1
|
Hernandez-Morato I, Koss S, Honzel E, Pitman MJ. Netrin-1 as A neural guidance protein in development and reinnervation of the larynx. Ann Anat 2024; 254:152247. [PMID: 38458575 DOI: 10.1016/j.aanat.2024.152247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States; Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Madrid, Spain.
| | - Shira Koss
- ENT Associates of Nassau County, Levittown, NY, United States
| | - Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
2
|
Isabella AJ, Moens CB. Development and regeneration of the vagus nerve. Semin Cell Dev Biol 2024; 156:219-227. [PMID: 37537116 PMCID: PMC10830892 DOI: 10.1016/j.semcdb.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The vagus nerve, with its myriad constituent axon branches and innervation targets, has long been a model of anatomical complexity in the nervous system. The branched architecture of the vagus nerve is now appreciated to be highly organized around the topographic and/or molecular identities of the neurons that innervate each target tissue. However, we are only just beginning to understand the developmental mechanisms by which heterogeneous vagus neuron identity is specified, patterned, and used to guide the axons of particular neurons to particular targets. Here, we summarize our current understanding of the complex topographic and molecular organization of the vagus nerve, the developmental basis of neuron specification and patterned axon guidance that supports this organization, and the regenerative mechanisms that promote, or inhibit, the restoration of vagus nerve organization after nerve damage. Finally, we highlight key unanswered questions in these areas and discuss potential strategies to address these questions.
Collapse
Affiliation(s)
- Adam J Isabella
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cecilia B Moens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
McCoy ME, Kamitakahara AK. Ontogeny and Trophic Factor Sensitivity of Gastrointestinal Projecting Vagal Sensory Cell Types. eNeuro 2023; 10:ENEURO.0511-22.2023. [PMID: 36973009 PMCID: PMC10124152 DOI: 10.1523/eneuro.0511-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Vagal sensory neurons (VSNs) located in the nodose ganglion provide information, such as stomach stretch or the presence of ingested nutrients, to the caudal medulla via specialized cell types expressing unique marker genes. Here, we leverage VSN marker genes identified in adult mice to determine when specialized vagal subtypes arise developmentally and the trophic factors that shape their growth. Experiments to screen for trophic factor sensitivity revealed that brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) robustly stimulate neurite outgrowth from VSNs in vitro Perinatally, BDNF was expressed by neurons of the nodose ganglion itself, while GDNF was expressed by intestinal smooth muscle cells. Thus, BDNF may support VSNs locally, whereas GDNF may act as a target-derived trophic factor supporting the growth of processes at distal innervation sites in the gut. Consistent with this, expression of the GDNF receptor was enriched in VSN cell types that project to the gastrointestinal tract. Last, the mapping of genetic markers in the nodose ganglion demonstrates that defined vagal cell types begin to emerge as early as embryonic day 13, even as VSNs continue to grow to reach gastrointestinal targets. Despite the early onset of expression for some marker genes, the expression patterns of many cell type markers appear immature in prenatal life and mature considerably by the end of the first postnatal week. Together, the data support location-specific roles for BDNF and GDNF in stimulating VSN growth, and a prolonged perinatal timeline for VSN maturation in male and female mice.
Collapse
Affiliation(s)
- Meaghan E McCoy
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Anna K Kamitakahara
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027
- Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
4
|
Honeycutt SE, N'Guetta PEY, O'Brien LL. Innervation in organogenesis. Curr Top Dev Biol 2022; 148:195-235. [PMID: 35461566 PMCID: PMC10636594 DOI: 10.1016/bs.ctdb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proper innervation of peripheral organs helps to maintain physiological homeostasis and elicit responses to external stimuli. Disruptions to normal function can result in pathophysiological consequences. The establishment of connections and communication between the central nervous system and the peripheral organs is accomplished through the peripheral nervous system. Neuronal connections with target tissues arise from ganglia partitioned throughout the body. Organ innervation is initiated during development with stimuli being conducted through several types of neurons including sympathetic, parasympathetic, and sensory. While the physiological modulation of mature organs by these nerves is largely understood, their role in mammalian development is only beginning to be uncovered. Interactions with cells in target tissues can affect the development and eventual function of several organs, highlighting their significance. This chapter will cover the origin of peripheral neurons, factors mediating organ innervation, and the composition and function of organ-specific nerves during development. This emerging field aims to identify the functional contribution of innervation to development which will inform future investigations of normal and abnormal mammalian organogenesis, as well as contribute to regenerative and organ replacement efforts where nerve-derived signals may have significant implications for the advancement of such studies.
Collapse
Affiliation(s)
- Samuel E Honeycutt
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pierre-Emmanuel Y N'Guetta
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
5
|
Ye L, Rawls JF. Microbial influences on gut development and gut-brain communication. Development 2021; 148:dev194936. [PMID: 34758081 PMCID: PMC8627602 DOI: 10.1242/dev.194936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
The developmental programs that build and sustain animal forms also encode the capacity to sense and adapt to the microbial world within which they evolved. This is abundantly apparent in the development of the digestive tract, which typically harbors the densest microbial communities of the body. Here, we review studies in human, mouse, zebrafish and Drosophila that are revealing how the microbiota impacts the development of the gut and its communication with the nervous system, highlighting important implications for human and animal health.
