1
|
Wróbel PP, Braaß H, Frey BM, Bönstrup M, Guder S, Frontzkowski LK, Feldheim JF, Cheng B, Rathi Y, Pasternak O, Thomalla G, Koerte IK, Shenton ME, Gerloff C, Quandt F, Higgen FL, Schulz R. Cortical microstructure and hemispheric specialization-A diffusion-imaging analysis in younger and older adults. Eur J Neurosci 2024; 60:5718-5730. [PMID: 39205547 DOI: 10.1111/ejn.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Characterizing cortical plasticity becomes increasingly important for identifying compensatory mechanisms and structural reserve in the ageing population. While cortical thickness (CT) largely contributed to systems neuroscience, it incompletely informs about the underlying neuroplastic pathophysiology. In turn, microstructural characteristics may correspond to atrophy mechanisms in a more sensitive way. Fractional anisotropy, a diffusion tensor imaging (DTI) measure, is inversely related to cortical histologic complexity. Axial diffusivity and radial diffusivity are assumed to be linked to the density of structures oriented perpendicular and parallel to the cortical surface, respectively. We hypothesized (1) that cortical DTI will reveal microstructural correlates for hemispheric specialization, particularly in the language and motor systems, and (2) that lateralization of cortical DTI parameters will show an age effect, paralleling age-related changes in activation, especially in the prefrontal cortex. We analysed data from healthy younger and older adult participants (N = 91). DTI and CT data were extracted from regions of the Destrieux atlas. Diffusion measures showed lateralization in specialized motor, language, visual, auditory and inferior parietal cortices. Age-dependent increased lateralization for DTI measures was observed in the prefrontal, angular, superior temporal and lateral occipital cortex. CT did not show any age-dependent alterations in lateralization. Our observations argue that cortical DTI can capture microstructural properties associated with functional specialization, resembling findings from histology. Age effects on diffusion measures in the integrative prefrontal and parietal areas may shed novel light on the atrophy-related plasticity in healthy ageing.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Braaß
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center, Leipzig, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas K Frontzkowski
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Quandt
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Focko L Higgen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Hopkins WD. Neuroanatomical asymmetries in nonhuman primates in the homologs to Broca's and Wernicke's areas: a mini-review. Emerg Top Life Sci 2022; 6:ETLS20210279. [PMID: 36073786 PMCID: PMC9472819 DOI: 10.1042/etls20210279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023]
Abstract
Population-level lateralization in structure and function is a fundamental measure of the human nervous system. To what extent nonhuman primates exhibit similar patterns of asymmetry remains a topic of considerable scientific interest. In this mini-review, a brief summary of findings on brain asymmetries in nonhuman primates in brain regions considered to the homolog's to Broca's and Wernicke's area are presented. Limitations of existing and directions for future studies are discussed in the context of facilitating comparative investigations in primates.
Collapse
Affiliation(s)
- William D. Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, M D Anderson Cancer Center, Bastrop, TX 78602, U.S.A
| |
Collapse
|
3
|
Watson CM, Sherwood CC, Phillips KA. Myelin characteristics of the corpus callosum in capuchin monkeys (Sapajus [Cebus] apella) across the lifespan. Sci Rep 2022; 12:8786. [PMID: 35610294 PMCID: PMC9130294 DOI: 10.1038/s41598-022-12893-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
The midsagittal area of the corpus callosum (CC) is frequently studied in relation to brain development, connectivity, and function. Here we quantify myelin characteristics from electron microscopy to understand more fully differential patterns of white matter development occurring within the CC. We subdivided midsagittal regions of the CC into: I-rostrum and genu, II-rostral body, III-anterior midbody, IV-posterior midbody, and V-isthmus and splenium. The sample represented capuchin monkeys ranging in age from 2 weeks to 35 years (Sapajus [Cebus] apella, n = 8). Measurements of myelin thickness, myelin fraction, and g-ratio were obtained in a systematic random fashion. We hypothesized there would be a period of rapid myelin growth within the CC in early development. Using a locally weighted regression analysis (LOESS), we found regional differences in myelin characteristics, with posterior regions showing more rapid increases in myelin thickness and sharper decreases in g-ratio in early development. The most anterior region showed the most sustained growth in myelin thickness. For all regions over the lifespan, myelin fraction increased, plateaued, and decreased. These results suggest differential patterns of nonlinear myelin growth occur early in development and well into adulthood in the CC of capuchin monkeys.
Collapse
Affiliation(s)
- Chase M Watson
- Department of Psychology and Neuroscience Program, Trinity University, San Antonio, TX, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Kimberley A Phillips
- Department of Psychology and Neuroscience Program, Trinity University, San Antonio, TX, USA.
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
4
|
Limb Preference in Animals: New Insights into the Evolution of Manual Laterality in Hominids. Symmetry (Basel) 2022. [DOI: 10.3390/sym14010096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until the 1990s, the notion of brain lateralization—the division of labor between the two hemispheres—and its more visible behavioral manifestation, handedness, remained fiercely defined as a human specific trait. Since then, many studies have evidenced lateralized functions in a wide range of species, including both vertebrates and invertebrates. In this review, we highlight the great contribution of comparative research to the understanding of human handedness’ evolutionary and developmental pathways, by distinguishing animal forelimb asymmetries for functionally different actions—i.e., potentially depending on different hemispheric specializations. Firstly, lateralization for the manipulation of inanimate objects has been associated with genetic and ontogenetic factors, with specific brain regions’ activity, and with morphological limb specializations. These could have emerged under selective pressures notably related to the animal locomotion and social styles. Secondly, lateralization for actions directed to living targets (to self or conspecifics) seems to be in relationship with the brain lateralization for emotion processing. Thirdly, findings on primates’ hand preferences for communicative gestures accounts for a link between gestural laterality and a left-hemispheric specialization for intentional communication and language. Throughout this review, we highlight the value of functional neuroimaging and developmental approaches to shed light on the mechanisms underlying human handedness.
