1
|
Liu Q, Huang B, Guiberson NGL, Chen S, Zhu D, Ma G, Ma XM, Crittenden JR, Yu J, Graybiel AM, Dawson TM, Dawson VL, Xiong Y. CalDAG-GEFI acts as a guanine nucleotide exchange factor for LRRK2 to regulate LRRK2 function and neurodegeneration. SCIENCE ADVANCES 2024; 10:eadn5417. [PMID: 39576856 PMCID: PMC11584015 DOI: 10.1126/sciadv.adn5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). LRRK2 protein contains two enzymatic domains: a GTPase (Roc-COR) and a kinase domain. Disease-causing mutations are found in both domains. Now, studies have focused largely on LRRK2 kinase activity, while attention to its GTPase function is limited. LRRK2 is a guanine nucleotide-binding protein, but the mechanism of direct regulation of its GTPase activity remains unclear and its physiological GEF is not known. Here, we identified CalDAG-GEFI (CDGI) as a physiological GEF for LRRK2. CDGI interacts with LRRK2 and increases its GDP to GTP exchange activity. CDGI modulates LRRK2 cellular functions and LRRK2-induced neurodegeneration in both LRRK2 Drosophila and mouse models. Together, this study identified the physiological GEF for LRRK2 and provides strong evidence that LRRK2 GTPase is regulated by GAPs and GEFs. The LRRK2 GTPase, GAP, or GEF activities have the potential to serve as therapeutic targets, which is distinct from the direct LRRK2 kinase inhibition.
Collapse
Affiliation(s)
- Qinfang Liu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Bingxu Huang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Noah Guy Lewis Guiberson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shifan Chen
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Dong Zhu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gang Ma
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
2
|
Gaertner Z, Oram C, Schneeweis A, Schonfeld E, Bolduc C, Chen C, Dombeck D, Parisiadou L, Poulin JF, Awatramani R. Molecular and spatial transcriptomic classification of midbrain dopamine neurons and their alterations in a LRRK2 G2019S model of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597807. [PMID: 38895448 PMCID: PMC11185743 DOI: 10.1101/2024.06.06.597807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Several studies have revealed that midbrain dopamine (DA) neurons, even within a single neuroanatomical area, display heterogeneous properties. In parallel, studies using single cell profiling techniques have begun to cluster DA neurons into subtypes based on their molecular signatures. Recent work has shown that molecularly defined DA subtypes within the substantia nigra (SNc) display distinctive anatomic and functional properties, and differential vulnerability in Parkinson's disease (PD). Based on these provocative results, a granular understanding of these putative subtypes and their alterations in PD models, is imperative. We developed an optimized pipeline for single-nuclear RNA sequencing (snRNA-seq) and generated a high-resolution hierarchically organized map revealing 20 molecularly distinct DA neuron subtypes belonging to three main families. We integrated this data with spatial MERFISH technology to map, with high definition, the location of these subtypes in the mouse midbrain, revealing heterogeneity even within neuroanatomical sub-structures. Finally, we demonstrate that in the preclinical LRRK2G2019S knock-in mouse model of PD, subtype organization and proportions are preserved. Transcriptional alterations occur in many subtypes including those localized to the ventral tier SNc, where differential expression is observed in synaptic pathways, which might account for previously described DA release deficits in this model. Our work provides an advancement of current taxonomic schemes of the mouse midbrain DA neuron subtypes, a high-resolution view of their spatial locations, and their alterations in a prodromal mouse model of PD.
