1
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2024:10.1007/s12264-024-01259-2. [PMID: 39023844 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Aerts T, Seuntjens E. Novel Perspectives on the Development of the Amygdala in Rodents. Front Neuroanat 2021; 15:786679. [PMID: 34955766 PMCID: PMC8696165 DOI: 10.3389/fnana.2021.786679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The amygdala is a hyperspecialized brain region composed of strongly inter- and intraconnected nuclei involved in emotional learning and behavior. The cellular heterogeneity of the amygdalar nuclei has complicated straightforward conclusions on their developmental origin, and even resulted in contradictory data. Recently, the concentric ring theory of the pallium and the radial histogenetic model of the pallial amygdala have cleared up several uncertainties that plagued previous models of amygdalar development. Here, we provide an extensive overview on the developmental origin of the nuclei of the amygdaloid complex. Starting from older gene expression data, transplantation and lineage tracing studies, we systematically summarize and reinterpret previous findings in light of the novel perspectives on amygdalar development. In addition, migratory routes that these cells take on their way to the amygdala are explored, and known transcription factors and guidance cues that seemingly drive these cells toward the amygdala are emphasized. We propose some future directions for research on amygdalar development and highlight that a better understanding of its development could prove critical for the treatment of several neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Ma L, Du Y, Xu X, Feng H, Hui Y, Li N, Jiang G, Zhang X, Li X, Liu L. β-Catenin Deletion in Regional Neural Progenitors Leads to Congenital Hydrocephalus in Mice. Neurosci Bull 2021; 38:81-94. [PMID: 34460072 PMCID: PMC8782971 DOI: 10.1007/s12264-021-00763-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
Congenital hydrocephalus is a major neurological disorder with high rates of morbidity and mortality; however, the underlying cellular and molecular mechanisms remain largely unknown. Reproducible animal models mirroring both embryonic and postnatal hydrocephalus are also limited. Here, we describe a new mouse model of congenital hydrocephalus through knockout of β-catenin in Nkx2.1-expressing regional neural progenitors. Progressive ventriculomegaly and an enlarged brain were consistently observed in knockout mice from embryonic day 12.5 through to adulthood. Transcriptome profiling revealed severe dysfunctions in progenitor maintenance in the ventricular zone and therefore in cilium biogenesis after β-catenin knockout. Histological analyses also revealed an aberrant neuronal layout in both the ventral and dorsal telencephalon in hydrocephalic mice at both embryonic and postnatal stages. Thus, knockout of β-catenin in regional neural progenitors leads to congenital hydrocephalus and provides a reproducible animal model for studying pathological changes and developing therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China ,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiangjie Xu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Hexi Feng
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Guanyu Jiang
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, 200065 China ,Brain and Spinal Cord Innovative Research Center, School of Medicine, Tongji University, Shanghai, 200092 China ,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Xiaocui Li
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China ,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092 China
| |
Collapse
|
4
|
Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence. J Neurosci 2021; 41:3105-3119. [PMID: 33637558 DOI: 10.1523/jneurosci.2738-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Interneurons contribute to the complexity of neural circuits and maintenance of normal brain function. Rodent interneurons originate in embryonic ganglionic eminences, but developmental origins in other species are less understood. Here, we show that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents, delineating a distinct medial ganglionic eminence (MGE) progenitor domain. On the basis of Nkx2.1, Lhx6, and Dlx2 expression, in vitro differentiation into neurons expressing GABA, and robust migratory capacity in explant assays, we propose that cortical and hippocampal interneurons originate from a porcine MGE region. Following xenotransplantation into adult male and female rat hippocampus, we further demonstrate that porcine MGE progenitors, like those from rodents, migrate and differentiate into morphologically distinct interneurons expressing GABA. Our findings reveal that basic rules for interneuron development are conserved across species, and that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies.SIGNIFICANCE STATEMENT Here we demonstrate that porcine medial ganglionic eminence, like rodents, exhibit a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; and because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in other species, e.g., monkey and human), our work allows direct neurodevelopmental comparisons with this literature.
Collapse
|
5
|
Sorrells SF, Paredes MF, Velmeshev D, Herranz-Pérez V, Sandoval K, Mayer S, Chang EF, Insausti R, Kriegstein AR, Rubenstein JL, Manuel Garcia-Verdugo J, Huang EJ, Alvarez-Buylla A. Immature excitatory neurons develop during adolescence in the human amygdala. Nat Commun 2019; 10:2748. [PMID: 31227709 PMCID: PMC6588589 DOI: 10.1038/s41467-019-10765-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
The human amygdala grows during childhood, and its abnormal development is linked to mood disorders. The primate amygdala contains a large population of immature neurons in the paralaminar nuclei (PL), suggesting protracted development and possibly neurogenesis. Here we studied human PL development from embryonic stages to adulthood. The PL develops next to the caudal ganglionic eminence, which generates inhibitory interneurons, yet most PL neurons express excitatory markers. In children, most PL cells are immature (DCX+PSA-NCAM+), and during adolescence many transition into mature (TBR1+VGLUT2+) neurons. Immature PL neurons persist into old age, yet local progenitor proliferation sharply decreases in infants. Using single nuclei RNA sequencing, we identify the transcriptional profile of immature excitatory neurons in the human amygdala between 4-15 years. We conclude that the human PL contains excitatory neurons that remain immature for decades, a possible substrate for persistent plasticity at the interface of the hippocampus and amygdala.
Collapse
Affiliation(s)
- Shawn F Sorrells
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Dmitry Velmeshev
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980, Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, 12071, Castelló de la Plana, Spain
| | - Kadellyn Sandoval
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Simone Mayer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine and CRIB, University of Castilla-La Mancha, 02006, Albacete, Spain
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - John L Rubenstein
- Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA, 94158-2324, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980, Valencia, Spain
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
6
|
Wen Y, Zhang Z, Li Z, Liu G, Tao G, Song X, Xu Z, Shang Z, Guo T, Su Z, Chen H, You Y, Li J, Yang Z. The PROK2/PROKR2 signaling pathway is required for the migration of most olfactory bulb interneurons. J Comp Neurol 2019; 527:2931-2947. [DOI: 10.1002/cne.24719] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Guangxu Tao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Xiaolei Song
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zicong Shang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Teng Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zihao Su
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Haotian Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Jiada Li
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life SciencesCentral South University Changsha Hunan PR China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| |
Collapse
|
7
|
Progressive divisions of multipotent neural progenitors generate late-born chandelier cells in the neocortex. Nat Commun 2018; 9:4595. [PMID: 30389944 PMCID: PMC6214958 DOI: 10.1038/s41467-018-07055-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/02/2018] [Indexed: 01/12/2023] Open
Abstract
Diverse γ-aminobutyric acid (GABA)-ergic interneurons provide different modes of inhibition to support circuit operation in the neocortex. However, the cellular and molecular mechanisms underlying the systematic generation of assorted neocortical interneurons remain largely unclear. Here we show that NKX2.1-expressing radial glial progenitors (RGPs) in the mouse embryonic ventral telencephalon divide progressively to generate distinct groups of interneurons, which occupy the neocortex in a time-dependent, early inside-out and late outside-in, manner. Notably, the late-born chandelier cells, one of the morphologically and physiologically highly distinguishable GABAergic interneurons, arise reliably from continuously dividing RGPs that produce non-chandelier cells initially. Selective removal of Partition defective 3, an evolutionarily conserved cell polarity protein, impairs RGP asymmetric cell division, resulting in premature depletion of RGPs towards the late embryonic stages and a consequent loss of chandelier cells. These results suggest that consecutive asymmetric divisions of multipotent RGPs generate diverse neocortical interneurons in a progressive manner. Diverse GABAergic neurons arise from progenitors in the medial ganglionic eminence. Here, the authors show these progenitors are progressively fate-restricted, with early-born interneurons occupying cortex in an “inside-out” pattern and later-born types like chandelier cells generated “outside-in”.
