1
|
Colonna Romano N, Marchetti M, Marangoni A, Leo L, Retrosi D, Rosato E, Fanti L. Neuronal Progenitors Suffer Genotoxic Stress in the Drosophila Clock Mutant per0. Cells 2024; 13:1944. [PMID: 39682693 DOI: 10.3390/cells13231944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The physiological role and the molecular architecture of the circadian clock in fully developed organisms are well established. Yet, we have a limited understanding of the function of the clock during ontogenesis. We have used a null mutant (per0) of the clock gene period (per) in Drosophila melanogaster to ask whether PER may play a role during normal brain development. In third-instar larvae, we have observed that the absence of functional per results in increased genotoxic stress compared to wild-type controls. We have detected increased double-strand DNA breaks in the central nervous system and chromosome aberrations in dividing neuronal precursor cells. We have demonstrated that reactive oxygen species (ROS) are causal to the genotoxic effect and that expression of PER in glia is necessary and sufficient to suppress such a phenotype. Finally, we have shown that the absence of PER may result in less condensed chromatin, which contributes to DNA damage.
Collapse
Affiliation(s)
- Nunzia Colonna Romano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Neurogenetics Group, Department of Genetics, Genomics & Cancer Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Marcella Marchetti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Marangoni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Laura Leo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- RNA Editing Lab., Onco-Haematology Department, Genetics and Epigenetics of Paediatric Cancers, Bambino Gesù Children Hospital, IRCCS, 00179 Rome, Italy
| | - Diletta Retrosi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Neurogenetics Group, Department of Genetics, Genomics & Cancer Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Ezio Rosato
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Neurogenetics Group, Department of Genetics, Genomics & Cancer Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Laura Fanti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Helfrich-Förster C. The Never Given 2022 Pittendrigh/Aschoff Lecture: The Clock Network in the Brain-Insights From Insects. J Biol Rhythms 2024:7487304241290861. [PMID: 39529231 DOI: 10.1177/07487304241290861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
My journey into chronobiology began in 1977 with lectures and internships with Wolfgang Engelmann and Hans Erkert at the University of Tübingen in Germany. At that time, the only known animal clock gene was Period, and the location and organization of the master circadian clock in the brain was completely unknown for the model insect Drosophila melanogaster. I was thus privileged to witness and participate in the research that led us from discovering the first clock gene to identifying the clock network in the fly brain and the putative pathways linking it to behavior and physiology. This article highlights my role in these developments and also shows how the successful use of D. melanogaster for studies of circadian rhythms has contributed to the understanding of clock networks in other animals. I also report on my experiences in the German scientific system and hope that my story will be of interest to some of you.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Sekiguchi M, Reinhard N, Fukuda A, Katoh S, Rieger D, Helfrich-Förster C, Yoshii T. A Detailed Re-Examination of the Period Gene Rescue Experiments Shows That Four to Six Cryptochrome-Positive Posterior Dorsal Clock Neurons (DN 1p) of Drosophila melanogaster Can Control Morning and Evening Activity. J Biol Rhythms 2024; 39:463-483. [PMID: 39082442 DOI: 10.1177/07487304241263130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Animal circadian clocks play a crucial role in regulating behavioral adaptations to daily environmental changes. The fruit fly Drosophila melanogaster exhibits 2 prominent peaks of activity in the morning and evening, known as morning (M) and evening (E) peaks. These peaks are controlled by 2 distinct circadian oscillators located in separate groups of clock neurons in the brain. To investigate the clock neurons responsible for the M and E peaks, a cell-specific gene expression system, the GAL4-UAS system, has been commonly employed. In this study, we re-examined the two-oscillator model for the M and E peaks of Drosophila by utilizing more than 50 Gal4 lines in conjunction with the UAS-period16 line, which enables the restoration of the clock function in specific cells in the period (per) null mutant background. Previous studies have indicated that the group of small ventrolateral neurons (s-LNv) is responsible for controlling the M peak, while the other group, consisting of the 5th ventrolateral neuron (5th LNv) and the three cryptochrome (CRY)-positive dorsolateral neurons (LNd), is responsible for the E peak. Furthermore, the group of posterior dorsal neurons 1 (DN1p) is thought to also contain M and E oscillators. In this study, we found that Gal4 lines directed at the same clock neuron groups can lead to different results, underscoring the fact that activity patterns are influenced by many factors. Nevertheless, we were able to confirm previous findings that the entire network of circadian clock neurons controls M and E peaks, with the lateral neurons playing a dominant role. In addition, we demonstrate that 4 to 6 CRY-positive DN1p cells are sufficient to generate M and E peaks in light-dark cycles and complex free-running rhythms in constant darkness. Ultimately, our detailed screening could serve as a catalog to choose the best Gal4 lines that can be used to rescue per in specific clock neurons.
Collapse
Affiliation(s)
- Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayumi Fukuda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shun Katoh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
4
|
Biondi G, McCormick G, Fernandez MP. The Drosophila circadian clock gene cycle controls the development of clock neurons. PLoS Genet 2024; 20:e1011441. [PMID: 39432537 PMCID: PMC11527286 DOI: 10.1371/journal.pgen.1011441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/31/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Daily behavioral and physiological rhythms are controlled by the brain's circadian timekeeping system, a synchronized network of neurons that maintains endogenous molecular oscillations. These oscillations are based on transcriptional feedback loops of clock genes, which in Drosophila include the transcriptional activators Clock (Clk) and cycle (cyc). While the mechanisms underlying this molecular clock are very well characterized, the roles that the core clock genes play in neuronal physiology and development are much less understood. The Drosophila timekeeping center is composed of ~150 clock neurons, among which the four small ventral lateral neurons (sLNvs) are the most dominant pacemakers under constant conditions. Here, we show that downregulating the clock gene cyc specifically in the Pdf-expressing neurons leads to decreased fasciculation both in larval and adult brains. This effect is due to a developmental role of cyc, as both knocking down cyc or expressing a dominant negative form of cyc exclusively during development lead to defasciculation phenotypes in adult clock neurons. Clk downregulation also leads to developmental effects on sLNv morphology. Our results reveal a non-circadian role for cyc, shedding light on the additional functions of circadian clock genes in the development of the nervous system.
Collapse
Affiliation(s)
- Grace Biondi
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
| | - Gina McCormick
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
| | - Maria P. Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, United States of America
| |
Collapse
|
5
|
Liu J, Wang Y, Liu X, Han J, Tian Y. Spatiotemporal changes in Netrin/Dscam1 signaling dictate axonal projection direction in Drosophila small ventral lateral clock neurons. eLife 2024; 13:RP96041. [PMID: 39052321 PMCID: PMC11272162 DOI: 10.7554/elife.96041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Axon projection is a spatial- and temporal-specific process in which the growth cone receives environmental signals guiding axons to their final destination. However, the mechanisms underlying changes in axonal projection direction without well-defined landmarks remain elusive. Here, we present evidence showcasing the dynamic nature of axonal projections in Drosophila's small ventral lateral clock neurons (s-LNvs). Our findings reveal that these axons undergo an initial vertical projection in the early larval stage, followed by a subsequent transition to a horizontal projection in the early-to-mid third instar larvae. The vertical projection of s-LNv axons correlates with mushroom body calyx expansion, while the s-LNv-expressed Down syndrome cell adhesion molecule (Dscam1) interacts with Netrins to regulate the horizontal projection. During a specific temporal window, locally newborn dorsal clock neurons secrete Netrins, facilitating the transition of axonal projection direction in s-LNvs. Our study establishes a compelling in vivo model to probe the mechanisms of axonal projection direction switching in the absence of clear landmarks. These findings underscore the significance of dynamic local microenvironments in the complementary regulation of axonal projection direction transitions.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Yuedong Wang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Xian Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
- Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| |
Collapse
|
6
|
Ganguly I, Heckman EL, Litwin-Kumar A, Clowney EJ, Behnia R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Nat Commun 2024; 15:5698. [PMID: 38972924 PMCID: PMC11228034 DOI: 10.1038/s41467-024-49616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The arthropod mushroom body is well-studied as an expansion layer representing olfactory stimuli and linking them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their function remains unclear. Here, we identify inputs to visual Kenyon cells using the FlyWire adult whole-brain connectome. Input repertoires are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual neurons presynaptic to Kenyon cells have large receptive fields, while interneuron inputs receive spatially restricted signals that may be tuned to specific visual features. Individual visual Kenyon cells randomly sample sparse inputs from combinations of visual channels, including multiple optic lobe neuropils. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the specific input repertoire to the smaller population of visual Kenyon cells suggests a constrained encoding of visual stimuli.
Collapse
Affiliation(s)
- Ishani Ganguly
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Emily L Heckman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Rudy Behnia
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Yoshii T, Saito A, Yokosako T. A four-oscillator model of seasonally adapted morning and evening activities in Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:527-534. [PMID: 37217625 PMCID: PMC11226490 DOI: 10.1007/s00359-023-01639-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
The fruit fly Drosophila melanogaster exhibits two activity peaks, one in the morning and another in the evening. Because the two peaks change phase depending on the photoperiod they are exposed to, they are convenient for studying responses of the circadian clock to seasonal changes. To explain the phase determination of the two peaks, Drosophila researchers have employed the two-oscillator model, in which two oscillators control the two peaks. The two oscillators reside in different subsets of neurons in the brain, which express clock genes, the so-called clock neurons. However, the mechanism underlying the activity of the two peaks is complex and requires a new model for mechanistic exploration. Here, we hypothesize a four-oscillator model that controls the bimodal rhythms. The four oscillators that reside in different clock neurons regulate activity in the morning and evening and sleep during the midday and at night. In this way, bimodal rhythms are formed by interactions among the four oscillators (two activity and two sleep oscillators), which may judiciously explain the flexible waveform of activity rhythms under different photoperiod conditions. Although still hypothetical, this model would provide a new perspective on the seasonal adaptation of the two activity peaks.
Collapse
Affiliation(s)
- Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1, Kita-ku, Okayama, 700-8530, Japan.
