1
|
Riccitelli S, Yaakov H, Heukamp AS, Ankri L, Rivlin-Etzion M. Retinal ganglion cells encode the direction of motion outside their classical receptive field. Proc Natl Acad Sci U S A 2025; 122:e2415223122. [PMID: 39793063 PMCID: PMC11725840 DOI: 10.1073/pnas.2415223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc. Pharmacological manipulations revealed the necessity of glycinergic amacrine cells for this response. Using in vivo recordings, we identified similar extraclassical responses in lateral geniculate nucleus neurons, suggesting such non conventional DS information is transferred to downstream structures. Our results suggest a complex integration of motion direction processing across the visual field, which arises beyond the classical receptive field boundaries.
Collapse
Affiliation(s)
- Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Hadar Yaakov
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Alina S. Heukamp
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Michal Rivlin-Etzion
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
2
|
Korympidou MM, Strauss S, Schubert T, Franke K, Berens P, Euler T, Vlasits AL. GABAergic amacrine cells balance biased chromatic information in the mouse retina. Cell Rep 2024; 43:114953. [PMID: 39509269 DOI: 10.1016/j.celrep.2024.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
The retina extracts chromatic information present in an animal's environment. How this information is processed in the retina is not well understood. In the mouse, chromatic information is not collected equally throughout the retina. Green and UV signals are primarily detected in the dorsal and ventral retina, respectively. However, at the output of the retina, chromatic tuning is more mixed throughout the retina. This suggests that lateral processing by inhibitory amacrine cells shapes chromatic information at the retinal output. We systematically surveyed the chromatic responses of dendritic processes of the 40+ GABAergic amacrine cell types. We identified 25 functional types with distinct chromatic and achromatic properties. We used pharmacology and a biologically inspired deep learning model to explore how inhibition and excitation shape the properties of functional types. Our data suggest that amacrine cells balance the biased spectral tuning of excitation, thereby supporting diversity of chromatic information at the retinal output.
Collapse
Affiliation(s)
- Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, 72076 Tübingen, Germany
| | - Sarah Strauss
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, 72076 Tübingen, Germany; Hertie Institute for AI in Brain Health, University of Tübingen, 72076 Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Katrin Franke
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA 94303, USA
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Hertie Institute for AI in Brain Health, University of Tübingen, 72076 Tübingen, Germany; Tübingen AI Center, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Department of Ophthalmology & Visual Sciences, University of Illinois, Chicago, IL 60603, USA.
| |
Collapse
|
3
|
Gangi M, Maruyama T, Ishii T, Kaneda M. ON and OFF starburst amacrine cells are controlled by distinct cholinergic pathways. J Gen Physiol 2024; 156:e202413550. [PMID: 38836782 PMCID: PMC11153316 DOI: 10.1085/jgp.202413550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Cholinergic signaling in the retina is mediated by acetylcholine (ACh) released from starburst amacrine cells (SACs), which are key neurons for motion detection. SACs comprise ON and OFF subtypes, which morphologically show mirror symmetry to each other. Although many physiological studies on SACs have targeted ON cells only, the synaptic computation of ON and OFF SACs is assumed to be similar. Recent studies demonstrated that gene expression patterns and receptor types differed between ON and OFF SACs, suggesting differences in their functions. Here, we compared cholinergic signaling pathways between ON and OFF SACs in the mouse retina using the patch clamp technique. The application of ACh increased GABAergic feedback, observed as postsynaptic currents to SACs, in both ON and OFF SACs; however, the mode of GABAergic feedback differed. Nicotinic receptors mediated GABAergic feedback in both ON and OFF SACs, while muscarinic receptors mediated GABAergic feedback in ON SACs only in adults. Neither tetrodotoxin, which blocked action potentials, nor LY354740, which blocked neurotransmitter release from SACs, eliminated ACh-induced GABAergic feedback in SACs. These results suggest that ACh-induced GABAergic feedback in ON and OFF SACs is regulated by different feedback mechanisms in adults and mediated by non-spiking amacrine cells other than SACs.
Collapse
Affiliation(s)
- Mie Gangi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
4
|
Chang L, Ran Y, Yang M, Auferkorte O, Butz E, Hüser L, Haverkamp S, Euler T, Schubert T. Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells. Front Cell Neurosci 2024; 17:1337768. [PMID: 38269116 PMCID: PMC10806099 DOI: 10.3389/fncel.2023.1337768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.
Collapse
Affiliation(s)
- Le Chang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mingpo Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Elisabeth Butz
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Laura Hüser
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Silke Haverkamp
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Park SJ, Lei W, Pisano J, Orpia A, Minehart J, Pottackal J, Hanke-Gogokhia C, Zapadka TE, Clarkson-Paredes C, Popratiloff A, Ross SE, Singer JH, Demb JB. Molecular identification of wide-field amacrine cells in mouse retina that encode stimulus orientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573580. [PMID: 38234775 PMCID: PMC10793454 DOI: 10.1101/2023.12.28.573580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Visual information processing is sculpted by a diverse group of inhibitory interneurons in the retina called amacrine cells. Yet, for most of the >60 amacrine cell types, molecular identities and specialized functional attributes remain elusive. Here, we developed an intersectional genetic strategy to target a group of wide-field amacrine cells (WACs) in mouse retina that co-express the transcription factor Bhlhe22 and the Kappa Opioid Receptor (KOR; B/K WACs). B/K WACs feature straight, unbranched dendrites spanning over 0.5 mm (∼15° visual angle) and produce non-spiking responses to either light increments or decrements. Two-photon dendritic population imaging reveals Ca 2+ signals tuned to the physical orientations of B/K WAC dendrites, signifying a robust structure-function alignment. B/K WACs establish divergent connections with multiple retinal neurons, including unexpected connections with non-orientation-tuned ganglion cells and bipolar cells. Our work sets the stage for future comprehensive investigations of the most enigmatic group of retinal neurons: WACs.
Collapse
|
6
|
Matsumoto A, Yonehara K. Emerging computational motifs: Lessons from the retina. Neurosci Res 2023; 196:11-22. [PMID: 37352934 DOI: 10.1016/j.neures.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The retinal neuronal circuit is the first stage of visual processing in the central nervous system. The efforts of scientists over the last few decades indicate that the retina is not merely an array of photosensitive cells, but also a processor that performs various computations. Within a thickness of only ∼200 µm, the retina consists of diverse forms of neuronal circuits, each of which encodes different visual features. Since the discovery of direction-selective cells by Horace Barlow and Richard Hill, the mechanisms that generate direction selectivity in the retina have remained a fascinating research topic. This review provides an overview of recent advances in our understanding of direction-selectivity circuits. Beyond the conventional wisdom of direction selectivity, emerging findings indicate that the retina utilizes complicated and sophisticated mechanisms in which excitatory and inhibitory pathways are involved in the efficient encoding of motion information. As will become evident, the discovery of computational motifs in the retina facilitates an understanding of how sensory systems establish feature selectivity.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
7
|
Pang JJ, Gao F, Wu SM. Light responses and amacrine cell modulation of morphologically-identified retinal ganglion cells in the mouse retina. Vision Res 2023; 205:108187. [PMID: 36758452 PMCID: PMC11349081 DOI: 10.1016/j.visres.2023.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
By analyzing light-evoked spike responses, cation currents (ΔIC) and chloride currents (ΔICl) of over 100 morphologically-identified retinal ganglion cells (GCs) in dark-adapted mouse retina, we found there are at least 14 functionally- and morphologically-distinct types of RGCs. These cells can be divided into 5 groups based on their patterns of spike response to whole field light steps (SRWFLS), a GC identification scheme commonly used in studies with extracellular recording techniques. We also found that all GCs in the mouse retina express strychnine-sensitive glycine receptors, and receive light-elicited chloride current (ΔICl) accompanied by a conductance increase from narrow-field, glycinergic amacrine cells. As the dark membrane potential of RGC are near the chloride-equilibrium potential, mouse GCs' spike responses are mediated primarily by bipolar cells inputs, and modulated by "shunting inhibition" from narrow-field amacrine cells. Analysis of strychnine actions on light-evoked cation current ΔIC (bipolar cell inputs) in GCs suggests that narrow-field amacrine cells modulate GCs by sending ON-OFF crossover feedback signals to presynaptic bipolar cell axon terminals via sign-inverting glycinergic synapses, and the feedback signals are synergistic to the bipolar cell light responses. Therefore narrow-field amacrine cells enhance light-evoked bipolar cell inputs to GCs by presynaptic "synergistic addition", besides the abovementioned postsynaptic "shunting inhibition" in GCs.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - Fan Gao
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
8
|
Hanson L, Ravi-Chander P, Berson D, Awatramani GB. Hierarchical retinal computations rely on hybrid chemical-electrical signaling. Cell Rep 2023; 42:112030. [PMID: 36696265 DOI: 10.1016/j.celrep.2023.112030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Bipolar cells (BCs) are integral to the retinal circuits that extract diverse features from the visual environment. They bridge photoreceptors to ganglion cells, the source of retinal output. Understanding how such circuits encode visual features requires an accounting of the mechanisms that control glutamate release from bipolar cell axons. Here, we demonstrate orientation selectivity in a specific genetically identifiable type of mouse bipolar cell-type 5A (BC5A). Their synaptic terminals respond best when stimulated with vertical bars that are far larger than their dendritic fields. We provide evidence that this selectivity involves enhanced excitation for vertical stimuli that requires gap junctional coupling through connexin36. We also show that this orientation selectivity is detectable postsynaptically in direction-selective ganglion cells, which were not previously thought to be selective for orientation. Together, these results demonstrate how multiple features are extracted by a single hierarchical network, engaging distinct electrical and chemical synaptic pathways.