Collapse
|
8
|
CTCF Governs the Identity and Migration of MGE-Derived Cortical Interneurons. J Neurosci 2018; 39:177-192. [PMID: 30377227 DOI: 10.1523/jneurosci.3496-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is a central regulator of chromatin topology recently linked to neurodevelopmental disorders such as intellectual disability, autism, and schizophrenia. The aim of this study was to identify novel roles of CTCF in the developing mouse brain. We provide evidence that CTCF is required for the expression of the LIM homeodomain factor LHX6 involved in fate determination of cortical interneurons (CINs) that originate in the medial ganglionic eminence (MGE). Conditional Ctcf ablation in the MGE of mice of either sex leads to delayed tangential migration, abnormal distribution of CIN in the neocortex, a marked reduction of CINs expressing parvalbumin and somatostatin (Sst), and an increased number of MGE-derived cells expressing Lhx8 and other markers of basal forebrain projection neurons. Likewise, Ctcf-null MGE cells transplanted into the cortex of wild-type hosts generate fewer Sst-expressing CINs and exhibit lamination defects that are efficiently rescued upon reexpression of LHX6. Collectively, these data indicate that CTCF regulates the dichotomy between Lhx6 and Lhx8 to achieve correct specification and migration of MGE-derived CINs.SIGNIFICANCE STATEMENT This work provides evidence that CCCTC-binding factor (CTCF) controls an early fate decision point in the generation of cortical interneurons mediated at least in part by Lhx6. Importantly, the abnormalities described could reflect early molecular and cellular events that contribute to human neurological disorders previously linked to CTCF, including schizophrenia, autism, and intellectual disability.
Collapse
|
9
|
Ruiz-Reig N, Andres B, Lamonerie T, Theil T, Fairén A, Studer M. The caudo-ventral pallium is a novel pallial domain expressing Gdf10 and generating Ebf3-positive neurons of the medial amygdala. Brain Struct Funct 2018; 223:3279-3295. [PMID: 29869132 DOI: 10.1007/s00429-018-1687-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022]
Abstract
In rodents, the medial nucleus of the amygdala receives direct inputs from the accessory olfactory bulbs and is mainly implicated in pheromone-mediated reproductive and defensive behaviors. The principal neurons of the medial amygdala are GABAergic neurons generated principally in the caudo-ventral medial ganglionic eminence and preoptic area. Beside GABAergic neurons, the medial amygdala also contains glutamatergic Otp-expressing neurons cells generated in the lateral hypothalamic neuroepithelium and a non-well characterized Pax6-positive population. In the present work, we describe a novel glutamatergic Ebf3-expressing neuronal subpopulation distributed within the periphery of the postero-ventral medial amygdala. These neurons are generated in a pallial domain characterized by high expression of Gdf10. This territory is topologically the most caudal tier of the ventral pallium and accordingly, we named it Caudo-Ventral Pallium (CVP). In the absence of Pax6, the CVP is disrupted and Ebf3-expressing neurons fail to be generated. Overall, this work proposes a novel model of the neuronal composition of the medial amygdala and unravels for the first time a new novel pallial subpopulation originating from the CVP and expressing the transcription factor Ebf3.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Université Côte d'Azur (UCA), CNRS, Inserm, Institut de Biologie Valrose (iBV), 06108, Nice, France.
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), 03550, San Juan de Alicante, Spain.
| | - Belen Andres
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), 03550, San Juan de Alicante, Spain
| | - Thomas Lamonerie
- Université Côte d'Azur (UCA), CNRS, Inserm, Institut de Biologie Valrose (iBV), 06108, Nice, France
| | - Thomas Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Alfonso Fairén
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), 03550, San Juan de Alicante, Spain
- , Palau 11, 03550, San Juan de Alicante, Spain
| | - Michèle Studer
- Université Côte d'Azur (UCA), CNRS, Inserm, Institut de Biologie Valrose (iBV), 06108, Nice, France.
| |
Collapse
|
10
|
Niquille M, Limoni G, Markopoulos F, Cadilhac C, Prados J, Holtmaat A, Dayer A. Neurogliaform cortical interneurons derive from cells in the preoptic area. eLife 2018; 7:32017. [PMID: 29557780 PMCID: PMC5860868 DOI: 10.7554/elife.32017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/21/2018] [Indexed: 12/18/2022] Open
Abstract
Delineating the basic cellular components of cortical inhibitory circuits remains a fundamental issue in order to understand their specific contributions to microcircuit function. It is still unclear how current classifications of cortical interneuron subtypes relate to biological processes such as their developmental specification. Here we identified the developmental trajectory of neurogliaform cells (NGCs), the main effectors of a powerful inhibitory motif recruited by long-range connections. Using in vivo genetic lineage-tracing in mice, we report that NGCs originate from a specific pool of 5-HT3AR-expressing Hmx3+ cells located in the preoptic area (POA). Hmx3-derived 5-HT3AR+ cortical interneurons (INs) expressed the transcription factors PROX1, NR2F2, the marker reelin but not VIP and exhibited the molecular, morphological and electrophysiological profile of NGCs. Overall, these results indicate that NGCs are a distinct class of INs with a unique developmental trajectory and open the possibility to study their specific functional contribution to cortical inhibitory microcircuit motifs. Our brain contains over a 100 billion nerve cells or neurons, and each of them is thought to connect to over 1,000 other neurons. Together, these cells form a complex network to convey information from our surroundings or transmit messages to designated destinations. This circuitry forms the basis of our unique cognitive abilities. In the cerebral cortex – the largest region of the brain – two main types of neurons can be found: projection neurons, which transfer information to other regions in the brain, and interneurons, which connect locally to different neurons and harmonize this information by inhibiting specific messages. The over 20 different types of known interneurons come in different shapes and properties and are thought to play a key role in powerful computations such as learning and memory. Since interneurons are hard to track, it is still unclear when and how they start to form and mature as the brain of an embryo develops. For example, one type of interneurons called the neurogliaform cells, have a very distinct shape and properties. But, until now, the origin of this cell type had been unknown. To find out how neurogliaform cells develop, Niquille, Limoni, Markopoulos et al. used a specific gene called Hmx3 to track these cells over time. With this strategy, the shapes and properties of the cells could be analyzed. The results showed that neurogliaform cells originate from a region outside of the cerebral cortex called the preoptic area, and later travel over long distances to reach their final location. The cells reach the cortex a few days after their birth and take several weeks to mature. These results suggest that the traits of a specific type of neuron is determined very early in life. By labeling this unique subset of interneurons, researchers will now be able to identify the specific molecular mechanisms that help the neurogliaform cells to develop. Furthermore, it will provide a new strategy to fully understand what role these cells play in processing information and guiding behavior.