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1, Kita-ku, Okayama, 700-8530, Japan
| | - Tatsuya Yokosako
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
8
|
Sekiguchi M, Katoh S, Yokosako T, Saito A, Sakai M, Fukuda A, Itoh TQ, Yoshii T. The Trissin/TrissinR signaling pathway in the circadian network regulates evening activity in Drosophila melanogaster under constant dark conditions. Biochem Biophys Res Commun 2024; 704:149705. [PMID: 38430699 DOI: 10.1016/j.bbrc.2024.149705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The circadian clock in Drosophila is governed by a neural network comprising approximately 150 neurons, known as clock neurons, which are intricately interconnected by various neurotransmitters. The neuropeptides that play functional roles in these clock neurons have been identified; however, the roles of some neuropeptides, such as Trissin, remain unclear. Trissin is expressed in lateral dorsal clock neurons (LNds), while its receptor, TrissinR, is expressed in dorsal neuron 1 (DN1) and LNds. In this study, we investigated the role of the Trissin/TrissinR signaling pathway within the circadian network in Drosophila melanogaster. Analysis involving our newly generated antibody against the Trissin precursor revealed that Trissin expression in the LNds cycles in a circadian manner. Behavioral analysis further demonstrated that flies with Trissin or TrissinR knockout or knockdown showed delayed evening activity offset under constant darkness conditions. Notably, this observed delay in evening activity offset in TrissinRNAi flies was restored via the additional knockdown of Ion transport peptide (ITP), indicating that the Trissin/TrissinR signaling pathway transmits information via ITP. Therefore, this pathway may be a key regulator of the timing of evening activity offset termination, orchestrating its effects in collaboration with the neuropeptide, ITP.
Collapse
Affiliation(s)
- Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Shun Katoh
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530, Japan
| | - Tatsuya Yokosako
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Aika Saito
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Momoka Sakai
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ayumi Fukuda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Taichi Q Itoh
- Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
9
|
Zhao X, Yang X, Lv P, Xu Y, Wang X, Zhao Z, Du J. Polycomb regulates circadian rhythms in Drosophila in clock neurons. Life Sci Alliance 2024; 7:e202302140. [PMID: 37914396 PMCID: PMC10620068 DOI: 10.26508/lsa.202302140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Circadian rhythms are essential physiological feature for most living organisms. Previous studies have shown that epigenetic regulation plays a crucial role. There is a knowledge gap in the chromatin state of some key clock neuron clusters. In this study, we show that circadian rhythm is affected by the epigenetic regulator Polycomb (Pc) within the Drosophila clock neurons. To investigate the molecular mechanisms underlying the roles of Pc in these clock neuron clusters, we use targeted DamID (TaDa) to identify genes significantly bound by Pc in the neurons marked by C929-Gal4 (including l-LNvs cluster), R6-Gal4 (including s-LNvs cluster), R18H11-Gal4 (including DN1 cluster), and DVpdf-Gal4, pdf-Gal80 (including LNds cluster). It shows that Pc binds to the genes involved in the circadian rhythm pathways, arguing a direct role for Pc in regulating circadian rhythms through specific clock genes. This study shows the identification of Pc targets in the clock neuron clusters, providing potential resource for understanding the regulatory mechanisms of circadian rhythms by the PcG complex. Thus, this study provided an example for epigenetic regulation of adult behavior.
Collapse
Affiliation(s)
- Xianguo Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xingzhuo Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pengfei Lv
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuetong Xu
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Anna G, John M, Kannan NN. miR-277 regulates the phase of circadian activity-rest rhythm in Drosophila melanogaster. Front Physiol 2023; 14:1082866. [PMID: 38089472 PMCID: PMC10714010 DOI: 10.3389/fphys.2023.1082866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/07/2023] [Indexed: 12/30/2023] Open
Abstract
Circadian clocks temporally organize behaviour and physiology of organisms with a rhythmicity of about 24 h. In Drosophila, the circadian clock is composed of mainly four clock genes: period (per), timeless (tim), Clock (Clk) and cycle (cyc) which constitutes the transcription-translation feedback loop. The circadian clock is further regulated via post-transcriptional and post-translational mechanisms among which microRNAs (miRNAs) are well known post-transcriptional regulatory molecules. Here, we identified and characterized the role of miRNA-277 (miR-277) expressed in the clock neurons in regulating the circadian rhythm. Downregulation of miR-277 in the pacemaker neurons expressing circadian neuropeptide, pigment dispersing factor (PDF) advanced the phase of the morning activity peak under 12 h light: 12 h dark cycles (LD) at lower light intensities and these flies exhibited less robust rhythms compared to the controls under constant darkness. In addition, downregulation of miR-277 in the PDF expressing neurons abolished the Clk gene transcript oscillation under LD. Our study points to the potential role of miR-277 in fine tuning the Clk expression and in maintaining the phase of the circadian rhythm in Drosophila.
Collapse
Affiliation(s)
| | | | - Nisha N. Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Nakano H, Sakai T. Impact of Drosophila LIM homeodomain protein Apterous on the morphology of the adult mushroom body. Biochem Biophys Res Commun 2023; 682:77-84. [PMID: 37804590 DOI: 10.1016/j.bbrc.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
A LIM homeodomain transcription factor Apterous (Ap) regulates embryonic and larval neurodevelopment in Drosophila. Although Ap is still expressed in the adult brain, it remains elusive whether Ap is involved in neurodevelopmental events in the adult brain because flies homozygous for ap mutations are usually lethal before they reach the adult stage. In this study, using adult escapers of ap knockout (KO) homozygotes, we examined whether the complete lack of ap expression affects the morphology of the mushroom body (MB) neurons and Pigment-dispersing factor (Pdf)-positive clock neurons in the adult brain. Although ap KO escapers showed severe structural defects of MB neurons, no clear morphological defects were found in Pdf-positive clock neurons. These results suggest that Ap in the adult brain is essential for the neurodevelopment of specific ap-positive neurons, but it is not necessarily involved in the development of all ap-positive neurons.
Collapse
Affiliation(s)
- Hikari Nakano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Takaomi Sakai
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| |
Collapse
|
12
|
Anttonen T, Burghi T, Duvall L, Fernandez MP, Gutierrez G, Kermen F, Merlin C, Michaiel A. Neurobiology and Changing Ecosystems: Mechanisms Underlying Responses to Human-Generated Environmental Impacts. J Neurosci 2023; 43:7530-7537. [PMID: 37940589 PMCID: PMC10634574 DOI: 10.1523/jneurosci.1431-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 11/10/2023] Open
Abstract
Human generated environmental change profoundly affects organisms that reside across diverse ecosystems. Although nervous systems evolved to flexibly sense, respond, and adapt to environmental change, it is unclear whether the rapid rate of environmental change outpaces the adaptive capacity of complex nervous systems. Here, we explore neural systems mediating responses to, or impacted by, changing environments, such as those induced by global heating, sensory pollution, and changing habitation zones. We focus on rising temperature and accelerated changes in environments that impact sensory experience as examples of perturbations that directly or indirectly impact neural function, respectively. We also explore a mechanism involved in cross-species interactions that arises from changing habitation zones. We demonstrate that anthropogenic influences on neurons, circuits, and behaviors are widespread across taxa and require further scientific investigation to understand principles underlying neural resilience to accelerating environmental change.SIGNIFICANCE STATEMENT Neural systems evolved over hundreds of millions of years to allow organisms to sense and respond to their environments - to be receptive and responsive, yet flexible. Recent rapid, human-generated environmental changes are testing the limits of the adaptive capacity of neural systems. This presents an opportunity and an urgency to understand how neurobiological processes, including molecular, cellular, and circuit-level mechanisms, are vulnerable or resilient to changing environmental conditions. We showcase examples that range from molecular to circuit to behavioral levels of analysis across several model species, framing a broad neuroscientific approach to explore topics of neural adaptation, plasticity, and resilience. We believe this emerging scientific area is of great societal and scientific importance and will provide a unique opportunity to reexamine our understanding of neural adaptation and the mechanisms underlying neural resilience.
Collapse
Affiliation(s)
- Tommi Anttonen
- Institute of Biology, University of Southern Denmark, Odense, Denmark DK-5230
| | - Thiago Burghi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB2 1PZ
| | - Laura Duvall
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Gabrielle Gutierrez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Florence Kermen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark DK-1165
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Angie Michaiel
- Department of Life Sciences, The Kavli Foundation, Los Angeles, California 90230
| |
Collapse
|
13
|
Ganguly I, Heckman EL, Litwin-Kumar A, Clowney EJ, Behnia R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561793. [PMID: 37873086 PMCID: PMC10592809 DOI: 10.1101/2023.10.12.561793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The arthropod mushroom body is well-studied as an expansion layer that represents olfactory stimuli and links them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their tuning and function are poorly understood. Here, we use the FlyWire adult whole-brain connectome to identify inputs to visual Kenyon cells. The types of visual neurons we identify are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual projection neurons presynaptic to Kenyon cells receive input from large swathes of visual space, while local visual interneurons, providing smaller fractions of input, receive more spatially restricted signals that may be tuned to specific features of the visual scene. Like olfactory Kenyon cells, visual Kenyon cells receive sparse inputs from different combinations of visual channels, including inputs from multiple optic lobe neuropils. The sets of inputs to individual visual Kenyon cells are consistent with random sampling of available inputs. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the expansion coding properties appear different, with a specific repertoire of visual inputs projecting onto a relatively small number of visual Kenyon cells.