Collapse
Affiliation(s)
- Laura Hanson
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - David Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
9
|
Roh H, Otgondemberel Y, Eom J, Kim D, Im M. Electrically-evoked responses for retinal prostheses are differentially altered depending on ganglion cell types in outer retinal neurodegeneration caused by Crb1 gene mutation. Front Cell Neurosci 2023; 17:1115703. [PMID: 36814867 PMCID: PMC9939843 DOI: 10.3389/fncel.2023.1115703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Background Microelectronic prostheses for artificial vision stimulate neurons surviving outer retinal neurodegeneration such as retinitis pigmentosa (RP). Yet, the quality of prosthetic vision substantially varies across subjects, maybe due to different levels of retinal degeneration and/or distinct genotypes. Although the RP genotypes are remarkably diverse, prosthetic studies have primarily used retinal degeneration (rd) 1 and 10 mice, which both have Pde6b gene mutation. Here, we report the electric responses arising in retinal ganglion cells (RGCs) of the rd8 mouse model which has Crb1 mutation. Methods We first investigated age-dependent histological changes of wild-type (wt), rd8, and rd10 mice retinas by H&E staining. Then, we used cell-attached patch clamping to record spiking responses of ON, OFF and direction selective (DS) types of RGCs to a 4-ms-long electric pulse. The electric responses of rd8 RGCs were analyzed in comparison with those of wt RGCs in terms of individual RGC spiking patterns, populational characteristics, and spiking consistency across trials. Results In the histological examination, the rd8 mice showed partial retinal foldings, but the outer nuclear layer thicknesses remained comparable to those of the wt mice, indicating the early-stage of RP. Although spiking patterns of each RGC type seemed similar to those of the wt retinas, correlation levels between electric vs. light response features were different across the two mouse models. For example, in comparisons between light vs. electric response magnitudes, ON/OFF RGCs of the rd8 mice showed the same/opposite correlation polarity with those of wt mice, respectively. Also, the electric response spike counts of DS RGCs in the rd8 retinas showed a positive correlation with their direction selectivity indices (r = 0.40), while those of the wt retinas were negatively correlated (r = -0.90). Lastly, the spiking timing consistencies of late responses were largely decreased in both ON and OFF RGCs in the rd8 than the wt retinas, whereas no significant difference was found across DS RGCs of the two models. Conclusion Our results indicate the electric response features are altered depending on RGC types even from the early-stage RP caused by Crb1 mutation. Given the various degeneration patterns depending on mutation genes, our study suggests the importance of both genotype- and RGC type-dependent analyses for retinal prosthetic research.
Collapse
Affiliation(s)
- Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | | | - Jeonghyeon Eom
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- School of Electrical Engineering, Kookmin University, Seoul, Republic of Korea
| | - Daniel Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
10
|
Meah A, Boodram V, Bucinca-Cupallari F, Lim H. Axonal architecture of the mouse inner retina revealed by second harmonic generation. PNAS NEXUS 2022; 1:pgac160. [PMID: 36106183 PMCID: PMC9463061 DOI: 10.1093/pnasnexus/pgac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/11/2022] [Indexed: 01/29/2023]
Abstract
We describe a novel method for visualizing the network of axons in the unlabeled fresh wholemount retina. The intrinsic radiation of second harmonic generation (SHG) was utilized to visualize single axons of all major retinal neurons, i.e., photoreceptors, horizontal cells, bipolar cells, amacrine cells, and the retinal ganglion cells. The cell types of SHG+ axons were determined using transgenic GFP/YFP mice. New findings were obtained with retinal SHG imaging: Müller cells do not maintain uniformly polarized microtubules in the processes; SHG+ axons of bipolar cells terminate in the inner plexiform layer (IPL) in a subtype-specific manner; a subset of amacrine cells, presumably the axon-bearing types, emits SHG; and the axon-like neurites of amacrine cells provide a cytoskeletal scaffolding for the IPL stratification. To demonstrate the utility, retinal SHG imaging was applied to testing whether the inner retina is preserved in glaucoma, using DBA/2 mice as a model of glaucoma and DBA/2-Gpnmb+ as the nonglaucomatous control. It was found that the morphology of the inner retina was largely intact in glaucoma and the presynaptic compartments to the retinal ganglion cells were uncompromised. It proves retinal SHG imaging as a promising technology for studying the physiological and diseased retinas in 3D.
Collapse
Affiliation(s)
- Arafat Meah
- Department of Physics and Astronomy, Hunter College, New York, NY 10065, USA
| | - Vinessia Boodram
- Department of Physics and Astronomy, Hunter College, New York, NY 10065, USA
| | - Festa Bucinca-Cupallari
- Department of Physics and Astronomy, Hunter College, New York, NY 10065, USA,The Graduate Centre of the City University of New York, New York, NY 10065, USA
| | | |
Collapse
|
11
|
Idrees S, Baumann MP, Korympidou MM, Schubert T, Kling A, Franke K, Hafed ZM, Franke F, Münch TA. Suppression without inhibition: how retinal computation contributes to saccadic suppression. Commun Biol 2022; 5:692. [PMID: 35821404 PMCID: PMC9276698 DOI: 10.1038/s42003-022-03526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Visual perception remains stable across saccadic eye movements, despite the concurrent strongly disruptive visual flow. This stability is partially associated with a reduction in visual sensitivity, known as saccadic suppression, which already starts in the retina with reduced ganglion cell sensitivity. However, the retinal circuit mechanisms giving rise to such suppression remain unknown. Here, we describe these mechanisms using electrophysiology in mouse, pig, and macaque retina, 2-photon calcium imaging, computational modeling, and human psychophysics. We find that sequential stimuli, like those that naturally occur during saccades, trigger three independent suppressive mechanisms in the retina. The main mechanism is triggered by contrast-reversing sequential stimuli and originates within the receptive field center of ganglion cells. It does not involve inhibition or other known suppressive mechanisms like saturation or adaptation. Instead, it relies on temporal filtering of the inherently slow response of cone photoreceptors coupled with downstream nonlinearities. Two further mechanisms of suppression are present predominantly in ON ganglion cells and originate in the receptive field surround, highlighting another disparity between ON and OFF ganglion cells. The mechanisms uncovered here likely play a role in shaping the retinal output following eye movements and other natural viewing conditions where sequential stimulation is ubiquitous.
Collapse
Affiliation(s)
- Saad Idrees
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany
- Center for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Matthias-Philipp Baumann
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Maria M Korympidou
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Timm Schubert
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Alexandra Kling
- Department of Neurosurgery, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Felix Franke
- Bio Engineering Laboratory, ETH Zürich, 4058, Basel, Switzerland.
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland.
- Faculty of Science, University of Basel, 4056, Basel, Switzerland.
| | - Thomas A Münch
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
12
|
Huang W, Xu Q, Liu F, Su J, Xiao D, Tang L, Hao ZZ, Liu R, Xiang K, Bi Y, Miao Z, Liu X, Liu Y, Liu S. Identification of TPBG-Expressing Amacrine Cells in DAT-tdTomato Mouse. Invest Ophthalmol Vis Sci 2022; 63:13. [PMID: 35551574 PMCID: PMC9123489 DOI: 10.1167/iovs.63.5.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Neurons are the bricks of the neuronal system and experimental access to certain neuron subtypes will be of great help to decipher neuronal circuits. Here, we identified trophoblast glycoprotein (TPBG)-expressing GABAergic amacrine cells (ACs) that were selectively labeled in DAT-tdTomato transgenic mice. Methods Retina and brain sections were prepared for immunostaining with antibodies against various biomarkers. Patch-sequencing was performed to obtain the transcriptomes of tdTomato-positive cells in DAT-tdTomato mice. Whole-cell recordings were conducted to identify responses to light stimulation. Results Tyrosine hydroxylase immunoreactive cells were colocalized with tdTomato-positive cells in substantia nigra pars compacta, but not in the retina. Transcriptomes collected from tdTomato-positive cells in retinas via Patch-sequencing exhibited the expression of marker genes of ACs (Pax6 and Slc32a1) and marker genes of GABAergic neurons (Gad1, Gad2, and Slc6a1). Immunostaining with antibodies against relevant proteins (GAD67, GAD65, and GABA) also confirmed transcriptomic results. Furthermore, tdTomato-positive cells in retinas selectively expressed Tpbg, a marker gene for distinct clusters molecularly defined, which was proved with TPBG immunoreactivity in fluorescently labeled cells. Finally, tdTomato-positive cells recorded showed ON-OFF responses to light stimulation. Conclusions Ectopic expression occurs in the retina but not in the substantia nigra pars compacta in the DAT-tdTomato mouse, and fluorescently labeled cells in the retina are TPBG-expressing GABAergic ACs. This type of transgenic mice has been proved as an ideal tool to achieve efficient labeling of a distinct subset of ACs that selectively express Tpbg.