Collapse
Affiliation(s)
- Mathieu Niquille
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Greta Limoni
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Foivos Markopoulos
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Christelle Cadilhac
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Alexandre Dayer
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Sultan KT, Shi SH. Generation of diverse cortical inhibitory interneurons. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.306. [PMID: 29115042 PMCID: PMC5814332 DOI: 10.1002/wdev.306] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022]
Abstract
First described by Ramon y Cajal as 'short-axon' cells over a century ago, inhibitory interneurons in the cerebral cortex make up ~20-30% of the neuronal milieu. A key feature of these interneurons is the striking structural and functional diversity, which allows them to modulate neural activity in diverse ways and ultimately endow neural circuits with remarkable computational power. Here, we review our current understanding of the generation of cortical interneurons, with a focus on recent efforts to bridge the gap between progenitor behavior and interneuron production, and how these aspects influence interneuron diversity and organization. WIREs Dev Biol 2018, 7:e306. doi: 10.1002/wdev.306 This article is categorized under: Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Khadeejah T Sultan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
12
|
Yang Y, Shen W, Ni Y, Su Y, Yang Z, Zhao C. Impaired Interneuron Development after Foxg1 Disruption. Cereb Cortex 2018; 27:793-808. [PMID: 26620267 DOI: 10.1093/cercor/bhv297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interneurons play pivotal roles in the modulation of cortical function; however, the mechanisms that control interneuron development remain unclear. This study aimed to explore a new role for Foxg1 in interneuron development. By crossing Foxg1fl/fl mice with a Dlx5/6-Cre line, we determined that conditional disruption of Foxg1 in the subpallium results in defects in interneuron development. In developing interneurons, the expression levels of several receptors, including roundabout-1, Eph receptor A4, and C-X-C motif receptor 4/7, were strongly downregulated, which led to migration defects after Foxg1 ablation. The transcription factors Dlx1/2 and Mash1, which have been reported to be involved in interneuron development, were significantly upregulated at the mRNA levels. Foxg1 mutant cells developed shorter neurites and fewer branches and displayed severe migration defects in vitro. Notably, Prox1, which is a transcription factor that functions as a key regulator in the development of excitatory neurons, was also dramatically upregulated at both the mRNA and protein levels, suggesting that Prox1 is also important for interneuron development. Our work demonstrates that Foxg1 may act as a critical upstream regulator of Dlx1/2, Mash1, and Prox1 to control interneuron development. These findings will further our understanding of the molecular mechanisms of interneuron development.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wei Shen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yang Ni
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yan Su
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhengang Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Anatomy and Neuroscience, School of Medicine, Southeast University, Nanjing 210009, China.,Center of Depression, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
13
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Garas FN, Kormann E, Shah RS, Vinciati F, Smith Y, Magill PJ, Sharott A. Structural and molecular heterogeneity of calretinin-expressing interneurons in the rodent and primate striatum. J Comp Neurol 2017; 526:877-898. [PMID: 29218729 PMCID: PMC5814860 DOI: 10.1002/cne.24373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
Calretinin‐expressing (CR+) interneurons are the most common type of striatal interneuron in primates. However, because CR+ interneurons are relatively scarce in rodent striatum, little is known about their molecular and other properties, and they are typically excluded from models of striatal circuitry. Moreover, CR+ interneurons are often treated in models as a single homogenous population, despite previous descriptions of their heterogeneous structures and spatial distributions in rodents and primates. Here, we demonstrate that, in rodents, the combinatorial expression of secretagogin (Scgn), specificity protein 8 (SP8) and/or LIM homeobox protein 7 (Lhx7) separates striatal CR+ interneurons into three structurally and topographically distinct cell populations. The CR+/Scgn+/SP8+/Lhx7− interneurons are small‐sized (typically 7–11 µm in somatic diameter), possess tortuous, partially spiny dendrites, and are rostrally biased in their positioning within striatum. The CR+/Scgn−/SP8−/Lhx7− interneurons are medium‐sized (typically 12–15 µm), have bipolar dendrites, and are homogenously distributed throughout striatum. The CR+/Scgn−/SP8−/Lhx7+ interneurons are relatively large‐sized (typically 12–20 µm), and have thick, infrequently branching dendrites. Furthermore, we provide the first in vivo electrophysiological recordings of identified CR+ interneurons, all of which were the CR+/Scgn−/SP8−/Lhx7− cell type. In the primate striatum, Scgn co‐expression also identified a topographically distinct CR+ interneuron population with a rostral bias similar to that seen in both rats and mice. Taken together, these results suggest that striatal CR+ interneurons comprise at least three molecularly, structurally, and topographically distinct cell populations in rodents. These properties are partially conserved in primates, in which the relative abundance of CR+ interneurons suggests that they play a critical role in striatal microcircuits.
Collapse
Affiliation(s)
- Farid N Garas
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Eszter Kormann
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rahul S Shah
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Federica Vinciati
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Ruiz-Reig N, Studer M. Rostro-Caudal and Caudo-Rostral Migrations in the Telencephalon: Going Forward or Backward? Front Neurosci 2017; 11:692. [PMID: 29311773 PMCID: PMC5742585 DOI: 10.3389/fnins.2017.00692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
The generation and differentiation of an appropriate number of neurons, as well as its distribution in different parts of the brain, is crucial for the proper establishment, maintenance and plasticity of neural circuitries. Newborn neurons travel along the brain in a process known as neuronal migration, to finalize their correct position in the nervous system. Defects in neuronal migration produce abnormalities in the brain that can generate neurodevelopmental pathologies, such as autism, schizophrenia and intellectual disability. In this review, we present an overview of the developmental origin of the different telencephalic subdivisions and a description of migratory pathways taken by distinct neural populations traveling long distances before reaching their target position in the brain. In addition, we discuss some of the molecules implicated in the guidance of these migratory paths and transcription factors that contribute to the correct migration and integration of these neurons.
Collapse
|
16
|
Hu JS, Vogt D, Sandberg M, Rubenstein JL. Cortical interneuron development: a tale of time and space. Development 2017; 144:3867-3878. [PMID: 29089360 DOI: 10.1242/dev.132852] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cortical interneurons are a diverse group of neurons that project locally and are crucial for regulating information processing and flow throughout the cortex. Recent studies in mice have advanced our understanding of how these neurons are specified, migrate and mature. Here, we evaluate new findings that provide insights into the development of cortical interneurons and that shed light on when their fate is determined, on the influence that regional domains have on their development, and on the role that key transcription factors and other crucial regulatory genes play in these events. We focus on cortical interneurons that are derived from the medial ganglionic eminence, as most studies have examined this interneuron population. We also assess how these data inform our understanding of neuropsychiatric disease and discuss the potential role of cortical interneurons in cell-based therapies.