Collapse
Affiliation(s)
- Zachary Gaertner
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cameron Oram
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Amanda Schneeweis
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Elan Schonfeld
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
| | - Cyril Bolduc
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Chuyu Chen
- Northwestern University Feinberg School of Medicine, Dept of Pharmacology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Dombeck
- Northwestern University, Dept of Neurobiology, Evanston, IL 60201
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Loukia Parisiadou
- Northwestern University Feinberg School of Medicine, Dept of Pharmacology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jean Francois Poulin
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Rajeshwar Awatramani
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
3
|
Filippini A, Cannone E, Mazziotti V, Carini G, Mutti V, Ravelli C, Gennarelli M, Schiavone M, Russo I. Leucine-Rich Repeat Kinase-2 Controls the Differentiation and Maturation of Oligodendrocytes in Mice and Zebrafish. Biomolecules 2024; 14:870. [PMID: 39062584 PMCID: PMC11274935 DOI: 10.3390/biom14070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Leucine-rich repeat kinase-2 (LRRK2), a gene mutated in familial and sporadic Parkinson's disease (PD), controls multiple cellular processes important for GLIA physiology. Interestingly, emerging studies report that LRRK2 is highly expressed in oligodendrocyte precursor cells (OPCs) compared to the pathophysiology of other brain cells and oligodendrocytes (OLs) in PD. Altogether, these observations suggest crucial function(s) of LRRK2 in OPCs/Ols, which would be interesting to explore. In this study, we investigated the role of LRRK2 in OLs. We showed that LRRK2 knock-out (KO) OPC cultures displayed defects in the transition of OPCs into OLs, suggesting a role of LRRK2 in OL differentiation. Consistently, we found an alteration of myelin basic protein (MBP) striosomes in LRRK2 KO mouse brains and reduced levels of oligodendrocyte transcription factor 2 (Olig2) and Mbp in olig2:EGFP and mbp:RFP transgenic zebrafish embryos injected with lrrk2 morpholino (MO). Moreover, lrrk2 knock-down zebrafish exhibited a lower amount of nerve growth factor (Ngf) compared to control embryos, which represents a potent regulator of oligodendrogenesis and myelination. Overall, our findings indicate that LRRK2 controls OL differentiation, affecting the number of mature OLs.
Collapse
Affiliation(s)
- Alice Filippini
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Elena Cannone
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Valentina Mazziotti
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Giulia Carini
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Veronica Mutti
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Massimo Gennarelli
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Marco Schiavone
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Isabella Russo
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| |
Collapse
|
4
|
Fang P, Yu LW, Espey H, Agirman G, Kazmi SA, Li K, Deng Y, Lee J, Hrncir H, Romero-Lopez A, Arnold AP, Hsiao EY. Sex-dependent interactions between prodromal intestinal inflammation and LRRK2 G2019S in mice promote endophenotypes of Parkinson's disease. Commun Biol 2024; 7:570. [PMID: 38750146 PMCID: PMC11096388 DOI: 10.1038/s42003-024-06256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Gastrointestinal (GI) disruptions and inflammatory bowel disease (IBD) are commonly associated with Parkinson's disease (PD), but how they may impact risk for PD remains poorly understood. Herein, we provide evidence that prodromal intestinal inflammation expedites and exacerbates PD endophenotypes in rodent carriers of the human PD risk allele LRRK2 G2019S in a sex-dependent manner. Chronic intestinal damage in genetically predisposed male mice promotes α-synuclein aggregation in the substantia nigra, loss of dopaminergic neurons and motor impairment. This male bias is preserved in gonadectomized males, and similarly conferred by sex chromosomal complement in gonadal females expressing human LRRK2 G2019S. The early onset and heightened severity of neuropathological and behavioral outcomes in male LRRK2 G2019S mice is preceded by increases in α-synuclein in the colon, α-synuclein-positive macrophages in the colonic lamina propria, and loads of phosphorylated α-synuclein within microglia in the substantia nigra. Taken together, these data reveal that prodromal intestinal inflammation promotes the pathogenesis of PD endophenotypes in male carriers of LRRK2 G2019S, through mechanisms that depend on genotypic sex and involve early accumulation of α-synuclein in myeloid cells within the gut.