Collapse
Affiliation(s)
- Wanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qiang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yalan Bi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, United Kingdom
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
13
|
Rizzi M, Powell K, Robinson MR, Matsuki T, Hoke J, Maswood RN, Georgiadis A, Georgiou M, Jones PR, Ripamonti C, Nadal-Nicolás FM, Michaelides M, Rubin GS, Smith AJ, Ali RR. Lateral gain is impaired in macular degeneration and can be targeted to restore vision in mice. Nat Commun 2022; 13:2159. [PMID: 35444239 PMCID: PMC9021237 DOI: 10.1038/s41467-022-29666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/11/2022] [Indexed: 12/03/2022] Open
Abstract
Macular degeneration is a leading cause of blindness. Treatments to rescue vision are currently limited. Here, we study how loss of central vision affects lateral feedback to spared areas of the human retina. We identify a cone-driven gain control mechanism that reduces visual function beyond the atrophic area in macular degeneration. This finding provides an insight into the negative effects of geographic atrophy on vision. Therefore, we develop a strategy to restore this feedback mechanism, through activation of laterally projecting cells. This results in improved vision in Cnga3-/- mice, which lack cone function, as well as a mouse model of geographic atrophy. Our work shows that a loss of lateral gain control contributes to the vision deficit in macular degeneration. Furthermore, in mouse models we show that lateral feedback can be harnessed to improve vision following retinal degeneration.
Collapse
Affiliation(s)
- M Rizzi
- UCL Inst. of Ophthalmology, London, UK.
- Centre for Cell and Gene Therapy, King's College London, London, UK.
| | - K Powell
- UCL Inst. of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, London, UK
| | | | - T Matsuki
- UCL Inst. of Ophthalmology, London, UK
| | - J Hoke
- UCL Inst. of Ophthalmology, London, UK
| | | | | | | | - P R Jones
- UCL Inst. of Ophthalmology, London, UK
| | | | - F M Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and IMIB-Arrixaca, Murcia, Spain
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD, USA
| | | | - G S Rubin
- UCL Inst. of Ophthalmology, London, UK
| | - A J Smith
- UCL Inst. of Ophthalmology, London, UK
- Centre for Cell and Gene Therapy, King's College London, London, UK
| | - R R Ali
- UCL Inst. of Ophthalmology, London, UK.
- Centre for Cell and Gene Therapy, King's College London, London, UK.
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
14
|
Abed S, Reilly A, Arnold SJ, Feldheim DA. Adult Expression of Tbr2 Is Required for the Maintenance but Not Survival of Intrinsically Photosensitive Retinal Ganglion Cells. Front Cell Neurosci 2022; 16:826590. [PMID: 35401124 PMCID: PMC8983909 DOI: 10.3389/fncel.2022.826590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). ipRGCs regulate subconscious non-image-forming behaviors such as circadian rhythms, pupil dilation, and light-mediated mood. Previously, we and others showed that the transcription factor Tbr2 (EOMES) is required during retinal development for the formation of ipRGCs. Tbr2 is also expressed in the adult retina leading to the hypothesis that it plays a role in adult ipRGC function. To test this, we removed Tbr2 in adult mice. We found that this results in the loss of melanopsin expression in ipRGCs but does not lead to cell death or morphological changes to their dendritic or axonal termination patterns. Additionally, we found ectopic expression of Tbr2 in conventional RGCs does not induce melanopsin expression but can increase melanopsin expression in existing ipRGCs. An interesting feature of ipRGCs is their superior survival relative to conventional RGCs after an optic nerve injury. We find that loss of Tbr2 decreases the survival rate of ipRGCs after optic nerve damage suggesting that Tbr2 plays a role in ipRGC survival after injury. Lastly, we show that the GABAergic amacrine cell marker Meis2, is expressed in the majority of Tbr2-expressing displaced amacrine cells as well as in a subset of Tbr2-expressing RGCs. These findings demonstrate that Tbr2 is necessary but not sufficient for melanopsin expression, that Tbr2 is involved in ipRGC survival after optic nerve injury, and identify a marker for Tbr2-expressing displaced amacrine cells.
Collapse
Affiliation(s)
- Sadaf Abed
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andreea Reilly
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sebastian J. Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David A. Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
- *Correspondence: David A. Feldheim,
| |
Collapse
|
15
|
Matsumoto A, Agbariah W, Nolte SS, Andrawos R, Levi H, Sabbah S, Yonehara K. Direction selectivity in retinal bipolar cell axon terminals. Neuron 2021; 109:2928-2942.e8. [PMID: 34390651 PMCID: PMC8478419 DOI: 10.1016/j.neuron.2021.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
The ability to encode the direction of image motion is fundamental to our sense of vision. Direction selectivity along the four cardinal directions is thought to originate in direction-selective ganglion cells (DSGCs) because of directionally tuned GABAergic suppression by starburst cells. Here, by utilizing two-photon glutamate imaging to measure synaptic release, we reveal that direction selectivity along all four directions arises earlier than expected at bipolar cell outputs. Individual bipolar cells contained four distinct populations of axon terminal boutons with different preferred directions. We further show that this bouton-specific tuning relies on cholinergic excitation from starburst cells and GABAergic inhibition from wide-field amacrine cells. DSGCs received both tuned directionally aligned inputs and untuned inputs from among heterogeneously tuned glutamatergic bouton populations. Thus, directional tuning in the excitatory visual pathway is incrementally refined at the bipolar cell axon terminals and their recipient DSGC dendrites by two different neurotransmitters co-released from starburst cells.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Weaam Agbariah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Stella Solveig Nolte
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Rawan Andrawos
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hadara Levi
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark.
| |
Collapse
|
16
|
Kerstein PC, Leffler J, Sivyer B, Taylor WR, Wright KM. Gbx2 Identifies Two Amacrine Cell Subtypes with Distinct Molecular, Morphological, and Physiological Properties. Cell Rep 2020; 33:108382. [PMID: 33207201 PMCID: PMC7713908 DOI: 10.1016/j.celrep.2020.108382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023] Open
Abstract
Our understanding of nervous system function is limited by our ability to identify and manipulate neuronal subtypes within intact circuits. We show that the Gbx2CreERT2-IRES-EGFP mouse line labels two amacrine cell (AC) subtypes in the mouse retina that have distinct morphological, physiological, and molecular properties. Using a combination of RNA-seq, genetic labeling, and patch clamp recordings, we show that one subtype is GABAergic that receives excitatory input from On bipolar cells. The other population is a non-GABAergic, non-glycinergic (nGnG) AC subtype that lacks the expression of standard neurotransmitter markers. Gbx2+ nGnG ACs have smaller, asymmetric dendritic arbors that receive excitatory input from both On and Off bipolar cells. Gbx2+ nGnG ACs also exhibit spatially restricted tracer coupling to bipolar cells (BCs) through gap junctions. This study identifies a genetic tool for investigating the two distinct AC subtypes, and it provides a model for studying synaptic communication and visual circuit function. Investigations into neural circuit development and function are limited by the lack of genetic tools to label and perturb individual neuronal subtypes. Using the Gbx2CreERT2 mouse line, Kerstein et al. identify two amacrine cell subtypes in the mouse retina and explore their distinct molecular, morphological, and physiological characteristics.
Collapse
Affiliation(s)
- Patrick C Kerstein
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Joseph Leffler
- School of Optometry and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR 97239, USA
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - W Rowland Taylor
- School of Optometry and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
17
|
Yan W, Laboulaye MA, Tran NM, Whitney IE, Benhar I, Sanes JR. Mouse Retinal Cell Atlas: Molecular Identification of over Sixty Amacrine Cell Types. J Neurosci 2020; 40:5177-5195. [PMID: 32457074 PMCID: PMC7329304 DOI: 10.1523/jneurosci.0471-20.2020] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023] Open
Abstract
Amacrine cells (ACs) are a diverse class of interneurons that modulate input from photoreceptors to retinal ganglion cells (RGCs), rendering each RGC type selectively sensitive to particular visual features, which are then relayed to the brain. While many AC types have been identified morphologically and physiologically, they have not been comprehensively classified or molecularly characterized. We used high-throughput single-cell RNA sequencing to profile >32,000 ACs from mice of both sexes and applied computational methods to identify 63 AC types. We identified molecular markers for each type and used them to characterize the morphology of multiple types. We show that they include nearly all previously known AC types as well as many that had not been described. Consistent with previous studies, most of the AC types expressed markers for the canonical inhibitory neurotransmitters GABA or glycine, but several expressed neither or both. In addition, many expressed one or more neuropeptides, and two expressed glutamatergic markers. We also explored transcriptomic relationships among AC types and identified transcription factors expressed by individual or multiple closely related types. Noteworthy among these were Meis2 and Tcf4, expressed by most GABAergic and most glycinergic types, respectively. Together, these results provide a foundation for developmental and functional studies of ACs, as well as means for genetically accessing them. Along with previous molecular, physiological, and morphologic analyses, they establish the existence of at least 130 neuronal types and nearly 140 cell types in the mouse retina.SIGNIFICANCE STATEMENT The mouse retina is a leading model for analyzing the development, structure, function, and pathology of neural circuits. A complete molecular atlas of retinal cell types provides an important foundation for these studies. We used high-throughput single-cell RNA sequencing to characterize the most heterogeneous class of retinal interneurons, amacrine cells, identifying 63 distinct types. The atlas includes types identified previously as well as many novel types. We provide evidence for the use of multiple neurotransmitters and neuropeptides, and identify transcription factors expressed by groups of closely related types. Combining these results with those obtained previously, we proposed that the mouse retina contains ∼130 neuronal types and is therefore comparable in complexity to other regions of the brain.