Collapse
Affiliation(s)
- Ishani Ganguly
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Emily L Heckman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashok Litwin-Kumar
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate
| | - Rudy Behnia
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| |
Collapse
|
14
|
Colizzi FS, Veenstra JA, Rezende GL, Helfrich-Förster C, Martínez-Torres D. Pigment-dispersing factor is present in circadian clock neurons of pea aphids and may mediate photoperiodic signalling to insulin-producing cells. Open Biol 2023; 13:230090. [PMID: 37369351 PMCID: PMC10299861 DOI: 10.1098/rsob.230090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The neuropeptide pigment-dispersing factor (PDF) plays a pivotal role in the circadian clock of most Ecdysozoa and is additionally involved in the timing of seasonal responses of several photoperiodic species. The pea aphid, Acyrthosiphon pisum, is a paradigmatic photoperiodic species with an annual life cycle tightly coupled to the seasonal changes in day length. Nevertheless, PDF could not be identified in A. pisum so far. In the present study, we identified a PDF-coding gene that has undergone significant changes in the otherwise highly conserved insect C-terminal amino acid sequence. A newly generated aphid-specific PDF antibody stained four neurons in each hemisphere of the aphid brain that co-express the clock protein Period and have projections to the pars lateralis that are highly plastic and change their appearance in a daily and seasonal manner, resembling those of the fruit fly PDF neurons. Most intriguingly, the PDF terminals overlap with dendrites of the insulin-like peptide (ILP) positive neurosecretory cells in the pars intercerebralis and with putative terminals of Cryptochrome (CRY) positive clock neurons. Since ILP has been previously shown to be crucial for seasonal adaptations and CRY might serve as a circadian photoreceptor vital for measuring day length, our results suggest that PDF plays a critical role in aphid seasonal timing.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Jan A. Veenstra
- Université de Bordeaux, INCIA CNRS UMR, 5287 Talence, France
| | - Gustavo L. Rezende
- Universitat de València, Institut de Biologia Integrativa de Sistemes, Parc Cientific, C/ Catedrático Agustín Escardino Benlloch no. 9, 46980 Paterna, València, Spain
| | | | - David Martínez-Torres
- Universitat de València, Institut de Biologia Integrativa de Sistemes, Parc Cientific, C/ Catedrático Agustín Escardino Benlloch no. 9, 46980 Paterna, València, Spain
| |
Collapse
|
15
|
Hamanaka Y, Lu Z, Shiga S. Morphology and synaptic connections of pigment-dispersing factor-immunoreactive neurons projecting to the lateral protocerebrum in the large black chafer, Holotrichia parallela. J Comp Neurol 2022; 530:2994-3010. [PMID: 35881849 DOI: 10.1002/cne.25391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Pigment-dispersing factor (PDF) is a well-known output neuropeptide modulator of circadian pacemakers in insects. Here, we investigated PDF-immunoreactive (ir) neurons in the brain of the large black chafer Holotrichia parallela to search for circadian neural components, which are potentially involved in its circabidian rhythm. PDF-ir cells were exclusively detected near the accessory medulla (AME) as a cluster of ∼ 100 cells with almost homogeneous size. No other cells exhibited immunoreactivity. The PDF-ir cells send beaded fibers into the proximal half of the AME and ventral elongation in an anterior region between the medulla (ME) and lobula (LO). Neither the lamina, ME, LO, nor lobula plate receives PDF-ir fibers. Primary axons derived from the PDF-ir cells extend toward the contralateral hemisphere through the dorsolateral protocerebrum anterior to the calyx to connect the bilateral AME. The axons form varicose outgrowths exclusively in the lateral protocerebrum. Double labeling with antisynapsin revealed partial overlaps between PDF-ir varicosities and synapsin-ir puncta. Thus, it was assumed that the PDF-ir fibers form output synapses there. To verify this, we investigated the ultrastructure of the PDF-ir varicosities in the lateral protocerebrum by preembedding immunoelectron microscopy. The PDF-ir profiles contain small clear synaptic vesicles as well as both PDF-positive and PDF-negative dense-core vesicles, and the profiles form output synapses upon unknown profiles and receive synapses from other PDF-ir profiles. PDF neurons near the AME are considered to be prominent circadian pacemakers in the cockroach and flies. Their possible function in the circabidian rhythm was discussed based on these anatomical insights.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Laboratory of Comparative Neurobiology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Zhiyuan Lu
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Canada
| | - Sakiko Shiga
- Laboratory of Comparative Neurobiology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
16
|
Shafer OT, Gutierrez GJ, Li K, Mildenhall A, Spira D, Marty J, Lazar AA, Fernandez MDLP. ---Connectomic analysis of the Drosophila lateral neuron clock cells reveals the synaptic basis of functional pacemaker classes. eLife 2022; 11:79139. [PMID: 35766361 PMCID: PMC9365390 DOI: 10.7554/elife.79139] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The circadian clock orchestrates daily changes in physiology and behavior to ensure internal temporal order and optimal timing across the day. In animals, a central brain clock coordinates circadian rhythms throughout the body and is characterized by a remarkable robustness that depends on synaptic connections between constituent neurons. The clock neuron network of Drosophila, which shares network motifs with clock networks in the mammalian brain yet is built of many fewer neurons, offers a powerful model for understanding the network properties of circadian timekeeping. Here, we report an assessment of synaptic connectivity within a clock network, focusing on the critical lateral neuron (LN) clock neuron classes within the Janelia hemibrain dataset. Our results reveal that previously identified anatomical and functional subclasses of LNs represent distinct connectomic types. Moreover, we identify a small number of non-clock cell subtypes representing highly synaptically coupled nodes within the clock neuron network. This suggests that neurons lacking molecular timekeeping likely play integral roles within the circadian timekeeping network. To our knowledge, this represents the first comprehensive connectomic analysis of a circadian neuronal network. Most organisms on Earth possess an internal timekeeping system which ensures that bodily processes such as sleep, wakefulness or digestion take place at the right time. These precise daily rhythms are kept in check by a master clock in the brain. There, thousands of neurons – some of which carrying an internal ‘molecular clock’ – connect to each other through structures known as synapses. Exactly how the resulting network is organised to support circadian timekeeping remains unclear. To explore this question, Shafer, Gutierrez et al. focused on fruit flies, as recent efforts have systematically mapped every neuron and synaptic connection in the brain of this model organism. Analysing available data from the hemibrain connectome project at Janelia revealed that that the neurons with the most important timekeeping roles were in fact forming the fewest synapses within the network. In addition, neurons without internal molecular clocks mediated strong synaptic connections between those that did, suggesting that ‘clockless’ cells still play an integral role in circadian timekeeping. With this research, Shafer, Gutierrez et al. provide unexpected insights into the organisation of the master body clock. Better understanding the networks that underpin circadian rhythms will help to grasp how and why these are disrupted in obesity, depression and Alzheimer’s disease.
Collapse
Affiliation(s)
- Orie T Shafer
- Advanced Science Research Center, City University of New York, New York, United States
| | - Gabrielle J Gutierrez
- Center for Theoretical Neuroscience, Columbia University, New York City, United States
| | - Kimberly Li
- Department of Neuroscience and Behavior, Barnard College, New York, United States
| | - Amber Mildenhall
- Department of Neuroscience and Behavior, Barnard College, New York, United States
| | - Daphna Spira
- Center for Theoretical Neuroscience, Columbia University, New York City, United States
| | - Jonathan Marty
- Department of Electrical Engineering, Columbia University, New York, United States
| | - Aurel A Lazar
- Department of Electrical Engineering, Columbia University, New York, United States
| | | |
Collapse
|
17
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
18
|
Law AD, Cassar M, Long DM, Chow ES, Giebultowicz JM, Venkataramanan A, Strauss R, Kretzschmar D. FTD-associated mutations in Tau result in a combination of dominant and recessive phenotypes. Neurobiol Dis 2022; 170:105770. [PMID: 35588988 PMCID: PMC9261467 DOI: 10.1016/j.nbd.2022.105770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Although mutations in the microtubules-associated protein Tau have long been connected with several neurodegenerative diseases, the underlying molecular mechanisms causing these tauopathies are still not fully understood. Studies in various models suggested that dominant gain-of-function effects underlie the pathogenicity of these mutants; however, there is also evidence that the loss of normal physiological functions of Tau plays a role in tauopathies. Previous studies on Tau in Drosophila involved expressing the human Tau protein in the background of the endogenous Tau gene in addition to inducing high expression levels. To study Tau pathology in more physiological conditions, we recently created Drosophila knock-in models that express either wildtype human Tau (hTauWT) or disease-associated mutant hTau (hTauV337M and hTauK369I) in place of the endogenous Drosophila Tau (dTau). Analyzing these flies as homozygotes, we could therefore detect recessive effects of the mutations while identifying dominant effects in heterozygotes. Using memory, locomotion and sleep assays, we found that homozygous mutant hTau flies showed deficits already when quite young whereas in heterozygous flies, disease phenotypes developed with aging. Homozygotes also revealed an increase in microtubule diameter, suggesting that changes in the cytoskeleton underlie the axonal degeneration we observed in these flies. In contrast, heterozygous mutant hTau flies showed abnormal axonal targeting and no detectable changes in microtubules. However, we previously showed that heterozygosity for hTauV337M interfered with synaptic homeostasis in central pacemaker neurons and we now show that heterozygous hTauK369I flies have decreased levels of proteins involved in the release of synaptic vesicles. Taken together, our results demonstrate that both mutations induce a combination of dominant and recessive disease-related phenotypes that provide behavioral and molecular insights into the etiology of Tauopathies.
Collapse
Affiliation(s)
- Alexander D Law
- Oregon Institute of Occupational Health Sciences, 3181 S.W. Sam Jackson Park Road, Portland, OR 97219, USA
| | - Marlène Cassar
- Oregon Institute of Occupational Health Sciences, 3181 S.W. Sam Jackson Park Road, Portland, OR 97219, USA
| | - Dani M Long
- Oregon Institute of Occupational Health Sciences, 3181 S.W. Sam Jackson Park Road, Portland, OR 97219, USA
| | - Eileen S Chow
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | | | - Anjana Venkataramanan
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch Weg 15, 55128 Mainz, Germany
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch Weg 15, 55128 Mainz, Germany
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, 3181 S.W. Sam Jackson Park Road, Portland, OR 97219, USA.
| |
Collapse
|
19
|
Reinhard N, Schubert FK, Bertolini E, Hagedorn N, Manoli G, Sekiguchi M, Yoshii T, Rieger D, Helfrich-Förster C. The Neuronal Circuit of the Dorsal Circadian Clock Neurons in Drosophila melanogaster. Front Physiol 2022; 13:886432. [PMID: 35574472 PMCID: PMC9100938 DOI: 10.3389/fphys.2022.886432] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Drosophila’s dorsal clock neurons (DNs) consist of four clusters (DN1as, DN1ps, DN2s, and DN3s) that largely differ in size. While the DN1as and the DN2s encompass only two neurons, the DN1ps consist of ∼15 neurons, and the DN3s comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear. Over the past decade, numerous studies have addressed their role in the fly’s circadian system, leading to several sometimes divergent results. Nonetheless, these studies agreed that the DNs are important to fine-tune activity under light and temperature cycles and play essential roles in linking the output from the LNs to downstream neurons that control sleep and metabolism. Here, we used the Flybow system, specific split-GAL4 lines, trans-Tango, and the recently published fly connectome (called hemibrain) to describe the morphology of the DNs in greater detail, including their synaptic connections to other clock and non-clock neurons. We show that some DN groups are largely heterogenous. While certain DNs are strongly connected with the LNs, others are mainly output neurons that signal to circuits downstream of the clock. Among the latter are mushroom body neurons, central complex neurons, tubercle bulb neurons, neurosecretory cells in the pars intercerebralis, and other still unidentified partners. This heterogeneity of the DNs may explain some of the conflicting results previously found about their functionality. Most importantly, we identify two putative novel communication centers of the clock network: one fiber bundle in the superior lateral protocerebrum running toward the anterior optic tubercle and one fiber hub in the posterior lateral protocerebrum. Both are invaded by several DNs and LNs and might play an instrumental role in the clock network.