Collapse
|
6
|
Lu YJ, Yu WW, Cui MM, Yu XX, Song HL, Bai MR, Wu WJ, Gu BL, Wang J, Cai W, Chu X. Association Analysis of Variants of DSCAM and BACE2 With Hirschsprung Disease Susceptibility in Han Chinese and Functional Evaluation in Zebrafish. Front Cell Dev Biol 2021; 9:641152. [PMID: 34136475 PMCID: PMC8201997 DOI: 10.3389/fcell.2021.641152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
Hirschsprung disease (HSCR) has a higher incidence in children with Down syndrome (DS), which makes trisomy 21 a predisposing factor to HSCR. DSCAM and BACE2 are close together on the HSCR-associated critical region of chromosome 21. Common variants of DSCAM and rare variants of BACE2 were implicated to be associated with sporadic HSCR. However, the submucosal neuron defect of DS mouse model could not be rescued by normalization of Dscam. We aimed to explore the contribution of DSCAM and BACE2 to the development of the enteric nervous system (ENS) and HSCR susceptibility. We genotyped 133 tag single-nucleotide polymorphisms (SNPs) in DSCAM and BACE2 gene region in 420 HSCR patients and 1,665 controls of Han Chinese. Expression of DSCAM and BACE2 homologs was investigated in the developing gut of zebrafish. Overexpression and knockdown of the homologs were performed in zebrafish to investigate their roles in the development of ENS. Two DSCAM SNPs, rs430255 (PAddtive = 0.0052, OR = 1.36, 95% CI: 1.10–1.68) and rs2837756 (PAddtive = 0.0091, OR = 1.23, 95% CI: 1.05–1.43), showed suggestive association with HSCR risk. Common variants in BACE2 were not associated with HSCR risk. We observed dscama, dscamb, and bace2 expression in the developing gut of zebrafish. Knockdown of dscama, dscamb, and bace2 caused a reduction of enteric neurons in the hindgut of zebrafish. Overexpression of DSCAM and bace2 had no effects on neuron number in the hindgut of zebrafish. Our results suggested that common variation of DSCAM contributed to HSCR risk in Han Chinese. The dysfunction of both dscams and bace2 caused defects in enteric neuron, indicating that DSCAM and BACE2 might play functional roles in the occurrence of HSCR. These novel findings might shed new light on the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Yan-Jiao Lu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wen-Wen Yu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Meng-Meng Cui
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xian-Xian Yu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Huan-Lei Song
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Mei-Rong Bai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wen-Jie Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Bei-Lin Gu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jun Wang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xun Chu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
7
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
8
|
Abstract
Investigations of the cellular and molecular mechanisms that mediate the development of the autonomic nervous system have identified critical genes and signaling pathways that, when disrupted, cause disorders of the autonomic nervous system. This review summarizes our current understanding of how the autonomic nervous system emerges from the organized spatial and temporal patterning of precursor cell migration, proliferation, communication, and differentiation, and discusses potential clinical implications for developmental disorders of the autonomic nervous system, including familial dysautonomia, Hirschsprung disease, Rett syndrome, and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
9
|
BDNF and Netrin-1 repression by C/EBPβ in the gut triggers Parkinson's disease pathologies, associated with constipation and motor dysfunctions. Prog Neurobiol 2020; 198:101905. [PMID: 32911010 DOI: 10.1016/j.pneurobio.2020.101905] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
Abstract
Chronic constipation is one of the most prominent prodromal symptoms in Parkinson's disease (PD), and Lewy bodies, enriched with aggregated α-Synuclein (α-Syn), propagation from the gut into the brain has been proposed to play a key role in PD etiopathogenesis. BDNF (Brain-derived neurotrophic factor) and Netrin-1 promote both neuronal survival and regulate the gut functions. We hypothesize that C/EBPβ represses BDNF and Netrin-1 in peripheral nervous system and central nervous system, contributing to GI tract and brain malfunctions in PD. To test the hypothesis, we performed the studies in both human PD gut tissues and BDNF or Netrin-1 gut conditional KO mice models. Lewy bodies with α-Syn aggregation and neuro-inflammation were measured in the colon and brain samples from PD patients and healthy controls and rotenone or vehicle-treated WT and CEBPβ (+/-) mice. We show that both BDNF and Netrin-1 are strongly decreased in the brain and the gut of PD patients, and conditional KO of these trophic factors in the gut elicits dopaminergic neuronal loss, constipation and motor dysfunctions. Interestingly, the inflammation and oxidative stress-induced transcription factor C/EBPβ acts as a robust repressor for both BDNF and Netrin-1 and suppresses the expression of trophic factors, and its levels inversely correlate with BDNF and Netrin-1 in PD patients. Our findings support that gut inflammation induces C/EBPβ activation that leads to both BDNF and Netrin-1 reduction and triggers PD non-motor and motor symptoms. Possibly, C/EBPβ-mediated biological events might be early diagnostic biomarkers for PD.
Collapse
|
10
|
Mapping of Extrinsic Innervation of the Gastrointestinal Tract in the Mouse Embryo. J Neurosci 2020; 40:6691-6708. [PMID: 32690615 DOI: 10.1523/jneurosci.0309-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/05/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Precise extrinsic afferent (visceral sensory) and efferent (sympathetic and parasympathetic) innervation of the gut is fundamental for gut-brain cross talk. Owing to the limitation of intrinsic markers to distinctively visualize the three classes of extrinsic axons, which intimately associate within the gut mesentery, detailed information on the development of extrinsic gut-innervating axons remains relatively sparse. Here, we mapped extrinsic innervation of the gut and explored the relationships among various types of extrinsic axons during embryonic development in mice. Visualization with characterized intrinsic markers revealed that visceral sensory, sympathetic, and parasympathetic axons arise from different anatomic locations, project in close association via the gut mesentery, and form distinctive innervation patterns within the gut from embryonic day (E)10.5 to E16.5. Genetic ablation of visceral sensory trajectories results in the erratic extension of both sympathetic and parasympathetic axons, implicating that afferent axons provide an axonal scaffold to route efferent axons. Coculture assay further confirmed the attractive effect of sensory axons on sympathetic axons. Taken together, our study provides key information regarding the development of extrinsic gut-innervating axons occurring through heterotypic axonal interactions and provides an anatomic basis to uncover neural circuit assembly in the gut-brain axis (GBA).SIGNIFICANCE STATEMENT Understanding the development of extrinsic innervation of the gut is essential to unravel the bidirectional neural communication between the brain and the gut. Here, with characterized intrinsic markers targeting vagal sensory, spinal sensory, sympathetic, and parasympathetic axons, respectively, we comprehensively traced the spatiotemporal development of extrinsic axons to the gut during embryonic development in mice. Moreover, in line with the somatic nervous system, pretarget sorting via heterotypic axonal interactions is revealed to play critical roles in patterning extrinsic efferent trajectories to the gut. These findings provide basic anatomic information to explore the mechanisms underlying the process of assembling neural circuitry in the gut-brain axis (GBA).
Collapse
|
11
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
12
|
Ko SY, Price JT, Blatch GL, Nurgali K. Netrin-1-like-immunoreactivity Coexpresses With DCC and Has a Differential Level in the Myenteric Cholinergic and Nitrergic Neurons of the Adult Mouse Colon. J Histochem Cytochem 2018; 67:335-349. [PMID: 30576266 DOI: 10.1369/0022155418819821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Netrin-1 is a potent axonal and neuronal guidance cue in the developing nervous system. Netrin-1 functions are mediated by its receptors, such as deleted in colorectal cancer (DCC) present on axons and neurons. Localization of DCC and Netrin-1 on various types of enteric neurons and their role in the mature enteric nervous system is unknown. The results of our study revealed that almost all enteric neurons and processes express DCC and Netrin-1 in the adult mice. Netrin-1-like-immunoreactivity (IR) was detected in the cytoplasm of neurons with some showing strong or weak staining. The majority of Netrin-1-like-immunoreactive enteric neurons were choline acetyltransferase (ChAT)-positive. However, ~19% of neurons were strongly Netrin-1-like-positive but ChAT-negative while ~8% of neurons were Netrin-1-like-negative but strongly ChAT-positive. In contrast, almost all nitric oxide synthase (nNOS)-positive enteric neurons displayed strong Netrin-1-like-IR. This differential intensity of Netrin-1 expression in the myenteric neurons might determine major neuronal subtypes regulating intestinal motility, ChAT-IR excitatory, and nNOS-IR inhibitory muscle motor and interneurons. This is the first study demonstrating the localization of DCC and Netrin-1 in the colonic myenteric plexus of the adult mice and their expression level determining two major neuronal subtypes regulating intestinal motility.