Collapse
Affiliation(s)
- Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mallory A Laboulaye
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Inbal Benhar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
18
|
Park SJH, Lieberman EE, Ke JB, Rho N, Ghorbani P, Rahmani P, Jun NY, Lee HL, Kim IJ, Briggman KL, Demb JB, Singer JH. Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision. eLife 2020; 9:e56077. [PMID: 32412412 PMCID: PMC7228767 DOI: 10.7554/elife.56077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Night vision in mammals depends fundamentally on rod photoreceptors and the well-studied rod bipolar (RB) cell pathway. The central neuron in this pathway, the AII amacrine cell (AC), exhibits a spatially tuned receptive field, composed of an excitatory center and an inhibitory surround, that propagates to ganglion cells, the retina's projection neurons. The circuitry underlying the surround of the AII, however, remains unresolved. Here, we combined structural, functional and optogenetic analyses of the mouse retina to discover that surround inhibition of the AII depends primarily on a single interneuron type, the NOS-1 AC: a multistratified, axon-bearing GABAergic cell, with dendrites in both ON and OFF synaptic layers, but with a pure ON (depolarizing) response to light. Our study demonstrates generally that novel neural circuits can be identified from targeted connectomic analyses and specifically that the NOS-1 AC mediates long-range inhibition during night vision and is a major element of the RB pathway.
Collapse
Affiliation(s)
- Silvia JH Park
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Evan E Lieberman
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Jiang-Bin Ke
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Nao Rho
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Padideh Ghorbani
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Pouyan Rahmani
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Na Young Jun
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Hae-Lim Lee
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
| | - In-Jung Kim
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Joshua H Singer
- Department of Biology, University of MarylandCollege ParkUnited States
| |
Collapse
|
19
|
A retinal circuit for the suppressed-by-contrast receptive field of a polyaxonal amacrine cell. Proc Natl Acad Sci U S A 2020; 117:9577-9583. [PMID: 32273387 DOI: 10.1073/pnas.1913417117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amacrine cells are a diverse population of interneurons in the retina that play a critical role in extracting complex features of the visual world and shaping the receptive fields of retinal output neurons (ganglion cells). While much of the computational power of amacrine cells is believed to arise from the immense mutual interactions among amacrine cells themselves, the intricate circuitry and functions of amacrine-amacrine interactions are poorly understood in general. Here we report a specific interamacrine pathway from a small-field, glutamate-glycine dual-transmitter amacrine cell (vGluT3) to a wide-field polyaxonal amacrine cell (PAS4/5). Distal tips of vGluT3 cell dendrites made selective glycinergic (but not glutamatergic) synapses onto PAS4/5 dendrites to provide a center-inhibitory, surround-disinhibitory drive that helps PAS4/5 cells build a suppressed-by-contrast (sbc) receptive field, which is a unique and fundamental trigger feature previously found only in a small population of ganglion cells. The finding of this trigger feature in a circuit upstream to ganglion cells suggests that the sbc form of visual computation occurs more widely in the retina than previously believed and shapes visual processing in multiple downstream circuits in multiple ways. We also identified two different subpopulations of PAS4/5 cells based on their differential connectivity with vGluT3 cells and their distinct receptive-field and luminance-encoding characteristics. Moreover, our results revealed a form of crosstalk between small-field and large-field amacrine cell circuits, which provides a mechanism for feature-specific local (<150 µm) control of global (>1 mm) retinal activity.
Collapse
|
20
|
Eleftheriou CG, Wright P, Allen AE, Elijah D, Martial FP, Lucas RJ. Melanopsin Driven Light Responses Across a Large Fraction of Retinal Ganglion Cells in a Dystrophic Retina. Front Neurosci 2020; 14:320. [PMID: 32317928 PMCID: PMC7147324 DOI: 10.3389/fnins.2020.00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and project to central targets, allowing them to contribute to both image-forming and non-image forming vision. Recent studies have highlighted chemical and electrical synapses between ipRGCs and neurons of the inner retina, suggesting a potential influence from the melanopsin-born signal to affect visual processing at an early stage of the visual pathway. We investigated melanopsin responses in ganglion cell layer (GCL) neurons of both intact and dystrophic mouse retinas using 256 channel multi-electrode array (MEA) recordings. A wide 200 μm inter-electrode spacing enabled a pan-retinal visualization of melanopsin's influence upon GCL activity. Upon initial stimulation of dystrophic retinas with a long, bright light pulse, over 37% of units responded with an increase in firing (a far greater fraction than can be expected from the anatomically characterized number of ipRGCs). This relatively widespread response dissipated with repeated stimulation even at a quite long inter-stimulus interval (ISI; 120 s), to leave a smaller fraction of responsive units (<10%; more in tune with the predicted number of ipRGCs). Visually intact retinas appeared to lack such widespread melanopsin responses indicating that it is a feature of dystrophy. Taken together, our data reveal the potential for anomalously widespread melanopsin responses in advanced retinal degeneration. These could be used to probe the functional reorganization of retinal circuits in degeneration and should be taken into account when using retinally degenerate mice as a model of disease.
Collapse
Affiliation(s)
- Cyril G. Eleftheriou
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, United States
| | - Phillip Wright
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel Elijah
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Jiang D, Burger CA, Casasent A, Albrecht NE, Li F, Samuel MA. Spatiotemporal gene expression patterns reveal molecular relatedness between retinal laminae. J Comp Neurol 2020; 528:729-755. [PMID: 31609468 PMCID: PMC7147688 DOI: 10.1002/cne.24784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
In several areas of the central nervous system, neurons are regionally organized into groups or layers that carry out specific activities. In this form of patterning, neurons of distinct types localize their cell bodies to just one or a few of the layers within a structure. However, little is known about whether diverse neuron types within a lamina share molecular features that coordinate their organization. To begin to identify such candidates, we used the laminated murine retina to screen 92 lacZ reporter lines available through the Knockout Mouse Project. Thirty-two of these displayed reporter expression in restricted subsets of inner retina neurons. We then identified the spatiotemporal expression patterns of these genes at key developmental stages. This uncovered several that were heavily enriched in development but reduced in adulthood, including the transcriptional regulator Hmga1. An additional set of genes displayed maturation associated laminar enrichment. Among these, we identified Bbox1 as a novel gene that specifically labels all neurons in the ganglion cell layer but is largely excluded from otherwise molecularly similar neurons in the inner retina. Finally, we established Dbn1 as a new marker enriched in amacrines and Fmnl3 as a marker for subsets of αRGCs. Together, these data provide a spatiotemporal map for laminae-specific molecules and suggest that diverse neuron types within a lamina share coordinating molecular features that may inform their fate or function.
Collapse
Affiliation(s)
- Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Courtney A. Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Anna Casasent
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Nicholas E. Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Fenge Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Melanie A. Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
22
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
23
|
Roy S, Field GD. Dopaminergic modulation of retinal processing from starlight to sunlight. J Pharmacol Sci 2019; 140:86-93. [PMID: 31109761 DOI: 10.1016/j.jphs.2019.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Neuromodulators such as dopamine, enable context-dependent plasticity of neural circuit function throughout the central nervous system. For example, in the retina, dopamine tunes visual processing for daylight and nightlight conditions. Specifically, high levels of dopamine release in the retina tune vision for daylight (photopic) conditions, while low levels tune it for nightlight (scotopic) conditions. This review covers the cellular and circuit-level mechanisms within the retina that are altered by dopamine. These mechanisms include changes in gap junction coupling and ionic conductances, both of which are altered by the activation of diverse types of dopamine receptors across diverse types of retinal neurons. We contextualize the modulatory actions of dopamine in terms of alterations and optimizations to visual processing under photopic and scotopic conditions, with particular attention to how they differentially impact distinct cell types. Finally, we discuss how transgenic mice and disease models have shaped our understanding of dopaminergic signaling and its role in visual processing. Cumulatively, this review illustrates some of the diverse and potent mechanisms through which neuromodulation can shape brain function.