Collapse
Affiliation(s)
- Nils Reinhard
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | | | - Enrico Bertolini
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Würzburg, Germany
| | | | - Giulia Manoli
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
20
|
Kotwica-Rolinska J, Damulewicz M, Chodakova L, Kristofova L, Dolezel D. Pigment Dispersing Factor Is a Circadian Clock Output and Regulates Photoperiodic Response in the Linden Bug, Pyrrhocoris apterus. Front Physiol 2022; 13:884909. [PMID: 35574487 PMCID: PMC9099023 DOI: 10.3389/fphys.2022.884909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Daily and annually cycling conditions manifested on the Earth have forced organisms to develop time-measuring devices. Circadian clocks are responsible for adjusting physiology to the daily cycles in the environment, while the anticipation of seasonal changes is governed by the photoperiodic clock. Circadian clocks are cell-autonomous and depend on the transcriptional/translational feedback loops of the conserved clock genes. The synchronization among clock centers in the brain is achieved by the modulatory function of the clock-dependent neuropeptides. In insects, the most prominent clock neuropeptide is Pigment Dispersing Factor (PDF). Photoperiodic clock measures and computes the day and/or night length and adjusts physiology accordingly to the upcoming season. The exact mechanism of the photoperiodic clock and its direct signaling molecules are unknown but, in many insects, circadian clock genes are involved in the seasonal responses. While in Drosophila, PDF signaling participates both in the circadian clock output and in diapause regulation, the weak photoperiodic response curve of D. melanogaster is a major limitation in revealing the full role of PDF in the photoperiodic clock. Here we provide the first description of PDF in the linden bug, Pyrrhocoris apterus, an organism with a robust photoperiodic response. We characterize in detail the circadian and photoperiodic phenotype of several CRISPR/Cas9-generated pdf mutants, including three null mutants and two mutants with modified PDF. Our results show that PDF acts downstream of CRY and plays a key role as a circadian clock output. Surprisingly, in contrast to the diurnal activity of wild-type bugs, pdf null mutants show predominantly nocturnal activity, which is caused by the clock-independent direct response to the light/dark switch. Moreover, we show that together with CRY, PDF is involved in the photoperiod-dependent diapause induction, however, its lack does not disrupt the photoperiodic response completely, suggesting the presence of additional clock-regulated factors. Taken together our data provide new insight into the role of PDF in the insect’s circadian and photoperiodic systems.
Collapse
Affiliation(s)
- Joanna Kotwica-Rolinska
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- *Correspondence: Joanna Kotwica-Rolinska,
| | - Milena Damulewicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Lenka Chodakova
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lucie Kristofova
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
21
|
Hasebe M, Kotaki T, Shiga S. Pigment-dispersing factor is involved in photoperiodic control of reproduction in the brown-winged green bug, Plautia stali. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104359. [PMID: 35041845 DOI: 10.1016/j.jinsphys.2022.104359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Animals in temperate regions breed in the appropriate season by sensing seasonal changes through photoperiodism. Many studies suggest the involvement of a circadian clock system in the photoperiodic regulation of reproduction. Pigment-dispersing factor (PDF) is a known brain neuropeptide involved in the circadian control in various insects. Here, we investigated the localization and projection of PDF neurons in the brain and their involvement in the photoperiodic control of reproduction in the females of the brown-winged green bug, Plautia stali. Immunohistochemical analyses revealed a dense cluster of PDF-immunoreactive cells localized in the proximal medulla of the optic lobe, which corresponded to the cluster known as PDFMe cells. PDF-immunoreactive cells projected their fibers to the lamina through the medulla surface. PDF-immunoreactive fibers were also found in the protocerebrum and seemed to connect both PDF cell bodies in the optic lobes. RNA interference-mediated knockdown of pdf inhibited oviposition arrest induced by the transfer from long- to short-day conditions. Additionally, the knockdown of pdf delayed oviposition onset after the change from short- to long-day conditions. In conclusion, the study results indicate that PDF is locally expressed in a cell cluster at the proximal medulla and involved in the photoperiodic control of reproduction in P. stali females.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Toyomi Kotaki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
22
|
Reinhard N, Bertolini E, Saito A, Sekiguchi M, Yoshii T, Rieger D, Helfrich-Förster C. The lateral posterior clock neurons (LPN) of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond. J Comp Neurol 2021; 530:1507-1529. [PMID: 34961936 DOI: 10.1002/cne.25294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nils Reinhard
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | - Enrico Bertolini
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | | |
Collapse
|
23
|
Consolidation and maintenance of long-term memory involve dual functions of the developmental regulator Apterous in clock neurons and mushroom bodies in the Drosophila brain. PLoS Biol 2021; 19:e3001459. [PMID: 34860826 PMCID: PMC8641882 DOI: 10.1371/journal.pbio.3001459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Memory is initially labile but can be consolidated into stable long-term memory (LTM) that is stored in the brain for extended periods. Despite recent progress, the molecular and cellular mechanisms underlying the intriguing neurobiological processes of LTM remain incompletely understood. Using the Drosophila courtship conditioning assay as a memory paradigm, here, we show that the LIM homeodomain (LIM-HD) transcription factor Apterous (Ap), which is known to regulate various developmental events, is required for both the consolidation and maintenance of LTM. Interestingly, Ap is involved in these 2 memory processes through distinct mechanisms in different neuronal subsets in the adult brain. Ap and its cofactor Chip (Chi) are indispensable for LTM maintenance in the Drosophila memory center, the mushroom bodies (MBs). On the other hand, Ap plays a crucial role in memory consolidation in a Chi-independent manner in pigment dispersing factor (Pdf)-containing large ventral–lateral clock neurons (l-LNvs) that modulate behavioral arousal and sleep. Since disrupted neurotransmission and electrical silencing in clock neurons impair memory consolidation, Ap is suggested to contribute to the stabilization of memory by ensuring the excitability of l-LNvs. Indeed, ex vivo imaging revealed that a reduced function of Ap, but not Chi, results in exaggerated Cl− responses to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in l-LNvs, indicating that wild-type (WT) Ap maintains high l-LNv excitability by suppressing the GABA response. Consistently, enhancing the excitability of l-LNvs by knocking down GABAA receptors compensates for the impaired memory consolidation in ap null mutants. Overall, our results revealed unique dual functions of the developmental regulator Ap for LTM consolidation in clock neurons and LTM maintenance in MBs. A neurogenetic study using Drosophila reveals that the centrally expressed LIM-homeodomain transcription factor Apterous plays a crucial neuron-type-dependent role in two different memory processes - consolidation and maintenance of long-term memory.
Collapse
|
24
|
Beer K, Härtel S, Helfrich-Förster C. The pigment-dispersing factor neuronal network systematically grows in developing honey bees. J Comp Neurol 2021; 530:1321-1340. [PMID: 34802154 DOI: 10.1002/cne.25278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022]
Abstract
The neuropeptide pigment-dispersing factor (PDF) plays a prominent role in the circadian clock of many insects including honey bees. In the honey bee brain, PDF is expressed in about 15 clock neurons per hemisphere that lie between the central brain and the optic lobes. As in other insects, the bee PDF neurons form wide arborizations in the brain, but certain differences are evident. For example, they arborize only sparsely in the accessory medulla (AME), which serves as important communication center of the circadian clock in cockroaches and flies. Furthermore, all bee PDF neurons cluster together, which makes it impossible to distinguish individual projections. Here, we investigated the developing bee PDF network and found that the first three PDF neurons arise in the third larval instar and form a dense network of varicose fibers at the base of the developing medulla that strongly resembles the AME of hemimetabolous insects. In addition, they send faint fibers toward the lateral superior protocerebrum. In last larval instar, PDF cells with larger somata appear and send fibers toward the distal medulla and the medial protocerebrum. In the dorsal part of the medulla serpentine layer, a small PDF knot evolves from which PDF fibers extend ventrally. This knot disappears during metamorphosis and the varicose arborizations in the putative AME become fainter. Instead, a new strongly stained PDF fiber hub appears in front of the lobula. Simultaneously, the number of PDF neurons increases and the PDF neuronal network in the brain gets continuously more complex.
Collapse
Affiliation(s)
- Katharina Beer
- Department of Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Stephan Härtel
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
25
|
Vaze KM, Helfrich-Förster C. The Neuropeptide PDF Is Crucial for Delaying the Phase of Drosophila's Evening Neurons Under Long Zeitgeber Periods. J Biol Rhythms 2021; 36:442-460. [PMID: 34428956 PMCID: PMC8442139 DOI: 10.1177/07487304211032336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian clocks schedule biological functions at a specific time of the day.
Full comprehension of the clock function requires precise understanding of their
entrainment to the environment. The phase of entrained clock is plastic, which
depends on different factors such as the period of endogenous oscillator, the
period of the zeitgeber cycle (T), and the proportion of light and darkness (day
length). The circadian clock of fruit fly Drosophila
melanogaster is able to entrain to a wide range of T-cycles and day
lengths. Here, we investigated the importance of the neuropeptide
Pigment-Dispersing Factor (PDF) for entrainment by systematically studying
locomotor activity rhythms of Pdf 0 mutants and
wild-type flies under different T-cycles (T22 to T32) and different day lengths
(8, 12, and 16 hour [h]). Furthermore, we analysed PERIOD protein oscillations
in selected groups of clock neurons in both genotypes under T24 and T32 at a day
length of 16 h. As expected, we found that the phase of
Drosophila’s evening activity and evening neurons advanced
with increasing T in all the day lengths. This advance was much larger in
Pdf 0 mutants (~7 h) than in wild-type flies
causing (1) pronounced desynchrony between morning and evening neurons and (2)
evening activity to move in the morning instead of the evening. Most
interestingly, we found that the lights-off transition determines the phase of
evening neurons in both genotypes and that PDF appears necessary to delay the
evening neurons by ~3 h to their wild-type phase. Thus, in T32, PDF first delays
the molecular cycling in the evening neurons, and then, as shown in previous
studies, delays their neuronal firing rhythms to produce a total delay of ~7 h
necessary for a wild-type evening activity phase. We conclude that PDF is
crucial for appropriate phasing of Drosophila activity
rhythm.
