1
|
Chen Y, Lee JH, Li J, Park S, Flores MCP, Peguero B, Kersigo J, Kang M, Choi J, Levine L, Gratton MA, Fritzsch B, Yamoah EN. Genetic and pharmacologic alterations of claudin9 levels suffice to induce functional and mature inner hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.08.561387. [PMID: 37873357 PMCID: PMC10592694 DOI: 10.1101/2023.10.08.561387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Hearing loss is the most common form of sensory deficit. It occurs predominantly due to hair cell (HC) loss. Mammalian HCs are terminally differentiated by birth, making HC loss challenging to replace. Here, we show the pharmacogenetic downregulation of Cldn9 , a tight junction protein, generates robust supernumerary inner HCs (IHCs) in mice. The ectopic IHC shared functional and synaptic features akin to typical IHCs and were surprisingly and remarkably preserved for at least fifteen months >50% of the mouse's life cycle. In vivo , Cldn9 knockdown using shRNA on postnatal days (P) P2-7 yielded analogous functional ectopic IHCs that were equally durably conserved. The findings suggest that Cldn9 levels coordinate embryonic and postnatal HC differentiation, making it a viable target for altering IHC development pre- and post-terminal differentiation.
Collapse
Affiliation(s)
- Yingying Chen
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, Indianapolis, IN, 46202, USA
| | - Jeong Han Lee
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | - Jin Li
- Department of Otolaryngology, University of Washington Seattle, WA, USA
| | - Seojin Park
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, South Korea 67264
| | - Maria C. Perez Flores
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | - Braulio Peguero
- Otolaryngology-Head, Neck Surgery, St. Louis University, St. Louis, Missouri 63108
| | | | - Mincheol Kang
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, South Korea 67264
| | - Jinsil Choi
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | | | | | | | - Ebenezer N. Yamoah
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| |
Collapse
|
2
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg C, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.539065. [PMID: 37293040 PMCID: PMC10245571 DOI: 10.1101/2023.05.15.539065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, comprises a suite of neuronal cell types that are highly specialized for neural coding of acoustic signals, yet molecular logic governing cellular specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple new subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the remarkable cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level illustrates molecular logic for cellular specializations and enables genetic dissection of auditory processing and hearing disorders with unprecedented specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J. McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Laurence O. Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Kreeger LJ, Honnuraiah S, Maeker S, Shea S, Fishell G, Goodrich LV. An Anatomical and Physiological Basis for Flexible Coincidence Detection in the Auditory System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582808. [PMID: 38464181 PMCID: PMC10925315 DOI: 10.1101/2024.02.29.582808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Animals navigate the auditory world by recognizing complex sounds, from the rustle of a predator to the call of a potential mate. This ability depends in part on the octopus cells of the auditory brainstem, which respond to multiple frequencies that change over time, as occurs in natural stimuli. Unlike the average neuron, which integrates inputs over time on the order of tens of milliseconds, octopus cells must detect momentary coincidence of excitatory inputs from the cochlea during an ongoing sound on both the millisecond and submillisecond time scale. Here, we show that octopus cells receive inhibitory inputs on their dendrites that enhance opportunities for coincidence detection in the cell body, thereby allowing for responses both to rapid onsets at the beginning of a sound and to frequency modulations during the sound. This mechanism is crucial for the fundamental process of integrating the synchronized frequencies of natural auditory signals over time.
Collapse
Affiliation(s)
- Lauren J Kreeger
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Suraj Honnuraiah
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sydney Maeker
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Siobhan Shea
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Gord Fishell
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lisa V Goodrich
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| |
Collapse
|
4
|
Hong 洪卉 H, Moore LA, Apostolides PF, Trussell LO. Calcium-Sensitive Subthreshold Oscillations and Electrical Coupling in Principal Cells of Mouse Dorsal Cochlear Nucleus. J Neurosci 2024; 44:e0106202023. [PMID: 37968120 PMCID: PMC10860609 DOI: 10.1523/jneurosci.0106-20.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
In higher sensory brain regions, slow oscillations (0.5-5 Hz) associated with quiet wakefulness and attention modulate multisensory integration, predictive coding, and perception. Although often assumed to originate via thalamocortical mechanisms, the extent to which subcortical sensory pathways are independently capable of slow oscillatory activity is unclear. We find that in the first station for auditory processing, the cochlear nucleus, fusiform cells from juvenile mice (of either sex) generate robust 1-2 Hz oscillations in membrane potential and exhibit electrical resonance. Such oscillations were absent prior to the onset of hearing, intrinsically generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) and persistent Na+ conductances (NaP) interacting with passive membrane properties, and reflected the intrinsic resonance properties of fusiform cells. Cx36-containing gap junctions facilitated oscillation strength and promoted pairwise synchrony of oscillations between neighboring neurons. The strength of oscillations were strikingly sensitive to external Ca2+, disappearing at concentrations >1.7 mM, due in part to the shunting effect of small-conductance calcium-activated potassium (SK) channels. This effect explains their apparent absence in previous in vitro studies of cochlear nucleus which routinely employed high-Ca2+ extracellular solution. In contrast, oscillations were amplified in reduced Ca2+ solutions, due to relief of suppression by Ca2+ of Na+ channel gating. Our results thus reveal mechanisms for synchronous oscillatory activity in auditory brainstem, suggesting that slow oscillations, and by extension their perceptual effects, may originate at the earliest stages of sensory processing.
Collapse
Affiliation(s)
- Hui Hong 洪卉
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland 97239, Oregon
| | - Lucille A Moore
- Neuroscience Graduate Program, Oregon Health & Science University, Portland 97239, Oregon
| | - Pierre F Apostolides
- Neuroscience Graduate Program, Oregon Health & Science University, Portland 97239, Oregon
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland 97239, Oregon
| |
Collapse
|
5
|
Xie R, Wang M, Zhang C. Mechanisms of age-related hearing loss at the auditory nerve central synapses and postsynaptic neurons in the cochlear nucleus. Hear Res 2024; 442:108935. [PMID: 38113793 PMCID: PMC10842789 DOI: 10.1016/j.heares.2023.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Sound information is transduced from mechanical vibration to electrical signals in the cochlea, conveyed to and further processed in the brain to form auditory perception. During the process, spiral ganglion neurons (SGNs) are the key cells that connect the peripheral and central auditory systems by receiving information from hair cells in the cochlea and transmitting it to neurons of the cochlear nucleus (CN). Decades of research in the cochlea greatly improved our understanding of SGN function under normal and pathological conditions, especially about the roles of different subtypes of SGNs and their peripheral synapses. However, it remains less clear how SGN central terminals or auditory nerve (AN) synapses connect to CN neurons, and ultimately how peripheral pathology links to structural alterations and functional deficits in the central auditory nervous system. This review discusses recent progress about the morphological and physiological properties of different subtypes of AN synapses and associated postsynaptic CN neurons, their changes during aging, and the potential mechanisms underlying age-related hearing loss.
Collapse
Affiliation(s)
- Ruili Xie
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA; Department of Neuroscience, The Ohio State University, 420W 12th Ave, Columbus, OH 43210, USA.
| | - Meijian Wang
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA
| | - Chuangeng Zhang
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA
| |
Collapse
|
6
|
Lee JH, Park S, Perez-Flores MC, Chen Y, Kang M, Choi J, Levine L, Gratton MA, Zhao J, Notterpek L, Yamoah EN. Demyelination and Na + Channel Redistribution Underlie Auditory and Vestibular Dysfunction in PMP22-Null Mice. eNeuro 2024; 11:ENEURO.0462-23.2023. [PMID: 38378628 PMCID: PMC11059428 DOI: 10.1523/eneuro.0462-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/22/2024] Open
Abstract
Altered expression of peripheral myelin protein 22 (PMP22) results in demyelinating peripheral neuropathy. PMP22 exhibits a highly restricted tissue distribution with marked expression in the myelinating Schwann cells of peripheral nerves. Auditory and vestibular Schwann cells and the afferent neurons also express PMP22, suggesting a unique role in hearing and balancing. Indeed, neuropathic patients diagnosed with PMP22-linked hereditary neuropathies often present with auditory and balance deficits, an understudied clinical complication. To investigate the mechanism by which abnormal expression of PMP22 may cause auditory and vestibular deficits, we studied gene-targeted PMP22-null mice. PMP22-null mice exhibit an unsteady gait, have difficulty maintaining balance, and live for only ∼3-5 weeks relative to unaffected littermates. Histological analysis of the inner ear revealed reduced auditory and vestibular afferent nerve myelination and profound Na+ channel redistribution without PMP22. Yet, Na+ current density was unaltered, in stark contrast to increased K+ current density. Atypical postsynaptic densities and a range of neuronal abnormalities in the organ of Corti were also identified. Analyses of auditory brainstem responses (ABRs) and vestibular sensory-evoked potential (VsEP) revealed that PMP22-null mice had auditory and vestibular hypofunction. These results demonstrate that PMP22 is required for hearing and balance, and the protein is indispensable for the formation and maintenance of myelin in the peripheral arm of the eighth nerve. Our findings indicate that myelin abnormalities and altered signal propagation in the peripheral arm of the auditory nerve are likely causes of auditory deficits in patients with PMP22-linked neuropathies.