Collapse
|
5
|
Almeida VN, Radanovic M. Semantic priming and neurobiology in schizophrenia: A theoretical review. Neuropsychologia 2021; 163:108058. [PMID: 34655651 DOI: 10.1016/j.neuropsychologia.2021.108058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
In this theoretical review we bridge the cognitive and neurobiological sciences to shed light on the neurocognitive foundations of the semantic priming effect in schizophrenia. We review and theoretically evaluate the neurotransmitter systems (dopaminergic, GABAergic and glutamatergic) and neurobiological underpinnings of behavioural and electrophysiological (N400) semantic priming in the pathology, and the main hypotheses on their geneses: a disinhibition of the semantic spread of activation, a disorganised semantic storage or noisy lexical-semantic associations, a psychomotor artefact, an artefact of relatedness proportions, or an inability to mobilise contextual information. We further assess the literature on the endophenotype of Formal Thought Disorder from multiple standpoints, ranging from neurophysiology to cognition: considerations are weaved on neuronal (PV basket cell, SST, VIP) and receptor deficits (DRD1, NMDA), neurotransmitter imbalances (dopamine), cortical and dopaminergic lateralisation, inter alia. In conclusion, we put forth novel postulates on the underlying causes of controlled hypopriming, automatic hyperpriming, N400 reversals (larger amplitudes for close associations), indirect versus direct hyperpriming, and the endophenotype of lexical-semantic disturbances in schizophrenia.
Collapse
Affiliation(s)
- Victor N Almeida
- Faculdade de Letras, Universidade Federal de Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Marcia Radanovic
- Laboratório de Neurociências (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Brazil
| |
Collapse
|
6
|
Boulinguez-Ambroise G, Pouydebat E, Disarbois É, Meguerditchian A. Maternal cradling bias in baboons: The first environmental factor affecting early infant handedness development? Dev Sci 2021; 25:e13179. [PMID: 34626051 DOI: 10.1111/desc.13179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 01/19/2023]
Abstract
The most emblematic behavioral manifestation of human brain asymmetries is handedness. While the precise mechanisms behind the development of handedness are still widely debated, empirical evidences highlight that besides genetic factors, environmental factors may play a crucial role. As one of these factors, maternal cradling behavior may play a key role in the emergence of early handedness in the offspring. In the present study we followed 41 Papio anubis infants living in social groups with their mother for which direction (e.g., left- or right-arm) and degree of maternal cradling-side bias were available from a previous published study. We assessed hand preferences for an unimanual grasping task at three developmental stages: (A) 0-4, (B) 4-6, and (C) 9-10 months of age. We found that individual hand preferences for grasping exist as soon as the first months of age, with a population-level left-handedness predominance, being stable until 6 months; to wit the period during which juveniles are mainly carried by their mothers. More importantly, this early postnatal handedness is positively correlated with maternal cradling lateralization. Interestingly, hand preferences assessed later in the development, once juveniles are no longer carried (i.e., from 9 to 10 months of age), are less dependent from the maternal cradling bias and less consistent with the earlier developmental stages, especially in infants initially cradled on the right maternal side. Our findings suggest that the ontogenetic dynamics of the infant's hand preference and its changes might ultimately rely on the degree of infant dependence from the mother across development.
Collapse
Affiliation(s)
- Grégoire Boulinguez-Ambroise
- Laboratoire de Psychologie Cognitive UMR7290, CNRS, Institut Language, Communication and the Brain, Aix-Marseille Univ, Paris, France.,Station de Primatologie CNRS, Rousset-sur-Arc, Paris, France.,Mecanismes Adaptatifs et Évolution UMR 7179-CNRS - National Museum of Natural History, Paris, France
| | - Emmanuelle Pouydebat
- Mecanismes Adaptatifs et Évolution UMR 7179-CNRS - National Museum of Natural History, Paris, France
| | - Éloïse Disarbois
- Laboratoire de Psychologie Cognitive UMR7290, CNRS, Institut Language, Communication and the Brain, Aix-Marseille Univ, Paris, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive UMR7290, CNRS, Institut Language, Communication and the Brain, Aix-Marseille Univ, Paris, France.,Station de Primatologie CNRS, Rousset-sur-Arc, Paris, France
| |
Collapse
|
7
|
Cerrito P, DeCasien AR. The expression of care: Alloparental care frequency predicts neural control of facial muscles in primates. Evolution 2021; 75:1727-1737. [PMID: 34019303 DOI: 10.1111/evo.14275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022]
Abstract
The adaptive value of facial expressions has been debated in evolutionary biology ever since Darwin's seminal work. Among mammals, primates, including humans, exhibit the most intricate facial displays. Although previous work has focused on the role of sociality in the evolution of primate facial expressions, this relationship has not been verified in a wide sample of species. Here, we examine the relationship between allomaternal care (paternal or alloparental) and the morphology of three orofacial brainstem nuclei (facial; trigeminal motor; hypoglossal) across primates to test the hypothesis that allomaternal care explains variation in the complexity of facial expressions, proxied by relative facial nucleus size and neuropil fraction. The latter represents the proportion of synaptically dense tissue and may, therefore, correlate with dexterity. We find that alloparental care frequency predicts relative neuropil fraction of the facial nucleus, even after controlling for social system organization, whereas allomaternal care is not associated with the trigeminal motor or hypoglossal nuclei. Overall, this work suggests that alloparenting requires increased facial dexterity to facilitate nonverbal communication between infants and their nonparent caregivers and/or between caregivers. Accordingly, alloparenting and complex facial expressions are likely to have coevolved in primates.
Collapse
Affiliation(s)
- Paola Cerrito
- Department of Anthropology, New York University, New York, New York, 10003.,New York Consortium in Evolutionary Primatology, New York, New York, 10024.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, 10010
| | - Alex R DeCasien
- Department of Anthropology, New York University, New York, New York, 10003.,New York Consortium in Evolutionary Primatology, New York, New York, 10024
| |
Collapse
|
8
|
Poirier C, Hamed SB, Garcia-Saldivar P, Kwok SC, Meguerditchian A, Merchant H, Rogers J, Wells S, Fox AS. Beyond MRI: on the scientific value of combining non-human primate neuroimaging with metadata. Neuroimage 2021; 228:117679. [PMID: 33359343 PMCID: PMC7903159 DOI: 10.1016/j.neuroimage.2020.117679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Sharing and pooling large amounts of non-human primate neuroimaging data offer new exciting opportunities to understand the primate brain. The potential of big data in non-human primate neuroimaging could however be tremendously enhanced by combining such neuroimaging data with other types of information. Here we describe metadata that have been identified as particularly valuable by the non-human primate neuroimaging community, including behavioural, genetic, physiological and phylogenetic data.