Collapse
Affiliation(s)
- Koustubh M Vaze
- *Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany.,†Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Charlotte Helfrich-Förster
- *Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Poe AR, Mace KD, Kayser MS. Getting into rhythm: developmental emergence of circadian clocks and behaviors. FEBS J 2021; 289:6576-6588. [PMID: 34375504 DOI: 10.1111/febs.16157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Circadian clocks keep time to coordinate diverse behaviors and physiological functions. While molecular circadian rhythms are evident during early development, most behavioral rhythms, such as sleep-wake, do not emerge until far later. Here, we examine the development of circadian clocks, outputs, and behaviors across phylogeny, with a particular focus on Drosophila. We explore potential mechanisms for how central clocks and circadian output loci establish communication, and discuss why from an evolutionary perspective sleep-wake and other behavioral rhythms emerge long after central clocks begin keeping time.
Collapse
Affiliation(s)
- Amy R Poe
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kyla D Mace
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Jin X, Tian Y, Zhang ZC, Gu P, Liu C, Han J. A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr Biol 2021; 31:2075-2087.e6. [PMID: 33740429 DOI: 10.1016/j.cub.2021.02.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavior that is modulated by many environmental factors. Ambient temperature shifting usually occurs during climatic or seasonal change or travel from high-latitude area to low-latitude area that affects animal physiology. Increasing ambient temperature modulates sleep in both humans and Drosophila. Although several thermosensory molecules and neurons have been identified, the neural mechanisms that integrate temperature sensation into the sleep neural circuit remain poorly understood. Here, we reveal that prolonged increasing of ambient temperature induces a reversible sleep reduction and impaired sleep consolidation in Drosophila via activating the internal thermosensory anterior cells (ACs). ACs form synaptic contacts with a subset of posterior dorsal neuron 1 (DN1p) neurons and release acetylcholine to promote wakefulness. Furthermore, we identify that this subset of DN1ps promotes wakefulness by releasing CNMamide (CNMa) neuropeptides to inhibit the Dh44-positive pars intercerebralis (PI) neurons through CNMa receptors. Our study demonstrates that the AC-DN1p-PI neural circuit is responsible for integrating thermosensory inputs into the sleep neural circuit. Moreover, we identify the CNMa signaling pathway as a newly recognized wakefulness-promoting DN1 pathway.
Collapse
Affiliation(s)
- Xi Jin
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Pengyu Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226021, China.
| |
Collapse
|
28
|
Cavieres-Lepe J, Ewer J. Reciprocal Relationship Between Calcium Signaling and Circadian Clocks: Implications for Calcium Homeostasis, Clock Function, and Therapeutics. Front Mol Neurosci 2021; 14:666673. [PMID: 34045944 PMCID: PMC8144308 DOI: 10.3389/fnmol.2021.666673] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/09/2021] [Indexed: 12/03/2022] Open
Abstract
In animals, circadian clocks impose a daily rhythmicity to many behaviors and physiological processes. At the molecular level, circadian rhythms are driven by intracellular transcriptional/translational feedback loops (TTFL). Interestingly, emerging evidence indicates that they can also be modulated by multiple signaling pathways. Among these, Ca2+ signaling plays a key role in regulating the molecular rhythms of clock genes and of the resulting circadian behavior. In addition, the application of in vivo imaging approaches has revealed that Ca2+ is fundamental to the synchronization of the neuronal networks that make up circadian pacemakers. Conversely, the activity of circadian clocks may influence Ca2+ signaling. For instance, several genes that encode Ca2+ channels and Ca2+-binding proteins display a rhythmic expression, and a disruption of this cycling affects circadian function, underscoring their reciprocal relationship. Here, we review recent advances in our understanding of how Ca2+ signaling both modulates and is modulated by circadian clocks, focusing on the regulatory mechanisms described in Drosophila and mice. In particular, we examine findings related to the oscillations in intracellular Ca2+ levels in circadian pacemakers and how they are regulated by canonical clock genes, neuropeptides, and light stimuli. In addition, we discuss how Ca2+ rhythms and their associated signaling pathways modulate clock gene expression at the transcriptional and post-translational levels. We also review evidence based on transcriptomic analyzes that suggests that mammalian Ca2+ channels and transporters (e.g., ryanodine receptor, ip3r, serca, L- and T-type Ca2+ channels) as well as Ca2+-binding proteins (e.g., camk, cask, and calcineurin) show rhythmic expression in the central brain clock and in peripheral tissues such as the heart and skeletal muscles. Finally, we discuss how the discovery that Ca2+ signaling is regulated by the circadian clock could influence the efficacy of pharmacotherapy and the outcomes of clinical interventions.
Collapse
Affiliation(s)
- Javier Cavieres-Lepe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
29
|
Song BJ, Sharp SJ, Rogulja D. Daily rewiring of a neural circuit generates a predictive model of environmental light. SCIENCE ADVANCES 2021; 7:7/13/eabe4284. [PMID: 33762336 PMCID: PMC7990339 DOI: 10.1126/sciadv.abe4284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/03/2021] [Indexed: 05/02/2023]
Abstract
Behavioral responsiveness to external stimulation is shaped by context. We studied how sensory information can be contextualized, by examining light-evoked locomotor responsiveness of Drosophila relative to time of day. We found that light elicits an acute increase in locomotion (startle) that is modulated in a time-of-day-dependent manner: Startle is potentiated during the nighttime, when light is unexpected, but is suppressed during the daytime. The internal daytime-nighttime context is generated by two interconnected and functionally opposing populations of circadian neurons-LNvs generating the daytime state and DN1as generating the nighttime state. Switching between the two states requires daily remodeling of LNv and DN1a axons such that the maximum presynaptic area in one population coincides with the minimum in the other. We propose that a dynamic model of environmental light resides in the shifting connectivities of the LNv-DN1a circuit, which helps animals evaluate ongoing conditions and choose a behavioral response.
Collapse
Affiliation(s)
- Bryan J Song
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Slater J Sharp
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Dragana Rogulja
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Gopalakrishnan S, Kannan NN. Only time will tell: the interplay between circadian clock and metabolism. Chronobiol Int 2020; 38:149-167. [PMID: 33345624 DOI: 10.1080/07420528.2020.1842436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most organisms ranging from cyanobacteria to humans, the endogenous timekeeping system temporally coordinates the behavioral, physiological, and metabolic processes with a periodicity close to 24 h. The timing of these daily rhythms is orchestrated by the synchronized oscillations of both the central pacemaker in the brain and the peripheral clocks located across multiple organs and tissues. A growing body of evidence suggests that the central circadian clock and peripheral clocks residing in the metabolically active tissues are incredibly well coordinated to confer coherent metabolic homeostasis. The interplay between nutrient metabolism and circadian rhythms can occur at various levels supported by the molecular clock network, multiple systemic mechanisms, and the neuroendocrine signaling pathways. While studies suggest the reciprocal regulation between circadian clock and metabolism, it is important to understand the precise mechanisms and the underlying pathways involved in the cross-talk among circadian oscillators and diverse metabolic networks. In addition to the internal synchronization of the metabolic rhythms, feeding time is considered as a potential external synchronization cue that fine tunes the timing of the circadian rhythms in metabolic peripheral clocks. A deeper understanding of how the timing of food intake and the diet composition drive the tissue-specific metabolic rhythms across the body is concomitantly important to develop novel therapeutic strategies for the metabolic disorders arising from circadian misalignment. This review summarizes the recent advancements in the circadian clock regulation of nutrient metabolism and discusses the current understanding of the metabolic feedback signals that link energy metabolism with the circadian clock.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| |
Collapse
|
31
|
High-Frequency Neuronal Bursting is Essential for Circadian and Sleep Behaviors in Drosophila. J Neurosci 2020; 41:689-710. [PMID: 33262246 DOI: 10.1523/jneurosci.2322-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Circadian rhythms have been extensively studied in Drosophila; however, still little is known about how the electrical properties of clock neurons are specified. We have performed a behavioral genetic screen through the downregulation of candidate ion channels in the lateral ventral neurons (LNvs) and show that the hyperpolarization-activated cation current Ih is important for the behaviors that the LNvs influence: temporal organization of locomotor activity, analyzed in males, and sleep, analyzed in females. Using whole-cell patch clamp electrophysiology we demonstrate that small LNvs (sLNvs) are bursting neurons, and that Ih is necessary to achieve the high-frequency bursting firing pattern characteristic of both types of LNvs in females. Since firing in bursts has been associated to neuropeptide release, we hypothesized that Ih would be important for LNvs communication. Indeed, herein we demonstrate that Ih is fundamental for the recruitment of pigment dispersing factor (PDF) filled dense core vesicles (DCVs) to the terminals at the dorsal protocerebrum and for their timed release, and hence for the temporal coordination of circadian behaviors.SIGNIFICANCE STATEMENT Ion channels are transmembrane proteins with selective permeability to specific charged particles. The rich repertoire of parameters that may gate their opening state, such as voltage-sensitivity, modulation by second messengers and specific kinetics, make this protein family a determinant of neuronal identity. Ion channel structure is evolutionary conserved between vertebrates and invertebrates, making any discovery easily translatable. Through a screen to uncover ion channels with roles in circadian rhythms, we have identified the Ih channel as an important player in a subset of clock neurons of the fruit fly. We show that lateral ventral neurons (LNvs) need Ih to fire action potentials in a high-frequency bursting mode and that this is important for peptide transport and the control of behavior.