Collapse
Affiliation(s)
- Jia Sheng Hu
- Department of Psychiatry, University of California, San Francisco, CA 94158, USA.,Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Department of Psychiatry, University of California, San Francisco, CA 94158, USA.,Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| | - Magnus Sandberg
- Department of Psychiatry, University of California, San Francisco, CA 94158, USA.,Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| | - John L Rubenstein
- Department of Psychiatry, University of California, San Francisco, CA 94158, USA .,Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Alzu'bi A, Lindsay SJ, Harkin LF, McIntyre J, Lisgo SN, Clowry GJ. The Transcription Factors COUP-TFI and COUP-TFII have Distinct Roles in Arealisation and GABAergic Interneuron Specification in the Early Human Fetal Telencephalon. Cereb Cortex 2017; 27:4971-4987. [PMID: 28922831 PMCID: PMC5903418 DOI: 10.1093/cercor/bhx185] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
In human telencephalon at 8-12 postconceptional weeks, ribonucleic acid quantitative sequencing and immunohistochemistry revealed cortical chicken ovalbumin upstream promotor-transcription factor 1 (COUP-TFI) expression in a high ventro-posterior to low anterior gradient except for raised immunoreactivity in the anterior ventral pallium. Unlike in mouse, COUP-TFI and SP8 were extensively co-expressed in dorsal sensory neocortex and dorsal hippocampus whereas COUPTFI/COUPTFII co-expression defined ventral temporal cortex and ventral hippocampus. In the ganglionic eminences (GEs) COUP-TFI immunoreactivity demarcated the proliferative zones of caudal GE (CGE), dorsal medial GE (MGE), MGE/lateral GE (LGE) boundary, and ventral LGE whereas COUP-TFII was limited to ventral CGE and the MGE/LGE boundary. Co-labeling with gamma amino butyric acidergic interneuron markers revealed that COUP-TFI was expressed in subpopulations of either MGE-derived (SOX6+) or CGE-derived (calretinin+/SP8+) interneurons. COUP-TFII was mainly confined to CGE-derived interneurons. Twice as many GAD67+ cortical cells co-labeled for COUP-TFI than for COUP-TFII. A fifth of COUP-TFI cells also co-expressed COUP-TFII, and cells expressing either transcription factor followed posterior or anterio-lateral pathways into the cortex, therefore, a segregation of migration pathways according to COUP-TF expression as proposed in mouse was not observed. In cultures differentiated from isolated human cortical progenitors, many cells expressed either COUP-TF and 30% also co-expressed GABA, however no cells expressed NKX2.1. This suggests interneurons could be generated intracortically from progenitors expressing either COUP-TF.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Susan J Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Lauren F Harkin
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
- Present address: School of Healthcare Science, Manchester Metropolitan University, UK
| | - Jack McIntyre
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Steven N Lisgo
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
18
|
Laclef C, Métin C. Conserved rules in embryonic development of cortical interneurons. Semin Cell Dev Biol 2017; 76:86-100. [PMID: 28918121 DOI: 10.1016/j.semcdb.2017.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022]
Abstract
This review will focus on early aspects of cortical interneurons (cIN) development from specification to migration and final positioning in the human cerebral cortex. These mechanisms have been largely studied in the mouse model, which provides unique possibilities of genetic analysis, essential to dissect the molecular and cellular events involved in cortical development. An important goal here is to discuss the conservation and the potential divergence of these mechanisms, with a particular interest for the situation in the human embryo. We will thus cover recent works, but also revisit older studies in the light of recent data to better understand the developmental mechanisms underlying cIN differentiation in human. Because cIN are implicated in severe developmental disorders, understanding the molecular and cellular mechanisms controlling their differentiation might clarify some causes and potential therapeutic approaches to these important clinical conditions.
Collapse
Affiliation(s)
- Christine Laclef
- INSERM, UMR-S839, Paris, France; Sorbonne Universités, UPMC University Paris 6, UMR-S839, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Christine Métin
- INSERM, UMR-S839, Paris, France; Sorbonne Universités, UPMC University Paris 6, UMR-S839, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
19
|
Charting the protomap of the human telencephalon. Semin Cell Dev Biol 2017; 76:3-14. [PMID: 28834762 DOI: 10.1016/j.semcdb.2017.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/15/2017] [Indexed: 12/16/2022]
Abstract
The cerebral cortex is divided stereotypically into a number of functionally distinct areas. According to the protomap hypothesis formulated by Rakic neural progenitors in the ventricular zone form a mosaic of proliferative units that provide a primordial species-specific cortical map. Positional information of newborn neurons is maintained during their migration to the overlying cortical plate. Much evidence has been found to support this hypothesis from studies of primary cortical areas in mouse models in particular. Differential expansion of cortical areas and the introduction of new functional modules during evolution might be the result of changes in the progenitor cells. The human cerebral cortex shows a wide divergence from the mouse containing a much higher proportion of association cortex and a more complicated regionalised repertoire of neuron sub-types. To what extent does the protomap hypothesis hold true for the primate brain? This review summarises a growing number of studies exploring arealised gene expression in the early developing human telencephalon. The evidence so far is that the human and mouse brain do share fundamental mechanisms of areal specification, however there are subtle differences which could lead us to a better understanding of cortical evolution and the origins of neurodevelopmental diseases.
Collapse
|
20
|
Hu JS, Vogt D, Lindtner S, Sandberg M, Silberberg SN, Rubenstein JLR. Coup-TF1 and Coup-TF2 control subtype and laminar identity of MGE-derived neocortical interneurons. Development 2017; 144:2837-2851. [PMID: 28694260 DOI: 10.1242/dev.150664] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
Distinct cortical interneuron (CIN) subtypes have unique circuit functions; dysfunction in specific subtypes is implicated in neuropsychiatric disorders. Somatostatin- and parvalbumin-expressing (SST+ and PV+) interneurons are the two major subtypes generated by medial ganglionic eminence (MGE) progenitors. Spatial and temporal mechanisms governing their cell-fate specification and differential integration into cortical layers are largely unknown. We provide evidence that Coup-TF1 and Coup-TF2 (Nr2f1 and Nr2f2) transcription factor expression in an arc-shaped progenitor domain within the MGE promotes time-dependent survival of this neuroepithelium and the time-dependent specification of layer V SST+ CINs. Coup-TF1 and Coup-TF2 autonomously repress PV+ fate in MGE progenitors, in part through directly driving Sox6 expression. These results have identified, in mouse, a transcriptional pathway that controls SST-PV fate.
Collapse
Affiliation(s)
- Jia Sheng Hu
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Magnus Sandberg
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Shanni N Silberberg
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
21
|
Frazer S, Prados J, Niquille M, Cadilhac C, Markopoulos F, Gomez L, Tomasello U, Telley L, Holtmaat A, Jabaudon D, Dayer A. Transcriptomic and anatomic parcellation of 5-HT 3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing. Nat Commun 2017; 8:14219. [PMID: 28134272 PMCID: PMC5290279 DOI: 10.1038/ncomms14219] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/08/2016] [Indexed: 11/09/2022] Open
Abstract
Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify three main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons largely confined to the cortical white matter. These MEIS2-expressing interneurons appear to originate from a restricted region located at the embryonic pallial–subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled. Cortical GABAergic interneurons are highly diverse in their gene expression, electrophysiological properties, and connectivity. Here the authors reveal three distinct subtypes of Htr3a-GFP+ interneurons using the single-cell RNA-seq approach, and identify MEIS2 as a marker for one such subtype.