Collapse
Affiliation(s)
- Ping Fang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Lewis W Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hannah Espey
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gulistan Agirman
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeen A Kazmi
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kai Li
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yongning Deng
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jamie Lee
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Haley Hrncir
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Arlene Romero-Lopez
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Khandelwal N, Kulkarni A, Ahmed NI, Harper M, Konopka G, Gibson JR. FOXP1 regulates the development of excitatory synaptic inputs onto striatal neurons and induces phenotypic reversal with reinstatement. SCIENCE ADVANCES 2024; 10:eadm7039. [PMID: 38701209 PMCID: PMC11068015 DOI: 10.1126/sciadv.adm7039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Long-range glutamatergic inputs originating from the cortex and thalamus are indispensable for striatal development, providing the foundation for motor and cognitive functions. Despite their significance, transcriptional regulation governing these inputs remains largely unknown. We investigated the role of a transcription factor encoded by a high-risk autism-associated gene, FOXP1, in sculpting glutamatergic inputs onto spiny projection neurons (SPNs) within the striatum. We find a neuron subtype-specific role of FOXP1 in strengthening and maturing glutamatergic inputs onto dopamine receptor 2-expressing SPNs (D2 SPNs). We also find that FOXP1 promotes synaptically driven excitability in these neurons. Using single-nuclei RNA sequencing, we identify candidate genes that mediate these cell-autonomous processes through postnatal FOXP1 function at the post-synapse. Last, we demonstrate that postnatal FOXP1 reinstatement rescues electrophysiological deficits, cell type-specific gene expression changes, and behavioral phenotypes. Together, this study enhances our understanding of striatal circuit development and provides proof of concept for a therapeutic approach for FOXP1 syndrome and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Newaz I. Ahmed
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew Harper
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | |
Collapse
|
6
|
da Silva D, Matsui A, Murray EM, Mamais A, Authement ME, Shin JH, Shaw M, Ron D, Cookson MR, Alvarez VA. Leucine-rich repeat kinase 2 limits dopamine D1 receptor signaling in striatum and biases against heavy persistent alcohol drinking. Neuropsychopharmacology 2024; 49:824-836. [PMID: 37684522 PMCID: PMC10948780 DOI: 10.1038/s41386-023-01731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The transition from hedonic alcohol drinking to problematic drinking is a hallmark of alcohol use disorder that occurs only in a subset of drinkers. This transition requires long-lasting changes in the synaptic drive and the activity of striatal neurons expressing dopamine D1 receptor (D1R). The molecular mechanisms that generate vulnerability in some individuals to undergo the transition are less understood. Here, we report that the Parkinson's-related protein leucine-rich repeat kinase 2 (LRRK2) modulates striatal D1R function to affect the behavioral response to alcohol and the likelihood that mice transition to heavy, persistent alcohol drinking. Constitutive deletion of the Lrrk2 gene specifically from D1R-expressing neurons potentiated D1R signaling at the cellular and synaptic level and enhanced alcohol-related behaviors and drinking. Mice with cell-specific deletion of Lrrk2 were more prone to heavy alcohol drinking, and consumption was insensitive to punishment. These findings identify a potential novel role for LRRK2 function in the striatum in promoting resilience against heavy and persistent alcohol drinking.
Collapse
Affiliation(s)
- Daniel da Silva
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Erin M Murray
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Michael E Authement
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Jung Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Marlisa Shaw
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
- Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD, 20892, USA.