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
- Prestige BioPharma, Busan 67264, South Korea
| | - Maria C Perez-Flores
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Yingying Chen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
- Prestige BioPharma, Busan 67264, South Korea
| | - Jinsil Choi
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Lauren Levine
- Program in Audiology and Communication Sciences, Washington University, St. Louis 63110, Missouri
| | | | - Jie Zhao
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Lucia Notterpek
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno 89557, Nevada
| |
Collapse
|
7
|
Ryugo DK, Milinkeviciute G. Differential projections from the cochlear nucleus to the inferior colliculus in the mouse. Front Neural Circuits 2023; 17:1229746. [PMID: 37554670 PMCID: PMC10405501 DOI: 10.3389/fncir.2023.1229746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
The cochlear nucleus (CN) is often regarded as the gateway to the central auditory system because it initiates all ascending pathways. The CN consists of dorsal and ventral divisions (DCN and VCN, respectively), and whereas the DCN functions in the analysis of spectral cues, circuitry in VCN is part of the pathway focused on processing binaural information necessary for sound localization in horizontal plane. Both structures project to the inferior colliculus (IC), which serves as a hub for the auditory system because pathways ascending to the forebrain and descending from the cerebral cortex converge there to integrate auditory, motor, and other sensory information. DCN and VCN terminations in the IC are thought to overlap but given the differences in VCN and DCN architecture, neuronal properties, and functions in behavior, we aimed to investigate the pattern of CN connections in the IC in more detail. This study used electrophysiological recordings to establish the frequency sensitivity at the site of the anterograde dye injection for the VCN and DCN of the CBA/CaH mouse. We examined their contralateral projections that terminate in the IC. The VCN projections form a topographic sheet in the central nucleus (CNIC). The DCN projections form a tripartite set of laminar sheets; the lamina in the CNIC extends into the dorsal cortex (DC), whereas the sheets to the lateral cortex (LC) and ventrolateral cortex (VLC) are obliquely angled away. These fields in the IC are topographic with low frequencies situated dorsally and progressively higher frequencies lying more ventrally and/or laterally; the laminae nestle into the underlying higher frequency fields. The DCN projections are complementary to the somatosensory modules of layer II of the LC but both auditory and spinal trigeminal terminations converge in the VLC. While there remains much to be learned about these circuits, these new data on auditory circuits can be considered in the context of multimodal networks that facilitate auditory stream segregation, signal processing, and species survival.
Collapse
Affiliation(s)
- David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head and Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Giedre Milinkeviciute
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
8
|
McInturff S, Adenis V, Coen FV, Lacour SP, Lee DJ, Brown MC. Sensitivity to Pulse Rate and Amplitude Modulation in an Animal Model of the Auditory Brainstem Implant (ABI). J Assoc Res Otolaryngol 2023; 24:365-384. [PMID: 37156973 PMCID: PMC10335994 DOI: 10.1007/s10162-023-00897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/19/2023] [Indexed: 05/10/2023] Open
Abstract
The auditory brainstem implant (ABI) is an auditory neuroprosthesis that provides hearing by electrically stimulating the cochlear nucleus (CN) of the brainstem. Our previous study (McInturff et al., 2022) showed that single-pulse stimulation of the dorsal (D)CN subdivision with low levels of current evokes responses that have early latencies, different than the late response patterns observed from stimulation of the ventral (V)CN. How these differing responses encode more complex stimuli, such as pulse trains and amplitude modulated (AM) pulses, has not been explored. Here, we compare responses to pulse train stimulation of the DCN and VCN, and show that VCN responses, measured in the inferior colliculus (IC), have less adaption, higher synchrony, and higher cross-correlation. However, with high-level DCN stimulation, responses become like those to VCN stimulation, supporting our earlier hypothesis that current spreads from electrodes on the DCN to excite neurons located in the VCN. To AM pulses, stimulation of the VCN elicits responses with larger vector strengths and gain values especially in the high-CF portion of the IC. Additional analysis using neural measures of modulation thresholds indicate that these measures are lowest for VCN. Human ABI users with low modulation thresholds, who score best on comprehension tests, may thus have electrode arrays that stimulate the VCN. Overall, the results show that the VCN has superior response characteristics and suggest that it should be the preferred target for ABI electrode arrays in humans.
Collapse
Affiliation(s)
- Stephen McInturff
- Eaton-Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA.
| | - Victor Adenis
- Eaton-Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Florent-Valéry Coen
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Daniel J Lee
- Eaton-Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Ma Y, Shu WC, Lin L, Cao XJ, Oertel D, Smith PH, Jackson MB. Imaging Voltage Globally and in Isofrequency Lamina in Slices of Mouse Ventral Cochlear Nucleus. eNeuro 2023; 10:ENEURO.0465-22.2023. [PMID: 36792362 PMCID: PMC9997695 DOI: 10.1523/eneuro.0465-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The cochlear nuclei (CNs) receive sensory information from the ear and perform fundamental computations before relaying this information to higher processing centers. These computations are performed by distinct types of neurons interconnected in circuits dedicated to the specialized roles of the auditory system. In the present study, we explored the use of voltage imaging to investigate CN circuitry. We tested two approaches based on fundamentally different voltage sensing technologies. Using a voltage-sensitive dye we recorded glutamate receptor-independent signals arising predominantly from axons. The mean conduction velocity of these fibers of 0.27 m/s was rapid but in range with other unmyelinated axons. We then used a genetically-encoded hybrid voltage sensor (hVOS) to image voltage from a specific population of neurons. Probe expression was controlled using Cre recombinase linked to c-fos activation. This activity-induced gene enabled targeting of neurons that are activated when a mouse hears a pure 15-kHz tone. In CN slices from these animals auditory nerve fiber stimulation elicited a glutamate receptor-dependent depolarization in hVOS probe-labeled neurons. These cells resided within a band corresponding to an isofrequency lamina, and responded with a high degree of synchrony. In contrast to the axonal origin of voltage-sensitive dye signals, hVOS signals represent predominantly postsynaptic responses. The introduction of voltage imaging to the CN creates the opportunity to investigate auditory processing circuitry in populations of neurons targeted on the basis of their genetic identity and their roles in sensory processing.
Collapse
Affiliation(s)
- Yihe Ma
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Wen-Chi Shu
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Lin Lin
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Xiao-Jie Cao
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Donata Oertel
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Philip H Smith
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
10
|
Krasewicz J, Yu WM. Eph and ephrin signaling in the development of the central auditory system. Dev Dyn 2023; 252:10-26. [PMID: 35705527 PMCID: PMC9751234 DOI: 10.1002/dvdy.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/17/2023] Open
Abstract
Acoustic communication relies crucially on accurate interpretation of information about the intensity, frequency, timing, and location of diverse sound stimuli in the environment. To meet this demand, neurons along different levels of the auditory system form precisely organized neural circuits. The assembly of these precise circuits requires tight regulation and coordination of multiple developmental processes. Several groups of axon guidance molecules have proven critical in controlling these processes. Among them, the family of Eph receptors and their ephrin ligands emerge as one group of key players. They mediate diverse functions at multiple levels of the auditory pathway, including axon guidance and targeting, topographic map formation, as well as cell migration and tissue pattern formation. Here, we review our current knowledge of how Eph and ephrin molecules regulate different processes in the development and maturation of central auditory circuits.
Collapse
Affiliation(s)
| | - Wei-Ming Yu
- Correspondence: Wei-Ming Yu, Department of Biology, Loyola University of Chicago, 1032 W Sheridan Rd, LSB 226, Chicago, IL 60660, , Tel: +1-773-508-3325, Fax: +1-773-508-3646
| |
Collapse
|
11
|
Williams IR, Filimontseva A, Connelly CJ, Ryugo DK. The lateral superior olive in the mouse: Two systems of projecting neurons. Front Neural Circuits 2022; 16:1038500. [PMID: 36338332 PMCID: PMC9630946 DOI: 10.3389/fncir.2022.1038500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023] Open
Abstract
The lateral superior olive (LSO) is a key structure in the central auditory system of mammals that exerts efferent control on cochlear sensitivity and is involved in the processing of binaural level differences for sound localization. Understanding how the LSO contributes to these processes requires knowledge about the resident cells and their connections with other auditory structures. We used standard histological stains and retrograde tracer injections into the inferior colliculus (IC) and cochlea in order to characterize two basic groups of neurons: (1) Principal and periolivary (PO) neurons have projections to the IC as part of the ascending auditory pathway; and (2) lateral olivocochlear (LOC) intrinsic and shell efferents have descending projections to the cochlea. Principal and intrinsic neurons are intermixed within the LSO, exhibit fusiform somata, and have disk-shaped dendritic arborizations. The principal neurons have bilateral, symmetric, and tonotopic projections to the IC. The intrinsic efferents have strictly ipsilateral projections, known to be tonotopic from previous publications. PO and shell neurons represent much smaller populations (<10% of principal and intrinsic neurons, respectively), have multipolar somata, reside outside the LSO, and have non-topographic, bilateral projections. PO and shell neurons appear to have widespread projections to their targets that imply a more diffuse modulatory function. The somata and dendrites of principal and intrinsic neurons form a laminar matrix within the LSO and share quantifiably similar alignment to the tonotopic axis. Their restricted projections emphasize the importance of frequency in binaural processing and efferent control for auditory perception. This study addressed and expanded on previous findings of cell types, circuit laterality, and projection tonotopy in the LSO of the mouse.