Collapse
Affiliation(s)
- Suh Youn Ko
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - John T Price
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Australian Institute for Musculoskeletal Science.,Department of Medicine-Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory L Blatch
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,The Vice Chancellery, The University of Notre Dame Australia, Fremantle, Western Australia, Australia.,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science.,Department of Medicine-Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Buchanan KL, Bohórquez DV. You Are What You (First) Eat. Front Hum Neurosci 2018; 12:323. [PMID: 30150928 PMCID: PMC6099179 DOI: 10.3389/fnhum.2018.00323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/25/2018] [Indexed: 01/15/2023] Open
Abstract
As far back as we can remember, we eat. In fact, we eat before we can remember. Our first meal is amniotic fluid. We swallow it during the first trimester of gestation, and with that, we expose our gut to a universe of molecules. These early molecules have a profound influence on gut and brain function. For example, the taste of the amniotic fluid changes based on the mother's diet. Indeed, recent findings suggest that food preferences begin in utero. Likewise, a baby's first exposure to bacteria, previously thought to be during birth, appears to be in utero as well. And just as postnatal food and microbiota are implicated in brain function and dysfunction, prenatal nutrients and microbes may have a long-lasting impact on the development of the gut-brain neural circuits processing food, especially considering their plasticity during this vulnerable period. Here, we use current literature to put forward concepts needed to understand how the gut first meets the brain, and how this encounter may help us remember food.
Collapse
Affiliation(s)
| | - Diego V. Bohórquez
- Department of Medicine, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University, Durham, NC, United States
| |
Collapse
|
14
|
Hirst CS, Stamp LA, Bergner AJ, Hao MM, Tran MX, Morgan JM, Dutschmann M, Allen AM, Paxinos G, Furlong TM, McKeown SJ, Young HM. Kif1bp loss in mice leads to defects in the peripheral and central nervous system and perinatal death. Sci Rep 2017; 7:16676. [PMID: 29192291 PMCID: PMC5709403 DOI: 10.1038/s41598-017-16965-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/19/2017] [Indexed: 12/29/2022] Open
Abstract
Goldberg-Shprintzen syndrome is a poorly understood condition characterized by learning difficulties, facial dysmorphism, microcephaly, and Hirschsprung disease. GOSHS is due to recessive mutations in KIAA1279, which encodes kinesin family member 1 binding protein (KIF1BP, also known as KBP). We examined the effects of inactivation of Kif1bp in mice. Mice lacking Kif1bp died shortly after birth, and exhibited smaller brains, olfactory bulbs and anterior commissures, and defects in the vagal and sympathetic innervation of the gut. Kif1bp was found to interact with Ret to regulate the development of the vagal innervation of the stomach. Although newborn Kif1bp−/− mice had neurons along the entire bowel, the colonization of the gut by neural crest-derived cells was delayed. The data show an essential in vivo role for KIF1BP in axon extension from some neurons, and the reduced size of the olfactory bulb also suggests additional roles for KIF1BP. Our mouse model provides a valuable resource to understand GOSHS.
Collapse
Affiliation(s)
- Caroline S Hirst
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Marlene M Hao
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Mai X Tran
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Jan M Morgan
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Matthias Dutschmann
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Andrew M Allen
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - George Paxinos
- Neuroscience Research Australia and School of Medical Sciences, The University of New South Wales, 2031, NSW, Australia
| | - Teri M Furlong
- Neuroscience Research Australia and School of Medical Sciences, The University of New South Wales, 2031, NSW, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia. .,Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Victoria, 3800, Australia.
| | - Heather M Young
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
15
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
16
|
Uesaka T, Young HM, Pachnis V, Enomoto H. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 2016; 417:158-67. [PMID: 27112528 DOI: 10.1016/j.ydbio.2016.04.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/09/2016] [Accepted: 04/21/2016] [Indexed: 12/16/2022]
Abstract
The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract.
Collapse
Affiliation(s)
- Toshihiro Uesaka
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, 3010 VIC, Australia
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
17
|
Patthey C, Clifford H, Haerty W, Ponting CP, Shimeld SM, Begbie J. Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Dev 2016; 11:3. [PMID: 26819088 PMCID: PMC4730756 DOI: 10.1186/s13064-016-0057-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 11/22/2022] Open
Abstract
Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Conclusions One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0057-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, Oxford, UK. .,Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden.
| | - Harry Clifford
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | - Wilfried Haerty
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | - Chris P Ponting
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | | | - Jo Begbie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Keast JR, Smith-Anttila CJA, Osborne PB. Developing a functional urinary bladder: a neuronal context. Front Cell Dev Biol 2015; 3:53. [PMID: 26389118 PMCID: PMC4555086 DOI: 10.3389/fcell.2015.00053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/14/2015] [Indexed: 01/23/2023] Open
Abstract
The development of organs occurs in parallel with the formation of their nerve supply. The innervation of pelvic organs (lower urinary tract, hindgut, and sexual organs) is complex and we know remarkably little about the mechanisms that form these neural pathways. The goal of this short review is to use the urinary bladder as an example to stimulate interest in this question. The bladder requires a healthy mature nervous system to store urine and release it at behaviorally appropriate times. Understanding the mechanisms underlying the construction of these neural circuits is not only relevant to defining the basis of developmental problems but may also suggest strategies to restore connectivity and function following injury or disease in adults. The bladder nerve supply comprises multiple classes of sensory, and parasympathetic or sympathetic autonomic effector (motor) neurons. First, we define the developmental endpoint by describing this circuitry in adult rodents. Next we discuss the innervation of the developing bladder, identifying challenges posed by this area of research. Last we provide examples of genetically modified mice with bladder dysfunction and suggest potential neural contributors to this state.