Collapse
Affiliation(s)
- Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle 6, UK.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France
| | - Pamela Garcia-Saldivar
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230 México
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), Shanghai Changning Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230 México
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA 77030
| | - Sara Wells
- Centre for Macaques, MRC Harwell Institute, Porton Down, Salisbury, United Kingdom
| | - Andrew S Fox
- California National Primate Research Center, Department of Psychology, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Zhang X, Li CX, Yan Y, Nair G, Rilling JK, Herndon JG, Preuss TM, Hu X, Li L. In-vivo diffusion MRI protocol optimization for the chimpanzee brain and examination of aging effects on the primate optic nerve at 3T. Magn Reson Imaging 2020; 77:194-203. [PMID: 33359631 DOI: 10.1016/j.mri.2020.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diffusion MRI (dMRI) data acquisition protocols are well-established on modern high-field clinical scanners for human studies. However, these protocols are not suitable for the chimpanzee (or other large-brained mammals) because of its substantial difference in head geometry and brain volume compared with humans. Therefore, an optimal dMRI data acquisition protocol dedicated to chimpanzee neuroimaging is needed. METHODS A multi-shot (4 segments) double spin-echo echo-planar imaging (MS-EPI) sequence and a single-shot double spin-echo EPI (SS-EPI) sequence were optimized separately for in vivo dMRI data acquisition of chimpanzees using a clinical 3T scanner. Correction for severe susceptibility-induced image distortion and signal drop-off of the chimpanzee brain was performed and evaluated using FSL software. DTI indices in different brain regions and probabilistic tractography were compared. A separate DTI data set from n=34 chimpanzees (13 to 56 years old) was collected using the optimal protocol. Age-related changes in diffusivity indices of optic nerve fibers were evaluated. RESULTS The SS-EPI sequence acquired dMRI data of the chimpanzee brain with approximately doubled the SNR as the MS-EPI sequence given the same scan time. The quality of white matter fiber tracking from the SS-EPI data was much higher than that from MS-EPI data. However, quantitative analysis of DTI indices showed no difference in most ROIs between the SS-EPI and MS-EPI sequences. The progressive evolution of diffusivity indices of optic nerves indicated mild changes in fiber bundles of chimpanzees aged 40 years and above. CONCLUSION The single-shot EPI-based acquisition protocol provided better image quality of dMRI for chimpanzee brains and is recommended for in vivo dMRI study or clinical diagnosis of chimpanzees (or other large animals) using a clinical scanner. Also, the tendency of FA decrease or diffusivity increase in the optic nerve of aged chimpanzees was seen but did not show significant age-related changes, suggesting aging may have less impact on optic nerve fiber integrity of chimpanzees, in contrast to previous results for both macaque monkeys and humans.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America.
| | - Chun-Xia Li
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Yumei Yan
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Govind Nair
- qMRI Core Facility, NINDS, NIH, Bethesda, MD 20892, United States of America
| | - James K Rilling
- Department of Anthropology, Emory University, Atlanta, GA, United States of America; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - James G Herndon
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Xiaoping Hu
- Dept of Bioengineering, University of California, Riverside, CA, United States of America
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States of America.
| |
Collapse
|
10
|
Xiang L, Crow TJ, Hopkins WD, Roberts N. Comparison of Surface Area and Cortical Thickness Asymmetry in the Human and Chimpanzee Brain. Cereb Cortex 2020; 34:bhaa202. [PMID: 33026423 PMCID: PMC10859246 DOI: 10.1093/cercor/bhaa202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Comparative study of the structural asymmetry of the human and chimpanzee brain may shed light on the evolution of language and other cognitive abilities in humans. Here we report the results of vertex-wise and ROI-based analyses that compared surface area (SA) and cortical thickness (CT) asymmetries in 3D MR images obtained for 91 humans and 77 chimpanzees. The human brain is substantially more asymmetric than the chimpanzee brain. In particular, the human brain has 1) larger total SA in the right compared with the left cerebral hemisphere, 2) a global torque-like asymmetry pattern of widespread thicker cortex in the left compared with the right frontal and the right compared with the left temporo-parieto-occipital lobe, and 3) local asymmetries, most notably in medial occipital cortex and superior temporal gyrus, where rightward asymmetry is observed for both SA and CT. There is also 4) a prominent asymmetry specific to the chimpanzee brain, namely, rightward CT asymmetry of precentral cortex. These findings provide evidence of there being substantial differences in asymmetry between the human and chimpanzee brain. The unique asymmetries of the human brain are potential neural substrates for cognitive specializations, and the presence of significant CT asymmetry of precentral gyrus in the chimpanzee brain should be further investigated.
Collapse
Affiliation(s)
- Li Xiang
- School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Timothy J Crow
- POWIC, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK
| | - William D Hopkins
- The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
11
|
Graïc JM, Peruffo A, Corain L, Centelleghe C, Granato A, Zanellato E, Cozzi B. Asymmetry in the Cytoarchitecture of the Area 44 Homolog of the Brain of the Chimpanzee Pan troglodytes. Front Neuroanat 2020; 14:55. [PMID: 32973465 PMCID: PMC7471632 DOI: 10.3389/fnana.2020.00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
The evolution of the brain in apes and man followed a joint pathway stemming from common ancestors 5-10 million years ago. However, although apparently sharing similar organization and neurochemical properties, association areas of the isocortex remain one of the cornerstones of what sets humans aside from other primates. Brodmann's area 44, the area of Broca, is known for its implication in speech, and thus indirectly is a key mark of human uniqueness. This latero-caudal part of the frontal lobe shows a marked functional asymmetry in humans, and takes part in other complex functions, including learning and imitation, tool use, music and contains the mirror neuron system (MNS). Since the main features in the cytoarchitecture of Broca's area remains relatively constant in hominids, including in our closest relative, the chimpanzee Pan troglodytes, investigations on the finer structure, cellular organization, connectivity and eventual asymmetry of area 44 have a direct bearing on the understanding of the neural mechanisms at the base of our language. The semi-automated image analysis technology that we employed in the current study showed that the structure of the cortical layers of the chimpanzee contains elements of asymmetry that are discussed in relation to the corresponding human areas and the putative resulting disparity of function.