Collapse
Affiliation(s)
- Suva Roy
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
24
|
Sağlam M, Hayashida Y. A single retinal circuit model for multiple computations. BIOLOGICAL CYBERNETICS 2018; 112:427-444. [PMID: 29951908 DOI: 10.1007/s00422-018-0767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Vision is dependent on extracting intricate features of the visual information from the outside world, and complex visual computations begin to take place as soon as at the retinal level. In multiple studies on salamander retinas, the responses of a subtype of retinal ganglion cells, i.e., fast/biphasic-OFF ganglion cells, have been shown to be able to realize multiple functions, such as the segregation of a moving object from its background, motion anticipation, and rapid encoding of the spatial features of a new visual scene. For each of these visual functions, modeling approaches using extended linear-nonlinear cascade models suggest specific preceding retinal circuitries merging onto fast/biphasic-OFF ganglion cells. However, whether multiple visual functions can be accommodated together in a certain retinal circuitry and how specific mechanisms for each visual function interact with each other have not been investigated. Here, we propose a physiologically consistent, detailed computational model of the retinal circuit based on the spatiotemporal dynamics and connections of each class of retinal neurons to implement object motion sensitivity, motion anticipation, and rapid coding in the same circuit. Simulations suggest that multiple computations can be accommodated together, thereby implying that the fast/biphasic-OFF ganglion cell has potential to output a train of spikes carrying multiple pieces of information on distinct features of the visual stimuli.
Collapse
Affiliation(s)
- Murat Sağlam
- Department of Advanced Analytics, Supply Chain Wizard LLC, 34870, Istanbul, Turkey.
| | - Yuki Hayashida
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
Horio K, Ohkuma M, Miyachi EI. The Effect of Histamine on Inward and Outward Currents in Mouse Retinal Amacrine Cells. Cell Mol Neurobiol 2018; 38:757-767. [PMID: 28849294 DOI: 10.1007/s10571-017-0542-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Abstract
The expression of H1 receptor has been reported in amacrine cells of mouse and rat retinae. However, we assumed that other types of histamine receptors also function in amacrine cells. In order to confirm that histamine modulates the membrane potential in mouse amacrine cells, we measured voltage-gated currents using whole-cell configuration. Under voltage-clamp conditions, the amplitude of voltage-gated outward currents was enhanced by the application of 100 µM histamine in 65% of amacrine cells. Histamine also increased the amplitudes of voltage-gated inward currents in 72% of amacrine cells. When antagonists of the histamine H1, H2, or H3 receptors were applied to histamine-sensitive amacrine cells, all three types of these inhibitors reduced the effect of histamine. Moreover, we classified recorded cells into seven types based on their morphological characteristics. Two of the seven types, diffuse multistratified cells and AII amacrine cells, responded significantly to histamine. These results indicate that histamine affected the membrane potential via three types of histamine receptors. Furthermore, there were differences in the responses to histamine among types of amacrine cells. Histamine may be one of the important neurotransmitters and/or neuromodulators in the visual processing.
Collapse
Affiliation(s)
- Kayo Horio
- Department of Physiology, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Mahito Ohkuma
- Department of Physiology, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ei-Ichi Miyachi
- Department of Physiology, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
26
|
Elgueta C, Leroy F, Vielma AH, Schmachtenberg O, Palacios AG. Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells. Sci Rep 2018; 8:3123. [PMID: 29449585 PMCID: PMC5814567 DOI: 10.1038/s41598-018-21119-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.
Collapse
Affiliation(s)
- Claudio Elgueta
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany.
| | - Felix Leroy
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Neuroscience department, Columbia University Medical Center, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| |
Collapse
|
27
|
Abstract
The mouse retina has a layered structure that is composed of five classes of neurons supported by Müller glial and pigment epithelial cells. Recent studies have made progress in the classification of bipolar and ganglion cells, and also in the wiring of rod-driven signaling, color coding, and directional selectivity. Molecular biological techniques, such as genetic manipulation, transcriptomics, and fluorescence imaging, have contributed a lot to these advancements. The mouse retina has consistently been an important experimental system for both basic and clinical neurosciences.
Collapse
Affiliation(s)
- Yoshihiko Tsukamoto
- Department of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
28
|
Pérez de Sevilla Müller L, Solomon A, Sheets K, Hapukino H, Rodriguez AR, Brecha NC. Multiple cell types form the VIP amacrine cell population. J Comp Neurol 2017; 527:133-158. [PMID: 28472856 DOI: 10.1002/cne.24234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Amacrine cells are a heterogeneous group of interneurons that form microcircuits with bipolar, amacrine and ganglion cells to process visual information in the inner retina. This study has characterized the morphology, neurochemistry and major cell types of a VIP-ires-Cre amacrine cell population. VIP-tdTomato and -Confetti (Brainbow2.1) mouse lines were generated by crossing a VIP-ires-Cre line with either a Cre-dependent tdTomato or Brainbow2.1 reporter line. Retinal sections and whole-mounts were evaluated by quantitative, immunohistochemical, and intracellular labeling approaches. The majority of tdTomato and Confetti fluorescent cell bodies were in the inner nuclear layer (INL) and a few cell bodies were in the ganglion cell layer (GCL). Fluorescent processes ramified in strata 1, 3, 4, and 5 of the inner plexiform layer (IPL). All tdTomato fluorescent cells expressed syntaxin 1A and GABA-immunoreactivity indicating they were amacrine cells. The average VIP-tdTomato fluorescent cell density in the INL and GCL was 535 and 24 cells/mm2 , respectively. TdTomato fluorescent cells in the INL and GCL contained VIP-immunoreactivity. The VIP-ires-Cre amacrine cell types were identified in VIP-Brainbow2.1 retinas or by intracellular labeling in VIP-tdTomato retinas. VIP-1 amacrine cells are bistratified, wide-field cells that ramify in strata 1, 4, and 5, VIP-2A and 2B amacrine cells are medium-field cells that mainly ramify in strata 3 and 4, and VIP-3 displaced amacrine cells are medium-field cells that ramify in strata 4 and 5 of the IPL. VIP-ires-Cre amacrine cells form a neuropeptide-expressing cell population with multiple cell types, which are likely to have distinct roles in visual processing.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Alexander Solomon
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Kristopher Sheets
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Hinekura Hapukino
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Allen R Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Medicine, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Ophthalmology and the Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Veterans Administration Greater Los Angeles Health System, Los Angeles, California, 90073
| |
Collapse
|
29
|
Sabbah S, Berg D, Papendorp C, Briggman KL, Berson DM. A Cre Mouse Line for Probing Irradiance- and Direction-Encoding Retinal Networks. eNeuro 2017; 4:ENEURO.0065-17.2017. [PMID: 28466070 PMCID: PMC5411164 DOI: 10.1523/eneuro.0065-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 01/18/2023] Open
Abstract
Cell type-specific Cre driver lines have revolutionized the analysis of retinal cell types and circuits. We show that the transgenic mouse Rbp4-Cre selectively labels several retinal neuronal types relevant to the encoding of absolute light intensity (irradiance) and visual motion. In the ganglion cell layer (GCL), most marked cells are wide-field spiking polyaxonal amacrine cells (ACs) with sustained irradiance-encoding ON responses that persist during chemical synaptic blockade. Their arbors spread about 1 mm across the retina and are restricted to the inner half of the ON sublamina of the inner plexiform layer (IPL). There, they costratify with dendrites of M2 intrinsically photosensitive retinal ganglion cells (ipRGCs), to which they are tracer coupled. We propose that synaptically driven and intrinsic photocurrents of M2 cells pass through gap junctions to drive AC light responses. Also marked in this mouse are two types of RGCs. R-cells have a bistratified dendritic arbor, weak directional tuning, and irradiance-encoding ON responses. However, they also receive excitatory OFF input, revealed during ON-channel blockade. Serial blockface electron microscopic (SBEM) reconstruction confirms OFF bipolar input, and reveals that some OFF input derives from a novel type of OFF bipolar cell (BC). R-cells innervate specific layers of the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC). The other marked RGC type (RDS) is bistratified, transient, and ON-OFF direction selective (DS). It apparently innervates the nucleus of the optic tract (NOT). The Rbp4-Cre mouse will be valuable for targeting these cell types for further study and for selectively manipulating them for circuit analysis.