Collapse
Affiliation(s)
- Sarah Frazer
- Department of Psychiatry, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| | - Julien Prados
- Department of Psychiatry, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| | - Mathieu Niquille
- Department of Psychiatry, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| | - Christelle Cadilhac
- Department of Psychiatry, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| | - Foivos Markopoulos
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| | - Lucia Gomez
- Department of Psychiatry, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| | - Ugo Tomasello
- Department of Psychiatry, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| | - Ludovic Telley
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| | - Alexandre Dayer
- Department of Psychiatry, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland.,Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4 CH-1211, Switzerland
| |
Collapse
|
22
|
Fujimoto H, Konno K, Watanabe M, Jinno S. Late postnatal shifts of parvalbumin and nitric oxide synthase expression within the GABAergic and glutamatergic phenotypes of inferior colliculus neurons. J Comp Neurol 2016; 525:868-884. [PMID: 27560447 DOI: 10.1002/cne.24104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 01/24/2023]
Abstract
The inferior colliculus (IC) is partitioned into three subdivisions: the dorsal and lateral cortices (DC and LC) and the central nucleus (ICC), and serves as an integration center of auditory information. Recent studies indicate that a certain population of IC neurons may represent the non-GABAergic phenotype, while they express well-established cortical/hippocampal GABAergic neuron markers. In this study we used the optical disector to investigate the phenotype of IC neurons expressing parvalbumin (PV) and/or nitric oxide synthase (NOS) in C57BL/6J mice during the late postnatal period. Four major types of IC neurons were defined by the presence (+) or absence (-) of PV, NOS, and glutamic acid decarboxylase 67 (GAD67): PV+ /NOS- /GAD67+ , PV+ /NOS+ /GAD67+ , PV+ /NOS- /GAD67- , and PV- /NOS+ /GAD67- . Fluorescent in situ hybridization for vesicular glutamate transporter 2 mRNA indicated that almost all GAD67- IC neurons represented the glutamatergic phenotype. The numerical densities (NDs) of total GAD67+ IC neurons remained unchanged in all subdivisions. The NDs of PV+ /NOS- /GAD67+ neurons and PV- /NOS+ /GAD67- neurons were reduced with age in the ICC, while they remained unchanged in the DC and LC. By contrast, the NDs of PV+ /NOS+ /GAD67+ neurons and PV+ /NOS- /GAD67- neurons were increased with age in the ICC, although there were no changes in the DC and LC. The cell body size of GAD67+ IC neurons did not vary according to the expression of PV with or without NOS. The present findings indicate that the expression of PV and NOS may shift with age within the GABAergic and glutamatergic phenotypes of IC neurons during the late postnatal period. J. Comp. Neurol. 525:868-884, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hisataka Fujimoto
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kotaro Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Sun Y, Paşca SP, Portmann T, Goold C, Worringer KA, Guan W, Chan KC, Gai H, Vogt D, Chen YJJ, Mao R, Chan K, Rubenstein JL, Madison DV, Hallmayer J, Froehlich-Santino WM, Bernstein JA, Dolmetsch RE. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. eLife 2016; 5. [PMID: 27458797 PMCID: PMC4961470 DOI: 10.7554/elife.13073] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI:http://dx.doi.org/10.7554/eLife.13073.001
Collapse
Affiliation(s)
- Yishan Sun
- Novartis Institutes for BioMedical Research, Cambridge, United States.,Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Sergiu P Paşca
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Thomas Portmann
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Carleton Goold
- Novartis Institutes for BioMedical Research, Cambridge, United States.,Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | | | - Wendy Guan
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Karen C Chan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Hui Gai
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Daniel Vogt
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States
| | - Ying-Jiun J Chen
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States
| | - Rong Mao
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Karrie Chan
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - John Lr Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Wendy M Froehlich-Santino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Jonathan A Bernstein
- Department of Pediatrics, Division of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Ricardo E Dolmetsch
- Novartis Institutes for BioMedical Research, Cambridge, United States.,Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
24
|
Evidence That the Laminar Fate of LGE/CGE-Derived Neocortical Interneurons Is Dependent on Their Progenitor Domains. J Neurosci 2016; 36:2044-56. [PMID: 26865626 DOI: 10.1523/jneurosci.3550-15.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Neocortical interneurons show tremendous diversity in terms of their neurochemical marker expressions, morphology, electrophysiological properties, and laminar fate. Allocation of interneurons to their appropriate regions and layers in the neocortex is thought to play important roles for the emergence of higher functions of the neocortex. Neocortical interneurons mainly originate from the medial ganglionic eminence (MGE) and the caudal ganglionic eminence (CGE). The diversity and the laminar fate of MGE-derived interneurons depend on the location of their birth and birthdate, respectively. However, this relationship does not hold for CGE-derived interneurons. Here, using the method of in utero electroporation, which causes arbitrary occurrence of labeled progenitor domains, we tracked all descendants of the lateral ganglionic eminence (LGE)/CGE progenitors in mice. We provide evidence that neocortical interneurons with distinct laminar fate originate from distinct progenitor domains within the LGE/CGE. We find layer I interneurons are predominantly labeled in a set of animals, whereas other upper layer neurons are predominantly labeled in another set. We also find distinct subcortical structures labeled between the two sets. Further, interneurons labeled in layer I show distinct neurochemical properties from those in other layers. Together, these results suggest that the laminar fate of LGE/CGE-derived interneurons depends on their spatial origin. SIGNIFICANCE STATEMENT Diverse types of neocortical interneurons have distinct laminar fate, neurochemical marker expression, morphology, and electrophysiological properties. Although the specifications and laminar fate of medial ganglionic eminence-derived neocortical interneurons depend on their location of embryonic origin and birthdate, no similar causality of lateral/caudal ganglionic eminence (LGE/CGE)-derived neocortical interneurons is known. Here, we performed in utero electroporation on mouse LGE/CGE and found two groups of animals, one with preferential labeling of layer I and the other with preferential labeling of other layers. Interneurons labeled in these two groups show distinct neurochemical properties and morphologies and are associated with labeling of distinct subcortical structures. These findings suggest that the laminar fate of LGE/CGE-derived neocortical interneurons depends on their spatial origin.
Collapse
|
25
|
Wang Q, Ng L, Harris JA, Feng D, Li Y, Royall JJ, Oh SW, Bernard A, Sunkin SM, Koch C, Zeng H. Organization of the connections between claustrum and cortex in the mouse. J Comp Neurol 2016; 525:1317-1346. [PMID: 27223051 PMCID: PMC5324679 DOI: 10.1002/cne.24047] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
The connections between the claustrum and the cortex in mouse are systematically investigated with adeno-associated virus (AAV), an anterograde viral tracer. We first define the boundary and the three-dimensional structure of the claustrum based on a variety of molecular and anatomical data. From AAV injections into 42 neocortical and allocortical areas, we conclude that most cortical areas send bilateral projections to the claustrum, the majority being denser on the ipsilateral side. This includes prelimbic, infralimbic, medial, ventrolateral and lateral orbital, ventral retrosplenial, dorsal and posterior agranular insular, visceral, temporal association, dorsal and ventral auditory, ectorhinal, perirhinal, lateral entorhinal, and anteromedial, posteromedial, lateroposterior, laterointermediate, and postrhinal visual areas. In contrast, the cingulate and the secondary motor areas send denser projections to the contralateral claustrum than to the ipsilateral one. The gustatory, primary auditory, primary visual, rostrolateral visual, and medial entorhinal cortices send projections only to the ipsilateral claustrum. Primary motor, primary somatosensory and subicular areas barely send projections to either ipsi- or contralateral claustrum. Corticoclaustral projections are organized in a rough topographic manner, with variable projection strengths. We find that the claustrum, in turn, sends widespread projections preferentially to ipsilateral cortical areas with different projection strengths and laminar distribution patterns and to certain contralateral cortical areas. Our quantitative results show that the claustrum has strong reciprocal and bilateral connections with prefrontal and cingulate areas as well as strong reciprocal connections with the ipsilateral temporal and retrohippocampal areas, suggesting that it may play a crucial role in a variety of cognitive processes. J. Comp. Neurol. 525:1317-1346, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Quanxin Wang
- Allen Institute for Brain ScienceSeattleWashington98109
| | - Lydia Ng
- Allen Institute for Brain ScienceSeattleWashington98109
| | | | - David Feng
- Allen Institute for Brain ScienceSeattleWashington98109
| | - Yang Li
- Allen Institute for Brain ScienceSeattleWashington98109
| | | | - Seung Wook Oh
- Allen Institute for Brain ScienceSeattleWashington98109
| | - Amy Bernard
- Allen Institute for Brain ScienceSeattleWashington98109
| | | | - Christof Koch
- Allen Institute for Brain ScienceSeattleWashington98109
| | - Hongkui Zeng
- Allen Institute for Brain ScienceSeattleWashington98109
| |
Collapse
|
26
|
Malt EA, Juhasz K, Malt UF, Naumann T. A Role for the Transcription Factor Nk2 Homeobox 1 in Schizophrenia: Convergent Evidence from Animal and Human Studies. Front Behav Neurosci 2016; 10:59. [PMID: 27064909 PMCID: PMC4811959 DOI: 10.3389/fnbeh.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas.