Collapse
Affiliation(s)
- Isabella R. Williams
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia,*Correspondence: Isabella R. Williams,
| | | | - Catherine J. Connelly
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia,Department of Otolaryngology-Head, Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
12
|
McInturff S, Coen FV, Hight AE, Tarabichi O, Kanumuri VV, Vachicouras N, Lacour SP, Lee DJ, Brown MC. Comparison of Responses to DCN vs. VCN Stimulation in a Mouse Model of the Auditory Brainstem Implant (ABI). J Assoc Res Otolaryngol 2022; 23:391-412. [PMID: 35381872 PMCID: PMC9085982 DOI: 10.1007/s10162-022-00840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/31/2022] [Indexed: 10/18/2022] Open
Abstract
The auditory brainstem implant (ABI) is an auditory neuroprosthesis that provides hearing to deaf patients by electrically stimulating the cochlear nucleus (CN) of the brainstem. Whether such stimulation activates one or the other of the CN's two major subdivisions is not known. Here, we demonstrate clear response differences from the stimulation of the dorsal (D) vs. ventral (V) subdivisions of the CN in a mouse model of the ABI with a surface-stimulating electrode array. For the DCN, low levels of stimulation evoked multiunit responses in the inferior colliculus (IC) that were unimodally distributed with early latencies (avg. peak latency of 3.3 ms). However, high levels of stimulation evoked a bimodal distribution with the addition of a late latency response peak (avg. peak latency of 7.1 ms). For the VCN, in contrast, electrical stimulation elicited multiunit responses that were usually unimodal and had a latency similar to the DCN's late response. Local field potentials (LFP) from the IC showed components that correlated with early and late multiunit responses. Surgical cuts to sever the output of the DCN, the dorsal acoustic stria (DAS), gave insight into the origin of these early and late responses. Cuts eliminated early responses but had little-to-no effect on late responses. The early responses thus originate from cells that project through the DAS, such as DCN's pyramidal and giant cells. Late responses likely arise from the spread of stimulation from a DCN-placed electrode array to the VCN and could originate in bushy and/or stellate cells. In human ABI users, the spread of stimulation in the CN may result in abnormal response patterns that could hinder performance.
Collapse
Affiliation(s)
- Stephen McInturff
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA.
| | - Florent-Valéry Coen
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Osama Tarabichi
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Vivek V Kanumuri
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Nicolas Vachicouras
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Daniel J Lee
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Suthakar K, Liberman MC. Auditory-nerve responses in mice with noise-induced cochlear synaptopathy. J Neurophysiol 2021; 126:2027-2038. [PMID: 34788179 DOI: 10.1152/jn.00342.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cochlear synaptopathy is the noise-induced or age-related loss of ribbon synapses between inner hair cells (IHCs) and auditory-nerve fibers (ANFs), first reported in CBA/CaJ mice. Recordings from single ANFs in anesthetized, noise-exposed guinea pigs suggested that neurons with low spontaneous rates (SRs) and high thresholds are more vulnerable than low-threshold, high-SR fibers. However, there is extensive postexposure regeneration of ANFs in guinea pigs but not in mice. Here, we exposed CBA/CaJ mice to octave-band noise and recorded sound-evoked and spontaneous activity from single ANFs at least 2 wk later. Confocal analysis of cochleae immunostained for pre- and postsynaptic markers confirmed the expected loss of 40%-50% of ANF synapses in the basal half of the cochlea; however, our data were not consistent with a selective loss of low-SR fibers. Rather they suggested a loss of both SR groups in synaptopathic regions. Single-fiber thresholds and frequency tuning recovered to pre-exposure levels; however, response to tone bursts showed increased peak and steady-state firing rates, as well as decreased jitter in first-spike latencies. This apparent gain-of-function increased the robustness of tone-burst responses in the presence of continuous masking noise. This study suggests that the nature of noise-induced synaptic damage varies between different species and that, in mouse, the noise-induced hyperexcitability seen in central auditory circuits is also observed at the level of the auditory nerve.NEW & NOTEWORTHY Noise-induced damage to synapses between inner hair cells and auditory-nerve fibers (ANFs) can occur without permanent hair cell damage, resulting in pathophysiology that "hides" behind normal thresholds. Prior single-fiber neurophysiology in guinea pig suggested that noise selectively targets high-threshold ANFs. Here, we show that the lingering pathophysiology differs in mouse, with both ANF groups affected and a paradoxical gain-of-function in surviving low-threshold fibers, including increased onset rate, decreased onset jitter, and reduced maskability.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Hoshino N, Altarshan Y, Alzein A, Fernando AM, Nguyen HT, Majewski EF, Chen VCF, William Rochlin M, Yu WM. Ephrin-A3 is required for tonotopic map precision and auditory functions in the mouse auditory brainstem. J Comp Neurol 2021; 529:3633-3654. [PMID: 34235739 PMCID: PMC8490280 DOI: 10.1002/cne.25213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 01/09/2023]
Abstract
Tonotopy is a prominent feature of the vertebrate auditory system and forms the basis for sound discrimination, but the molecular mechanism that underlies its formation remains largely elusive. Ephrin/Eph signaling is known to play important roles in axon guidance during topographic mapping in other sensory systems, so we investigated its possible role in the establishment of tonotopy in the mouse cochlear nucleus. We found that ephrin-A3 molecules are differentially expressed along the tonotopic axis in the cochlear nucleus during innervation. Ephrin-A3 forward signaling is sufficient to repel auditory nerve fibers in a developmental stage-dependent manner. In mice lacking ephrin-A3, the tonotopic map is degraded and isofrequency bands of neuronal activation upon pure tone exposure become imprecise in the anteroventral cochlear nucleus. Ephrin-A3 mutant mice also exhibit a delayed second wave in auditory brainstem responses upon sound stimuli and impaired detection of sound frequency changes. Our findings establish an essential role for ephrin-A3 in forming precise tonotopy in the auditory brainstem to ensure accurate sound discrimination.
Collapse
Affiliation(s)
- Natalia Hoshino
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Yazan Altarshan
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Ahmad Alzein
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Amali M. Fernando
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Hieu T. Nguyen
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Emma F. Majewski
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | | | | | - Wei-Ming Yu
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Koert E, Kuenzel T. Small dendritic synapses enhance temporal coding in a model of cochlear nucleus bushy cells. J Neurophysiol 2021; 125:915-937. [PMID: 33471627 DOI: 10.1152/jn.00331.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spherical bushy cells (SBCs) in the anteroventral cochlear nucleus receive a single or very few powerful axosomatic inputs from the auditory nerve. However, SBCs are also contacted by small regular bouton synapses of the auditory nerve, located in their dendritic tree. The function of these small inputs is unknown. It was speculated that the interaction of axosomatic inputs with small dendritic inputs improved temporal precision, but direct evidence for this is missing. In a compartment model of spherical bushy cells with a stylized or realistic three-dimensional (3-D) representation of the bushy dendrite, we explored this hypothesis. Phase-locked dendritic inputs caused both tonic depolarization and a modulation of the model SBC membrane potential at the frequency of the stimulus. For plausible model parameters, dendritic inputs were subthreshold. Instead, the tonic depolarization increased the excitability of the SBC model and the modulation of the membrane potential caused a phase-dependent increase in the efficacy of the main axosomatic input. This improved response rate and entrainment for low-input frequencies and temporal precision of output at and above the characteristic frequency. A careful exploration of morphological and biophysical parameters of the bushy dendrite suggested a functional explanation for the peculiar shape of the bushy dendrite. Our model for the first time directly implied a role for the small excitatory dendritic inputs in auditory processing: they modulate the efficacy of the main input and are thus a plausible mechanism for the improvement of temporal precision and fidelity in these central auditory neurons.NEW & NOTEWORTHY We modeled dendritic inputs from the auditory nerve that spherical bushy cells of the cochlear nucleus receive. Dendritic inputs caused both tonic depolarization and modulation of the membrane potential at the input frequency. This improved the rate, entrainment, and temporal precision of output action potentials. Our simulations suggest a role for small dendritic inputs in auditory processing: they modulate the efficacy of the main input supporting temporal precision and fidelity in these central auditory neurons.
Collapse
Affiliation(s)
- Elisabeth Koert
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Chen Y, Bielefeld EC, Mellott JG, Wang W, Mafi AM, Yamoah EN, Bao J. Early Physiological and Cellular Indicators of Cisplatin-Induced Ototoxicity. J Assoc Res Otolaryngol 2021; 22:107-126. [PMID: 33415542 DOI: 10.1007/s10162-020-00782-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cisplatin chemotherapy often causes permanent hearing loss, which leads to a multifaceted decrease in quality of life. Identification of early cisplatin-induced cochlear damage would greatly improve clinical diagnosis and provide potential drug targets to prevent cisplatin's ototoxicity. With improved functional and immunocytochemical assays, a recent seminal discovery revealed that synaptic loss between inner hair cells and spiral ganglion neurons is a major form of early cochlear damage induced by noise exposure or aging. This breakthrough discovery prompted the current study to determine early functional, cellular, and molecular changes for cisplatin-induced hearing loss, in part to determine if synapse injury is caused by cisplatin exposure. Cisplatin was delivered in one to three treatment cycles to both male and female mice. After the cisplatin treatment of three cycles, threshold shift was observed across frequencies tested like previous studies. After the treatment of two cycles, beside loss of outer hair cells and an increase in high-frequency hearing thresholds, a significant latency delay of auditory brainstem response wave 1 was observed, including at a frequency region where there were no changes in hearing thresholds. The wave 1 latency delay was detected as early cisplatin-induced ototoxicity after only one cycle of treatment, in which no significant threshold shift was found. In the same mice, mitochondrial loss in the base of the cochlea and declining mitochondrial morphometric health were observed. Thus, we have identified early spiral ganglion-associated functional and cellular changes after cisplatin treatment that precede significant threshold shift.