Collapse
Affiliation(s)
- Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Livio Corain
- Department of Management and Engineering, University of Padua, Padua, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Alberto Granato
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Emanuela Zanellato
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
12
|
Handedness in monkeys reflects hemispheric specialization within the central sulcus. An in vivo MRI study in right- and left-handed olive baboons. Cortex 2019; 118:203-211. [DOI: 10.1016/j.cortex.2019.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/03/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023]
|
13
|
Phillips KA, Watson CM, Bearman A, Knippenberg AR, Adams J, Ross C, Tardif SD. Age-related changes in myelin of axons of the corpus callosum and cognitive decline in common marmosets. Am J Primatol 2019; 81:e22949. [PMID: 30620098 DOI: 10.1002/ajp.22949] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Abstract
Executive control is a higher-level cognitive function that involves a range of different processes that are involved in the planning, coordination, execution, and inhibition of responses. Many of the processes associated with executive control, such as response inhibition and mental flexibility, decline with age. Degeneration of white matter architecture is considered to be the one of the key factors underlying cognitive decline associated with aging. Here we investigated how white matter changes of the corpus callosum were related to cognitive aging in common marmosets (Callithrix jacchus). We hypothesized that reduction in myelin thickness, myelin density, and myelin fraction of axonal fibers in the corpus callosum would be associated with performance on a task of executive function in a small sample of geriatric marmosets (n = 4) and young adult marmosets (n = 2). Our results indicated declines in myelin thickness, density, and myelin fraction with age. Considerable variability was detected on these characteristics of myelin and cognitive performance assessed via the detoured reach task. Age-related changes in myelin in Region II of the corpus callosum were predictive of cognitive performance on the detoured reach task. Thus the detoured reach task appears to also measure aspects of corticostriatal function in addition to prefrontal cortical function.
Collapse
Affiliation(s)
- Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, Texas.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Chase M Watson
- Department of Psychology, Trinity University, San Antonio, Texas
| | - Ari Bearman
- Department of Psychology, Trinity University, San Antonio, Texas
| | | | - Jessica Adams
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Corinna Ross
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas.,Department of Science and Mathematics, Texas A&M University-San Antonio, San Antonio, Texas.,Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Suzette D Tardif
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas.,Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
14
|
Hopkins WD, Meguerditchian A, Coulon O, Bogart S, Mangin JF, Sherwood CC, Grabowski MW, Bennett AJ, Pierre PJ, Fears S, Woods R, Hof PR, Vauclair J. Evolution of the central sulcus morphology in primates. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:19-30. [PMID: 25139259 PMCID: PMC4166656 DOI: 10.1159/000362431] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/22/2013] [Indexed: 12/16/2022]
Abstract
The central sulcus (CS) divides the pre- and postcentral gyri along the dorsal-ventral plane of which all motor and sensory functions are topographically organized. The motor-hand area of the precentral gyrus or KNOB has been described as the anatomical substrate of the hand in humans. Given the importance of the hand in primate evolution, here we examine the evolution of the motor-hand area by comparing the relative size and pattern of cortical folding of the CS surface area from magnetic resonance images in 131 primates, including Old World monkeys, apes and humans. We found that humans and great apes have a well-formed motor-hand area that can be seen in the variation in depth of the CS along the dorsal-ventral plane. We further found that great apes have relatively large CS surface areas compared to Old World monkeys. However, relative to great apes, humans have a small motor-hand area in terms of both adjusted and absolute surface areas.
Collapse
Affiliation(s)
- William D. Hopkins
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30322
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, Aix-Marseille University/CNRS, UMR7290, Marseille, France
| | - Olivier Coulon
- Laboratoire des Sciences de l'Information et des Systèmes, Aix-Marseille Universite, Marseille, France
| | - Stephanie Bogart
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30322
| | | | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Hominid Paleobiology, The George Washington University, Washington, DC 20052
| | - Mark W. Grabowski
- Department of Anthropology and Center for the Advanced Study of Hominid Paleobiology, The George Washington University, Washington, DC 20052
| | - Allyson J. Bennett
- Harlow Center for Biological Psychology, Psychology Department, University of Wisconsin, Madison, Wisconsin 53715
| | - Peter J. Pierre
- Department of Behavioral Management, Wisconsin National Primate Research Center, Madison, Wisconsin 53115
| | - Scott Fears
- Center for Neurobehavioral Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, California 90095
| | - Roger Woods
- Center for Neurobehavioral Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, California 90095
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029
- New York Consortium in Evolutionary Primatology, New York, New York 10029
| | - Jacques Vauclair
- Department of Psychology, Research Center in Psychology of Cognition, Language & Emotion, Aix-Marseille University, Aix-en-Provence, France
| |
Collapse
|
15
|
Chance SA. The cortical microstructural basis of lateralized cognition: a review. Front Psychol 2014; 5:820. [PMID: 25126082 PMCID: PMC4115615 DOI: 10.3389/fpsyg.2014.00820] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/10/2014] [Indexed: 01/19/2023] Open
Abstract
The presence of asymmetry in the human cerebral hemispheres is detectable at both the macroscopic and microscopic scales. The horizontal expansion of cortical surface during development (within individual brains), and across evolutionary time (between species), is largely due to the proliferation and spacing of the microscopic vertical columns of cells that form the cortex. In the asymmetric planum temporale (PT), minicolumn width asymmetry is associated with surface area asymmetry. Although the human minicolumn asymmetry is not large, it is estimated to account for a surface area asymmetry of approximately 9% of the region’s size. Critically, this asymmetry of minicolumns is absent in the equivalent areas of the brains of other apes. The left-hemisphere dominance for processing speech is thought to depend, partly, on a bias for higher resolution processing across widely spaced minicolumns with less overlapping dendritic fields, whereas dense minicolumn spacing in the right hemisphere is associated with more overlapping, lower resolution, holistic processing. This concept refines the simple notion that a larger brain area is associated with dominance for a function and offers an alternative explanation