Collapse
Affiliation(s)
- Eva A Malt
- Department of Adult Habilitation, Akershus University HospitalLørenskog, Norway; Institute of Clinical Medicine, Ahus Campus University of OsloOslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital Lørenskog, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of OsloOslo, Norway; Department of Research and Education, Institution of Oslo University HospitalOslo, Norway
| | - Thomas Naumann
- Centre of Anatomy, Institute of Cell Biology and Neurobiology, Charite Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
27
|
Byun H, Kwon S, Ahn HJ, Liu H, Forrest D, Demb JB, Kim IJ. Molecular features distinguish ten neuronal types in the mouse superficial superior colliculus. J Comp Neurol 2016; 524:2300-21. [PMID: 26713509 DOI: 10.1002/cne.23952] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/12/2015] [Accepted: 12/17/2015] [Indexed: 01/24/2023]
Abstract
The superior colliculus (SC) is a midbrain center involved in controlling head and eye movements in response to inputs from multiple sensory modalities. Visual inputs arise from both the retina and visual cortex and converge onto the superficial layer of the SC (sSC). Neurons in the sSC send information to deeper layers of the SC and to thalamic nuclei that modulate visually guided behaviors. Presently, our understanding of sSC neurons is impeded by a lack of molecular markers that define specific cell types. To better understand the identity and organization of sSC neurons, we took a systematic approach to investigate gene expression within four molecular families: transcription factors, cell adhesion molecules, neuropeptides, and calcium binding proteins. Our analysis revealed 12 molecules with distinct expression patterns in mouse sSC: cadherin 7, contactin 3, netrin G2, cadherin 6, protocadherin 20, retinoid-related orphan receptor β, brain-specific homeobox/POU domain protein 3b, Ets variant gene 1, substance P, somatostatin, vasoactive intestinal polypeptide, and parvalbumin. Double labeling experiments, by either in situ hybridization or immunostaining, demonstrated that the 12 molecular markers collectively define 10 different sSC neuronal types. The characteristic positions of these cell types divide the sSC into four distinct layers. The 12 markers identified here will serve as valuable tools to examine molecular mechanisms that regulate development of sSC neuronal types. These markers could also be used to examine the connections between specific cell types that form retinocollicular, corticocollicular, or colliculothalamic pathways. J. Comp. Neurol. 524:2300-2321, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haewon Byun
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, 06511
| | - Soohyun Kwon
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, 06511
| | - Hee-Jeong Ahn
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, 06511
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, 06511.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, 06511
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, 06511.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06511
| |
Collapse
|
28
|
Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. J Neurosci 2016; 35:12869-89. [PMID: 26377473 DOI: 10.1523/jneurosci.1164-15.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking.Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to direct the migration, differentiation, circuit integration, and maintenance programs within distinct subtypes of CGE-derived interneurons.
Collapse
|
29
|
Touzot A, Ruiz-Reig N, Vitalis T, Studer M. Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. Development 2016; 143:1753-65. [DOI: 10.1242/dev.131102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/17/2016] [Indexed: 01/15/2023]
Abstract
GABAergic interneurons are highly heterogenous and originate in the subpallium mainly from the medial (MGE) and caudal (CGE) ganglionic eminences according to a precise temporal sequence. While MGE-derived cells disperse dorsally and migrate towards all regions of the cortex, little is known on how CGE-derived cells reach their targets during development. Here, we unravel the existence of two novel CGE caudo-rostral migratory streams, one located laterally (LMS) and the other one more medially (MMS) that, together with the well-known caudal migratory stream (CMS), contribute to populate the neocortex, hippocampus and amygdala. These paths appear in a precise temporal sequence and express a distinct combination of transcription factors, such as Sp8, Prox1, COUP-TFI and COUP-TFII. By inactivating COUP-TFI in developing interneurons, the lateral and medial streams are perturbed and expression of Sp8 and COUP-TFII affected. As a consequence, adult mutant neocortices have laminar-specific alterations of distinct cortical interneuron subtypes. Overall, we propose that the existence of spatially and temporally regulated migratory paths in the subpallium contributes to the laminar distribution and specification of distinct interneuron subpopulations in the adult brain.
Collapse
Affiliation(s)
- Audrey Touzot
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, 06100 Nice, France
- iBV, Institut de Biologie Valrose, Univ. Sophia Antipolis, Bâtiment Sciences Naturelles; UFR Sciences; Parc Valrose, 28, avenue Valrose, 06108 Nice Cedex 2, France
| | - Nuria Ruiz-Reig
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, 06100 Nice, France
- iBV, Institut de Biologie Valrose, Univ. Sophia Antipolis, Bâtiment Sciences Naturelles; UFR Sciences; Parc Valrose, 28, avenue Valrose, 06108 Nice Cedex 2, France
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Cientificas-Universidad Miguel Hernandez, CSIC-UMH), 03550 Alicante, Spain
| | - Tania Vitalis
- Inserm U1141 PROTECT, Hôpital Robert-Debré, 75019 Paris, France
| | - Michèle Studer
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, 06100 Nice, France
- iBV, Institut de Biologie Valrose, Univ. Sophia Antipolis, Bâtiment Sciences Naturelles; UFR Sciences; Parc Valrose, 28, avenue Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
30
|
DeBoer EM, Anderson SA. Fate determination of cerebral cortical GABAergic interneurons and their derivation from stem cells. Brain Res 2015; 1655:277-282. [PMID: 26723568 DOI: 10.1016/j.brainres.2015.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 01/26/2023]
Abstract
Cortical GABAergic interneurons modulate cortical excitation, and their dysfunction is implicated in a multitude of neuropsychiatric disorders including autism, schizophrenia and epilepsy. Consequently, the study of cortical interneuron development, and their derivation from stem cells for transplantation therapy, has garnered intense scientific interest. In this review, we discuss some of the molecular signals involved in cortical interneuron fate determination, and describe how this has informed the use of mouse and human embryonic stem cell biology in generating cortical interneurons in vitro. We highlight the tremendous progress that has been made recently using stem cells to derive cortical interneurons, as well as challenges that have arisen. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Collapse
Affiliation(s)
- Erik M DeBoer
- Department of Psychiatry, Children׳s Hospital of Philadelphia, University of Pennsylvania, School of Medicine, 3615 Civic Center Blvd, ARC 517, Philadelphia, PA 19104-5127, USA.
| | - Stewart A Anderson
- Department of Psychiatry, Children׳s Hospital of Philadelphia, University of Pennsylvania, School of Medicine, 3615 Civic Center Blvd, ARC 517, Philadelphia, PA 19104-5127, USA.
| |
Collapse
|
31
|
Peyre E, Silva CG, Nguyen L. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex. Front Cell Neurosci 2015; 9:129. [PMID: 25926769 PMCID: PMC4396449 DOI: 10.3389/fncel.2015.00129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.
Collapse
Affiliation(s)
- Elise Peyre
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium
| | - Carla G Silva
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium ; Wallon Excellence in Lifesciences and Biotechnology, University of Liège Liège, Belgium
| |
Collapse
|
32
|
Varga C, Tamas G, Barzo P, Olah S, Somogyi P. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex. Cereb Cortex 2015; 25:4430-49. [PMID: 25787832 PMCID: PMC4768361 DOI: 10.1093/cercor/bhv045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells.