Collapse
Affiliation(s)
- Yingying Chen
- Translational Research Center, Department of Neurobiology and Anatomy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV, 95616, USA
| | - Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, OH, 43210, USA
| | - Jeffrey G Mellott
- Translational Research Center, Department of Neurobiology and Anatomy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Weijie Wang
- Translational Research Center, Department of Neurobiology and Anatomy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Amir M Mafi
- Translational Research Center, Department of Neurobiology and Anatomy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV, 95616, USA
| | - Jianxin Bao
- Translational Research Center, Department of Neurobiology and Anatomy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
17
|
Pavlinkova G. Molecular Aspects of the Development and Function of Auditory Neurons. Int J Mol Sci 2020; 22:ijms22010131. [PMID: 33374462 PMCID: PMC7796308 DOI: 10.3390/ijms22010131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
This review provides an up-to-date source of information on the primary auditory neurons or spiral ganglion neurons in the cochlea. These neurons transmit auditory information in the form of electric signals from sensory hair cells to the first auditory nuclei of the brain stem, the cochlear nuclei. Congenital and acquired neurosensory hearing loss affects millions of people worldwide. An increasing body of evidence suggest that the primary auditory neurons degenerate due to noise exposure and aging more readily than sensory cells, and thus, auditory neurons are a primary target for regenerative therapy. A better understanding of the development and function of these neurons is the ultimate goal for long-term maintenance, regeneration, and stem cell replacement therapy. In this review, we provide an overview of the key molecular factors responsible for the function and neurogenesis of the primary auditory neurons, as well as a brief introduction to stem cell research focused on the replacement and generation of auditory neurons.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- BIOCEV, Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|
18
|
Ngodup T, Romero GE, Trussell LO. Identification of an inhibitory neuron subtype, the L-stellate cell of the cochlear nucleus. eLife 2020; 9:e54350. [PMID: 33141020 PMCID: PMC7744103 DOI: 10.7554/elife.54350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Auditory processing depends upon inhibitory signaling by interneurons, even at its earliest stages in the ventral cochlear nucleus (VCN). Remarkably, to date only a single subtype of inhibitory neuron has been documented in the VCN, a projection neuron termed the D-stellate cell. With the use of a transgenic mouse line, optical clearing, and imaging techniques, combined with electrophysiological tools, we revealed a population of glycinergic cells in the VCN distinct from the D-stellate cell. These multipolar glycinergic cells were smaller in soma size and dendritic area, but over ten-fold more numerous than D-stellate cells. They were activated by auditory nerve and T-stellate cells, and made local inhibitory synaptic contacts on principal cells of the VCN. Given their abundance, combined with their narrow dendritic fields and axonal projections, it is likely that these neurons, here termed L-stellate cells, play a significant role in frequency-specific processing of acoustic signals.
Collapse
Affiliation(s)
- Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Gabriel E Romero
- Physiology and Pharmacology Graduate Program, Oregon Health and Science UniversityPortlandUnited States
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
19
|
Scheffel JL, Mohammed SS, Borcean CK, Parng AJ, Yoon HJ, Gutierrez DA, Yu WM. Spatiotemporal Analysis of Cochlear Nucleus Innervation by Spiral Ganglion Neurons that Serve Distinct Regions of the Cochlea. Neuroscience 2020; 446:43-58. [PMID: 32866604 DOI: 10.1016/j.neuroscience.2020.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Cochlear neurons innervate the brainstem cochlear nucleus in a tonotopic fashion according to their sensitivity to different sound frequencies (known as the neuron's characteristic frequency). It is unclear whether these neurons with distinct characteristic frequencies use different strategies to innervate the cochlear nucleus. Here, we use genetic approaches to differentially label spiral ganglion neurons (SGNs) and their auditory nerve fibers (ANFs) that relay different characteristic frequencies in mice. We found that SGN populations that supply distinct regions of the cochlea employ different cellular strategies to target and innervate neurons in the cochlear nucleus during tonotopic map formation. ANFs that will exhibit high-characteristic frequencies initially overshoot and sample a large area of targets before refining their connections to correct targets, while fibers that will exhibit low-characteristic frequencies are more accurate in initial targeting and undergo minimal target sampling. Moreover, similar to their peripheral projections, the central projections of ANFs show a gradient of development along the tonotopic axis, with outgrowth and branching of prospective high-frequency ANFs initiated about two days earlier than those of prospective low-frequency ANFs. The processes of synaptogenesis are similar between high- and low-frequency ANFs, but a higher proportion of low-frequency ANFs form smaller endbulb synaptic endings. These observations reveal the diversity of cellular mechanisms that auditory neurons that will become functionally distinct use to innervate their targets during tonotopic map formation.
Collapse
Affiliation(s)
- Jennifer L Scheffel
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Samiha S Mohammed
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Chloe K Borcean
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Annie J Parng
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Hyun Ju Yoon
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Darwin A Gutierrez
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Wei-Ming Yu
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States.
| |
Collapse
|
20
|
Vachicouras N, Tarabichi O, Kanumuri VV, Tringides CM, Macron J, Fallegger F, Thenaisie Y, Epprecht L, McInturff S, Qureshi AA, Paggi V, Kuklinski MW, Brown MC, Lee DJ, Lacour SP. Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Sci Transl Med 2019; 11:eaax9487. [PMID: 31619546 DOI: 10.1126/scitranslmed.aax9487] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Auditory brainstem implants (ABIs) provide sound awareness to deaf individuals who are not candidates for the cochlear implant. The ABI electrode array rests on the surface of the cochlear nucleus (CN) in the brainstem and delivers multichannel electrical stimulation. The complex anatomy and physiology of the CN, together with poor spatial selectivity of electrical stimulation and inherent stiffness of contemporary multichannel arrays, leads to only modest auditory outcomes among ABI users. Here, we hypothesized that a soft ABI could enhance biomechanical compatibility with the curved CN surface. We developed implantable ABIs that are compatible with surgical handling, conform to the curvature of the CN after placement, and deliver efficient electrical stimulation. The soft ABI array design relies on precise microstructuring of plastic-metal-plastic multilayers to enable mechanical compliance, patterning, and electrical function. We fabricated soft ABIs to the scale of mouse and human CN and validated them in vitro. Experiments in mice demonstrated that these implants reliably evoked auditory neural activity over 1 month in vivo. Evaluation in human cadaveric models confirmed compatibility after insertion using an endoscopic-assisted craniotomy surgery, ease of array positioning, and robustness and reliability of the soft electrodes. This neurotechnology offers an opportunity to treat deafness in patients who are not candidates for the cochlear implant, and the design and manufacturing principles are broadly applicable to implantable soft bioelectronics throughout the central and peripheral nervous system.
Collapse
Affiliation(s)
- Nicolas Vachicouras
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Osama Tarabichi
- Eaton-Peabody Laboratories and Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek V Kanumuri
- Eaton-Peabody Laboratories and Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Christina M Tringides
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Jennifer Macron
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Yohann Thenaisie
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Lorenz Epprecht
- Eaton-Peabody Laboratories and Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen McInturff
- Eaton-Peabody Laboratories and Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Ahad A Qureshi
- Eaton-Peabody Laboratories and Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Martin W Kuklinski
- Eaton-Peabody Laboratories and Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories and Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J Lee
- Eaton-Peabody Laboratories and Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland.
| |
Collapse
|
21
|
Waxholm Space atlas of the rat brain auditory system: Three-dimensional delineations based on structural and diffusion tensor magnetic resonance imaging. Neuroimage 2019; 199:38-56. [DOI: 10.1016/j.neuroimage.2019.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
|
22
|
Cost of auditory sharpness: Model-Based estimate of energy use by auditory brainstem "octopus" neurons. J Theor Biol 2019; 469:137-147. [PMID: 30831173 DOI: 10.1016/j.jtbi.2019.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 11/21/2022]
Abstract
Octopus cells (OCs) of the mammalian auditory brainstem precisely encode timing of fast transient sounds and tone onsets. Sharp temporal fidelity of OCs relies on low resting membrane resistance, which suggests high energy expenditure on maintaining ion gradients across plasma membrane. We provide a model-based estimate of energy consumption in resting and spiking OCs. Our results predict that a resting OC consumes up to 2.6 × 109 ATP molecules (ATPs) per second which remarkably exceeds energy consumption of other CNS neurons. Glucose usage by all OCs in the rat is nevertheless low due to their low number. Major part of the OCs energy use results from the ion mechanisms providing for the low membrane resistance: hyperpolarization-activated mixed cation conductance and low-voltage activated K+-conductance. Spatially ordered synapses-a feature of the OCs allowing them to compensate for asynchrony of the synaptic input-brings only a 12% energy saving to OCs excitability cost. Only 13% of total OC energy used for an AP generation (1.5 × 107 ATPs) is associated with the AP generation in the axon initial segment, 64%-with synaptic currents processing and 23%-with keeping resting potential.
Collapse
|
23
|
Guex AA, Hight AE, Narasimhan S, Vachicouras N, Lee DJ, Lacour SP, Brown MC. Auditory brainstem stimulation with a conformable microfabricated array elicits responses with tonotopically organized components. Hear Res 2019; 377:339-352. [PMID: 30867111 DOI: 10.1016/j.heares.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/11/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Auditory brainstem implants (ABIs) restore hearing to deaf individuals not eligible for cochlear implants. Speech comprehension in ABI users is generally poor compared to that of cochlear implant users, and side effects are common. The poor performance may result from activating broad areas and multiple neuronal populations of the cochlear nucleus, however detailed studies of the responses to surface stimulation of the cochlear nucleus are lacking. A conformable electrode array was microfabricated to fit on the rat's dorsal cochlear nucleus (DCN). It hosts 20 small electrodes (each 100 μm diam.). The array was tested by recording evoked potentials and neural activity along the tonotopic axis of the inferior colliculus (IC). Almost all bipolar electrode pairs elicited responses, in some cases with an even, or relatively constant, pattern of thresholds and supra-threshold measures along the long axis of the array. This pattern suggests that conformable arrays can provide relatively constant excitation along the surface of the DCN and thus might decrease the ABI side effects caused by spread of high current to adjacent structures. We also examined tonotopic patterns of the IC responses. Compared to sound-evoked responses, electrically-evoked response mappings had less tonotopic organization and were broader in width. They became more tonotopic when the evoked activity common to all electrodes and the late phase of response were subtracted out, perhaps because the remaining activity is from tonotopically organized principal cells of the DCN. Responses became less tonotopic when inter-electrode distance was increased from 400 μm to 800 μm but were relatively unaffected by changing to monopolar stimulation. The results illustrate the challenges of using a surface array to present tonotopic cues and improve speech comprehension in humans who use the ABI.