Collapse
|
32
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
33
|
Dopamine Signaling in Wake-Promoting Clock Neurons Is Not Required for the Normal Regulation of Sleep in Drosophila. J Neurosci 2020; 40:9617-9633. [PMID: 33172977 DOI: 10.1523/jneurosci.1488-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Dopamine is a wake-promoting neuromodulator in mammals and fruit flies. In Drosophila melanogaster, the network of clock neurons that drives sleep/activity cycles comprises both wake-promoting and sleep-promoting cell types. The large ventrolateral neurons (l-LNvs) and small ventrolateral neurons (s-LNvs) have been identified as wake-promoting neurons within the clock neuron network. The l-LNvs are innervated by dopaminergic neurons, and earlier work proposed that dopamine signaling raises cAMP levels in the l-LNvs and thus induces excitatory electrical activity (action potential firing), which results in wakefulness and inhibits sleep. Here, we test this hypothesis by combining cAMP imaging and patch-clamp recordings in isolated brains. We find that dopamine application indeed increases cAMP levels and depolarizes the l-LNvs, but, surprisingly, it does not result in increased firing rates. Downregulation of the excitatory D1-like dopamine receptor (Dop1R1) in the l-LNvs and s-LNvs, but not of Dop1R2, abolished the depolarization of l-LNvs in response to dopamine. This indicates that dopamine signals via Dop1R1 to the l-LNvs. Downregulation of Dop1R1 or Dop1R2 in the l-LNvs and s-LNvs does not affect sleep in males. Unexpectedly, we find a moderate decrease of daytime sleep with downregulation of Dop1R1 and of nighttime sleep with downregulation of Dop1R2. Since the l-LNvs do not use Dop1R2 receptors and the s-LNvs also respond to dopamine, we conclude that the s-LNvs are responsible for the observed decrease in nighttime sleep. In summary, dopamine signaling in the wake-promoting LNvs is not required for daytime arousal, but likely promotes nighttime sleep via the s-LNvs.SIGNIFICANCE STATEMENT In insect and mammalian brains, sleep-promoting networks are intimately linked to the circadian clock, and the mechanisms underlying sleep and circadian timekeeping are evolutionarily ancient and highly conserved. Here we show that dopamine, one important sleep modulator in flies and mammals, plays surprisingly complex roles in the regulation of sleep by clock-containing neurons. Dopamine inhibits neurons in a central brain sleep center to promote sleep and excites wake-promoting circadian clock neurons. It is therefore predicted to promote wakefulness through both of these networks. Nevertheless, our results reveal that dopamine acting on wake-promoting clock neurons promotes sleep, revealing a previously unappreciated complexity in the dopaminergic control of sleep.
Collapse
|
34
|
Zhao J, Warman G, Cheeseman J. The Development and Decay of the Circadian Clock in Drosophila melanogaster. Clocks Sleep 2020; 1:489-500. [PMID: 33089181 PMCID: PMC7445846 DOI: 10.3390/clockssleep1040037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
The way in which the circadian clock mechanism develops and decays throughout life is interesting for a number of reasons and may give us insight into the process of aging itself. The Drosophila model has been proven invaluable for the study of the circadian clock and development and aging. Here we review the evidence for how the Drosophila clock develops and changes throughout life, and present a new conceptual model based on the results of our recent work. Firefly luciferase lines faithfully report the output of known clock genes at the central clock level in the brain and peripherally throughout the whole body. Our results show that the clock is functioning in embryogenesis far earlier than previously thought. This central clock in the fly remains robust throughout the life of the animal and only degrades immediately prior to death. However, at the peripheral (non-central oscillator level) the clock shows weakened output as the animal ages, suggesting the possibility of the breakdown in the cohesion of the circadian network.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.Z.); (G.W.)
| | - Guy Warman
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.Z.); (G.W.)
| | - James Cheeseman
- Department of Anaesthesiology, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand; (J.Z.); (G.W.)
| |
Collapse
|
35
|
Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GSXE, Ito K, Saalfeld S, George R, Meinertzhagen IA, Rubin GM, Hess HF, Jain V, Plaza SM. A connectome and analysis of the adult Drosophila central brain. eLife 2020; 9:e57443. [PMID: 32880371 PMCID: PMC7546738 DOI: 10.7554/elife.57443] [Citation(s) in RCA: 506] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain.
Collapse
Affiliation(s)
- Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kenneth J Hayworth
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gary B Huang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Philip M Hubbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - William T Katz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - David Ackerman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tom Dolafi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dagmar Kainmueller
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Khaled A Khairy
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Peter H Li
- Google ResearchMountain ViewUnited States
| | | | - Nicole Neubarth
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Eric T Trautman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute for Quantitative Biosciences, University of TokyoTokyoJapan
| | | | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, Biocenter Cologne, University of CologneCologneGermany
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Erika Neace
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Chelsea X Alvarado
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dennis A Bailey
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Samantha Ballinger
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Brandon S Canino
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Natasha Cheatham
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael Cook
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Octave Duclos
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Bryon Eubanks
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelli Fairbanks
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Samantha Finley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Audrey Francis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Emily M Joyce
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - SungJin Kim
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nicole A Kirk
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shirley A Lauchie
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alanna Lohff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Charli Maldonado
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Emily A Manley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sari McLin
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Caroline Mooney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Miatta Ndama
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nneoma Okeoma
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nicholas Padilla
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Tyler Paterson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Elliott E Phillips
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Emily M Phillips
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Neha Rampally
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Caitlin Ribeiro
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Jon Thomson Rymer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean M Ryan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Anne K Scott
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ashley L Scott
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelsey Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Natalie L Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Margaret A Sobeski
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alia Suleiman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jackie Swift
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Iris Talebi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Temour Tokhi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - John J Walsh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Gregory SXE Jefferis
- MRC Laboratory of Molecular BiologyCambridgeUnited States
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute for Quantitative Biosciences, University of TokyoTokyoJapan
- Institute of Zoology, Biocenter Cologne, University of CologneCologneGermany
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reed George
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Viren Jain
- Google Research, Google LLCZurichSwitzerland
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
36
|
Marin EC, Büld L, Theiss M, Sarkissian T, Roberts RJV, Turnbull R, Tamimi IFM, Pleijzier MW, Laursen WJ, Drummond N, Schlegel P, Bates AS, Li F, Landgraf M, Costa M, Bock DD, Garrity PA, Jefferis GSXE. Connectomics Analysis Reveals First-, Second-, and Third-Order Thermosensory and Hygrosensory Neurons in the Adult Drosophila Brain. Curr Biol 2020; 30:3167-3182.e4. [PMID: 32619476 PMCID: PMC7443704 DOI: 10.1016/j.cub.2020.06.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/08/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
Animals exhibit innate and learned preferences for temperature and humidity-conditions critical for their survival and reproduction. Leveraging a whole-brain electron microscopy volume, we studied the adult Drosophila melanogaster circuitry associated with antennal thermo- and hygrosensory neurons. We have identified two new target glomeruli in the antennal lobe, in addition to the five known ones, and the ventroposterior projection neurons (VP PNs) that relay thermo- and hygrosensory information to higher brain centers, including the mushroom body and lateral horn, seats of learned and innate behavior. We present the first connectome of a thermo- and hygrosensory neuropil, the lateral accessory calyx (lACA), by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. A few mushroom body-intrinsic neurons solely receive thermosensory input from the lACA, while most receive additional olfactory and thermo- and/or hygrosensory PN inputs. Furthermore, several classes of lACA-associated neurons form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a hub for thermo- and hygrosensory circuitry. For example, DN1a neurons link thermosensory PNs in the lACA to the circadian clock via the accessory medulla. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron targeted by dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor circuits. These data provide a comprehensive first- and second-order layer analysis of Drosophila thermo- and hygrosensory systems and an initial survey of third-order neurons that could directly modulate behavior.
Collapse
Affiliation(s)
- Elizabeth C Marin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Laurin Büld
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Maria Theiss
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | | | - Robert Turnbull
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Imaan F M Tamimi
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Markus W Pleijzier
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Willem J Laursen
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Nik Drummond
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Alexander S Bates
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Paul A Garrity
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Gregory S X E Jefferis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK.
| |
Collapse
|
37
|
Kozlov A, Koch R, Nagoshi E. Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. PLoS Genet 2020; 16:e1008312. [PMID: 32598344 PMCID: PMC7367490 DOI: 10.1371/journal.pgen.1008312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/17/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
Drosophila circadian behavior relies on the network of heterogeneous groups of clock neurons. Short- and long-range signaling within the pacemaker circuit coordinates molecular and neural rhythms of clock neurons to generate coherent behavioral output. The neurochemistry of circadian behavior is complex and remains incompletely understood. Here we demonstrate that the gaseous messenger nitric oxide (NO) is a signaling molecule linking circadian pacemaker to rhythmic locomotor activity. We show that mutants lacking nitric oxide synthase (NOS) have behavioral arrhythmia in constant darkness, although molecular clocks in the main pacemaker neurons are unaffected. Behavioral phenotypes of mutants are due in part to the malformation of neurites of the main pacemaker neurons, s-LNvs. Using cell-type selective and stage-specific gain- and loss-of-function of NOS, we also demonstrate that NO secreted from diverse cellular clusters affect behavioral rhythms. Furthermore, we identify the perineurial glia, one of the two glial subtypes that form the blood-brain barrier, as the major source of NO that regulates circadian locomotor output. These results reveal for the first time the critical role of NO signaling in the Drosophila circadian system and highlight the importance of neuro-glial interaction in the neural circuit output. Circadian rhythms are daily cycles of physiological and behavioral processes found in most organisms on our planet from cyanobacteria to humans. Circadian rhythms allow organisms to anticipate routine daily and annual changes of environmental conditions and efficiently adapt to them. Fruit fly Drosophila melanogaster is an excellent model to study this phenomenon, as its versatile toolkit enables the study of genetic, molecular and neuronal mechanisms of rhythm generation. Here we report for the first time that gasotransmitter nitric oxide (NO) has a broad, multi-faceted impact on Drosophila circadian rhythms, which takes place both during the development and the adulthood. We also show that one of the important contributors of NO to circadian rhythms are glial cells that form the blood-brain barrier. The second finding highlights that circadian rhythms of higher organisms are not simply controlled by the small number of pacemaker neurons but are generated by the system that consists of many different players, including glia.