Collapse
Affiliation(s)
- Csaba Varga
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Current address: Szentágothai Research Centre, Department of Physiology, University of Pécs, Pécs, Hungary
| | - Gabor Tamas
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Szabolcs Olah
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience
| | - Peter Somogyi
- MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
33
|
Transient Sp8+ handlebar-like interneuron structure traversing the corpus callosum during the second postnatal week. Neuroreport 2015; 26:216-22. [DOI: 10.1097/wnr.0000000000000331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Stergiopoulos A, Elkouris M, Politis PK. Prospero-related homeobox 1 (Prox1) at the crossroads of diverse pathways during adult neural fate specification. Front Cell Neurosci 2015; 8:454. [PMID: 25674048 PMCID: PMC4306308 DOI: 10.3389/fncel.2014.00454] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, adult neurogenesis in the central nervous system (CNS) has emerged as a fundamental process underlying physiology and disease. Recent evidence indicates that the homeobox transcription factor Prox1 is a critical intrinsic regulator of neurogenesis in the embryonic CNS and adult dentate gyrus (DG) of the hippocampus, acting in multiple ways and instructed by extrinsic cues and intrinsic factors. In the embryonic CNS, Prox1 is mechanistically involved in the regulation of proliferation vs. differentiation decisions of neural stem cells (NSCs), promoting cell cycle exit and neuronal differentiation, while inhibiting astrogliogenesis. During the complex differentiation events in adult hippocampal neurogenesis, Prox1 is required for maintenance of intermediate progenitors (IPs), differentiation and maturation of glutamatergic interneurons, as well as specification of DG cell identity over CA3 pyramidal fate. The mechanism by which Prox1 exerts multiple functions involves distinct signaling pathways currently not fully highlighted. In this mini-review, we thoroughly discuss the Prox1-dependent phenotypes and molecular pathways in adult neurogenesis in relation to different upstream signaling cues and cell fate determinants. In addition, we discuss the possibility that Prox1 may act as a cross-talk point between diverse signaling cascades to achieve specific outcomes during adult neurogenesis.
Collapse
Affiliation(s)
- Athanasios Stergiopoulos
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Maximilianos Elkouris
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| |
Collapse
|
35
|
Cuccioli V, Bueno C, Belvindrah R, Lledo PM, Martinez S. Attractive action of FGF-signaling contributes to the postnatal developing hippocampus. Hippocampus 2014; 25:486-99. [DOI: 10.1002/hipo.22386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Affiliation(s)
- V. Cuccioli
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández (CSIC-UMH); Sant Joan d'Alacant 03550 Spain
| | - C. Bueno
- Faculty of Medicine; Department of Human Anatomy and Psychobiology; IMIB-Arrixaca and CIBERSAM (Centro Investigación Biomedica en Red Salud Mental), University of Murcia E-30071; Murcia Spain
| | - R. Belvindrah
- Laboratory for Perception and Memory; Institut Pasteur; F-75015 Paris France
- Centre National de la Recherche Scientifique (CNRS); Unité Mixte de Recherche 3571 F-75015 Paris France
| | - P.-M. Lledo
- Laboratory for Perception and Memory; Institut Pasteur; F-75015 Paris France
- Centre National de la Recherche Scientifique (CNRS); Unité Mixte de Recherche 3571 F-75015 Paris France
| | - S. Martinez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández (CSIC-UMH); Sant Joan d'Alacant 03550 Spain
- Faculty of Medicine; Department of Human Anatomy and Psychobiology; IMIB-Arrixaca and CIBERSAM (Centro Investigación Biomedica en Red Salud Mental), University of Murcia E-30071; Murcia Spain
| |
Collapse
|
36
|
Vogt D, Hunt RF, Mandal S, Sandberg M, Silberberg SN, Nagasawa T, Yang Z, Baraban SC, Rubenstein JLR. Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position. Neuron 2014; 82:350-64. [PMID: 24742460 DOI: 10.1016/j.neuron.2014.02.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
Cortical GABAergic interneurons have essential roles for information processing and their dysfunction is implicated in neuropsychiatric disorders. Transcriptional codes are elucidating mechanisms of interneuron specification in the MGE (a subcortical progenitor zone), which regulate their migration, integration, and function within cortical circuitry. Lhx6, a LIM-homeodomain transcription factor, is essential for specification of MGE-derived somatostatin and parvalbumin interneurons. Here, we demonstrate that some Lhx6⁻/⁻ MGE cells acquire a CGE-like fate. Using an in vivo MGE complementation/transplantation assay, we show that Lhx6-regulated genes Arx and CXCR7 rescue divergent aspects of Lhx6⁻/⁻ cell-fate and laminar mutant phenotypes and provide insight into a neonatal role for CXCR7 in MGE-derived interneuron lamination. Finally, Lhx6 directly binds in vivo to an Arx enhancer and to an intronic CXCR7 enhancer that remains active in mature interneurons. These data define the molecular identity of Lhx6 mutants and introduce technologies to test mechanisms in GABAergic interneuron differentiation.
Collapse
Affiliation(s)
- Daniel Vogt
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Robert F Hunt
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shyamali Mandal
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cancer Biology and Pharmacology University of Illinois, Peoria, IL 61656, USA
| | - Magnus Sandberg
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Shanni N Silberberg
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Takashi Nagasawa
- Department of Immunology and Hematology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Zhengang Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Scott C Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
37
|
Cai Y, Zhang Y, Shen Q, Rubenstein JLR, Yang Z. A subpopulation of individual neural progenitors in the mammalian dorsal pallium generates both projection neurons and interneurons in vitro. Stem Cells 2014; 31:1193-201. [PMID: 23417928 DOI: 10.1002/stem.1363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 02/01/2013] [Indexed: 01/27/2023]
Abstract
There are two major classes of neurons in nervous systems: projection neurons and interneurons. During Drosophila nervous system development, a subpopulation of individual stem/progenitor cells gives rise to both motor neurons and interneurons. However, it remains unknown whether individual stem/progenitor cells in the mammalian brain also have the potential to give rise to both projection neurons and interneurons. Here we present evidence that single mouse neocortical progenitors generated both projection neurons and GABAergic interneurons based on studies using fluorescence-activated cell sorting (to obtain individual progenitors) and in vitro clonal analysis using time-lapse video microscopy and immunostaining. We determined that a subpopulation of individual dorsal pallial progenitors from E11.5 Dlx5/6-cre-IRES-EGFP and GAD67-GFP mice can generate both GFP-negative/Tbr1-positive (GFP(-) /Tbr1+)/Tuj1+ cells and GFP+/Sp8+/calretinin+/Tuj1+ cells. The GFP(-) /Tbr1+/Tuj1+ cells had morphological features of cultured projection neurons. Quantitative analysis of the reconstructed lineage trees derived from single progenitors showed that the projection neuron lineage appeared earlier than the interneuron lineage; however, more interneuron-like cells were produced than projection neuron-like cells. Thus, our results provide direct in vitro evidence that individual progenitors of the mammalian dorsal pallium can generate both projection neurons and interneurons.
Collapse
Affiliation(s)
- Yuqun Cai
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Medina-Bolívar C, González-Arnay E, Talos F, González-Gómez M, Moll UM, Meyer G. Cortical hypoplasia and ventriculomegaly of p73-deficient mice: Developmental and adult analysis. J Comp Neurol 2014; 522:2663-79. [PMID: 24500610 DOI: 10.1002/cne.23556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/19/2013] [Accepted: 01/31/2014] [Indexed: 12/24/2022]
Abstract
Trp73, a member of the p53 gene family, plays a crucial role in neural development. We describe two main phenotypic variants of p73 deficiency in the brain, a severe one characterized by massive apoptosis in the cortex leading to early postnatal death and a milder, non-/low-apoptosis one in which 50% of pups may reach adulthood using an intensive-care breeding protocol. Both variants display the core triad of p73 deficiency: cortical hypoplasia, hippocampal malformations, and ventriculomegaly. We studied the development of the neocortex in p73 KO mice from early embryonic life into advanced age (25 months). Already at E14.5, the incipient cortical plate of the p73 KO brains showed a reduced width. Examination of adult neocortex revealed a generalized, nonprogressive reduction by 10-20%. Area-specific architectonic landmarks and lamination were preserved in all cortical areas. The surviving adult animals had moderate ventricular distension, whereas pups of the early lethal phenotypic variant showed severe ventriculomegaly. Ependymal cells of wild-type ventricles strongly express p73 and are particularly vulnerable to p73 deficiency. Ependymal denudation by apoptosis and reduction of ependymal cilia were already evident in young mice, with complete absence of cilia in older animals. Loss of p73 function in the ependyma may thus be one determining factor for chronic hydrocephalus, which leads to atrophy of subcortical structures (striatum, septum, amygdala). p73 Is thus involved in a variety of CNS activities ranging from embryonic regulation of brain size to the control of cerebrospinal fluid homeostasis in the adult brain via maintenance of the ependyma.