Collapse
Affiliation(s)
- Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| | | | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
19
|
Hepworth KL, Wang XY, Huizinga JD, Ratcliffe EM. Vagal Fibers Form Associations With Interstitial Cells of Cajal During Fetal Development. Anat Rec (Hoboken) 2015; 298:1780-5. [DOI: 10.1002/ar.23192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Kelly L. Hepworth
- Department of Pediatrics; McMaster University; Hamilton Ontario Canada
- Farncombe Family Digestive Health Research Institute, McMaster University; Hamilton Ontario Canada
| | - Xuan-yu Wang
- Farncombe Family Digestive Health Research Institute, McMaster University; Hamilton Ontario Canada
- Department of Medicine; McMaster University; Hamilton Ontario Canada
| | - Jan D. Huizinga
- Farncombe Family Digestive Health Research Institute, McMaster University; Hamilton Ontario Canada
- Department of Medicine; McMaster University; Hamilton Ontario Canada
| | - Elyanne M. Ratcliffe
- Department of Pediatrics; McMaster University; Hamilton Ontario Canada
- Farncombe Family Digestive Health Research Institute, McMaster University; Hamilton Ontario Canada
| |
Collapse
|
20
|
Hatch J, Mukouyama YS. Spatiotemporal mapping of vascularization and innervation in the fetal murine intestine. Dev Dyn 2014; 244:56-68. [PMID: 25138596 DOI: 10.1002/dvdy.24178] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In mice, the intestinal tube develops from the splanchopleure before embryonic day 9.5. Subsequent patterning of nerves and blood vessels is critical for normal digestive function. A hierarchical branching vascular network allows for efficient nutrient absorption, while the complex enteric nervous system regulates intestinal motility as well as secretion, absorption, and blood flow. Despite the well-recognized significance of these systems, the precise mechanisms by which they develop have not been clearly established in mammals. RESULTS Using a novel whole-mount immunohistochemical protocol, we visualize the pattern of intestinal neurovascular development in mice between embryonic day 10.5 and birth. In particular, we focus on the development and remodeling of the enteric vascular plexus, the migration and organization of enteric neural crest-derived cells, and the integration of peripheral sympathetic nerves with the enteric nervous system. These correlative data lead us to hypothesize a functional interaction between migrating neural crest-derived cells and endothelial cells of the primary capillary plexus, as well as a subsequent interaction between developing peripheral autonomic nerves and differentiated neural crest-derived cells. CONCLUSIONS These studies provide useful anatomical data for continuing investigations on the functional mechanisms underlying intestinal organogenesis.
Collapse
Affiliation(s)
- John Hatch
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
21
|
Mukouyama YS. Vessel-dependent recruitment of sympathetic axons: looking for innervation in all the right places. J Clin Invest 2014; 124:2855-7. [PMID: 24937419 DOI: 10.1172/jci76622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autonomic sympathetic axons extend along and innervate resistance arteries to control vascular tone and participate in blood pressure regulation. In this issue of the JCI, Brunet and colleagues reveal that sympathetic innervation of arteries is facilitated by secretion of the axon guidance molecule netrin-1 by arterial VSMCs. Furthermore, disruption of the signaling cascade induced by netrin-1 through its receptor DCC resulted in defective arterial innervation and sympathetic control of vasoconstriction. This comprehensive study represents a major step forward in our understanding of the coordinated wiring of the vascular and nervous systems in various tissues.
Collapse
|
22
|
Aherne CM, Collins CB, Eltzschig HK. Netrin-1 guides inflammatory cell migration to control mucosal immune responses during intestinal inflammation. Tissue Barriers 2014; 1:e24957. [PMID: 24665394 PMCID: PMC3879190 DOI: 10.4161/tisb.24957] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/26/2022] Open
Abstract
The intestinal epithelium is a dynamic barrier playing an active role in intestinal homeostasis and inflammation. Intestinal barrier function is dysregulated during inflammatory bowel disease (IBD), with epithelial cells playing a significant part in generating an inflammatory milieu through the release of signals that attract leukocytes to the intestinal lamina propria. However, it is increasingly appreciated that the intestinal epithelium mediates a counterbalancing response to drive resolution. Drawing analogies with neuronal development, where the balance of chemoattractive and chemorepellent signals is key to directed neuronal movement it has been postulated that such secreted cues play a role in leukocyte migration. Netrin-1 is one of the best-described neuronal guidance molecules, which has been shown to play a significant role in directed migration of leukocytes. Prior to our study the potential role of netrin-1 in IBD was poorly characterized. We defined netrin-1 as an intestinal epithelial-derived protein capable of limiting neutrophil recruitment to attenuate acute colitis. Our study highlights that the intestinal epithelium releases factors during acute inflammation that are responsible for fine-tuning the immune response. Exploration of these epithelial-mediated protective mechanisms will shed light on the complexity of the intestinal epithelial barrier in health and disease.
Collapse
Affiliation(s)
- Carol M Aherne
- Mucosal Inflammation Program; Department of Anesthesiology and Perioperative Medicine; University of Colorado Anschutz Medical Campus; Aurora, CO USA
| | - Colm B Collins
- Department of Pediatrics; Children's Hospital Colorado; Aurora, CO USA
| | - Holger K Eltzschig
- Mucosal Inflammation Program; Department of Anesthesiology and Perioperative Medicine; University of Colorado Anschutz Medical Campus; Aurora, CO USA
| |
Collapse
|
23
|
Burger NB, Haak MC, De Bakker BS, Al Shaibani Z, De Groot CJM, Christoffels VM, Bekker MN. Systematic analysis of the development of the ductus venosus in wild type mouse and human embryos. Early Hum Dev 2013; 89:1067-73. [PMID: 23978399 DOI: 10.1016/j.earlhumdev.2013.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Doppler flow velocities of the ductus venosus are increasingly used to assess fetal increased nuchal translucency, growth-restriction and monochorionic twins, and might contribute to screening for cardiac defects. It is disputed whether a sphincter at the ductus venosus inlet actively regulates blood flow. AIMS This study aims to define the morphogenesis of the developing mouse and human ductus venosus and to address the existence of a sphincter. STUDY DESIGN The presence of endothelium, smooth muscle, elastic fibers and nerves in the ductus venosus of E10.5-15.5 mouse embryos and in three corresponding human embryos (CS16, CS19 and CS23) was examined using immunohistochemistry. Three-dimensional reconstructions of the ductus venosus of E11.5-15.5 mouse and CS14-23 human embryos were generated and examined. RESULTS The ductus venosus lumen was narrowed from ventral-caudal to dorsal-cranial in E13.5-15.5 mouse and CS16-23 human embryos. Mouse embryos showed positive endothelial Pecam1 expression from E11.5-15.5 and smooth muscle actin staining in the ventral-caudal part of the ductus venosus from E12.5-15.5. At all developmental stages, elastic fiber and nerve marker expression was not detected in the ductus venosus (Fig. 2). In human embryos endothelial Pecam1 and smooth muscle actin expression was found in the ductus venosus from CS16 and CS19 onwards. Elastic fiber and nerve marker expression was not detected in all stages (Fig. 4). Morphogenesis and staining results of the ductus venosus were similar in both species. CONCLUSIONS The ductus venosus lacks a sphincter at its inlet as no accumulation of smooth muscle cells, elastic fibers or nerve innervation was found in mouse embryos from E11.5-15.5 and in human embryos from CS14-23.