- NIMH, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
7
|
Chen Z, Chen J, Mori W, Yi Y, Rong J, Li Y, Leon ERC, Shao T, Song Z, Yamasaki T, Ishii H, Zhang Y, Kokufuta T, Hu K, Xie L, Josephson L, Van R, Shao Y, Factor S, Zhang MR, Liang SH. Preclinical Evaluation of Novel Positron Emission Tomography (PET) Probes for Imaging Leucine-Rich Repeat Kinase 2 (LRRK2). J Med Chem 2024; 67:2559-2569. [PMID: 38305157 PMCID: PMC10895652 DOI: 10.1021/acs.jmedchem.3c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Parkinson's disease (PD) is one of the most highly debilitating neurodegenerative disorders, which affects millions of people worldwide, and leucine-rich repeat kinase 2 (LRRK2) mutations have been involved in the pathogenesis of PD. Developing a potent LRRK2 positron emission tomography (PET) tracer would allow for in vivo visualization of LRRK2 distribution and expression in PD patients. In this work, we present the facile synthesis of two potent and selective LRRK2 radioligands [11C]3 ([11C]PF-06447475) and [18F]4 ([18F]PF-06455943). Both radioligands exhibited favorable brain uptake and specific bindings in rodent autoradiography and PET imaging studies. More importantly, [18F]4 demonstrated significantly higher brain uptake in the transgenic LRRK2-G2019S mutant and lipopolysaccharide (LPS)-injected mouse models. This work may serve as a roadmap for the future design of potent LRRK2 PET tracers.
Collapse
Affiliation(s)
- Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Jiahui Chen
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Wakana Mori
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yongjia Yi
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jian Rong
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Yinlong Li
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Erick R. Calderon Leon
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Tuo Shao
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Zhendong Song
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
| | - Tomoteru Yamasaki
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hideki Ishii
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tomomi Kokufuta
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kuan Hu
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lee Josephson
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Richard Van
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Stewart Factor
- Jean and
Paul Amos Parkinson’s Disease and Movement Disorder Program,
Department of Neurology, Emory University
School of Medicine, Atlanta, Georgia 30322, United States
| | - Ming-Rong Zhang
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Steven H. Liang
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| |
Collapse
|
8
|
Bailey HM, Cookson MR. How Parkinson's Disease-Linked LRRK2 Mutations Affect Different CNS Cell Types. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1331-1352. [PMID: 38905056 PMCID: PMC11492021 DOI: 10.3233/jpd-230432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/23/2024]
Abstract
LRRK2 is a relatively common genetic risk factor for Parkinson's disease (PD), with six coding variants known to cause familial PD. Non-coding variation at the same locus is also associated with sporadic PD. LRRK2 plays a role in many different intracellular signaling cascades including those involved in endolysosomal function, cytoskeletal dynamics, and Ca2+ homeostasis. PD-causing LRRK2 mutations cause hyperactive LRRK2 kinase activity, resulting in altered cellular signaling. Importantly, LRRK2 is lowly expressed in neurons and prominently expressed in non-neuronal cells in the brain. In this review, we will summarize recent and novel findings on the effects of PD-causing LRRK2 mutations in different nervous system cell types. This review will also provide novel insight into future areas of research at the intersection of LRRK2 cell biology, cell type specificity, and PD.
Collapse
Affiliation(s)
- Hannah M. Bailey
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Singh V, Menard MA, Serrano GE, Beach TG, Zhao HT, Riley-DiPaolo A, Subrahmanian N, LaVoie MJ, Volpicelli-Daley LA. Cellular and subcellular localization of Rab10 and phospho-T73 Rab10 in the mouse and human brain. Acta Neuropathol Commun 2023; 11:201. [PMID: 38110990 PMCID: PMC10726543 DOI: 10.1186/s40478-023-01704-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
Autosomal dominant pathogenic mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). The most common mutation, G2019S-LRRK2, increases the kinase activity of LRRK2 causing hyper-phosphorylation of its substrates. One of these substrates, Rab10, is phosphorylated at a conserved Thr73 residue (pRab10), and is one of the most abundant LRRK2 Rab GTPases expressed in various tissues. The involvement of Rab10 in neurodegenerative disease, including both PD and Alzheimer's disease makes pinpointing the cellular and subcellular localization of Rab10 and pRab10 in the brain an important step in understanding its functional role, and how post-translational modifications could impact function. To establish the specificity of antibodies to the phosphorylated form of Rab10 (pRab10), Rab10 specific antisense oligonucleotides were intraventricularly injected into the brains of mice. Further, Rab10 knock out induced neurons, differentiated from human induced pluripotent stem cells were used to test the pRab10 antibody specificity. To amplify the weak immunofluorescence signal of pRab10, tyramide signal amplification was utilized. Rab10 and pRab10 were expressed in the cortex, striatum and the substantia nigra pars compacta. Immunofluorescence for pRab10 was increased in G2019S-LRRK2 knockin mice. Neurons, astrocytes, microglia and oligodendrocytes all showed Rab10 and pRab10 expression. While Rab10 colocalized with endoplasmic reticulum, lysosome and trans-Golgi network markers, pRab10 did not localize to these organelles. However, pRab10, did overlap with markers of the presynaptic terminal in both mouse and human cortex, including α-synuclein. Results from this study suggest Rab10 and pRab10 are expressed in all brain areas and cell types tested in this study, but pRab10 is enriched at the presynaptic terminal. As Rab10 is a LRRK2 kinase substrate, increased kinase activity of G2019S-LRRK2 in PD may affect Rab10 mediated membrane trafficking at the presynaptic terminal in neurons in disease.