Collapse
Affiliation(s)
- Amélie A Guex
- Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, School of Engineering, Institute of Microengineering & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Ariel Edward Hight
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Shreya Narasimhan
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Nicolas Vachicouras
- Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, School of Engineering, Institute of Microengineering & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Daniel J Lee
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, School of Engineering, Institute of Microengineering & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - M Christian Brown
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Perin P, Voigt FF, Bethge P, Helmchen F, Pizzala R. iDISCO+ for the Study of Neuroimmune Architecture of the Rat Auditory Brainstem. Front Neuroanat 2019; 13:15. [PMID: 30814937 PMCID: PMC6381022 DOI: 10.3389/fnana.2019.00015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
The lower stations of the auditory system display a complex anatomy. The inner ear labyrinth is composed of several interconnecting membranous structures encased in cavities of the temporal bone, and the cerebellopontine angle contains fragile structures such as meningeal folds, the choroid plexus (CP), and highly variable vascular formations. For this reason, most histological studies of the auditory system have either focused on the inner ear or the CNS by physically detaching the temporal bone from the brainstem. However, several studies of neuroimmune interactions have pinpointed the importance of structures such as meninges and CP; in the auditory system, an immune function has also been suggested for inner ear structures such as the endolymphatic duct (ED) and sac. All these structures are thin, fragile, and have complex 3D shapes. In order to study the immune cell populations located on these structures and their relevance to the inner ear and auditory brainstem in health and disease, we obtained a clarified-decalcified preparation of the rat hindbrain still attached to the intact temporal bone. This preparation may be immunolabeled using a clearing protocol (based on iDISCO+) to show location and functional state of immune cells. The observed macrophage distribution suggests the presence of CP-mediated communication pathways between the inner ear and the cochlear nuclei.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zürich, Switzerland.,Center for Neurosciences, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Philipp Bethge
- Brain Research Institute, University of Zurich, Zürich, Switzerland.,Center for Neurosciences, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zürich, Switzerland.,Center for Neurosciences, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Macova I, Pysanenko K, Chumak T, Dvorakova M, Bohuslavova R, Syka J, Fritzsch B, Pavlinkova G. Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain. J Neurosci 2019; 39:984-1004. [PMID: 30541910 PMCID: PMC6363931 DOI: 10.1523/jneurosci.2557-18.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/17/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Hearing depends on extracting frequency, intensity, and temporal properties from sound to generate an auditory map for acoustical signal processing. How physiology intersects with molecular specification to fine tune the developing properties of the auditory system that enable these aspects remains unclear. We made a novel conditional deletion model that eliminates the transcription factor NEUROD1 exclusively in the ear. These mice (both sexes) develop a truncated frequency range with no neuroanatomically recognizable mapping of spiral ganglion neurons onto distinct locations in the cochlea nor a cochleotopic map presenting topographically discrete projections to the cochlear nuclei. The disorganized primary cochleotopic map alters tuning properties of the inferior colliculus units, which display abnormal frequency, intensity, and temporal sound coding. At the behavioral level, animals show alterations in the acoustic startle response, consistent with altered neuroanatomical and physiological properties. We demonstrate that absence of the primary afferent topology during embryonic development leads to dysfunctional tonotopy of the auditory system. Such effects have never been investigated in other sensory systems because of the lack of comparable single gene mutation models.SIGNIFICANCE STATEMENT All sensory systems form a topographical map of neuronal projections from peripheral sensory organs to the brain. Neuronal projections in the auditory pathway are cochleotopically organized, providing a tonotopic map of sound frequencies. Primary sensory maps typically arise by molecular cues, requiring physiological refinements. Past work has demonstrated physiologic plasticity in many senses without ever molecularly undoing the specific mapping of an entire primary sensory projection. We genetically manipulated primary auditory neurons to generate a scrambled cochleotopic projection. Eliminating tonotopic representation to auditory nuclei demonstrates the inability of physiological processes to restore a tonotopic presentation of sound in the midbrain. Our data provide the first insights into the limits of physiology-mediated brainstem plasticity during the development of the auditory system.
Collapse
Affiliation(s)
- Iva Macova
- Institute of Biotechnology CAS, Vestec, Czechia 25250
- Faculty of Science, Charles University, Prague, Czechia 12843
| | | | - Tetyana Chumak
- Institute of Experimental Medicine CAS, Prague, Czechia 14220
| | - Martina Dvorakova
- Institute of Biotechnology CAS, Vestec, Czechia 25250
- Faculty of Science, Charles University, Prague, Czechia 12843
| | | | - Josef Syka
- Institute of Experimental Medicine CAS, Prague, Czechia 14220
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, and
| | | |
Collapse
|
26
|
Shepard AR, Scheffel JL, Yu WM. Relationships between neuronal birthdates and tonotopic positions in the mouse cochlear nucleus. J Comp Neurol 2018; 527:999-1011. [PMID: 30414323 DOI: 10.1002/cne.24575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Tonotopy is a key anatomical feature of the vertebrate auditory system, but little is known about the mechanisms underlying its development. Since date of birth of a neuron correlates with tonotopic position in the cochlea, we investigated if it also correlates with tonotopic position in the cochlear nucleus (CN). In the cochlea, spiral ganglion neurons are organized in a basal to apical progression along the length of the cochlea based on birthdates, with neurons in the base (responding to high-frequency sounds) born early around mouse embryonic day (E) 9.5-10.5, and those in the apex (responding to low-frequency sounds) born late around E12.5-13.5. Using a low-dose thymidine analog incorporation assay, we examine whether CN neurons are arranged in a spatial gradient according to their birthdates. Most CN neurons are born between E10.5 ānd E13.5, with a peak at E12.5. A second wave of neuron birth was observed in the dorsal cochlear nucleus (DCN) beginning on E14.5 and lasts until E18.5. Large excitatory neurons were born in the first wave, and small local circuit neurons were born in the second. No spatial gradient of cell birth was observed in the DCN. In contrast, neurons in the anteroventral cochlear nucleus (AVCN) were found to be arranged in a dorsal to ventral progression according to their birthdates, which are aligned with the tonotopic axis. Most of these AVCN neurons are endbulb-innervated bushy cells. The correlation between birthdate and tonotopic position suggests testable mechanisms for specification of tonotopic position.
Collapse
Affiliation(s)
- Austin R Shepard
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | | | - Wei-Ming Yu
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Yu Y, Hu B, Bao J, Mulvany J, Bielefeld E, Harrison RT, Neton SA, Thirumala P, Chen Y, Lei D, Qiu Z, Zheng Q, Ren J, Perez-Flores MC, Yamoah EN, Salehi P. Otoprotective Effects of Stephania tetrandra S. Moore Herb Isolate against Acoustic Trauma. J Assoc Res Otolaryngol 2018; 19:653-668. [PMID: 30187298 PMCID: PMC6249158 DOI: 10.1007/s10162-018-00690-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/08/2018] [Indexed: 01/10/2023] Open
Abstract
Noise is the most common occupational and environmental hazard, and noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit. Although therapeutics that target the free-radical pathway have shown promise, none of these compounds is currently approved against NIHL by the United States Food and Drug Administration. The present study has demonstrated that tetrandrine (TET), a traditional Chinese medicinal alkaloid and the main chemical isolate of the Stephania tetrandra S. Moore herb, significantly attenuated NIHL in CBA/CaJ mice. TET is known to exert antihypertensive and antiarrhythmic effects through the blocking of calcium channels. Whole-cell patch-clamp recording from adult spiral ganglion neurons showed that TET blocked the transient Ca2+ current in a dose-dependent manner and the half-blocking concentration was 0.6 + 0.1 μM. Consistent with previous findings that modulations of calcium-based signaling pathways have both prophylactic and therapeutic effects against neural trauma, NIHL was significantly diminished by TET administration. Importantly, TET has a long-lasting protective effect after noise exposure (48 weeks) in comparison to 2 weeks after noise exposure. The otoprotective effects of TET were achieved mainly by preventing outer hair cell damage and synapse loss between inner hair cells and spiral ganglion neurons. Thus, our data indicate that TET has great potential in the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Yan Yu
- The First People’s Hospital of Zhangjiagang, 68 W Jiyang Road, Zhangjiagang City, 215600 Jiangsu China
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Bing Hu
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Jianxin Bao
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Jessica Mulvany
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Eric Bielefeld
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Ryan T. Harrison
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Sarah A. Neton
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Partha Thirumala
- The University of Pittsburgh Medical Center, Suite B-400, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Yingying Chen
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Debin Lei
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Ziyu Qiu
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Jihao Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Maria Cristina Perez-Flores
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Pezhman Salehi
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| |
Collapse
|
28
|
Frank MM, Goodrich LV. Talking back: Development of the olivocochlear efferent system. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e324. [PMID: 29944783 PMCID: PMC6185769 DOI: 10.1002/wdev.324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
|
29
|
Central Compensation in Auditory Brainstem after Damaging Noise Exposure. eNeuro 2018; 5:eN-CFN-0250-18. [PMID: 30123822 PMCID: PMC6096756 DOI: 10.1523/eneuro.0250-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Noise exposure is one of the most common causes of hearing loss and peripheral damage to the auditory system. A growing literature suggests that the auditory system can compensate for peripheral loss through increased central neural activity. The current study sought to investigate the link between noise exposure, increases in central gain, synaptic reorganization, and auditory function. All axons of the auditory nerve project to the cochlear nucleus, making it a requisite nucleus for sound detection. As the first synapse in the central auditory system, the cochlear nucleus is well positioned to respond plastically to loss of peripheral input. To investigate noise-induced compensation in the central auditory system, we measured auditory brainstem responses (ABRs) and auditory perception and collected tissue from mice exposed to broadband noise. Noise-exposed mice showed elevated ABR thresholds, reduced ABR wave 1 amplitudes, and spiral ganglion neuron loss. Despite peripheral damage, noise-exposed mice were hyperreactive to loud sounds and showed nearly normal behavioral sound detection thresholds. Ratios of late ABR peaks (2–4) relative to the first ABR peak indicated that brainstem pathways were hyperactive in noise-exposed mice, while anatomical analysis indicated there was an imbalance between expression of excitatory and inhibitory proteins in the ventral cochlear nucleus. The results of the current study suggest that a reorganization of excitation and inhibition in the ventral cochlear nucleus may drive hyperactivity in the central auditory system. This increase in central gain can compensate for peripheral loss to restore some aspects of auditory function.