associated with “processing type.” This account is mechanistic in the sense that it offers a mechanism whereby asymmetrical components of structure are related to specific functional biases yielding testable predictions, rather than the generalization that “bigger is better” for any given function. Face processing provides a test case – it is the opposite of language, being dominant in the right hemisphere. Consistent with the bias for holistic, configural processing of faces, the minicolumns in the right-hemisphere fusiform gyrus are thinner than in the left hemisphere, which is associated with featural processing. Again, this asymmetry is not found in chimpanzees. The difference between hemispheres may also be seen in terms of processing speed, facilitated by asymmetric myelination of white matter tracts (Anderson et al., 1999 found that axons of the left posterior superior temporal lobe were more thickly myelinated). By cross-referencing the differences between the active fields of the two hemispheres, via tracts such as the corpus callosum, the relationship of local features to global features may be encoded. The emergent hierarchy of features within features is a recursive structure that may functionally contribute to generativity – the ability to perceive and express layers of structure and their relations to each other. The inference is that recursive generativity, an essential component of language, reflects an interaction between processing biases that may be traceable in the microstructure of the cerebral cortex. Minicolumn organization in the PT and the prefrontal cortex has been found to correlate with cognitive scores in humans. Altered minicolumn organization is also observed in neuropsychiatric disorders including autism and schizophrenia. Indeed, altered interhemispheric connections correlated with minicolumn asymmetry in schizophrenia may relate to language-processing anomalies that occur in the disorder. Schizophrenia is associated with over-interpretation of word meaning at the semantic level and over-interpretation of relevance at the level of pragmatic competence, whereas autism is associated with overly literal interpretation of word meaning and under-interpretation of social relevance at the pragmatic level. Both appear to emerge from a disruption of the ability to interpret layers of meaning and their relations to each other. This may be a consequence of disequilibrium in the processing of local and global features related to disorganization of minicolumnar units of processing.
Collapse
Affiliation(s)
- Steven A Chance
- Neuropathology, Nuffield Department of Clinical Neurosciences, Neuroanatomy and Cognition Group, University of Oxford Oxford, UK
| |
Collapse
|
16
|
Miller DJ, Balaram P, Young NA, Kaas JH. Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex. Front Neuroanat 2014; 8:36. [PMID: 24904305 PMCID: PMC4032965 DOI: 10.3389/fnana.2014.00036] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022] Open
Abstract
Determining the cellular composition of specific brain regions is crucial to our understanding of the function of neurobiological systems. It is therefore useful to identify the extent to which different methods agree when estimating the same properties of brain circuitry. In this study, we estimated the number of neuronal and non-neuronal cells in the primary visual cortex (area 17 or V1) of both hemispheres from a single chimpanzee. Specifically, we processed samples distributed across V1 of the right hemisphere after cortex was flattened into a sheet using two variations of the isotropic fractionator cell and neuron counting method. We processed the left hemisphere as serial brain slices for stereological investigation. The goal of this study was to evaluate the agreement between these methods in the most direct manner possible by comparing estimates of cell density across one brain region of interest in a single individual. In our hands, these methods produced similar estimates of the total cellular population (approximately 1 billion) as well as the number of neurons (approximately 675 million) in chimpanzee V1, providing evidence that both techniques estimate the same parameters of interest. In addition, our results indicate the strengths of each distinct tissue preparation procedure, highlighting the importance of attention to anatomical detail. In summary, we found that the isotropic fractionator and the stereological optical fractionator produced concordant estimates of the cellular composition of V1, and that this result supports the conclusion that chimpanzees conform to the primate pattern of exceptionally high packing density in V1. Ultimately, our data suggest that investigators can optimize their experimental approach by using any of these counting methods to obtain reliable cell and neuron counts.
Collapse
Affiliation(s)
- Daniel J. Miller
- Department of Psychology, Vanderbilt UniversityNashville, TN, USA
| | | | | | | |
Collapse
|
17
|
Chatagny P, Badoud S, Kaeser M, Gindrat AD, Savidan J, Fregosi M, Moret V, Roulin C, Schmidlin E, Rouiller EM. Distinction between hand dominance and hand preference in primates: a behavioral investigation of manual dexterity in nonhuman primates (macaques) and human subjects. Brain Behav 2013; 3:575-95. [PMID: 24392278 PMCID: PMC3869985 DOI: 10.1002/brb3.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/29/2013] [Accepted: 06/30/2013] [Indexed: 11/17/2022] Open
Abstract
Background The present study aimed to determine and confront hand preference (hand chosen in priority to perform a manual dexterity task) and hand dominance (hand with best motor performance) in eight macaques (Macaca fascicularis) and in 20 human subjects (10 left-handers and 10 right-handers). Methods Four manual dexterity tests have been executed by the monkeys, over several weeks during learning and stable performance phases (in controlled body position): the modified Brinkman board, the reach and grasp drawer, the tube and the bimanual board tasks. Three behavioral tests, adapted versions from the monkeys tasks (modified Brinkman board, tube and bimanual board tasks), as well as a handedness questionnaire, have been conducted in human subjects. Results In monkeys, there was a large disparity across individuals and motor tasks. For hand dominance, two monkeys were rather right lateralized, three monkeys rather left lateralized, whereas in three monkeys, the different parameters measured were not consistent. For hand preference, none of the eight monkeys exhibited a homogeneous lateralization across the four motor tasks. Macaca fascicularis do not exhibit a clear hand preference. Furthermore, hand preference often changed with task repetition, both during training and plateau phases. For human subjects, the hand preference mostly followed the self-assessment of lateralization by the subjects and the questionnaire (in the latter, right-handers were more lateralized than left-handers), except a few discrepancies based on the tube task. There was no hand dominance in seven right-handers (the other three performed better with the right hand) and in four left-handers. Five left-handers showed left-hand dominance, whereas surprisingly, one left-hander performed better with the right hand. In the modified Brinkman board task, females performed better than males, right-handers better than left-handers. Conclusions The present study argues for a distinction between hand preference and hand dominance, especially in macaque monkeys.