Collapse
Affiliation(s)
- Vijay Singh
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marissa A Menard
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Geidy E Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | - Alexis Riley-DiPaolo
- Department of Neuroscience at the University of Florida, Gainesville, FL, 32611, USA
| | - Nitya Subrahmanian
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
10
|
Dues DJ, Ma Y, Nguyen APT, Offerman AV, Beddows I, Moore DJ. Formation of templated inclusions in a forebrain α-synuclein mouse model is independent of LRRK2. Neurobiol Dis 2023; 188:S0969-9961(23)00354-6. [PMID: 38435455 PMCID: PMC10906965 DOI: 10.1016/j.nbd.2023.106338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 03/05/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). LRRK2 mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest. However, whether and how LRRK2 might influence the accumulation of Lewy-related pathology remains poorly understood. Through stereotactic injection of mouse α-synuclein pre-formed fibrils (PFF), we modeled the spread of Lewy-related pathology within forebrain regions where LRRK2 is most highly expressed. The impact of LRRK2 genotype on the formation of α-synuclein inclusions was evaluated at 1-month post-injection. Neither deletion of LRRK2 nor G2019S LRRK2 knockin appreciably altered the burden of α-synuclein pathology at this early timepoint. These observations fail to provide support for a robust pathophysiologic interaction between LRRK2 and α-synuclein in the forebrain in vivo. There was, however, a modest reduction in microglial activation induced by PFF delivery in the hippocampus of LRRK2 knockout mice, suggesting that LRRK2 may contribute to α-synuclein-induced neuroinflammation. Collectively, our data indicate that the pathological accumulation of α-synuclein in the mouse forebrain is largely independent of LRRK2.
Collapse
Affiliation(s)
- Dylan J. Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - An Phu Tran Nguyen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Alina V. Offerman
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Ian Beddows
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J. Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
11
|
Khandelwal N, Kulkarni A, Ahmed NI, Harper M, Konopka G, Gibson J. FOXP1 regulates the development of excitatory synaptic inputs onto striatal neurons and induces phenotypic reversal with reinstatement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563675. [PMID: 37961477 PMCID: PMC10634768 DOI: 10.1101/2023.10.23.563675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Long-range glutamatergic inputs from the cortex and thalamus are critical for motor and cognitive processing in the striatum. Transcription factors that orchestrate the development of these inputs are largely unknown. We investigated the role of a transcription factor and high-risk autism-associated gene, FOXP1, in the development of glutamatergic inputs onto spiny projection neurons (SPNs) in the striatum. We find that FOXP1 robustly drives the strengthening and maturation of glutamatergic input onto dopamine receptor 2-expressing SPNs (D2 SPNs) but has a comparatively milder effect on D1 SPNs. This process is cell-autonomous and is likely mediated through postnatal FOXP1 function at the postsynapse. We identified postsynaptic FOXP1-regulated transcripts as potential candidates for mediating these effects. Postnatal reinstatement of FOXP1 rescues electrophysiological deficits, reverses gene expression alterations resulting from embryonic deletion, and mitigates behavioral phenotypes. These results provide support for a possible therapeutic approach for individuals with FOXP1 syndrome.