Collapse
Affiliation(s)
- Anatoly Kozlov
- Department of Genetics and Evolution, Sciences III, University of Geneva, Quai Ernest-Ansermet, Switzerland
| | - Rafael Koch
- Department of Genetics and Evolution, Sciences III, University of Geneva, Quai Ernest-Ansermet, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, Sciences III, University of Geneva, Quai Ernest-Ansermet, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Cassar M, Law AD, Chow ES, Giebultowicz JM, Kretzschmar D. Disease-Associated Mutant Tau Prevents Circadian Changes in the Cytoskeleton of Central Pacemaker Neurons. Front Neurosci 2020; 14:232. [PMID: 32292325 PMCID: PMC7118733 DOI: 10.3389/fnins.2020.00232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
A hallmark feature of Alzheimer's disease (AD) and other Tauopathies, like Frontotemporal Dementia with Parkinsonism linked to chromosome 17 (FTDP-17), is the accumulation of neurofibrillary tangles composed of the microtubule-associated protein Tau. As in AD, symptoms of FTDP-17 include cognitive decline, neuronal degeneration, and disruptions of sleep patterns. However, mechanisms by which Tau may lead to these disturbances in sleep and activity patterns are unknown. To identify such mechanisms, we have generated novel Drosophila Tauopathy models by replacing endogenous fly dTau with normal human Tau (hTau) or the FTDP-17 causing hTauV337M mutation. This mutation is localized in one of the microtubule-binding domains of hTau and has a dominant effect. Analyzing heterozygous flies, we found that aged hTauV337M flies show neuronal degeneration and locomotion deficits when compared to wild type or hTauWT flies. Furthermore, hTauV337M flies are hyperactive and they show a fragmented sleep pattern. These changes in the sleep/activity pattern are accompanied by morphological changes in the projection pattern of the central pacemaker neurons. These neurons show daily fluctuations in their connectivity, whereby synapses are increased during the day and reduced during sleep. Synapse formation requires cytoskeletal changes that can be detected by the accumulation of the end-binding protein 1 (EB1) at the site of synapse formation. Whereas, hTauWT flies show the normal day/night changes in EB1 accumulation, hTauV337M flies do not show this fluctuation. This suggests that hTauV337M disrupts sleep patterns by interfering with the cytoskeletal changes that are required for the synaptic homeostasis of central pacemaker neurons.
Collapse
Affiliation(s)
- Marlène Cassar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Alexander D Law
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Eileen S Chow
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Jadwiga M Giebultowicz
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
39
|
Menegazzi P, Beer K, Grebler V, Schlichting M, Schubert FK, Helfrich-Förster C. A Functional Clock Within the Main Morning and Evening Neurons of D. melanogaster Is Not Sufficient for Wild-Type Locomotor Activity Under Changing Day Length. Front Physiol 2020; 11:229. [PMID: 32273848 PMCID: PMC7113387 DOI: 10.3389/fphys.2020.00229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
A major challenge for all organisms that live in temperate and subpolar regions is to adapt physiology and activity to different photoperiods. A long-standing model assumes that there are morning (M) and evening (E) oscillators with different photoreceptive properties that couple to dawn and dusk, respectively, and by this way adjust activity to the different photoperiods. In the fruit fly Drosophila melanogaster, M and E oscillators have been localized to specific circadian clock neurons in the brain. Here, we investigate under different photoperiods the activity pattern of flies expressing the clock protein PERIOD (PER) only in subsets of M and E oscillators. We found that all fly lines that expressed PER only in subsets of the clock neurons had difficulties to track the morning and evening in a wild-type manner. The lack of the E oscillators advanced M activity under short days, whereas the lack of the M oscillators delayed E activity under the same conditions. In addition, we found that flies expressing PER only in subsets of clock neurons showed higher activity levels at certain times of day or night, suggesting that M and E clock neurons might inhibit activity at specific moments throughout the 24 h. Altogether, we show that the proper interaction between all clock cells is important for adapting the flies’ activity to different photoperiods and discuss our findings in the light of the current literature.
Collapse
Affiliation(s)
- Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Verena Grebler
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Matthias Schlichting
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Frank K Schubert
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
40
|
de Azevedo RVDM, Hansen C, Chen KF, Rosato E, Kyriacou CP. Disrupted Glutamate Signaling in Drosophila Generates Locomotor Rhythms in Constant Light. Front Physiol 2020; 11:145. [PMID: 32210832 PMCID: PMC7069353 DOI: 10.3389/fphys.2020.00145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/11/2020] [Indexed: 01/23/2023] Open
Abstract
We have used the Cambridge Protein Trap resource (CPTI) to screen for flies whose locomotor rhythms are rhythmic in constant light (LL) as a means of identifying circadian photoreception genes. From the screen of ∼150 CPTI lines, we obtained seven hits, two of which targeted the glutamate pathway, Got1 (Glutamate oxaloacetate transaminase 1) and Gs2 (Glutamine synthetase 2). We focused on these by employing available mutants and observed that variants of these genes also showed high levels of LL rhythmicity compared with controls. It was also clear that the genetic background was important with a strong interaction observed with the common and naturally occurring timeless (tim) polymorphisms, ls-tim and s-tim. The less circadian photosensitive ls-tim allele generated high levels of LL rhythmicity in combination with Got1 or Gs2, even though ls-tim and s-tim alleles do not, by themselves, generate the LL phenotype. The use of dsRNAi for both genes as well as for Gad (Glutamic acid decarboxylase) and the metabotropic glutamate receptor DmGluRA driven by clock gene promoters also revealed high levels of LL rhythmicity compared to controls. It is clear that the glutamate pathway is heavily implicated in circadian photoreception. TIM levels in Got1 and Gs2 mutants cycled and were more abundant than in controls under LL. Got1 but not Gs2 mutants showed diminished phase shifts to 10 min light pulses. Neurogenetic dissection of the LL rhythmic phenotype using the gal4/gal80 UAS bipartite system suggested that the more dorsal CRY-negative clock neurons, DNs and LNds were responsible for the LL phenotype. Immunocytochemistry using the CPTI YFP tagged insertions for the two genes revealed that the DN1s but not the DN2 and DN3s expressed Got1 and Gs2, but expression was also observed in the lateral neurons, the LNds and s-LNvs. Expression of both genes was also found in neuroglia. However, downregulation of glial Gs2 and Got1 using repo-gal4 did not generate high levels of LL rhythmicity, so it is unlikely that this phenotype is mediated by glial expression. Our results suggest a model whereby the DN1s and possibly CRY-negative LNds use glutamate signaling to supress the pacemaker s-LNvs in LL.
Collapse
Affiliation(s)
| | - Celia Hansen
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ko-Fan Chen
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Charalambos P Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
41
|
Nair S, Bahn JH, Lee G, Yoo S, Park JH. A Homeobox Transcription Factor Scarecrow (SCRO) Negatively Regulates Pdf Neuropeptide Expression through Binding an Identified cis-Acting Element in Drosophila melanogaster. Mol Neurobiol 2020; 57:2115-2130. [DOI: 10.1007/s12035-020-01874-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
|
42
|
Davis FP, Nern A, Picard S, Reiser MB, Rubin GM, Eddy SR, Henry GL. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 2020; 9:e50901. [PMID: 31939737 PMCID: PMC7034979 DOI: 10.7554/elife.50901] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The anatomy of many neural circuits is being characterized with increasing resolution, but their molecular properties remain mostly unknown. Here, we characterize gene expression patterns in distinct neural cell types of the Drosophila visual system using genetic lines to access individual cell types, the TAPIN-seq method to measure their transcriptomes, and a probabilistic method to interpret these measurements. We used these tools to build a resource of high-resolution transcriptomes for 100 driver lines covering 67 cell types, available at http://www.opticlobe.com. Combining these transcriptomes with recently reported connectomes helps characterize how information is transmitted and processed across a range of scales, from individual synapses to circuit pathways. We describe examples that include identifying neurotransmitters, including cases of apparent co-release, generating functional hypotheses based on receptor expression, as well as identifying strong commonalities between different cell types.
Collapse
Affiliation(s)
- Fred P Davis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Molecular Immunology and Inflammation BranchNational Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Serge Picard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean R Eddy
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Howard Hughes Medical Institute and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUnited States
| | - Gilbert L Henry
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
43
|
Bertolini E, Schubert FK, Zanini D, Sehadová H, Helfrich-Förster C, Menegazzi P. Life at High Latitudes Does Not Require Circadian Behavioral Rhythmicity under Constant Darkness. Curr Biol 2019; 29:3928-3936.e3. [PMID: 31679928 DOI: 10.1016/j.cub.2019.09.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023]
Abstract
Nearly all organisms evolved endogenous self-sustained timekeeping mechanisms to track and anticipate cyclic changes in the environment. Circadian clocks, with a periodicity of about 24 h, allow animals to adapt to day-night cycles. Biological clocks are highly adaptive, but strong behavioral rhythms might be a disadvantage for adaptation to weakly rhythmic environments such as polar areas [1, 2]. Several high-latitude species, including Drosophila species, were found to be highly arrhythmic under constant conditions [3-6]. Furthermore, Drosophila species from subarctic regions can extend evening activity until dusk under long days. These traits depend on the clock network neurochemistry, and we previously proposed that high-latitude Drosophila species evolved specific clock adaptations to colonize polar regions [5, 7, 8]. We broadened our analysis to 3 species of the Chymomyza genus, which diverged circa 5 million years before the Drosophila radiation [9] and colonized both low and high latitudes [10, 11]. C. costata, pararufithorax, and procnemis, independently of their latitude of origin, possess the clock neuronal network of low-latitude Drosophila species, and their locomotor activity does not track dusk under long photoperiods. Nevertheless, the high-latitude C. costata becomes arrhythmic under constant darkness (DD), whereas the two low-latitude species remain rhythmic. Different mechanisms are behind the arrhythmicity in DD of C. costata and the high-latitude Drosophila ezoana, suggesting that the ability to maintain behavioral rhythms has been lost more than once during drosophilids' evolution and that it might indeed be an evolutionary adaptation for life at high latitudes.