Collapse
Affiliation(s)
- Pauline Chatagny
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Simon Badoud
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Mélanie Kaeser
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Anne-Dominique Gindrat
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Julie Savidan
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Michela Fregosi
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Véronique Moret
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Christine Roulin
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Eric Schmidlin
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Eric M Rouiller
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| |
Collapse
|
18
|
Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proc Natl Acad Sci U S A 2013; 110 Suppl 2:10395-401. [PMID: 23754422 DOI: 10.1073/pnas.1301224110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neocortical development in humans is characterized by an extended period of synaptic proliferation that peaks in mid-childhood, with subsequent pruning through early adulthood, as well as relatively delayed maturation of neuronal arborization in the prefrontal cortex compared with sensorimotor areas. In macaque monkeys, cortical synaptogenesis peaks during early infancy and developmental changes in synapse density and dendritic spines occur synchronously across cortical regions. Thus, relatively prolonged synapse and neuronal maturation in humans might contribute to enhancement of social learning during development and transmission of cultural practices, including language. However, because macaques, which share a last common ancestor with humans ≈ 25 million years ago, have served as the predominant comparative primate model in neurodevelopmental research, the paucity of data from more closely related great apes leaves unresolved when these evolutionary changes in the timing of cortical development became established in the human lineage. To address this question, we used immunohistochemistry, electron microscopy, and Golgi staining to characterize synaptic density and dendritic morphology of pyramidal neurons in primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortices of developing chimpanzees (Pan troglodytes). We found that synaptogenesis occurs synchronously across cortical areas, with a peak of synapse density during the juvenile period (3-5 y). Moreover, similar to findings in humans, dendrites of prefrontal pyramidal neurons developed later than sensorimotor areas. These results suggest that evolutionary changes to neocortical development promoting greater neuronal plasticity early in postnatal life preceded the divergence of the human and chimpanzee lineages.
Collapse
|
19
|
Maseko BC, Jacobs B, Spocter MA, Sherwood CC, Hof PR, Manger PR. Qualitative and Quantitative Aspects of the Microanatomy of the African Elephant Cerebellar Cortex. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:40-55. [DOI: 10.1159/000345565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022]
|
20
|
Barros A, Soligo C. Bilateral Asymmetry of Humeral Torsion and Length in African Apes and Humans. Folia Primatol (Basel) 2013; 84:220-38. [DOI: 10.1159/000353177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 05/21/2013] [Indexed: 11/19/2022]
|
21
|
Spocter MA, Hopkins WD, Barks SK, Bianchi S, Hehmeyer AE, Anderson SM, Stimpson CD, Fobbs AJ, Hof PR, Sherwood CC. Neuropil distribution in the cerebral cortex differs between humans and chimpanzees. J Comp Neurol 2012; 520:2917-29. [PMID: 22350926 DOI: 10.1002/cne.23074] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increased connectivity of high-order association regions in the neocortex has been proposed as a defining feature of human brain evolution. At present, however, there are limited comparative data to examine this claim fully. We tested the hypothesis that the distribution of neuropil across areas of the neocortex of humans differs from that of one of our closest living relatives, the common chimpanzee. The neuropil provides a proxy measure of total connectivity within a local region because it is composed mostly of dendrites, axons, and synapses. Using image analysis techniques, we quantified the neuropil fraction from both hemispheres in six cytoarchitectonically defined regions including frontopolar cortex (area 10), Broca's area (area 45), frontoinsular cortex (area FI), primary motor cortex (area 4), primary auditory cortex (area 41/42), and the planum temporale (area 22). Our results demonstrate that humans exhibit a unique distribution of neuropil in the neocortex compared to chimpanzees. In particular, the human frontopolar cortex and the frontoinsular cortex had a significantly higher neuropil fraction than the other areas. In chimpanzees these prefrontal regions did not display significantly more neuropil, but the primary auditory cortex had a lower neuropil fraction than other areas. Our results support the conclusion that enhanced connectivity in the prefrontal cortex accompanied the evolution of the human brain. These species differences in neuropil distribution may offer insight into the neural basis of human cognition, reflecting enhancement of the integrative capacity of the prefrontal cortex.
Collapse
Affiliation(s)
- Muhammad A Spocter
- Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hemispheric asymmetry in the fusiform gyrus distinguishes Homo sapiens from chimpanzees. Brain Struct Funct 2012; 218:1391-405. [DOI: 10.1007/s00429-012-0464-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/06/2012] [Indexed: 12/24/2022]
|
23
|
Rijntjes M, Weiller C, Bormann T, Musso M. The dual loop model: its relation to language and other modalities. FRONTIERS IN EVOLUTIONARY NEUROSCIENCE 2012; 4:9. [PMID: 22783188 PMCID: PMC3388276 DOI: 10.3389/fnevo.2012.00009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/11/2012] [Indexed: 11/17/2022]
Abstract
The current neurobiological consensus of a general dual loop system scaffolding human and primate brains gives evidence that the dorsal and ventral connections subserve similar functions, independent of the modality and species. However, most current commentators agree that although bees dance and chimpanzees grunt, these systems of communication differ qualitatively from human language. So why is language unique to humans? We discuss anatomical differences between humans and other animals, the meaning of lesion studies in patients, the role of inner speech, and compare functional imaging studies in language with other modalities in respect to the dual loop model. These aspects might be helpful for understanding what kind of biological system the language faculty is, and how it relates to other systems in our own species and others.
Collapse
|
24
|
Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR. The von Economo neurons in the frontoinsular and anterior cingulate cortex. Ann N Y Acad Sci 2011; 1225:59-71. [PMID: 21534993 DOI: 10.1111/j.1749-6632.2011.06011.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The von Economo neurons (VENs) are large bipolar neurons located in the frontoinsular cortex (FI) and limbic anterior (LA) area in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week postconception, with numbers increasing during the first 8 months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of frontotemporal dementia (FTD) implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging.