Collapse
|
30
|
Christov F, Nelson EG, Gluth MB. Human Superior Olivary Nucleus Neuron Populations in Subjects With Normal Hearing and Presbycusis. Ann Otol Rhinol Laryngol 2018; 127:527-535. [PMID: 29862839 DOI: 10.1177/0003489418779405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Normative data on superior olivary nucleus neuron counts derived from human specimens are sparse, and little is known about their coherence with structure and function of the cochlea. The purpose of this study was to quantify the neuron populations of the divisions of the superior olivary nucleus in human subjects with normal hearing and presbycusis and investigate potential relationships between these findings and histopathology in the cochlea and hearing phenotype Methods: Histopathologic examination of temporal bone and brainstem specimens from 13 subjects having normal hearing or presbycusis was undertaken. The following was determined for each: number and density of superior olivary nucleus and cochlear nucleus neurons, inner and outer hair cell counts, spiral ganglion cell counts, and pure tone audiometry. RESULTS The results demonstrate a significant relationship between cells within structures of the cochlear nucleus and the number of neurons of the medial superior olivary nucleus. No relationship between superior olivary nucleus neuron counts/density and cochlear histopathology or hearing phenotype was encountered. CONCLUSION Normative data for superior olivary nucleus neuron populations are further established in the data presented in this study that includes subjects with normal hearing and also presbycusis.
Collapse
Affiliation(s)
- Florian Christov
- 1 University of Chicago Section of Otolaryngology-Head & Neck Surgery, Chicago Illinois, USA, and Universitaetsklinikum Essen, Essen, Germany
| | - Erik G Nelson
- 2 University of Chicago, Bloom Otopathology Laboratory, Chicago, Illinois, USA
| | - Michael B Gluth
- 3 University of Chicago, Section of Otolaryngology-Head & Neck Surgery and Bloom Otopathology Laboratory, Chicago, Illinois, USA
| |
Collapse
|
31
|
Xie R, Manis PB. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input. Front Neural Circuits 2017; 11:77. [PMID: 29093666 PMCID: PMC5651243 DOI: 10.3389/fncir.2017.00077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022] Open
Abstract
Radiate and planar neurons are the two major types of multipolar neurons in the ventral cochlear nucleus (VCN). Both cell types receive monosynaptic excitatory synaptic inputs from the auditory nerve, but have different responses to sound and project to different target regions and cells. Although the intrinsic physiology and synaptic inputs to planar neurons have been previously characterized, the radiate neurons are less common and have not been as well studied. We studied both types of multipolar neurons and characterized their properties including intrinsic excitability, synaptic dynamics of their auditory nerve inputs, as well as their neural firing properties to auditory nerve stimulation. Radiate neurons had a faster member time constant and higher threshold current to fire spikes than planar neurons, but the maximal firing rate is the same for both cell types upon large current injections. Compared to planar neurons, radiate neurons showed spontaneous postsynaptic currents with smaller size, and slower but variable kinetics. Auditory nerve stimulation progressively recruited synaptic inputs that were smaller and slower in radiate neurons, over a broader range of stimulus strength. Synaptic inputs to radiate neurons showed less depression than planar neurons during low rates of repetitive activity, but the synaptic depression at higher rates was similar between two cell types. However, due to the slow kinetics of the synaptic inputs, synaptic transmission in radiate neurons showed prominent temporal summation that contributed to greater synaptic depolarization and a higher firing rate for repetitive auditory nerve stimulation at high rates. Taken together, these results show that radiate multipolar neurons integrate a large number of weak synaptic inputs over a broad dynamic range, and have intrinsic and synaptic properties that are distinct from planar multipolar neurons. These properties enable radiate neurons to generate powerful inhibitory inputs to target neurons during high levels of afferent activity. Such robust inhibition is expected to dynamically modulate the excitability of many cell types in the cochlear nuclear complex.
Collapse
Affiliation(s)
- Ruili Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, United States
| | - Paul B Manis
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
32
|
Prickle1 regulates neurite outgrowth of apical spiral ganglion neurons but not hair cell polarity in the murine cochlea. PLoS One 2017; 12:e0183773. [PMID: 28837644 PMCID: PMC5570324 DOI: 10.1371/journal.pone.0183773] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/10/2017] [Indexed: 01/05/2023] Open
Abstract
In the mammalian organ of Corti (OC), the stereocilia on the apical surface of hair cells (HCs) are uniformly organized in a neural to abneural axis (or medial-laterally). This organization is regulated by planar cell polarity (PCP) signaling. Mutations of PCP genes, such as Vangl2, Dvl1/2, Celsr1, and Fzd3/6, affect the formation of HC orientation to varying degrees. Prickle1 is a PCP signaling gene that belongs to the prickle / espinas / testin family. Prickle1 protein is shown to be asymmetrically localized in the HCs of the OC, and this asymmetric localization is associated with loss of PCP in Smurf mutants, implying that Prickle1 is involved in HC PCP development in the OC. A follow-up study found no PCP polarity defects after loss of Prickle1 (Prickle1-/-) in the cochlea. We show here strong Prickle1 mRNA expression in the spiral ganglion by in situ hybridization and β-Gal staining, and weak expression in the OC by β-Gal staining. Consistent with this limited expression in the OC, cochlear HC PCP is unaffected in either Prickle1C251X/C251X mice or Prickle1f/f; Pax2-cre conditional null mice. Meanwhile, type II afferents of apical spiral ganglion neurons (SGN) innervating outer hair cells (OHC) have unusual neurite growth. In addition, afferents from the apex show unusual collaterals in the cochlear nuclei that overlap with basal turn afferents. Our findings argue against the role of Prickle1 in regulating hair cell polarity in the cochlea. Instead, Prickle1 regulates the polarity-related growth of distal and central processes of apical SGNs.
Collapse
|
33
|
Singla S, Dempsey C, Warren R, Enikolopov AG, Sawtell NB. A cerebellum-like circuit in the auditory system cancels responses to self-generated sounds. Nat Neurosci 2017; 20:943-950. [PMID: 28530663 PMCID: PMC5525154 DOI: 10.1038/nn.4567] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/19/2017] [Indexed: 12/15/2022]
Abstract
The dorsal cochlear nucleus (DCN) integrates auditory nerve input with a
diverse array of sensory and motor signals processed within circuity similar to
the cerebellum. Yet how the DCN contributes to early auditory processing has
been a longstanding puzzle. Using electrophysiological recordings in mice during
licking behavior we show that DCN neurons are largely unaffected by
self-generated sounds while remaining sensitive to external acoustic stimuli.
Recordings in deafened mice, together with neural activity manipulations,
indicate that self-generated sounds are cancelled by non-auditory signals
conveyed by mossy fibers. In addition, DCN neurons exhibit gradual reductions in
their responses to acoustic stimuli that are temporally correlated with licking.
Together, these findings suggest that DCN may act as an adaptive filter for
cancelling self-generated sounds. Adaptive filtering has been established
previously for cerebellum-like sensory structures in fish suggesting a conserved
function for such structures across vertebrates.