Collapse
Affiliation(s)
- Shai Sabbah
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Daniel Berg
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Carin Papendorp
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Kevin L. Briggman
- National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02912
| |
Collapse
|
30
|
Fasoli A, Dang J, Johnson JS, Gouw AH, Fogli Iseppe A, Ishida AT. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol 2017; 525:1707-1730. [PMID: 28035673 DOI: 10.1002/cne.24166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
Abstract
Dopamine- and tyrosine hydroxylase-immunopositive cells (TH cells) modulate visually driven signals as they flow through retinal photoreceptor, bipolar, and ganglion cells. Previous studies suggested that TH cells release dopamine from varicose axons arborizing in the inner and outer plexiform layers after glutamatergic synapses depolarize TH cell dendrites in the inner plexiform layer and these depolarizations propagate to the varicosities. Although it has been proposed that these excitatory synapses are formed onto appendages resembling dendritic spines, spines have not been found on TH cells of most species examined to date or on TH cell somata that release dopamine when exposed to glutamate receptor agonists. By use of protocols that preserve proximal retinal neuron morphology, we have examined the shape, distribution, and synapse-related immunoreactivity of adult rat TH cells. We report here that TH cell somata, tapering and varicose inner plexiform layer neurites, and varicose outer plexiform layer neurites all bear spines, that some of these spines are immunopositive for glutamate receptor and postsynaptic density proteins (viz., GluR1, GluR4, NR1, PSD-95, and PSD-93), that TH cell somata and tapering neurites are also immunopositive for a γ-aminobutyric acid (GABA) receptor subunit (GABAA Rα1 ), and that a synaptic ribbon-specific protein (RIBEYE) is found adjacent to some colocalizations of GluR1 and TH in the inner plexiform layer. These results identify previously undescribed sites at which glutamatergic and GABAergic inputs may stimulate and inhibit dopamine release, especially at somata and along varicose neurites that emerge from these somata and arborize in various levels of the retina. J. Comp. Neurol. 525:1707-1730, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Fasoli
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - James Dang
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Jeffrey S Johnson
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Aaron H Gouw
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Alex Fogli Iseppe
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California.,Department of Ophthalmology and Vision Science, University of California, Sacramento, California
| |
Collapse
|
31
|
Retinal Lateral Inhibition Provides the Biological Basis of Long-Range Spatial Induction. PLoS One 2016; 11:e0168963. [PMID: 28030651 PMCID: PMC5193432 DOI: 10.1371/journal.pone.0168963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022] Open
Abstract
Retinal lateral inhibition is one of the conventional efficient coding mechanisms in the visual system that is produced by interneurons that pool signals over a neighborhood of presynaptic feedforward cells and send inhibitory signals back to them. Thus, the receptive-field (RF) of a retinal ganglion cell has a center-surround receptive-field (RF) profile that is classically represented as a difference-of-Gaussian (DOG) adequate for efficient spatial contrast coding. The DOG RF profile has been attributed to produce the psychophysical phenomena of brightness induction, in which the perceived brightness of an object is affected by that of its vicinity, either shifting away from it (brightness contrast) or becoming more similar to it (brightness assimilation) depending on the size of the surfaces surrounding the object. While brightness contrast can be modeled using a DOG with a narrow surround, brightness assimilation requires a wide suppressive surround. Early retinal studies determined that the suppressive surround of a retinal ganglion cell is narrow (< 100–300 μm; ‘classic RF’), which led researchers to postulate that brightness assimilation must originate at some post-retinal, possibly cortical, stage where long-range interactions are feasible. However, more recent studies have reported that the retinal interneurons also exhibit a spatially wide component (> 500–1000 μm). In the current study, we examine the effect of this wide interneuron RF component in two biophysical retinal models and show that for both of the retinal models it explains the long-range effect evidenced in simultaneous brightness induction phenomena and that the spatial extent of this long-range effect of the retinal model responses matches that of perceptual data. These results suggest that the retinal lateral inhibition mechanism alone can regulate local as well as long-range spatial induction through the narrow and wide RF components of retinal interneurons, arguing against the existing view that spatial induction is operated by two separate local vs. long-range mechanisms.
Collapse
|
32
|
Im M, Fried SI. Directionally selective retinal ganglion cells suppress luminance responses during natural viewing. Sci Rep 2016; 6:35708. [PMID: 27759086 PMCID: PMC5069630 DOI: 10.1038/srep35708] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/30/2016] [Indexed: 11/09/2022] Open
Abstract
The ON-OFF directionally selective cells of the retina respond preferentially to movement in a preferred direction, but under laboratory conditions they are also sensitive to changes in the luminance of the stationary stimulus. If the response of these neurons contains information about both direction and luminance downstream neurons are faced with the challenge of extracting the motion component, a computation that may be difficult under certain viewing conditions. Here, we show that during natural viewing the response to luminance is suppressed, leaving a relatively pure motion signal that gets transmitted to the brain.
Collapse
Affiliation(s)
- Maesoon Im
- Boston VA Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA
| | - Shelley I Fried
- Boston VA Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
33
|
Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield SA. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. J Comp Neurol 2016; 527:159-173. [PMID: 27411041 DOI: 10.1002/cne.24074] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/22/2022]
Abstract
We determined whether the structural and functional integrity of amacrine cells (ACs), the largest cohort of neurons in the mammalian retina, are affected in glaucoma. Intraocular injection of microbeads was made in mouse eyes to elevate intraocular pressure as a model of experimental glaucoma. Specific immunocytochemical markers were used to identify AC and displaced (d)ACs subpopulations in both the inner nuclear and ganglion cell layers, respectively, and to distinguish them from retinal ganglion cells (RGCs). Calretinin- and γ-aminobutyric acid (GABA)-immunoreactive (IR) cells were highly vulnerable to glaucomatous damage, whereas choline acetyltransferase (ChAT)-positive and glycinergic AC subtypes were unaffected. The AC loss began 4 weeks after initial microbead injection, corresponding to the time course of RGC loss. Recordings of electroretinogram (ERG) oscillatory potentials and scotopic threshold responses, which reflect AC and RGC activity, were significantly attenuated in glaucomatous eyes following a time course that matched that of the AC and RGC loss. Moreover, we found that it was the ACs coupled to RGCs via gap junctions that were lost in glaucoma, whereas uncoupled ACs were largely unaffected. Our results suggest that AC loss in glaucoma occurs secondary to RGC death through the gap junction-mediated bystander effect. J. Comp. Neurol. 527:159-173, 2019. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abram Akopian
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, 10036
| | - Sandeep Kumar
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, 10036
| | | | - Suresh Viswanathan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, 10036
| | - Stewart A Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, 10036
| |
Collapse
|
34
|
The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina. J Neurosci 2015; 35:13336-50. [PMID: 26424882 DOI: 10.1523/jneurosci.1712-15.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene.
Collapse
|
35
|
Abstract
Photoreceptors have been the most intensively studied retinal cell type. Early lineage studies showed that photoreceptors are produced by retinal progenitor cells (RPCs) that produce only photoreceptor cells and by RPCs that produce both photoreceptor cells and other retinal cell types. More recent lineage studies have shown that there are intrinsic, molecular differences among these RPCs and that these molecular differences operate in gene regulatory networks (GRNs) that lead to the choice of the rod versus the cone fate. In addition, there are GRNs that lead to the choice of a photoreceptor fate and that of another retinal cell type. An example of such a GRN is one that drives the binary fate choice between a rod photoreceptor and bipolar cell. This GRN has many elements, including both feedforward and feedback regulatory loops, highlighting the complexity of such networks. This and other examples of retinal cell fate determination are reviewed here, focusing on the events that direct the choice of rod and cone photoreceptor fate.
Collapse
Affiliation(s)
- Constance L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
36
|
Vuong HE, Pérez de Sevilla Müller L, Hardi CN, McMahon DG, Brecha NC. Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines. Neuroscience 2015; 307:319-37. [PMID: 26335381 PMCID: PMC4603663 DOI: 10.1016/j.neuroscience.2015.08.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022]
Abstract
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing.
Collapse
Affiliation(s)
- H E Vuong
- Molecular, Cellular, and Integrative Physiology Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - L Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - C N Hardi
- Department of Psychology, College of Letters and Science, UCLA, Los Angeles, CA 90095, United States
| | - D G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - N C Brecha
- Molecular, Cellular, and Integrative Physiology Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; CURE-Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, United States.
| |
Collapse
|
37
|
Abstract
UNLABELLED Visual processing in the retina depends on coordinated signaling by interneurons. Photoreceptor signals are relayed to ∼20 ganglion cell types through a dozen excitatory bipolar interneurons, each responsive to light increments (ON) or decrements (OFF). ON and OFF bipolar cell pathways become tuned through specific connections with inhibitory interneurons: horizontal and amacrine cells. A major obstacle for understanding retinal circuitry is the unknown function of most of the ∼30-40 amacrine cell types, each of which synapses onto a subset of bipolar cell terminals, ganglion cell dendrites, and other amacrine cells. Here, we used a transgenic mouse line in which vasoactive intestinal polypeptide-expressing (VIP+) GABAergic interneurons express Cre recombinase. Targeted whole-cell recordings of fluorescently labeled VIP+ cells revealed three predominant types: wide-field bistratified and narrow-field monostratified cells with somas in the inner nuclear layer (INL) and medium-field monostratified cells with somas in the ganglion cell layer (GCL). Bistratified INL cells integrated excitation and inhibition driven by both ON and OFF pathways with little spatial tuning. Narrow-field INL cells integrated excitation driven by the ON pathway and inhibition driven by both pathways, with pronounced hyperpolarizations at light offset. Monostratified GCL cells integrated excitation and inhibition driven by the ON pathway and showed center-surround spatial tuning. Optogenetic experiments showed that, collectively, VIP+ cells made strong connections with OFF δ, ON-OFF direction-selective, and W3 ganglion cells but weak, inconsistent connections with ON and OFF α cells. Revealing VIP+ cell morphologies, receptive fields and synaptic connections advances our understanding of their role in visual processing. SIGNIFICANCE STATEMENT The retina is a model system for understanding nervous system function. At the first stage, rod and cone photoreceptors encode light and communicate with a complex network of interneurons. These interneurons drive the responses of ganglion cells, which form the optic nerve and transmit visual information to the brain. Presently, we lack information about many of the retina's inhibitory amacrine interneurons. In this study, we used genetically modified mice to study the light responses and intercellular connections of specific amacrine cell types. The results show diversity in the shape and function of the studied amacrine cells and elucidate their connections with specific types of ganglion cell. The findings advance our understanding of the cellular basis for retinal function.