Collapse
Affiliation(s)
- John M Allman
- Division of Biology, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Allman JM, Tetreault NA, Hakeem AY, Park S. The von economo neurons in apes and humans. Am J Hum Biol 2010; 23:5-21. [DOI: 10.1002/ajhb.21136] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Hopkins WD, Taglialatela JP, Russell JL, Nir TM, Schaeffer J. Cortical representation of lateralized grasping in chimpanzees (Pan troglodytes): a combined MRI and PET study. PLoS One 2010; 5:e13383. [PMID: 20967216 PMCID: PMC2954174 DOI: 10.1371/journal.pone.0013383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 05/07/2010] [Indexed: 11/18/2022] Open
Abstract
Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individual's preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been neuronatomically described in chimpanzees and other great apes and is similarly associated with handedness. However, whether the chimpanzee KNOB represents the hand region is unclear from the extant literature. Here, we used PET to quantify neural metabolic activity in chimpanzees when engaged in unilateral reach-and-grasping responses and found significantly lateralized activation of the KNOB region in the hemisphere contralateral to the hand used by the chimpanzees. We subsequently constructed a probabilistic map of the KNOB region in chimpanzees in order to assess the overlap in consistency in the anatomical landmarks of the KNOB with the functional maps generated from the PET analysis. We found significant overlap in the anatomical and functional voxels comprising the KNOB region, suggesting that the KNOB does correspond to the hand region in chimpanzees. Lastly, from the probabilistic maps, we compared right- and left-handed chimpanzees on lateralization in grey and white matter within the KNOB region and found that asymmetries in white matter of the KNOB region were larger in the hemisphere contralateral to the preferred hand. These results suggest that neuroanatomical asymmetries in the KNOB likely reflect changes in connectivity in primary motor cortex that are experience dependent in chimpanzees and possibly humans.
Collapse
Affiliation(s)
- William D Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America.
| | | | | | | | | |
Collapse
|
27
|
Vallortigara G, Chiandetti C, Sovrano VA. Brain asymmetry (animal). WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2010; 2:146-157. [PMID: 26302006 DOI: 10.1002/wcs.100] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Giorgio Vallortigara
- Center for Mind‐Brain Sciences, University of Trento, Corso Bettini, 31, 30068 Rovereto, Italy
| | - Cinzia Chiandetti
- Center for Mind‐Brain Sciences, University of Trento, Corso Bettini, 31, 30068 Rovereto, Italy
| | - Valeria Anna Sovrano
- Center for Mind‐Brain Sciences, University of Trento, Corso Bettini, 31, 30068 Rovereto, Italy
| |
Collapse
|
28
|
Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR. The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct Funct 2010; 214:495-517. [PMID: 20512377 DOI: 10.1007/s00429-010-0254-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 04/21/2010] [Indexed: 12/21/2022]
Abstract
The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in the line leading to humans, and since it suppresses dendritic branching it may be involved in the distinctive VEN morphology.
Collapse
Affiliation(s)
- John M Allman
- Division of Biology, 216-76, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sherwood CC, Duka T, Stimpson CD, Schenker NM, Garrison AR, Schapiro SJ, Baze WB, McArthur MJ, Erwin JM, Hof PR, Hopkins WD. Neocortical synaptophysin asymmetry and behavioral lateralization in chimpanzees (Pan troglodytes). Eur J Neurosci 2010; 31:1456-64. [PMID: 20384782 DOI: 10.1111/j.1460-9568.2010.07168.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although behavioral lateralization is known to correlate with certain aspects of brain asymmetry in primates, there are limited data concerning hemispheric biases in the microstructure of the neocortex. In the present study, we investigated whether there is asymmetry in synaptophysin-immunoreactive puncta density and protein expression levels in the region of hand representation of the primary motor cortex in chimpanzees (Pan troglodytes). Synaptophysin is a presynaptic vesicle-associated protein found in nearly all synapses of the central nervous system. We also tested whether there is a relationship between hand preference on a coordinated bimanual task and the interhemispheric distribution of synaptophysin as measured by both stereologic counts of immunoreactive puncta and by Western blotting. Our results demonstrated that synaptophysin-immunoreactive puncta density is not asymmetric at the population level, whereas synaptophysin protein expression levels are significantly higher in the right hemisphere. Handedness was correlated with interindividual variation in synaptophysin-immunoreactive puncta density. As a group, left-handed and ambidextrous chimpanzees showed a rightward bias in puncta density. In contrast, puncta densities were symmetrical in right-handed chimpanzees. These findings support the conclusion that synapse asymmetry is modulated by lateralization of skilled motor behavior in chimpanzees.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Meguerditchian A, Calcutt SE, Lonsdorf EV, Ross SR, Hopkins WD. Brief communication: Captive gorillas are right-handed for bimanual feeding. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 141:638-45. [PMID: 20033918 PMCID: PMC2909605 DOI: 10.1002/ajpa.21244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predominance of right-handedness has historically been considered as a hallmark of human evolution. Whether nonhuman primates exhibit population-level manual bias remains a controversial topic. Here, we investigated the hypothesis that bimanual coordinated activities may be a key-behavior in our ancestors for the emergence and evolution of human population-level right-handedness. To this end, we collected data on hand preferences in 35 captive gorillas (Gorilla gorilla) during simple unimanual reaching and for bimanual coordinated feeding. Unimanual reaching consisted of grasping food on the ground, while bimanual feeding consisted of using one hand for holding a food and processing the food item by the opposite hand. No population-level manual bias was found for unimanual actions but, in contrast, gorillas exhibited a significant population-level right-handedness for the bimanual actions. Moreover, the degree of right-handedness for bimanual feeding exceeds any other known reports of hand use in primates, suggesting that lateralization for bimanual feeding is robust in captive gorillas. The collective evidence is discussed in the context of potential continuity of handedness between human and nonhuman primates.