Collapse
Affiliation(s)
- Nicole B Burger
- Department of Obstetrics and Gynecology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Goldberg D, Borojevic R, Anderson M, Chen JJ, Gershon MD, Ratcliffe EM. Slit/Robo-mediated chemorepulsion of vagal sensory axons in the fetal gut. Dev Dyn 2013; 242:9-15. [PMID: 23161783 PMCID: PMC3688041 DOI: 10.1002/dvdy.23898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The vagus nerve descends from the brain to the gut during fetal life to reach specific targets in the bowel wall. Vagal sensory axons have been shown to respond to the axon guidance molecule netrin and to its receptor, deleted in colorectal cancer (DCC). As there are regions of the gut wall into which vagal axons do and do not extend, it is likely that a combination of attractive and repellent cues are involved in how vagal axons reach specific targets. We tested the hypothesis that Slit/Robo chemorepulsion can contribute to the restriction of vagal sensory axons to specific targets in the gut wall. RESULTS Transcripts encoding Robo1 and Robo2 were expressed in the nodose ganglia throughout development and mRNA encoding the Robo ligands Slit1, Slit2, and Slit3 were all found in the fetal and adult bowel. Slit2 protein was located in the outer gut mesenchyme in regions that partially overlap with the secretion of netrin-1. Neurites extending from explanted nodose ganglia were repelled by Slit2. CONCLUSIONS These observations suggest that vagal sensory axons are responsive to Slit proteins and are thus repelled by Slits secreted in the gut wall and prevented from reaching inappropriate targets.
Collapse
Affiliation(s)
- David Goldberg
- School of Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rajka Borojevic
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Monique Anderson
- School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Jason J. Chen
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Michael D. Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Elyanne M. Ratcliffe
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
26
|
Netrin-1 in the developing enteric nervous system and colorectal cancer. Trends Mol Med 2012; 18:544-54. [DOI: 10.1016/j.molmed.2012.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/07/2012] [Accepted: 07/10/2012] [Indexed: 11/21/2022]
|
27
|
Jacobs IJ, Ku WY, Que J. Genetic and cellular mechanisms regulating anterior foregut and esophageal development. Dev Biol 2012; 369:54-64. [PMID: 22750256 DOI: 10.1016/j.ydbio.2012.06.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
Separation of the single anterior foregut tube into the esophagus and trachea involves cell proliferation and differentiation, as well as dynamic changes in cell-cell adhesion and migration. These biological processes are regulated and coordinated at multiple levels through the interplay of the epithelium and mesenchyme. Genetic studies and in vitro modeling have shed light on relevant regulatory networks that include a number of transcription factors and signaling pathways. These signaling molecules exhibit unique expression patterns and play specific functions in their respective territories before the separation process occurs. Disruption of regulatory networks inevitably leads to defective separation and malformation of the trachea and esophagus and results in the formation of a relatively common birth defect, esophageal atresia with or without tracheoesophageal fistula (EA/TEF). Significantly, some of the signaling pathways and transcription factors involved in anterior foregut separation continue to play important roles in the morphogenesis of the individual organs. In this review, we will focus on new findings related to these different developmental processes and discuss them in the context of developmental disorders or birth defects commonly seen in clinics.
Collapse
Affiliation(s)
- Ian J Jacobs
- Department of Biology, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
28
|
Hill GW, Purcell EK, Liu L, Velkey JM, Altschuler RA, Duncan RK. Netrin-1-mediated axon guidance in mouse embryonic stem cells overexpressing neurogenin-1. Stem Cells Dev 2012; 21:2827-37. [PMID: 22512716 DOI: 10.1089/scd.2011.0437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stem cell therapy holds great promise for treating neurodegenerative disease, but major barriers to effective therapeutic strategies remain. A complete understanding of the derived phenotype is required for predicting cell response once introduced into the host tissue. We sought to identify major axonal guidance cues present in neurons derived from the transient overexpression of neurogenin-1 (Neurog1) in mouse embryonic stem cells (ESCs). Neurog1 upregulated the netrin-1 axon guidance receptors DCC (deleted in colorectal cancer) and neogenin (NEO1). Quantitative polymerase chain reaction results showed a 2-fold increase in NEO1 mRNA and a 36-fold increase in DCC mRNA in Neurog1-induced compared with control ESCs. Immunohistochemistry indicated that DCC was primarily expressed on cells positive for the neuronal marker TUJ1. DCC was preferentially localized to the cell soma and growth-cones of induced neurons. In contrast, NEO1 expression showed less specificity, labeling both TUJ1-positive and TUJ1-negative cells as well as uninduced control cells. Axonal outgrowth was directed preferentially toward aggregates of HEK293 cells secreting a recombinant active fragment of netrin-1. These data indicate that DCC and NEO1 are downstream products of Neurog1 and may guide the integration of Neurog1-induced ESCs with target cells secreting netrin-1. Differential expression profiles for netrin receptors could indicate different roles for this guidance cue on neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Gerhard W Hill
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-5616, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
BACKGROUND The vagus nerve is the major neural connection between the gastrointestinal tract and the central nervous system. During fetal development, axons from the cell bodies of the nodose ganglia and the dorsal motor nucleus grow into the gut to find their enteric targets, providing the vagal sensory and motor innervations respectively. Vagal sensory and motor axons innervate selective targets, suggesting a role for guidance cues in the establishment of the normal pattern of enteric vagal innervation. PURPOSE This review explores known molecular mechanisms that guide vagal innervation in the gastrointestinal tract. Guidance and growth factors, such as netrin-1 and its receptor, deleted in colorectal cancer, extracellular matrix molecules, such as laminin-111, and members of the neurotrophin family of molecules, such as brain-derived neurotrophic factor have been identified as mediating the guidance of vagal axons to the fetal mouse gut. In addition to increasing our understanding of the development of enteric innervation, studies of vagal development may also reveal clinically relevant insights into the underlying mechanisms of vago-vagal communication with the gastrointestinal tract.