Collapse
Affiliation(s)
- Carolina Medina-Bolívar
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Kessaris N, Magno L, Rubin AN, Oliveira MG. Genetic programs controlling cortical interneuron fate. Curr Opin Neurobiol 2014; 26:79-87. [PMID: 24440413 PMCID: PMC4082532 DOI: 10.1016/j.conb.2013.12.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 11/04/2022]
Abstract
Cortical interneurons originate in the embryonic subcortical telencephalon. Spatial and temporal control of progenitor differentiation generates diversity. Genetic pathways of interneuron cell fate specification. Intrinsic pathways and extrinsic cues interplay in interneuron specification.
The origins of cortical interneurons in rodents have been localized to the embryonic subcortical telencephalon where distinct neuroepithelial precursors generate defined interneuron subsets. A swathe of research activity aimed at identifying molecular determinants of subtype identity has uncovered a number of transcription factors that function at different stages of interneuron development. Pathways that lead to the acquisition of mature interneuron traits are therefore beginning to emerge. As genetic programs are influenced by external factors the search continues not only into genetic determinants but also extrinsic influences and the interplay between the two in cell fate specification.
Collapse
Affiliation(s)
- Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Lorenza Magno
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Anna Noren Rubin
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marcio Guiomar Oliveira
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
40
|
Alfano C, Magrinelli E, Harb K, Studer M. The nuclear receptors COUP-TF: a long-lasting experience in forebrain assembly. Cell Mol Life Sci 2014; 71:43-62. [PMID: 23525662 PMCID: PMC11114017 DOI: 10.1007/s00018-013-1320-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 02/14/2013] [Accepted: 03/04/2013] [Indexed: 12/16/2022]
Abstract
Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are nuclear receptors belonging to the superfamily of the steroid/thyroid hormone receptors. Members of this family are internalized to the nucleus both in a ligand-dependent or -independent manner and act as strong transcriptional regulators by binding to the DNA of their target genes. COUP-TFs are defined as orphan receptors, since ligands regulating their activity have not so far been identified. From the very beginning of metazoan evolution, these molecules have been involved in various key events during embryonic development and organogenesis. In this review, we will mainly focus on their function during development and maturation of the central nervous system, which has been well characterized in various animal classes ranging from ctenophores to mammals. We will start by introducing the current knowledge on COUP-TF mechanisms of action and then focus our discussion on the crucial processes underlying forebrain ontogenesis, with special emphasis on mammalian development. Finally, the conserved roles of COUP-TFs along phylogenesis will be highlighted, and some hypotheses, worth exploring in future years to gain more insight into the mechanisms controlled by these factors, will be proposed.
Collapse
Affiliation(s)
- Christian Alfano
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Elia Magrinelli
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Kawssar Harb
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Michèle Studer
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| |
Collapse
|
41
|
PROX1: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. PLoS One 2013; 8:e77339. [PMID: 24155945 PMCID: PMC3796451 DOI: 10.1371/journal.pone.0077339] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/31/2013] [Indexed: 11/19/2022] Open
Abstract
The homeobox-encoding gene Prox1 and its Drosophila homologue prospero are key regulators of cell fate-specification. In the developing rodent cortex a sparse population of cells thought to correspond to late-generated cortical pyramidal neuron precursors expresses PROX1. Using a series of transgenic mice that mark cell lineages in the subcortical telencephalon and, more specifically, different populations of cortical interneurons, we demonstrate that neurons expressing PROX1 do not represent pyramidal neurons or their precursors but are instead subsets of cortical interneurons. These correspond to interneurons originating in the lateral/caudal ganglionic eminence (LGE/CGE) and a small number of preoptic area (POA)-derived neurons. Expression within the cortex can be detected from late embryonic stages onwards when cortical interneurons are still migrating. There is persistent expression in postmitotic cells in the mature brain mainly in the outer cortical layers. PROX1(+ve) interneurons express neurochemical markers such as calretinin, neuropeptide Y, reelin and vasoactive intestinal peptide, all of which are enriched in LGE/CGE- and some POA-derived cells. Unlike in the cortex, in the striatum PROX1 marks nearly all interneurons regardless of their origin. Weak expression of PROX1 can also be detected in oligodendrocyte lineage cells throughout the forebrain. Our data show that PROX1 can be used as a genetic lineage tracer of nearly all LGE/CGE- and subsets POA-derived cortical interneurons at all developmental and postnatal stages in vivo.
Collapse
|
42
|
Ma T, Wang C, Wang L, Zhou X, Tian M, Zhang Q, Zhang Y, Li J, Liu Z, Cai Y, Liu F, You Y, Chen C, Campbell K, Song H, Ma L, Rubenstein JL, Yang Z. Subcortical origins of human and monkey neocortical interneurons. Nat Neurosci 2013; 16:1588-97. [PMID: 24097041 DOI: 10.1038/nn.3536] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 09/03/2013] [Indexed: 12/14/2022]
Abstract
Cortical GABAergic inhibitory interneurons have crucial roles in the development and function of the cerebral cortex. In rodents, nearly all neocortical interneurons are generated from the subcortical ganglionic eminences. In humans and nonhuman primates, however, the developmental origin of neocortical GABAergic interneurons remains unclear. Here we show that the expression patterns of several key transcription factors in the developing primate telencephalon are very similar to those in rodents, delineating the three main subcortical progenitor domains (the medial, lateral and caudal ganglionic eminences) and the interneurons tangentially migrating from them. On the basis of the continuity of Sox6, COUP-TFII and Sp8 transcription factor expression and evidence from cell migration and cell fate analyses, we propose that the majority of primate neocortical GABAergic interneurons originate from ganglionic eminences of the ventral telencephalon. Our findings reveal that the mammalian neocortex shares basic rules for interneuron development, substantially reshaping our understanding of the origin and classification of primate neocortical interneurons.
Collapse
Affiliation(s)
- Tong Ma
- 1] Institutes of Brain Science, Fudan University, Shanghai, China. [2] State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China. [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hansen DV, Lui JH, Flandin P, Yoshikawa K, Rubenstein JL, Alvarez-Buylla A, Kriegstein AR. Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat Neurosci 2013; 16:1576-87. [PMID: 24097039 DOI: 10.1038/nn.3541] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/11/2013] [Indexed: 12/16/2022]
Abstract
GABAergic cortical interneurons underlie the complexity of neural circuits and are particularly numerous and diverse in humans. In rodents, cortical interneurons originate in the subpallial ganglionic eminences, but their developmental origins in humans are controversial. We characterized the developing human ganglionic eminences and found that the subventricular zone (SVZ) expanded massively during the early second trimester, becoming densely populated with neural stem cells and intermediate progenitor cells. In contrast with the cortex, most stem cells in the ganglionic eminence SVZ did not maintain radial fibers or orientation. The medial ganglionic eminence exhibited unique patterns of progenitor cell organization and clustering, and markers revealed that the caudal ganglionic eminence generated a greater proportion of cortical interneurons in humans than in rodents. On the basis of labeling of newborn neurons in slice culture and mapping of proliferating interneuron progenitors, we conclude that the vast majority of human cortical interneurons are produced in the ganglionic eminences, including an enormous contribution from non-epithelial SVZ stem cells.
Collapse
Affiliation(s)
- David V Hansen
- 1] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, San Francisco, California, USA. [3]
| | | | | | | | | | | | | |
Collapse
|