Collapse
|
38
|
Akrouh A, Kerschensteiner D. Morphology and function of three VIP-expressing amacrine cell types in the mouse retina. J Neurophysiol 2015; 114:2431-8. [PMID: 26311183 PMCID: PMC4620131 DOI: 10.1152/jn.00526.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/21/2015] [Indexed: 12/29/2022] Open
Abstract
Amacrine cells (ACs) are the most diverse class of neurons in the retina. The variety of signals provided by ACs allows the retina to encode a wide range of visual features. Of the 30-50 AC types in mammalian species, few have been studied in detail. Here, we combine genetic and viral strategies to identify and to characterize morphologically three vasoactive intestinal polypeptide-expressing GABAergic AC types (VIP1-, VIP2-, and VIP3-ACs) in mice. Somata of VIP1- and VIP2-ACs reside in the inner nuclear layer and somata of VIP3-ACs in the ganglion cell layer, and they show asymmetric distributions along the dorsoventral axis of the retina. Neurite arbors of VIP-ACs differ in size (VIP1-ACs ≈ VIP3-ACs > VIP2-ACs) and stratify in distinct sublaminae of the inner plexiform layer. To analyze light responses and underlying synaptic inputs, we target VIP-ACs under 2-photon guidance for patch-clamp recordings. VIP1-ACs depolarize strongly to light increments (ON) over a wide range of stimulus sizes but show size-selective responses to light decrements (OFF), depolarizing to small and hyperpolarizing to large stimuli. The switch in polarity of OFF responses is caused by pre- and postsynaptic surround inhibition. VIP2- and VIP3-ACs both show small depolarizations to ON stimuli and large hyperpolarizations to OFF stimuli but differ in their spatial response profiles. Depolarizations are caused by ON excitation outweighing ON inhibition, whereas hyperpolarizations result from pre- and postsynaptic OFF-ON crossover inhibition. VIP1-, VIP2-, and VIP3-ACs thus differ in response polarity and spatial tuning and contribute to the diversity of inhibitory and neuromodulatory signals in the retina.
Collapse
Affiliation(s)
- Alejandro Akrouh
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri; and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
39
|
Stradleigh TW, Ishida AT. Fixation strategies for retinal immunohistochemistry. Prog Retin Eye Res 2015; 48:181-202. [PMID: 25892361 PMCID: PMC4543575 DOI: 10.1016/j.preteyeres.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, University of California, Sacramento, CA 95817, USA.
| |
Collapse
|
40
|
Lee SCS, Weltzien F, Madigan MC, Martin PR, Grünert U. Identification of AⅡ amacrine, displaced amacrine, and bistratified ganglion cell types in human retina with antibodies against calretinin. J Comp Neurol 2015; 524:39-53. [PMID: 26053777 DOI: 10.1002/cne.23821] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022]
Abstract
Antibodies against calretinin are markers for one type of rod pathway interneuron (AⅡ amacrine cell) in the retina of some but not all mammalian species. The AⅡ cells play a crucial role in night-time (scotopic) vision and have been proposed as a target for optogenetic restoration of vision in retinal disease. In the present study we aimed to characterize the AⅡ cells in human retina. Postmortem human donor eyes were obtained with ethical approval and processed for calretinin immunofluorescence. Calretinin-positive somas in the inner nuclear and the ganglion cell layer were filled with the lipophilic dye DiI. The large majority (over 80%) of calretinin-immunoreactive cells is located in the inner nuclear layer, is immunopositive for glycine transporter 1, and shows the typical morphology of AⅡ amacrine cells. In addition, a small proportion of calretinin-positive cells in the inner nuclear layer and in the ganglion cell layer is glutamic acid decarboxylase-positive and shows the morphology of widefield amacrine cells (stellate, semilunar, and thorny amacrine cells). About half of the calretinin cells in the ganglion cell layer are bistratified ganglion cells resembling the small bistratified (presumed blue-ON/yellow-OFF) and the G17 ganglion cell previously described in primates. We conclude that in human retina, antibodies against calretinin can be used to identify AⅡ amacrine cells in the inner nuclear layer as well as widefield amacrine and small bistratified ganglion cells in the ganglion cell layer.
Collapse
Affiliation(s)
- Sammy C S Lee
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Felix Weltzien
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michele C Madigan
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Paul R Martin
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Australia
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Australia
| |
Collapse
|
41
|
Manookin MB, Puller C, Rieke F, Neitz J, Neitz M. Distinctive receptive field and physiological properties of a wide-field amacrine cell in the macaque monkey retina. J Neurophysiol 2015; 114:1606-16. [PMID: 26133804 PMCID: PMC4563022 DOI: 10.1152/jn.00484.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/30/2015] [Indexed: 11/22/2022] Open
Abstract
At early stages of visual processing, receptive fields are typically described as subtending local regions of space and thus performing computations on a narrow spatial scale. Nevertheless, stimulation well outside of the classical receptive field can exert clear and significant effects on visual processing. Given the distances over which they occur, the retinal mechanisms responsible for these long-range effects would certainly require signal propagation via active membrane properties. Here the physiology of a wide-field amacrine cell-the wiry cell-in macaque monkey retina is explored, revealing receptive fields that represent a striking departure from the classic structure. A single wiry cell integrates signals over wide regions of retina, 5-10 times larger than the classic receptive fields of most retinal ganglion cells. Wiry cells integrate signals over space much more effectively than predicted from passive signal propagation, and spatial integration is strongly attenuated during blockade of NMDA spikes but integration is insensitive to blockade of NaV channels with TTX. Thus these cells appear well suited for contributing to the long-range interactions of visual signals that characterize many aspects of visual perception.
Collapse
Affiliation(s)
- Michael B Manookin
- Department of Ophthalmology, University of Washington, Seattle, Washington;
| | - Christian Puller
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Fred Rieke
- Physiology and Biophysics Department, University of Washington, Seattle, Washington; and Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
42
|
Sanes JR, Masland RH. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 2015; 38:221-46. [PMID: 25897874 DOI: 10.1146/annurev-neuro-071714-034120] [Citation(s) in RCA: 511] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the retina, photoreceptors pass visual information to interneurons, which process it and pass it to retinal ganglion cells (RGCs). Axons of RGCs then travel through the optic nerve, telling the rest of the brain all it will ever know about the visual world. Research over the past several decades has made clear that most RGCs are not merely light detectors, but rather feature detectors, which send a diverse set of parallel, highly processed images of the world on to higher centers. Here, we review progress in classification of RGCs by physiological, morphological, and molecular criteria, making a particular effort to distinguish those cell types that are definitive from those for which information is partial. We focus on the mouse, in which molecular and genetic methods are most advanced. We argue that there are around 30 RGC types and that we can now account for well over half of all RGCs. We also use RGCs to examine the general problem of neuronal classification, arguing that insights and methods from the retina can guide the classification enterprise in other brain regions.
Collapse
Affiliation(s)
- Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138;
| | | |
Collapse
|
43
|
Hoggarth A, McLaughlin AJ, Ronellenfitch K, Trenholm S, Vasandani R, Sethuramanujam S, Schwab D, Briggman KL, Awatramani GB. Specific wiring of distinct amacrine cells in the directionally selective retinal circuit permits independent coding of direction and size. Neuron 2015; 86:276-91. [PMID: 25801705 DOI: 10.1016/j.neuron.2015.02.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/13/2014] [Accepted: 02/11/2015] [Indexed: 01/24/2023]
Abstract
Local and global forms of inhibition controlling directionally selective ganglion cells (DSGCs) in the mammalian retina are well documented. It is established that local inhibition arising from GABAergic starburst amacrine cells (SACs) strongly contributes to direction selectivity. Here, we demonstrate that increasing ambient illumination leads to the recruitment of GABAergic wide-field amacrine cells (WACs) endowing the DS circuit with an additional feature: size selectivity. Using a combination of electrophysiology, pharmacology, and light/electron microscopy, we show that WACs predominantly contact presynaptic bipolar cells, which drive direct excitation and feedforward inhibition (through SACs) to DSGCs, thus maintaining the appropriate balance of inhibition/excitation required for generating DS. This circuit arrangement permits high-fidelity direction coding over a range of ambient light levels, over which size selectivity is adjusted. Together, these results provide novel insights into the anatomical and functional arrangement of multiple inhibitory interneurons within a single computational module in the retina.