Collapse
Affiliation(s)
- Shobhit Singla
- Department of Neuroscience and Kavli Institute for Brain Science, Columbia University Medical Center, New York, New York, USA
| | - Conor Dempsey
- Department of Neuroscience and Kavli Institute for Brain Science, Columbia University Medical Center, New York, New York, USA
| | - Richard Warren
- Department of Neuroscience and Kavli Institute for Brain Science, Columbia University Medical Center, New York, New York, USA
| | - Armen G Enikolopov
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Nathaniel B Sawtell
- Department of Neuroscience and Kavli Institute for Brain Science, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
34
|
Milinkeviciute G, Muniak MA, Ryugo DK. Descending projections from the inferior colliculus to the dorsal cochlear nucleus are excitatory. J Comp Neurol 2016; 525:773-793. [PMID: 27513294 DOI: 10.1002/cne.24095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/10/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
Abstract
Ascending projections of the dorsal cochlear nucleus (DCN) target primarily the contralateral inferior colliculus (IC). In turn, the IC sends bilateral descending projections back to the DCN. We sought to determine the nature of these descending axons in order to infer circuit mechanisms of signal processing at one of the earliest stages of the central auditory pathway. An anterograde tracer was injected in the IC of CBA/Ca mice to reveal terminal characteristics of the descending axons. Retrograde tracer deposits were made in the DCN of CBA/Ca and transgenic GAD67-EGFP mice to investigate the cells giving rise to these projections. A multiunit best frequency was determined for each injection site. Brains were processed by using standard histologic methods for visualization and examined by fluorescent, brightfield, and electron microscopy. Descending projections from the IC were inferred to be excitatory because the cell bodies of retrogradely labeled neurons did not colabel with EGFP expression in neurons of GAD67-EGFP mice. Furthermore, additional experiments yielded no glycinergic or cholinergic positive cells in the IC, and descending projections to the DCN were colabeled with antibodies against VGluT2, a glutamate transporter. Anterogradely labeled endings in the DCN formed asymmetric postsynaptic densities, a feature of excitatory neurotransmission. These descending projections to the DCN from the IC were topographic and suggest a feedback pathway that could underlie a frequency-specific enhancement of some acoustic signals and suppression of others. The involvement of this IC-DCN circuit is especially noteworthy when considering the gating of ascending signal streams for auditory processing. J. Comp. Neurol. 525:773-793, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giedre Milinkeviciute
- Hearing Research, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Michael A Muniak
- Hearing Research, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Department of Otolaryngology, Head, Neck and Skull Base Surgery, St. Vincent's Hospital, Sydney, New South Wales, 2010, Australia
| |
Collapse
|
35
|
Connelly CJ, Ryugo DK, Muniak MA. The effect of progressive hearing loss on the morphology of endbulbs of Held and bushy cells. Hear Res 2016; 343:14-33. [PMID: 27473502 DOI: 10.1016/j.heares.2016.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Studies of congenital and early-onset deafness have demonstrated that an absence of peripheral sound-evoked activity in the auditory nerve causes pathological changes in central auditory structures. The aim of this study was to establish whether progressive acquired hearing loss could lead to similar brain changes that would degrade the precision of signal transmission. We used complementary physiologic hearing tests and microscopic techniques to study the combined effect of both magnitude and duration of hearing loss on one of the first auditory synapses in the brain, the endbulb of Held (EB), along with its bushy cell (BC) target in the anteroventral cochlear nucleus. We compared two hearing mouse strains (CBA/Ca and heterozygous shaker-2+/-) against a model of early-onset progressive hearing loss (DBA/2) and a model of congenital deafness (homozygous shaker-2-/-), examining each strain at 1, 3, and 6 months of age. Furthermore, we employed a frequency model of the mouse cochlear nucleus to constrain our analyses to regions most likely to exhibit graded changes in hearing function with time. No significant differences in the gross morphology of EB or BC structure were observed in 1-month-old animals, indicating uninterrupted development. However, in animals with hearing loss, both EBs and BCs exhibited a graded reduction in size that paralleled the hearing loss, with the most severe pathology seen in deaf 6-month-old shaker-2-/- mice. Ultrastructural pathologies associated with hearing loss were less dramatic: minor changes were observed in terminal size but mitochondrial fraction and postsynaptic densities remained relatively stable. These results indicate that acquired progressive hearing loss can have consequences on auditory brain structure, with prolonged loss leading to greater pathologies. Our findings suggest a role for early intervention with assistive devices in order to mitigate long-term pathology and loss of function.
Collapse
Affiliation(s)
- Catherine J Connelly
- Hearing Research Unit, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - David K Ryugo
- Hearing Research Unit, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Michael A Muniak
- Hearing Research Unit, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
36
|
Lee GW, Zambetta F, Li X, Paolini AG. Utilising reinforcement learning to develop strategies for driving auditory neural implants. J Neural Eng 2016; 13:046027. [PMID: 27432803 DOI: 10.1088/1741-2560/13/4/046027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. APPROACH By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. MAIN RESULTS Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model's function. We show the ability to effectively learn stimulation patterns which mimic the cochlea's ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. SIGNIFICANCE These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.
Collapse
Affiliation(s)
- Geoffrey W Lee
- School of Computer Science and Information Technology, RMIT University, Melbourne 3000, Australia
| | | | | | | |
Collapse
|
37
|
Kurioka T, Lee MY, Heeringa AN, Beyer LA, Swiderski DL, Kanicki AC, Kabara LL, Dolan DF, Shore SE, Raphael Y. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus. Neuroscience 2016; 332:242-57. [PMID: 27403879 DOI: 10.1016/j.neuroscience.2016.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023]
Abstract
In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Otorhinolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Min Young Lee
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amarins N Heeringa
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ariane C Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa L Kabara
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - David F Dolan
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Gessele N, Garcia-Pino E, Omerbašić D, Park TJ, Koch U. Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber). PLoS One 2016; 11:e0146428. [PMID: 26760498 PMCID: PMC4711988 DOI: 10.1371/journal.pone.0146428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.
Collapse
Affiliation(s)
- Nikodemus Gessele
- Neurophysiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Elisabet Garcia-Pino
- Neurophysiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Damir Omerbašić
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thomas J. Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ursula Koch
- Neurophysiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
39
|
A case of dorsolateral pontine infarct: Description of a new vascular alternating syndrome. Neurochirurgie 2015; 62:100-4. [PMID: 26708133 DOI: 10.1016/j.neuchi.2015.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Inferolateral pontine infarcts are well-described lesions of the anterior inferior cerebellar artery territory with a wide variety of clinical presentations. We report the case of isolated unilateral hearing loss and contralateral sensation of coldness due to a dorsolateral lower pontine infarct. CASE DESCRIPTION We describe the case of a 48-year-old female patient who developed isolated selective high-frequency hearing loss on the left side, and contralateral hemibody sensation of coldness. MRI showed a left-sided dorsolateral lower pontine ischemic lesion. A subsequent angiogram revealed the lesion to result from the spontaneous dissection of a long circumferential branch of the basilar artery. CONCLUSION To our knowledge, this is the first reported case of a vascular alternating syndrome consisting of isolated ipsilateral hearing loss and contralateral thermal dysesthesia from a dorsolateral lower pontine infarct. Occlusion of a long perforating branch of the basilar artery and consequent posterolateral lower pontine infarct may result in an alternating syndrome with subtle clinical symptoms. Knowledge of this type of syndrome may direct physicians towards the diagnosis of a dorsolateral lower pontine infarct, despite vague clinical complaints.
Collapse
|
40
|
Francis HW, Papel I, Lina I, Koch W, Tunkel D, Fuchs P, Lin S, Kennedy D, Ruben R, Linthicum F, Marsh B, Best S, Carey J, Lane A, Byrne P, Flint P, Eisele DW. Otolaryngology-head and neck surgery at Johns Hopkins: The first 100 years (1914-2014). Laryngoscope 2015; 125 Suppl 9:S1-35. [PMID: 26297867 PMCID: PMC4696071 DOI: 10.1002/lary.25490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Howard W Francis
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - Ira Papel
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - Ioan Lina
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - Wayne Koch
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - David Tunkel
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - Paul Fuchs
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - Sandra Lin
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - David Kennedy
- the Department of Otolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Ruben
- the Departments ofOtorhinolaryngology-Head and Neck Surgery and Pediatrics, Albert Einstein College of Medicine Montefiore Medical Center, New York, New York
| | - Fred Linthicum
- the Department of Otolaryngology-Head and Neck Surgery, University of California at Los Angeles, Los Angeles, California
| | - Bernard Marsh
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - Simon Best
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - John Carey
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - Andrew Lane
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - Patrick Byrne
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| | - Paul Flint
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health Sciences University, Portland, Oregon, U.S.A
| | - David W Eisele
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
41
|
An Overrepresentation of High Frequencies in the Mouse Inferior Colliculus Supports the Processing of Ultrasonic Vocalizations. PLoS One 2015; 10:e0133251. [PMID: 26244986 PMCID: PMC4526676 DOI: 10.1371/journal.pone.0133251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
Mice are of paramount importance in biomedical research and their vocalizations are a subject of interest for researchers across a wide range of health-related disciplines due to their increasingly important value as a phenotyping tool in models of neural, speech and language disorders. However, the mechanisms underlying the auditory processing of vocalizations in mice are not well understood. The mouse audiogram shows a peak in sensitivity at frequencies between 15-25 kHz, but weaker sensitivity for the higher ultrasonic frequencies at which they typically vocalize. To investigate the auditory processing of vocalizations in mice, we measured evoked potential, single-unit, and multi-unit responses to tones and vocalizations at three different stages along the auditory pathway: the auditory nerve and the cochlear nucleus in the periphery, and the inferior colliculus in the midbrain. Auditory brainstem response measurements suggested stronger responses in the midbrain relative to the periphery for frequencies higher than 32 kHz. This result was confirmed by single- and multi-unit recordings showing that high ultrasonic frequency tones and vocalizations elicited responses from only a small fraction of cells in the periphery, while a much larger fraction of cells responded in the inferior colliculus. These results suggest that the processing of communication calls in mice is supported by a specialization of the auditory system for high frequencies that emerges at central stations of the auditory pathway.