Collapse
Affiliation(s)
- Adrien Meguerditchian
- Department of Psychology, Research Center in Psychology of Cognition, Language and Emotion, Aix-Marseille University, 13621 Aix-en-Provence, France
- Division of Psychobiology, Yerkes National Primate Research Center, Atlanta, Georgia 30329, USA
| | - Sarah E. Calcutt
- The Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, 60614, USA
| | - Elizabeth V. Lonsdorf
- The Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, 60614, USA
| | - Stephen R. Ross
- The Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, 60614, USA
| | - William D. Hopkins
- Division of Psychobiology, Yerkes National Primate Research Center, Atlanta, Georgia 30329, USA
- Department of Psychology, Agnes Scott College, Decatur, Georgia 30030, USA
| |
Collapse
|
31
|
Hopkins WD, Nir TM. Planum temporale surface area and grey matter asymmetries in chimpanzees (Pan troglodytes): the effect of handedness and comparison with findings in humans. Behav Brain Res 2009; 208:436-43. [PMID: 20035802 DOI: 10.1016/j.bbr.2009.12.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/06/2009] [Accepted: 12/14/2009] [Indexed: 11/17/2022]
Abstract
The planum temporale (PT) is the bank of tissue that lies posterior to Heschl's gyrus and is considered a key brain region involved in language and speech in the human brain. In the human brain, both the surface area and grey matter volume of the PT is larger in the left compared to right hemisphere in approximately 2/3rds of individuals, particularly among right-handed individuals. Here we examined whether chimpanzees show asymmetries in the PT for grey matter volume and surface area in a sample of 103 chimpanzees from magnetic resonance images. The results indicated that, overall, the chimpanzees showed population-level leftward asymmetries for both surface area and grey matter volumes. Furthermore, chimpanzees that prefer to gesture with their right-handed had significantly greater leftward grey matter asymmetries compared to ambiguously- and left-handed apes. When compared to previously published data in humans, the direction and magnitude of PT grey matter asymmetries were similar between humans and apes; however, for the surface area measures, the human showed more pronounced leftward asymmetries. These results suggest that leftward asymmetries in the PT were present in the common ancestor of chimpanzees and humans.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Psychology, Agnes Scott College, Decatur, GA 30030, USA.
| | | |
Collapse
|
32
|
Cantalupo C, Oliver J, Smith J, Nir T, Taglialatela JP, Hopkins WD. The chimpanzee brain shows human-like perisylvian asymmetries in white matter. Eur J Neurosci 2009; 30:431-8. [PMID: 19614754 DOI: 10.1111/j.1460-9568.2009.06830.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modern neuroimaging technologies allow scientists to uncover interspecies differences and similarities in hemispheric asymmetries that may shed light on the origin of brain asymmetry and its functional correlates. We analyzed asymmetries in ratios of white to grey matter in the lateral aspect of the lobes of the brains of chimpanzees. We found marked leftward asymmetries for all lobar regions. This asymmetry was particularly pronounced in the frontal region and was found to be related to handedness for communicative manual gestures as well as for tool use. These results point to a continuity in asymmetry patterns between the human and chimpanzee brain, and support the notion that the anatomical substrates for lateralization of communicative functions and complex manipulative activities may have been present in the common hominid ancestor.
Collapse
Affiliation(s)
- Claudio Cantalupo
- Department of Psychology, Clemson University, Clemson, SC 29634, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Sherwood CC, Subiaul F, Zawidzki TW. A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 2008; 212:426-54. [PMID: 18380864 PMCID: PMC2409100 DOI: 10.1111/j.1469-7580.2008.00868.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2008] [Indexed: 11/29/2022] Open
Abstract
Since the last common ancestor shared by modern humans, chimpanzees and bonobos, the lineage leading to Homo sapiens has undergone a substantial change in brain size and organization. As a result, modern humans display striking differences from the living apes in the realm of cognition and linguistic expression. In this article, we review the evolutionary changes that occurred in the descent of Homo sapiens by reconstructing the neural and cognitive traits that would have characterized the last common ancestor and comparing these with the modern human condition. The last common ancestor can be reconstructed to have had a brain of approximately 300-400 g that displayed several unique phylogenetic specializations of development, anatomical organization, and biochemical function. These neuroanatomical substrates contributed to the enhancement of behavioral flexibility and social cognition. With this evolutionary history as precursor, the modern human mind may be conceived as a mosaic of traits inherited from a common ancestry with our close relatives, along with the addition of evolutionary specializations within particular domains. These modern human-specific cognitive and linguistic adaptations appear to be correlated with enlargement of the neocortex and related structures. Accompanying this general neocortical expansion, certain higher-order unimodal and multimodal cortical areas have grown disproportionately relative to primary cortical areas. Anatomical and molecular changes have also been identified that might relate to the greater metabolic demand and enhanced synaptic plasticity of modern human brain's. Finally, the unique brain growth trajectory of modern humans has made a significant contribution to our species' cognitive and linguistic abilities.
Collapse
Affiliation(s)
- Chet C Sherwood
- Center for the Advanced Study of Hominid Paleobiology and Department of Anthropology, The George Washington University, Washington DC 20052, USA.
| | | | | |
Collapse
|
34
|
Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC. Differences in Cortical Serotonergic Innervation among Humans, Chimpanzees, and Macaque Monkeys: A Comparative Study. Cereb Cortex 2007; 18:584-97. [PMID: 17586605 DOI: 10.1093/cercor/bhm089] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we assess the possibility that the evolution of human intellectual capacities was supported by changes in the supply of serotonin to the frontal cortex. To this end, quantitative comparative analyses were performed among humans, chimpanzees, and macaques. Immunohistochemical methods were used to visualize serotonin transporter-immunoreactive (SERT-ir) axons within the cerebral cortex. Areas 9 and 32 were chosen for evaluation due to their roles in working memory and theory of mind, respectively. Primary motor cortex was also evaluated because it is not associated with higher cognitive functions. The findings revealed that humans do not display a quantitative increase in serotonin innervation. However, the results indicated region- and layer-specific differences among species in serotonergic innervation pattern. Compared with macaques, humans and chimpanzees together displayed a greater density of SERT-ir axons relative to neuron density in layers V/VI. This change was detected in cortical areas 9 and 32, but not in primary motor cortex. Further, morphological specializations, coils of axons, were observed in humans and chimpanzees that were absent in macaques. These features may represent a greater capacity for cortical plasticity exclusive to hominoids. Taken together, these results indicate a significant reorganization of cortical serotonergic transmission in humans and chimpanzees.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | | | |
Collapse
|