Collapse
|
12
|
Dues DJ, Ma Y, Nguyen APT, Offerman AV, Beddows I, Moore DJ. Formation of templated inclusions in a forebrain α-synuclein mouse model is independent of LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553965. [PMID: 37645723 PMCID: PMC10462117 DOI: 10.1101/2023.08.19.553965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). LRRK2 mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest. However, whether and how LRRK2 might influence the accumulation of Lewy-related pathology remains poorly understood. Through stereotactic injection of mouse α-synuclein pre-formed fibrils (PFF), we modeled the spread of Lewy-related pathology within forebrain regions where LRRK2 is most highly expressed. The impact of LRRK2 genotype on the formation of α-synuclein inclusions was evaluated at 1-month post-injection. Neither deletion of LRRK2 nor G2019S LRRK2 knockin appreciably altered the burden of α-synuclein pathology at this early timepoint. These observations fail to provide support for a robust pathophysiologic interaction between LRRK2 and α-synuclein in the forebrain in vivo. There was, however, a modest reduction in microglial activation induced by PFF delivery in the hippocampus of LRRK2 knockout mice, suggesting that LRRK2 may contribute to α-synuclein-induced neuroinflammation. Collectively, our data indicate that the pathological accumulation of α-synuclein in the mouse forebrain is largely independent of LRRK2.
Collapse
Affiliation(s)
- Dylan J. Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - An Phu Tran Nguyen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Alina V. Offerman
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Ian Beddows
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Darren J. Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
13
|
Zhang J, Li J, You P, Jiang H, Liu Y, Han D, Liu M, Yu H, Su B. Mice with the Rab10 T73V mutation exhibit anxiety-like behavior and alteration of neuronal functions in the striatum. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166641. [PMID: 36669576 DOI: 10.1016/j.bbadis.2023.166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Hyperphosphorylated Rab10 has been implicated in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. However, the neurophysiological function of the evolutionarily conserved Thr73 phosphorylation of Rab10 remains poorly understood. Here, we generated a novel mouse model expressing the non-phosphorylatable T73V mutation of Rab10 and performed a comprehensive series of neurological analyses, including behavioral tests, synaptic evaluations, neuronal and glial staining, assessments of neurite arborization and spine morphogenesis. The Rab10 T73V mutantmice exhibited a characteristic anxiety-like phenotype with other behavioral modules relatively unaffected. Moreover, Rab10 T73V mutant mice displayed striatum-specific synaptic dysfunction, as indicated by aberrantly increased expression levels of synaptic proteins and impaired frequencies of miniature inhibitory postsynaptic currents. The genetic deletion of Rab10 phosphorylation enhanced neurite arborization and accelerated spine maturation in striatal medium spiny neurons. Our findings emphasize the specific role of intrinsic phospho-Rab10 in the regulation of the striatal circuitry and its related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jie Li
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Pan You
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haitian Jiang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yanjun Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Daobin Han
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Meiqi Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
14
|
Simons E, Fleming SM. Role of rodent models in advancing precision medicine for Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:3-16. [PMID: 36803818 DOI: 10.1016/b978-0-323-85555-6.00002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
With a current lack of disease-modifying treatments, an initiative toward implementing a precision medicine approach for treating Parkinson's disease (PD) has emerged. However, challenges remain in how to define and apply precision medicine in PD. To accomplish the goal of optimally targeted and timed treatment for each patient, preclinical research in a diverse population of rodent models will continue to be an essential part of the translational path to identify novel biomarkers for patient diagnosis and subgrouping, understand PD disease mechanisms, identify new therapeutic targets, and screen therapeutics prior to clinical testing. This review highlights the most common rodent models of PD and discusses how these models can contribute to defining and implementing precision medicine for the treatment of PD.