Collapse
|
42
|
Jahan I, Pan N, Elliott KL, Fritzsch B. The quest for restoring hearing: Understanding ear development more completely. Bioessays 2015. [PMID: 26208302 DOI: 10.1002/bies.201500044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurosensory hearing loss is a growing problem of super-aged societies. Cochlear implants can restore some hearing, but rebuilding a lost hearing organ would be superior. Research has discovered many cellular and molecular steps to develop a hearing organ but translating those insights into hearing organ restoration remains unclear. For example, we cannot make various hair cell types and arrange them into their specific patterns surrounded by the right type of supporting cells in the right numbers. Our overview of the topologically highly organized and functionally diversified cellular mosaic of the mammalian hearing organ highlights what is known and unknown about its development. Following this analysis, we suggest critical steps to guide future attempts toward restoration of a functional organ of Corti. We argue that generating mutant mouse lines that mimic human pathology to fine-tune attempts toward long-term functional restoration are needed to go beyond the hope generated by restoring single hair cells in postnatal sensory epithelia.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Ning Pan
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Karen L Elliott
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
43
|
Muniak MA, Ryugo DK. Tonotopic organization of vertical cells in the dorsal cochlear nucleus of the CBA/J mouse. J Comp Neurol 2014; 522:937-49. [PMID: 23982998 DOI: 10.1002/cne.23454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/30/2013] [Accepted: 08/16/2013] [Indexed: 11/12/2022]
Abstract
The systematic and topographic representation of frequency is a first principle of organization throughout the auditory system. The dorsal cochlear nucleus (DCN) receives direct tonotopic projections from the auditory nerve (AN) as well as secondary and descending projections from other sources. Among the recipients of AN input in the DCN are vertical cells (also called tuberculoventral cells), glycinergic interneurons thought to provide on- or near-best-frequency feed-forward inhibition to principal cells in the DCN and various cells in the anteroventral cochlear nucleus (AVCN). Differing lines of physiological and anatomical evidence suggest that vertical cells and their projections are organized with respect to frequency, but this has not been conclusively demonstrated in the intact mammalian brain. To address this issue, we retrogradely labeled vertical cells via physiologically targeted injections in the AVCN of the CBA/J mouse. Results from multiple cases were merged with a normalized 3D template of the cochlear nucleus (Muniak et al. [2013] J. Comp. Neurol. 521:1510-1532) to demonstrate quantitatively that the arrangement of vertical cells is tonotopic and aligned to the innervation pattern of the AN. These results suggest that vertical cells are well positioned for providing immediate, frequency-specific inhibition onto cells of the DCN and AVCN to facilitate spectral processing.
Collapse
Affiliation(s)
- Michael A Muniak
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, 21205; Hearing Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | | |
Collapse
|
44
|
Abstract
The cochlear nuclei are the first central processors of auditory information and provide inputs to all the major brainstem and midbrain auditory nuclei. Although the local circuits within the cochlear nuclei are understood at a cellular level, the spatial patterns of connectivity and the connection strengths in these circuits have been less well characterized. We have applied a novel, quantitative approach to mapping local circuits projecting to cells in the mouse anteroventral cochlear nucleus (AVCN) using laser-scanning photostimulation and glutamate uncaging. The amplitude and kinetics of individual evoked synaptic events were measured to reveal the patterns and strengths of synaptic connections. We found that the two major excitatory projection cell classes, the bushy and T-stellate cells, receive a spatially broad inhibition from D-stellate cells in the AVCN, and a spatially confined inhibition from the tuberculoventral cells of the dorsal cochlear nucleus. Furthermore, T-stellate cells integrate D-stellate inhibition from an area that spans twice the frequency range of that integrated by bushy cells. A subset of both bushy and T-stellate cells receives inhibition from an unidentified cell population at the dorsal-medial boundary of the AVCN. A smaller subset of cells receives local excitation from within the AVCN. Our results show that inhibitory circuits can have target-specific patterns of spatial convergence, synaptic strength, and receptor kinetics, resulting in different spectral and temporal processing capabilities.
Collapse
|
45
|
Brown MC. Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons. J Neurophysiol 2014; 111:2177-86. [PMID: 24598524 DOI: 10.1152/jn.00045.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Medial olivocochlear (MOC) neurons are efferent neurons that project axons from the brain to the cochlea. Their action on outer hair cells reduces the gain of the "cochlear amplifier," which shifts the dynamic range of hearing and reduces the effects of noise masking. The MOC effects in one ear can be elicited by sound in that ipsilateral ear or by sound in the contralateral ear. To study how MOC neurons project onto the cochlea to mediate these effects, single-unit labeling in guinea pigs was used to study the mapping of MOC neurons for neurons responsive to ipsilateral sound vs. those responsive to contralateral sound. MOC neurons were sharply tuned to sound frequency with a well-defined characteristic frequency (CF). However, their labeled termination spans in the organ of Corti ranged from narrow to broad, innervating between 14 and 69 outer hair cells per axon in a "patchy" pattern. For units responsive to ipsilateral sound, the midpoint of innervation was mapped according to CF in a relationship generally similar to, but with more variability than, that of auditory-nerve fibers. Thus, based on CF mappings, most of the MOC terminations miss outer hair cells involved in the cochlear amplifier for their CF, which are located more basally. Compared with ipsilaterally responsive neurons, contralaterally responsive neurons had an apical offset in termination and a larger span of innervation (an average of 10.41% cochlear distance), suggesting that when contralateral sound activates the MOC reflex, the actions are different than those for ipsilateral sound.
Collapse
Affiliation(s)
- M Christian Brown
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Verma RU, Guex AA, Hancock KE, Durakovic N, McKay CM, Slama MCC, Brown MC, Lee DJ. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus. Hear Res 2014; 310:69-75. [PMID: 24508368 DOI: 10.1016/j.heares.2014.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/11/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach.
Collapse
Affiliation(s)
- Rohit U Verma
- School of Medicine, University of Manchester, UK; Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Amélie A Guex
- Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA
| | - Nedim Durakovic
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA
| | - Colette M McKay
- School of Psychological Sciences, University of Manchester, UK; The Bionics Institute of Australia, Melbourne, Australia
| | - Michaël C C Slama
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel J Lee
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
47
|
Tang X, Zhu X, Ding B, Walton JP, Frisina RD, Su J. Age-related hearing loss: GABA, nicotinic acetylcholine and NMDA receptor expression changes in spiral ganglion neurons of the mouse. Neuroscience 2013; 259:184-93. [PMID: 24316061 DOI: 10.1016/j.neuroscience.2013.11.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/13/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Age-related hearing loss - presbycusis - is the number one communication disorder and most prevalent neurodegenerative condition of our aged population. Although speech understanding in background noise is quite difficult for those with presbycusis, there are currently no biomedical treatments to prevent, delay or reverse this condition. A better understanding of the cochlear mechanisms underlying presbycusis will help lead to future treatments. Objectives of the present study were to investigate GABAA receptor subunit α1, nicotinic acetylcholine (nACh) receptor subunit β2, and N-methyl-d-aspartate (NMDA) receptor subunit NR1 mRNA and protein expression changes in spiral ganglion neurons (SGN) of the CBA/CaJ mouse cochlea, that occur in age-related hearing loss, utilizing quantitative immunohistochemistry and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) techniques. We found that auditory brainstem response (ABR) thresholds shifted over 40dB from 3 to 48kHz in old mice compared to young adults. DPOAE thresholds also shifted over 40dB from 6 to 49kHz in old mice, and their amplitudes were significantly decreased or absent in the same frequency range. SGN density decreased with age in basal, middle and apical turns, and SGN density of the basal turn declined the most. A positive correlation was observed between SGN density and ABR wave 1amplitude. mRNA and protein expression of GABAAR α1 and AChR β2 decreased with age in SGNs in the old mouse cochlea. mRNA and protein expression of NMDAR NR1 increased with age in SGNs of the old mice. These findings demonstrate that there are functionally-relevant age-related changes of GABAAR, nAChR, NMDAR expression in CBA mouse SGNs reflecting their degeneration, which may be related to functional changes in cochlear synaptic transmission with age, suggesting biological mechanisms for peripheral age-related hearing loss.
Collapse
Affiliation(s)
- X Tang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China; Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - X Zhu
- Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - B Ding
- Department Communication Sciences & Disorders, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - J P Walton
- Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Department Communication Sciences & Disorders, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - R D Frisina
- Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Department Communication Sciences & Disorders, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - J Su
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
48
|
Roos MJ, May BJ. Classification of unit types in the anteroventral cochlear nucleus of laboratory mice. Hear Res 2012; 289:13-26. [PMID: 22579638 DOI: 10.1016/j.heares.2012.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
This report introduces a system for the objective physiological classification of single-unit activity in the anteroventral cochlear nucleus (AVCN) of anesthetized CBA/129 and CBA/CaJ mice. As in previous studies, the decision criteria are based on the temporal properties of responses to short tone bursts that are visualized in the form of peri-stimulus time histograms (PSTHs). Individual unit types are defined by the statistical distribution of quantifiable metrics that relate to the onset latency, regularity, and adaptation of sound-driven discharge rates. Variations of these properties reflect the unique synaptic organizations and intrinsic membrane properties that dictate the selective tuning of sound coding in the AVCN. When these metrics are applied to the mouse AVCN, responses to best frequency (BF) tones reproduce the major PSTH patterns that have been previously demonstrated in other mammalian species. The consistency of response types in two genetically diverse strains of laboratory mice suggests that the present classification system is appropriate for additional strains with normal peripheral function. The general agreement of present findings to established classifications validates laboratory mice as an adequate model for general principles of mammalian sound coding. Nevertheless, important differences are noted for the reliability of specialized endbulb transmission within the AVCN, suggesting less secure temporal coding in this high-frequency species.
Collapse
Affiliation(s)
- Matthew J Roos
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|