Collapse
Affiliation(s)
- E M Ratcliffe
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
30
|
Ratcliffe EM, Fan L, Mohammed TJ, Anderson M, Chalazonitis A, Gershon MD. Enteric neurons synthesize netrins and are essential for the development of the vagal sensory innervation of the fetal gut. Dev Neurobiol 2011; 71:362-73. [PMID: 21485011 DOI: 10.1002/dneu.20869] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During fetal life, vagal sensory fibers establish a reproducible distribution in the gut that includes an association with myenteric ganglia. Previous work has shown that netrin is expressed in the bowel wall and, by acting on its receptor, deleted in colorectal cancer (DCC), mediates the guidance of vagal sensory axons to the developing gut. Because the highest concentration of netrins in fetal bowel is in the endoderm, we tested the hypothesis that the ingrowth of vagal afferents to the gut would be independent of the presence of enteric neurons, although enteric neurons might influence the internal distribution of these fibers. Surprisingly, experiments indicated that the vagal sensory innervation is intrinsic neuron-dependent. To examine the vagal innervation in the absence of enteric ganglia, fetal Ret -/- mice were labeled by applying DiI bilaterally to nodose ganglia. In Ret -/- mice, DiI-labeled vagal sensory axons descended in paraesophageal trunks as far as the proximal stomach, which contains neurons, but did not enter the aganglionic bowel. To determine whether neurons produce netrins, enteric neural-crest-derived cells (ENCDCs) were immunoselected from E15 rat gut. Transcripts encoding netrin-1 and -3 were not detected in the ENCDCs, but appeared after they had given rise to neurons. When these neurons were cocultured with cells expressing c-Myc-tagged netrin-1, the neurons displayed netrin-1, but not c-Myc, immunoreactivity. Enteric neurons thus synthesize netrins. The extent to which neuronal netrin accounts for the dependence of the vagal sensory innervation on intrinsic neurons, remains to be determined.
Collapse
Affiliation(s)
- Elyanne M Ratcliffe
- Department of Pediatrics, Division of Gastroenterology and Nutrition, McMaster University, Hamilton, Ontario.
| | | | | | | | | | | |
Collapse
|
31
|
Calmont A, Thapar N, Scambler PJ, Burns AJ. Absence of the vagus nerve in the stomach of Tbx1-/- mutant mice. Neurogastroenterol Motil 2011; 23:125-30. [PMID: 20939858 DOI: 10.1111/j.1365-2982.2010.01615.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Tbx1 is a member of the Tbox family of binding domain transcription factors. TBX1 maps within the region of chromosome 22q11 deleted in humans with DiGeorge syndrome (DGS), a common genetic disorder characterized by numerous physical manifestations including craniofacial and cardiac anomalies. Mice with homozygous null mutations in Tbx1 phenocopy this disorder and have defects including abnormal cranial ganglia formation and cardiac neural crest cell migration. These defects prompted us to investigate whether extrinsic vagus nerve or intrinsic enteric nervous system abnormalities are prevalent in the gastrointestinal tract of Tbx1 mutant mice. METHODS We used in situ hybridization for Ret, and immunohistochemical staining for neurofilament, HuC/D and βIII-tubulin to study cranial ganglia, vagus nerve, and enteric nervous system development in Tbx1 mutant and control mice. KEY RESULTS In Tbx1(-/-) embryos, cranial ganglia of the glossopharyngeal (IXth) and vagus (Xth) nerves were malformed and abnormally fused. In the gastrointestinal tract, the vagus nerves adjacent to the esophagus were severely hypoplastic and they did not extend beyond the gastro-esophageal junction nor project branches within the stomach wall, as was observed in Tbx1(+/+) mice. CONCLUSIONS & INFERENCES Although cranial ganglia morphology appeared normal in Tbx1(+/-) mice, these animals had a spectrum of stomach vagus innervation defects ranging from mild to severe. In all Tbx1 genotypes, the intrinsic enteric nervous system developed normally. The deficit in vagal innervation of the stomach in mice mutant for a gene implicated in DGS raises the possibility that similar defects may underlie a number of as yet unidentified/unreported congenital disorders affecting gastrointestinal function.
Collapse
Affiliation(s)
- A Calmont
- Molecular Medicine Unit, UCL Institute of Child Health, London, UK
| | | | | | | |
Collapse
|
32
|
Ratcliffe EM. Molecular development of the extrinsic sensory innervation of the gastrointestinal tract. Auton Neurosci 2010; 161:1-5. [PMID: 21147045 DOI: 10.1016/j.autneu.2010.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 10/27/2010] [Accepted: 11/02/2010] [Indexed: 12/19/2022]
Abstract
The extrinsic sensory innervation of the gastrointestinal tract is the conduit through which the gut and the central nervous system communicate. The hindbrain receives information directly from the bowel via the vagus nerve, while information from spinal afferents arrives in the central nervous system through the dorsal root ganglia. This review focuses on the molecular development of these vagal and spinal innervations, with an emphasis on mechanisms that involve axon guidance. During development, axons from both the nodose ganglia and dorsal root ganglia grow into the gut, innervate their appropriate enteric targets and avoid inappropriate cells in the gut wall. These developmental outcomes suggest that both attractive and repellent molecules are important in establishing the normal pattern of the extrinsic sensory innervation. In the fetal mouse gut, the guidance of vagal sensory axons is mediated by axon guidance molecules, such as netrin and the netrin receptor, deleted in colorectal cancer (DCC), as well as extracellular matrix molecules, such as laminin-111. Dorsal root ganglion neurons are known to express, and their axons to respond to, axon guidance molecules. The question of whether or not these molecules are involved in guiding spinal afferents to the bowel, however, has not yet been examined. It is anticipated that a better understanding of how vagal and spinal afferents innervate the fetal gut and reach specific enteric locations will provide deeper insights into the underlying mechanisms of normal and abnormal sensation from the gastrointestinal tract.
Collapse
Affiliation(s)
- Elyanne M Ratcliffe
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Canada.
| |
Collapse
|
33
|
Developmental determinants of the independence and complexity of the enteric nervous system. Trends Neurosci 2010; 33:446-56. [DOI: 10.1016/j.tins.2010.06.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/08/2010] [Accepted: 06/14/2010] [Indexed: 02/06/2023]
|
34
|
Murphy MC, Fox EA. Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. J Comp Neurol 2010; 518:2934-51. [PMID: 20533354 DOI: 10.1002/cne.22372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vagal sensory neurons are dependent on neurotrophins for survival during development. Here, the contribution of brain-derived neurotrophic factor (BDNF) to survival and other aspects of gastric vagal afferent development was investigated. Post-mortem anterograde tracing with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbo-cyanine perchlorate (DiI) was used to label selectively vagal projections to the stomach on postnatal days (P) 0, 3, 4, and 6 in wild types and heterozygous or homozygous BDNF mutants. Sampling sites distributed throughout the ventral stomach wall were scanned with a confocal microscope, and vagal axon bundles, single axons, putative mechanoreceptor precursors (intraganglionic laminar endings, IGLEs; intramuscular arrays, IMAs), and efferent terminals were quantified. Also, myenteric neurons, which are innervated by IGLEs, were stained with cuprolinic blue and counted. Quantitative comparisons across wild-type stomach compartments demonstrated that the adult distribution of IMAs was not present at P0 but began to form by P3-6. Among all the quantified elements, at P0, only IGLE density was significantly different in homozygous mutants compared with wild types, exhibiting a 50% reduction. Also, antrum innervation appeared disorganized, and some putative IMA precursors had truncated telodendria. At P3-6, the effect on IGLEs had recovered, the disorganization of antrum innervation had partially recovered, and some IMA telodendria were still truncated. The present results suggest that gastric IGLEs are among the vagal sensory neurons dependent on BDNF for survival or axon guidance. Alternatively, BDNF deficiency may delay gastric IGLE development. Also, BDNF may contribute to IMA differentiation and patterning of antral vagal innervation.