Collapse
Affiliation(s)
- Alex Hoggarth
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - Kara Ronellenfitch
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Stuart Trenholm
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Rishi Vasandani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - David Schwab
- Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road F165, Evanston, IL 60208, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
44
|
Pérez de Sevilla Müller L, Sargoy A, Fernández-Sánchez L, Rodriguez A, Liu J, Cuenca N, Brecha N. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. J Comp Neurol 2015; 523:1443-60. [PMID: 25631988 DOI: 10.1002/cne.23751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/21/2015] [Accepted: 01/24/2015] [Indexed: 12/11/2022]
Abstract
High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca(2+), neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α(1) pore-forming subunit, which is associated with an extracellular α(2)δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α(2)δ(3) subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼ 305 bp corresponding to the predicted size of the α(2)δ(3) subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α(2)δ(3) subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α(2)δ(3) immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α(2)δ(3) calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Allison Sargoy
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | | | - Allen Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Janelle Liu
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095
| | - Nicolás Cuenca
- Physiology, Genetics and Microbiology, University of Alicante, 03690, Alicante, Spain
| | - Nicholas Brecha
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,CURE-Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, 90073
| |
Collapse
|
45
|
Abstract
We describe recent progress toward defining neuronal cell types in the mouse retina and attempt to extract lessons that may be generally useful in the mammalian brain. Achieving a comprehensive catalog of retinal cell types now appears within reach, because researchers have achieved consensus concerning two fundamental challenges. The first is accuracy-defining pure cell types rather than settling for neuronal classes that are mixtures of types. The second is completeness-developing methods guaranteed to eventually identify all cell types, as well as criteria for determining when all types have been found. Case studies illustrate how these two challenges are handled by combining state-of-the-art molecular, anatomical, and physiological techniques. Progress is also being made in observing and modeling connectivity between cell types. Scaling up to larger brain regions, such as the cortex, will require not only technical advances but also careful consideration of the challenges of accuracy and completeness.
Collapse
|
46
|
Abstract
A major stumbling block to understanding neural circuits is the extreme anatomical and functional diversity of interneurons. Subsets of interneurons can be targeted for manipulation using Cre mouse lines, but Cre expression is rarely confined to a single interneuron type. It is essential to have a strategy that further restricts labeling in Cre driver lines. We now describe an approach that combines Cre driver mice, recombinant adeno-associated virus, and rabies virus to produce sparse but binary labeling of select interneurons--frequently only a single cell in a large region. We used this approach to characterize the retinal amacrine and ganglion cell types in five GABAergic Cre mouse (Mus musculus) lines, and identified two new amacrine cell types: an asymmetric medium-field type and a wide-field type. We also labeled several wide-field amacrine cell types that have been previously identified based on morphology but whose connectivity and function had not been systematically studied due to lack of genetic markers. All Cre-expressing amacrine cells labeled with an antibody to GABA. Cre-expressing RGCs lacked GABA labeling and included classically defined as well as recently identified types. In addition to the retina, our technique leads to sparse labeling of neurons in the cortex, lateral geniculate nucleus, and superior colliculus, and can be used to express optogenetic tools such as channelrhodopsin and protein sensors such as GCaMP. The Cre drivers identified in this study provide genetic access to otherwise hard to access cell types for systematic analysis including anatomical characterization, physiological recording, optogenetic and/or chemical manipulation, and circuit mapping.
Collapse
|
47
|
Weltzien F, Dimarco S, Protti DA, Daraio T, Martin PR, Grünert U. Characterization of secretagogin-immunoreactive amacrine cells in marmoset retina. J Comp Neurol 2013; 522:435-55. [DOI: 10.1002/cne.23420] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Felix Weltzien
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
| | | | | | - Teresa Daraio
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
| | - Paul R. Martin
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
- School of Medical Sciences; University of Sydney; Australia
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
| |
Collapse
|
48
|
Knop GC, Pottek M, Monyer H, Weiler R, Dedek K. Morphological and physiological properties of enhanced green fluorescent protein (EGFP)-expressing wide-field amacrine cells in the ChAT-EGFP mouse line. Eur J Neurosci 2013; 39:800-10. [PMID: 24299612 DOI: 10.1111/ejn.12443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 01/25/2023]
Abstract
Mammalian retinas comprise a variety of interneurons, among which amacrine cells represent the largest group, with more than 30 different cell types each exhibiting a rather distinctive morphology and carrying out a unique function in retinal processing. However, many amacrine types have not been studied systematically because, in particular, amacrine cells with large dendritic fields, i.e. wide-field amacrine cells, have a low abundance and are therefore difficult to target. Here, we used a transgenic mouse line expressing the coding sequence of enhanced green fluorescent protein under the promoter for choline acetyltransferase (ChAT-EGFP mouse) and characterized a single wide-field amacrine cell population monostratifying in layer 2/3 of the inner plexiform layer (WA-S2/3 cell). Somata of WA-S2/3 cells are located either in the inner nuclear layer or are displaced to the ganglion cell layer and exhibit a low cell density. Using immunohistochemistry, we show that WA-S2/3 cells are presumably GABAergic but may also release acetylcholine as their somata are weakly positive for ChAT. Two-photon-guided patch-clamp recordings from intact retinas revealed WA-S2/3 cells to be ON-OFF cells with a homogenous receptive field even larger than the dendritic field. The large spatial extent of the receptive field is most likely due to the extensive homologous and heterologous coupling among WA-S2/3 cells and to other amacrine cells, respectively, as indicated by tracer injections. In summary, we have characterized a novel type of GABAergic ON-OFF wide-field amacrine cell which is ideally suited to providing long-range inhibition to ganglion cells due to its strong coupling.
Collapse
Affiliation(s)
- Gabriel C Knop
- Neurobiology, University of Oldenburg, 26111, Oldenburg, Germany
| | | | | | | | | |
Collapse
|
49
|
Kunzevitzky NJ, Willeford KT, Feuer WJ, Almeida MV, Goldberg JL. Amacrine cell subtypes differ in their intrinsic neurite growth capacity. Invest Ophthalmol Vis Sci 2013; 54:7603-13. [PMID: 24130183 DOI: 10.1167/iovs.13-12691] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Amacrine cell neurite patterning has been extensively studied in vivo, and more than 30 subpopulations with varied morphologies have been identified in the mammalian retina. It is not known, however, whether the complex amacrine cell morphology is determined intrinsically, is signaled by extrinsic cues, or both. METHODS Here we purified rat amacrine cell subpopulations away from their retinal neighbors and glial-derived factors to ask questions about their intrinsic neurite growth ability. In defined medium strongly trophic for amacrine cells in vitro, we characterized survival and neurite growth of amacrine cell subpopulations defined by expression of specific markers. RESULTS We found that a series of amacrine cell subtype markers are developmentally regulated, turning on through early postnatal development. Subtype marker expression was observed in similar fractions of cultured amacrine cells as was observed in vivo, and was maintained with time in culture. Overall, amacrine cell neurite growth followed principles very similar to those in postnatal retinal ganglion cells, but embryonic retinal ganglion cells demonstrated different features, relating to their rapid axon growth. Surprisingly, the three subpopulations of amacrine cells studied in vitro recapitulated quantitatively and qualitatively the varied morphologies they have in vivo. CONCLUSIONS Our data suggest that cultured amacrine cells maintain intrinsic fidelity to their identified in vivo subtypes, and furthermore, that cell-autonomous, intrinsic factors contribute to the regulation of neurite patterning.
Collapse
|
50
|
Farrow K, Teixeira M, Szikra T, Viney TJ, Balint K, Yonehara K, Roska B. Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold. Neuron 2013; 78:325-38. [PMID: 23541902 DOI: 10.1016/j.neuron.2013.02.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 11/17/2022]
Abstract
VIDEO ABSTRACT Gradual changes in the sensory environment can lead to abrupt changes in brain computations and perception. However, mechanistic understanding of the mediating microcircuits is missing. By sliding through light levels from starlight to daylight, we identify retinal ganglion cell types in the mouse that abruptly and reversibly switch the weighting of center and surround interactions in their receptive field around cone threshold. Two-photon-targeted recordings and genetic and viral tracing experiments revealed that the circuit element responsible for the switch is a large inhibitory neuron that provides direct inhibition to ganglion cells. Our experiments suggest that weak excitatory input via electrical synapses together with the spiking threshold in inhibitory cells act as a switch. We also reveal a switch-like component in the spatial integration properties of human vision at cone threshold. This work demonstrates that circuits in the retina can quickly and reversibly switch between two distinct states, implementing distinct perceptual regimes at different light levels.
Collapse
Affiliation(s)
- Karl Farrow
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|