessment models for EAC exposure. Using this more comprehensive approach we have demonstrated that the disruption of nuclear volume does not necessarily coincide with disruption of cellular phenotype or neuroendocrine function in two sexually dimorphic brain nuclei: the anteroventral periventricular nucleus of the hypothalamus (AVPV) and the sexually dimorphic nucleus of the preoptic area (SDN). These results demonstrate that nuclear volume is likely not an appropriate biomarker for EAC exposure. We further demonstrated that neonatal exposure to the EACs genistein (GEN) and Bisphenol-A (BPA) can affect sexually dimorphic brain morphology and neuronal phenotypes in adulthood with regional and cellular specificity suggesting that effects observed in one brain region may not be predictive of effects within neighboring regions. Finally, developmental EAC exposure has been shown to affect a variety of sexually dimorphic behaviors including reproductive behavior. These effects are likely to have a broad impact as maladaptive behavior could translate to decreased fitness of entire populations. Collectively, these findings emphasize the need to employ a comprehensive approach that addresses anatomical, functional and behavioral endpoints when evaluating the potential effects of EAC exposure.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Zoology, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA.
| | | |
Collapse
|
38
|
Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 2006; 147:5817-25. [PMID: 16959837 PMCID: PMC6098691 DOI: 10.1210/en.2006-0787] [Citation(s) in RCA: 608] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuropeptide kisspeptin has recently been implicated as having a critical role in the activation of the GnRH neurons to bring about puberty. We examined here the postnatal development of kisspeptin neuronal populations and their projections to GnRH neurons in the mouse. Three populations of kisspeptin neurons located in the 1) anteroventral periventricular nucleus (AVPV) and the preoptic periventricular nucleus (PeN), 2) dorsomedial hypothalamus, and 3) arcuate nucleus were identified using an antisera raised against mouse kisspeptin-10. A marked 10-fold (P<0.01), female-dominant sex difference in the numbers of kisspeptin neurons existed in the AVPV/PeN but not elsewhere. Kisspeptin neurons in the AVPV/PeN of both sexes displayed a similar pattern of postnatal development with no cells detected at postnatal day (P) 10, followed by increases from P25 to reach adult levels by puberty onset (P<0.01; P31 females and P45 males). This pattern was not found in the dorsomedial hypothalamus or arcuate nucleus. Dual immunofluorescence experiments demonstrated close appositions between kisspeptin fibers and GnRH neuron cell bodies that were first apparent at P25 and increased across postnatal development in both sexes. These studies demonstrate kisspeptin peptide expression in the mouse hypothalamus and reveal the postnatal development of a sexually dimorphic continuum of kisspeptin neurons within the AVPV and PeN. This periventricular population of kisspeptin neurons reaches adult-like proportions at the time of puberty onset and is the likely source of the kisspeptin inputs to GnRH neurons.
Collapse
Affiliation(s)
- Jenny Clarkson
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, P.O. Box 913, Dunedin 9054, New Zealand
| | | |
Collapse
|
39
|
Patisaul HB, Fortino AE, Polston EK. Differential disruption of nuclear volume and neuronal phenotype in the preoptic area by neonatal exposure to genistein and bisphenol-A. Neurotoxicology 2006; 28:1-12. [PMID: 17109964 DOI: 10.1016/j.neuro.2006.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/06/2006] [Accepted: 10/04/2006] [Indexed: 11/24/2022]
Abstract
Changes in the volumes of sexually dimorphic brain nuclei are often used as a biomarker for developmental disruption by endocrine-active compounds (EACs). However, these gross, morphological analyses do not reliably predict disruption of cell phenotype or neuronal function. In the present experiments, we used a more comprehensive approach to assess whether postnatal exposure to the EACs genistein (GEN) or bisphenol-A (BIS) affected the development of two sexually dimorphic brain regions in male rats: the anteroventral periventricular nucleus of the hypothalamus (AVPV) and the sexually dimorphic nucleus of the preoptic area (SDN). In addition to nuclear volumes, we also measured the number of immunopositive calbindin neurons in the SDN and the activational patterns of gonadotropin-releasing hormone (GnRH) neurons, a neuronal population that is functionally linked to the AVPV. In rats, exposure of the neonatal male brain to endogenous estrogen, aromatized from testicular testosterone, is essential for the proper sexual differentiation of these endpoints. Thus, we hypothesized that exposure to BIS and GEN during this critical period could disrupt brain sexual differentiation. Animals were given four subcutaneous injections of sesame oil (control), 250 microg GEN, or 250 microg BIS at 12 h intervals over postnatal days (PND) 1 and 2, gonadectomized on PND 85, and treated sequentially with estrogen and progesterone to stimulate Fos expression in GnRH neurons, a marker for their activation. A cohort of age-matched ovariectomized (OVX) females that were given the same hormone treatment in adulthood served as a positive control group. SDN volume was unchanged by treatment, but the number of calbindin neurons in the SDN was significantly increased by both BIS and GEN. GEN, but not BIS, demasculinized male AVPV volume, but patterns of GnRH neuronal activation were not affected by either compound. These results suggest that acute exposure to EACs during a critical developmental period can independently alter nuclear volumes of sexually dimorphic nuclei and their phenotypic profiles in a region specific manner.
Collapse
Affiliation(s)
- Heather B Patisaul
- CIIT Centers for Health Research, 6 Davis Drive, RTP, NC 27709, United States.
| | | | | |
Collapse
|