Collapse
Affiliation(s)
- Michelle C Murphy
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
35
|
Smooth-muscle-specific expression of neurotrophin-3 in mouse embryonic and neonatal gastrointestinal tract. Cell Tissue Res 2010; 340:267-86. [PMID: 20387078 DOI: 10.1007/s00441-010-0959-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/26/2010] [Indexed: 12/20/2022]
Abstract
Vagal gastrointestinal (GI) afferents are essential for the regulation of eating, body weight, and digestion. However, their functional organization and the way that this develops are poorly understood. Neurotrophin-3 (NT-3) is crucial for the survival of vagal sensory neurons and is expressed in the developing GI tract, possibly contributing to their survival and to other aspects of vagal afferent development. The identification of the functions of this peripheral NT-3 thus requires a detailed understanding of the localization and timing of its expression in the developing GI tract. We have studied embryos and neonates expressing the lacZ reporter gene from the NT-3 locus and found that NT-3 is expressed predominantly in the smooth muscle of the outer GI wall of the stomach, intestines, and associated blood vessels and in the stomach lamina propria and esophageal epithelium. NT-3 expression has been detected in the mesenchyme of the GI wall by embryonic day 12.5 (E12.5) and becomes restricted to smooth muscle and lamina propria by E15.5, whereas its expression in blood vessels and esophageal epithelium is first observed at E15.5. Expression in most tissues is maintained at least until postnatal day 4. The lack of colocalization of beta-galactosidase and markers for myenteric ganglion cell types suggests that NT-3 is not expressed in these ganglia. Therefore, NT-3 expression in the GI tract is largely restricted to smooth muscle at ages when vagal axons grow into the GI tract, and when vagal mechanoreceptors form in smooth muscle, consistent with its role in these processes and in vagal sensory neuron survival.
Collapse
|
36
|
Schubert T, Kaufmann S, Wenke AK, Grässel S, Bosserhoff AK. Role of deleted in colon carcinoma in osteoarthritis and in chondrocyte migration. Rheumatology (Oxford) 2009; 48:1435-41. [PMID: 19745029 DOI: 10.1093/rheumatology/kep245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE The concept of the chondrocyte as a stationary cell surrounded by an apparently impenetrable matrix has been challenged by in vitro observations in recent years. Chondrocyte migration may have a role in remodelling of the cartilage and pathological conditions. Candidate molecules are repellent factors for the regulation of chondrocyte migration, which are expressed in fetal and adult cartilage. We analysed the potential role of the receptor deleted in colon carcinoma (DCC) in chondrocytes, as this may exert attractive activities. METHODS Gene expression was determined by quantitative RT-PCR and immunohistochemistry, and gene regulation by electro mobility shift assay and chromatin immunoprecipitation. Functional assays on migration and differentiation were done after cell treatment and transfection. RESULTS DCC was shown to be specifically up-regulated in OA compared with normal chondrocytes in vitro and in vivo. Promoter analysis and transfection studies showed that the up-regulation of DCC in OA chondrocytes may be mediated by the transcription factors Sox9 and AP-2. Netrin-1, the ligand of DCC, was revealed to induce the migration of OA chondrocytes specifically. Expression of DCC in healthy chondrocytes by transient transfection significantly induced cell migration and chemotaxis to Netrin-1. DCC expression had no influence on cell differentiation; however, induction of MMP1 and -3 expression was observed. CONCLUSION Strong differential expression of DCC in OA compared with normal chondrocytes hints of a possible role of DCC in the pathophysiology of OA. The strong impact of the DCC receptor on cellular mobility of chondrocytes in vitro suggests a major relevance of migratory activities in physiological and pathological conditions of cartilage. However, definite proof of chondrocyte movements in vivo still has to be established.
Collapse
Affiliation(s)
- Thomas Schubert
- University of Regensburg, Institute of Pathology, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
37
|
Schubert T, Denk A, Mägdefrau U, Kaufmann S, Bastone P, Lowin T, Schedel J, Bosserhoff AK. Role of the Netrin System of Repellent Factors on Synovial Fibroblasts in Rheumatoid Arthritis and Osteoarthritis. Int J Immunopathol Pharmacol 2009; 22:715-22. [DOI: 10.1177/039463200902200317] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Changes in the expression of repellent factors, i.e., Netrins and their receptors, may be responsible for the invasive behavior of the synovial tissue cells in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). This study was carried out to analyze the expression of Netrins and their receptors in synovial cells of patients with RA, OA, and control subjects without synovial inflammation. Quantitative RT-PCR was performed to measure the expression of Netrin-1, −3, −4, Neogenin, DCC, UNC5A-D. The influence of Netrin-1 on synovial fibroblasts (SF) was analyzed by determining proliferation, migration, and their ability to organize collagen. SF expressed all repellent factors of the Netrin family. When comparing SF of healthy donors to patients with RA and OA, a stronger expression of UNC5B (4 fold) and UNC5C (769 fold) in RA and OA was found, whereas expression of the other molecules revealed no significant differences. Treating the SF-cells with recombinant Netrin-1 resulted in inhibition of migration of RA- and OA-SFs whereas control cells were not affected. The stronger expression of UNC5B and UNC5C receptors might contribute to the disordered phenotype of RA- and OA-SFs. Addition of Netrin-1 reduces the migratory ability of SFs, potentially by repulsion, as seen in neuronal cells in embryonic development. Due to its function, Netrin-1 may constitute a novel target in the treatment of OA and RA.