Collapse
Affiliation(s)
- Enrico Bertolini
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Frank K Schubert
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Damiano Zanini
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Hana Sehadová
- Faculty of Science, Biology Centre of the Czech Academy of Sciences, Institute of Entomology and University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
44
|
Xu F, Kula-Eversole E, Iwanaszko M, Lim C, Allada R. Ataxin2 functions via CrebA to mediate Huntingtin toxicity in circadian clock neurons. PLoS Genet 2019; 15:e1008356. [PMID: 31593562 PMCID: PMC6782096 DOI: 10.1371/journal.pgen.1008356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Disrupted circadian rhythms is a prominent and early feature of neurodegenerative diseases including Huntington’s disease (HD). In HD patients and animal models, striatal and hypothalamic neurons expressing molecular circadian clocks are targets of mutant Huntingtin (mHtt) pathogenicity. Yet how mHtt disrupts circadian rhythms remains unclear. In a genetic screen for modifiers of mHtt effects on circadian behavior in Drosophila, we discovered a role for the neurodegenerative disease gene Ataxin2 (Atx2). Genetic manipulations of Atx2 modify the impact of mHtt on circadian behavior as well as mHtt aggregation and demonstrate a role for Atx2 in promoting mHtt aggregation as well as mHtt-mediated neuronal dysfunction. RNAi knockdown of the Fragile X mental retardation gene, dfmr1, an Atx2 partner, also partially suppresses mHtt effects and Atx2 effects depend on dfmr1. Atx2 knockdown reduces the cAMP response binding protein A (CrebA) transcript at dawn. CrebA transcript level shows a prominent diurnal regulation in clock neurons. Loss of CrebA also partially suppresses mHtt effects on behavior and cell loss and restoration of CrebA can suppress Atx2 effects. Our results indicate a prominent role of Atx2 in mediating mHtt pathology, specifically via its regulation of CrebA, defining a novel molecular pathway in HD pathogenesis. Circadian clocks evolved to anticipate 24 h environmental rhythms driven by the earth’s daily rotation and regulate nearly all aspects of behavior, physiology and the genome. Disruptions of the circadian clock have been associated with a wide range of human diseases, including neurodegenerative diseases such as Huntington’s disease (HD). Using an HD animal model in which a mutant Huntingtin (mHtt) protein is expressed, we identify a role for the RNA binding protein and neurodegenerative disease gene Ataxin-2 (Atx2) in mediating mHtt effects on circadian behavioral rhythms. Using transcriptomics, we identify the transcription factor CrebA as a potential target of both Atx2 and the circadian clock. Finally, we demonstrate a role for CrebA in mediating mHtt effects on circadian behavior, defining a novel Atx2-CrebA pathway in a neurodegenerative disease model. These studies define the molecular mechanisms by which mHtt can disrupt circadian rhythms identifying potential novel therapeutic targets for this uniformly fatal disease.
Collapse
Affiliation(s)
- Fangke Xu
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Elzbieta Kula-Eversole
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Marta Iwanaszko
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chunghun Lim
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
The brain's synaptic networks endow an animal with powerfully adaptive biological behavior. Maps of such synaptic circuits densely reconstructed in those model brains that can be examined and manipulated by genetic means offer the best prospect for understanding the underlying biological bases of behavior. That prospect is now technologically feasible and a scientifically enabling possibility in neurobiology, much as genomics has been in molecular biology and genetics. In Drosophila, two major advances are in electron microscopic technology, using focused ion beam-scanning electron microscopy (FIB-SEM) milling to capture and align digital images, and in computer-aided reconstruction of neuron morphologies. The last decade has witnessed enormous progress in detailed knowledge of the actual synaptic circuits formed by real neurons. Advances in various brain regions that heralded identification of the motion-sensing circuits in the optic lobe are now extending to other brain regions, with the prospect of encompassing the fly's entire nervous system, both brain and ventral nerve cord.
Collapse
Affiliation(s)
- Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147-2408, USA;
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147-2408, USA; .,Department of Psychology and Neuroscience and Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Canada B3H 4R2
| |
Collapse
|
46
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
47
|
Zhao J, Warman GR, Stanewsky R, Cheeseman JF. Development of the Molecular Circadian Clock and Its Light Sensitivity in Drosophila Melanogaster. J Biol Rhythms 2019; 34:272-282. [PMID: 30879378 DOI: 10.1177/0748730419836818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The importance of the circadian clock for the control of behavior and physiology is well established but how and when it develops is not fully understood. Here the initial expression pattern of the key clock gene period was recorded in Drosophila from embryos in vivo, using transgenic luciferase reporters. PERIOD expression in the presumptive central-clock dorsal neurons started to oscillate in the embryo in constant darkness. In behavioral experiments, a single 12-h light pulse given during the embryonic stage synchronized adult activity rhythms, implying the early development of entrainment mechanisms. These findings suggest that the central clock is functional already during embryogenesis. In contrast to central brain expression, PERIOD in the peripheral cells or their precursors increased during the embryonic stage and peaked during the pupal stage without showing circadian oscillations. Its rhythmic expression only initiated in the adult. We conclude that cyclic expression of PERIOD in the central-clock neurons starts in the embryo, presumably in the dorsal neurons or their precursors. It is not until shortly after eclosion when cyclic and synchronized expression of PERIOD in peripheral tissues commences throughout the animal.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Anaesthesiology, School of Medicine, University of Auckland, Auckland, 1142 New Zealand
| | - Guy Robert Warman
- Department of Anaesthesiology, School of Medicine, University of Auckland, Auckland, 1142 New Zealand
| | - Ralf Stanewsky
- Institute for Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - James Frederick Cheeseman
- Department of Anaesthesiology, School of Medicine, University of Auckland, Auckland, 1142 New Zealand
| |
Collapse
|
48
|
Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C. Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biol 2019; 8:rsob.170224. [PMID: 29321240 PMCID: PMC5795053 DOI: 10.1098/rsob.170224] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Pigment-Dispersing Factor (PDF) is an important neuropeptide in the brain circadian network of Drosophila and other insects, but its role in bees in which the circadian clock influences complex behaviour is not well understood. We combined high-resolution neuroanatomical characterizations, quantification of PDF levels over the day and brain injections of synthetic PDF peptide to study the role of PDF in the honey bee Apis mellifera We show that PDF co-localizes with the clock protein Period (PER) in a cluster of laterally located neurons and that the widespread arborizations of these PER/PDF neurons are in close vicinity to other PER-positive cells (neurons and glia). PDF-immunostaining intensity oscillates in a diurnal and circadian manner with possible influences for age or worker task on synchrony of oscillations in different brain areas. Finally, PDF injection into the area between optic lobes and the central brain at the end of the subjective day produced a consistent trend of phase-delayed circadian rhythms in locomotor activity. Altogether, these results are consistent with the hypothesis that PDF is a neuromodulator that conveys circadian information from pacemaker cells to brain centres involved in diverse functions including locomotion, time memory and sun-compass orientation.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Esther Kolbe
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Noa B Kahana
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nadav Yayon
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron Weiss
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Guy Bloch
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
49
|
AMP-Activated Protein Kinase Regulates Circadian Rhythm by Affecting CLOCK in Drosophila. J Neurosci 2019; 39:3537-3550. [PMID: 30819799 DOI: 10.1523/jneurosci.2344-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/10/2023] Open
Abstract
The circadian clock organizes the physiology and behavior of organisms to their daily environmental rhythms. The central circadian timekeeping mechanism in eukaryotic cells is the transcriptional-translational feedback loop (TTFL). In the Drosophila TTFL, the transcription factors CLOCK (CLK) and CYCLE (CYC) play crucial roles in activating expression of core clock genes and clock-controlled genes. Many signaling pathways converge on the CLK/CYC complex and regulate its activity to fine-tune the cellular oscillator to environmental time cues. We aimed to identify factors that regulate CLK by performing tandem affinity purification combined with mass spectrometry using Drosophila S2 cells that stably express HA/FLAG-tagged CLK and V5-tagged CYC. We identified SNF4Aγ, a homolog of mammalian AMP-activated protein kinase γ (AMPKγ), as a factor that copurified with HA/FLAG-tagged CLK. The AMPK holoenzyme composed of a catalytic subunit AMPKα and two regulatory subunits, AMPKβ and AMPKγ, directly phosphorylated purified CLK in vitro Locomotor behavior analysis in Drosophila revealed that knockdown of each AMPK subunit in pacemaker neurons induced arrhythmicity and long periods. Knockdown of AMPKβ reduced CLK levels in pacemaker neurons, and thereby reduced pre-mRNA and protein levels of CLK downstream core clock genes, such as period and vrille Finally, overexpression of CLK reversed the long-period phenotype that resulted from AMPKβ knockdown. Thus, we conclude that AMPK, a central regulator of cellular energy metabolism, regulates the Drosophila circadian clock by stabilizing CLK and activating CLK/CYC-dependent transcription.SIGNIFICANCE STATEMENT Regulation of the circadian transcription factors CLK and CYC is fundamental to synchronize the core clock with environmental changes. Here, we show that the AMPKγ subunit of AMPK, a central regulator of cellular metabolism, copurifies with the CLK/CYC complex in Drosophila S2 cells. Furthermore, the AMPK holoenzyme directly phosphorylates CLK in vitro This study demonstrates that AMPK activity regulates the core clock in Drosophila by activating CLK, which enhances circadian transcription. In mammals, AMPK affects the core clock by downregulating circadian repressor proteins. It is intriguing to note that AMPK activity is required for core clock regulation through circadian transcription enhancement, whereas the target of AMPK action is different in Drosophila and mammals (positive vs negative element, respectively).
Collapse
|
50
|
A Distinct Visual Pathway Mediates High-Intensity Light Adaptation of the Circadian Clock in Drosophila. J Neurosci 2019; 39:1621-1630. [PMID: 30606757 DOI: 10.1523/jneurosci.1497-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
To provide organisms with a fitness advantage, circadian clocks have to react appropriately to changes in their environment. High-intensity (HI) light plays an essential role in the adaptation to hot summer days, which especially endanger insects of desiccation or prey visibility. Here, we show that solely increasing light intensity leads to an increased midday siesta in Drosophila behavior. Interestingly, this change is independent of the fly's circadian photoreceptor cryptochrome and is solely caused by a small visual organ, the Hofbauer-Buchner eyelets. Using receptor knock-downs, immunostaining, and recently developed calcium tools, we show that the eyelets activate key core clock neurons, namely the s-LNvs, at HI. This activation delays the decrease of PERIOD (PER) in the middle of the day and propagates to downstream target clock neurons that prolong the siesta. We show a new pathway for integrating light-intensity information into the clock network, suggesting new network properties and surprising parallels between Drosophila and the mammalian system.SIGNIFICANCE STATEMENT The ability of animals to adapt to their ever-changing environment plays an important role in their fitness. A key player in this adaptation is the circadian clock. For animals to predict the changes of day and night, they must constantly monitor, detect and incorporate changes in the environment. The appropriate incorporation and reaction to high-intensity (HI) light is of special importance for insects because they might suffer from desiccation during hot summer days. We show here that different photoreceptors have specialized functions to integrate low-intensity, medium-intensity, or HI light into the circadian system in Drosophila These results show surprising parallels to mammalian mechanisms, which also use different photoreceptor subtypes to respond to different light intensities.
Collapse
|