Collapse
Affiliation(s)
- T. Schubert
- Institute of Pathology, University Hospital of Regensburg, Regensburg
- Laboratory of Pathology, Frankfurt, Martinsried
| | - A. Denk
- Institute of Pathology, University Hospital of Regensburg, Regensburg
| | - U. Mägdefrau
- Institute of Pathology, University Hospital of Regensburg, Regensburg
| | - S. Kaufmann
- Institute of Pathology, University Hospital of Regensburg, Regensburg
| | | | - T. Lowin
- Department of Internal Medicine I, University Hospital of Regensburg, Regensburg, Germany
| | - J. Schedel
- Department of Internal Medicine I, University Hospital of Regensburg, Regensburg, Germany
| | - A-K. Bosserhoff
- Institute of Pathology, University Hospital of Regensburg, Regensburg
| |
Collapse
|
38
|
Ratcliffe EM, D'Autréaux F, Gershon MD. Laminin terminates the Netrin/DCC mediated attraction of vagal sensory axons. Dev Neurobiol 2008; 68:960-71. [PMID: 18418846 DOI: 10.1002/dneu.20634] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vagal sensory axons navigate to specific sites in the bowel during fetal life. Netrin/deleted in colorectal cancer (DCC) were found to mediate the attraction of vagal sensory axons to the fetal mouse gut. We tested the hypothesis that laminin-111 can reverse the chemoattractive effects of netrin and act as a stop signal for vagal sensory axons. Laminin-111-expressing cells were located in the E12 and E16 mouse bowel by in situ hybridization. At E12, these cells extended centrifugally from the endoderm; by E16, laminin-111 expressing cells were found in the mucosa and outer gut mesenchyme. A similar pattern was seen in preparations of E13 and E15 mouse gut labeled with antibodies to laminin. Application of DiI to nodose ganglia identified vagal sensory axons growing into the fetal bowel. These terminals were found to avoid concentrations of laminin or to terminate at laminin-delimited boundaries. Soluble laminin inhibited the preferential growth of nodose neurites toward netrin-secreting cells (p < 0.01). This effect was mimicked by a peptide, YIGSR, a sequence within the beta1 chain of laminin-111 (p < 0.004) and antagonized by a peptide, IKVAV, a sequence within the alpha1 chain of laminin-111. Antibodies to beta1-integrins were also able to reverse the inhibitive effects of laminin and restore the attraction of nodose neurites towards netrin-1-secreting cells. Soluble laminin inhibited the preferential growth of nodose neurites toward a cocultured explant of foregut. These findings suggest that laminin terminates the attraction of vagal sensory axons towards sources of netrin in the developing bowel.
Collapse
|
39
|
Marciano T, Wershil BK. The ontogeny and developmental physiology of gastric acid secretion. Curr Gastroenterol Rep 2007; 9:479-481. [PMID: 18377799 DOI: 10.1007/s11894-007-0063-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The production of acid by the stomach is a tightly controlled physiological process that involves neural and hormonal mechanisms and the input of several epithelial cell types. The past several years have seen significant advances in our understanding of the molecular ontogenesis of the stomach and the factors controlling stomach innervation, as well as the differentiation of gastric epithelial cell lineages and their respective hormones/factors that influence acid production. The programmed development of each of these elements is exquisitely regulated and allows human neonates to produce gastric acid; it also helps us define expectations of acid production in preterm infants at all gestational ages.
Collapse
Affiliation(s)
- Tuvia Marciano
- The Children's Hospital at Montefiore, Division of Pediatric Gastroenterology and Nutrition, 3415 Bainbridge Avenue, Rosenthal #3, Bronx, NY 10467, USA
| | | |
Collapse
|
40
|
Howell DM, Morgan WJ, Jarjour AA, Spirou GA, Berrebi AS, Kennedy TE, Mathers PH. Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus. J Comp Neurol 2007; 504:533-49. [PMID: 17701984 DOI: 10.1002/cne.21443] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development, multiple guidance cues direct the formation of appropriate synaptic connections. Factors that guide developing axons are known for various pathways throughout the mammalian brain; however, signals necessary to establish auditory connections are largely unknown. In the auditory brainstem the neurons whose axons traverse the midline in the ventral acoustic stria (VAS) are primarily located in the ventral cochlear nucleus (VCN) and project bilaterally to the superior olivary complex (SOC). The circumferential trajectory taken by developing VCN axons is similar to that of growing axons of spinal commissural neurons. Therefore, we reasoned that netrin-DCC and slit-robo signaling systems function in the guidance of VCN axons. VCN neurons express the transcription factor, mafB, as early as embryonic day (E) 13.5, thereby identifying the embryonic VCN for these studies. VCN axons extend toward the midline as early as E13, with many axons crossing by E14.5. During this time, netrin-1 and slit-1 RNAs are expressed at the brainstem midline. Additionally, neurons within the VCN express RNA for DCC, robo-1, and robo-2, and axons in the VAS are immunoreactive for DCC. VCN axons do not reach the midline of the brainstem in mice mutant for either the netrin-1 or DCC gene. VCN axons extend in pups lacking netrin-1, but most DCC-mutant samples lack VCN axonal outgrowth. Stereological cell estimates indicate only a modest reduction of VCN neurons in DCC-mutant mice. Taken together, these data show that a functional netrin-DCC signaling system is required for establishing proper VCN axonal projections in the auditory brainstem.
Collapse
Affiliation(s)
- David M Howell
- Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Murphy MC, Fox EA. Anterograde tracing method using DiI to label vagal innervation of the embryonic and early postnatal mouse gastrointestinal tract. J Neurosci Methods 2007; 163:213-25. [PMID: 17418900 PMCID: PMC1974840 DOI: 10.1016/j.jneumeth.2007.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 03/01/2007] [Accepted: 03/04/2007] [Indexed: 11/18/2022]
Abstract
The mouse is an extremely valuable model for studying vagal development in relation to strain differences, genetic variation, gene manipulations or pharmacological manipulations. Therefore, a method using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was developed for labeling vagal innervation of the gastrointestinal (GI) tract in embryonic and postnatal mice. DiI labeling was adapted and optimized for this purpose by varying several facets of the method. For example, insertion and crushing of DiI crystals into the nerve led to faster DiI diffusion along vagal axons and diffusion over longer distances as compared with piercing the nerve with a micropipette tip coated with dried DiI oil. Moreover, inclusion of EDTA in the fixative reduced leakage of DiI out of nerve fibers that occurred with long incubations. Also, mounting labeled tissue in PBS was superior to glycerol with n-propyl gallate, which resulted in reduced clarity of DiI labeling that may have been due to DiI leaking out of fibers. Optical sectioning of flattened wholemounts permitted examination of individual tissue layers of the GI tract wall. This procedure aided identification of nerve ending types because in most instances each type innervates a different tissue layer. Between embryonic day 12.5 and postnatal day 8, growth of axons into the GI tract, formation and patterning of fiber bundles in the myenteric plexus and early formation of putative afferent and efferent nerve terminals were observed. Thus, the DiI tracing method developed here has opened up a window for investigation during an important phase of vagal development.
Collapse
Affiliation(s)
- Michelle C Murphy
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|