Collapse
Affiliation(s)
- Emily Simons
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.
| |
Collapse
|
15
|
Chen Z, Chen J, Chen L, Yoo CH, Rong J, Fu H, Shao T, Coffman K, Steyn SJ, Davenport AT, Daunais JB, Haider A, Collier L, Josephson L, Wey HY, Zhang L, Liang SH. Imaging Leucine-Rich Repeat Kinase 2 In Vivo with 18F-Labeled Positron Emission Tomography Ligand. J Med Chem 2023; 66:1712-1724. [PMID: 36256881 DOI: 10.1021/acs.jmedchem.2c00551] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been demonstrated to be closely involved in the pathogenesis of Parkinson's disease (PD), and pharmacological blockade of LRRK2 represents a new opportunity for therapeutical treatment of PD and other related neurodegenerative conditions. The development of an LRRK2-specific positron emission tomography (PET) ligand would enable a target occupancy study in vivo and greatly facilitate LRRK2 drug discovery and clinical translation as well as provide a molecular imaging tool for studying physiopathological changes in neurodegenerative diseases. In this work, we present the design and development of compound 8 (PF-06455943) as a promising PET radioligand through a PET-specific structure-activity relationship optimization, followed by comprehensive pharmacology and ADME/neuroPK characterization. Following an efficient 18F-labeling method, we have confirmed high brain penetration of [18F]8 in nonhuman primates (NHPs) and validated its specific binding in vitro by autoradiography in postmortem NHP brain tissues and in vivo by PET imaging studies.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037Jiangsu, China
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Laigao Chen
- Digital Medicine & Translational Imaging, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts02139, United States
| | - Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts02114, United States
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Karen Coffman
- Internal Medicine Medicinal Chemistry, Pfizer Inc., Groton, Connecticut06340, United States
| | - Stefanus J Steyn
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts02139, United States
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina27157, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina27157, United States
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Lee Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts02114, United States
| | - Lei Zhang
- Medicine Design, Internal Medicine Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts02139, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| |
Collapse
|
16
|
Hussein A, Guevara CA, Valle PD, Gupta S, Benson DL, Huntley GW. Non-Motor Symptoms of Parkinson's Disease: The Neurobiology of Early Psychiatric and Cognitive Dysfunction. Neuroscientist 2023; 29:97-116. [PMID: 33966533 PMCID: PMC9338765 DOI: 10.1177/10738584211011979] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that has been recognized for over 200 years by its clinically dominant motor system impairment. There are prominent non-motor symptoms as well, and among these, psychiatric symptoms of depression and anxiety and cognitive impairment are common and can appear earlier than motor symptoms. Although the neurobiology underlying these particular PD-associated non-motor symptoms is not completely understood, the identification of PARK genes that contribute to hereditary and sporadic PD has enabled genetic models in animals that, in turn, have fostered ever deepening analyses of cells, synapses, circuits, and behaviors relevant to non-motor psychiatric and cognitive symptoms of human PD. Moreover, while it has long been recognized that inflammation is a prominent component of PD, recent studies demonstrate that brain-immune signaling crosstalk has significant modulatory effects on brain cell and synaptic function in the context of psychiatric symptoms. This review provides a focused update on such progress in understanding the neurobiology of PD-related non-motor psychiatric and cognitive symptoms.
Collapse
Affiliation(s)
- Ayan Hussein
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Del Valle
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swati Gupta
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deanna L. Benson
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George W. Huntley
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Zhao Y, Vavouraki N, Lovering RC, Escott-Price V, Harvey K, Lewis PA, Manzoni C. Tissue specific LRRK2 interactomes reveal a distinct striatal functional unit. PLoS Comput Biol 2023; 19:e1010847. [PMID: 36716346 PMCID: PMC9910798 DOI: 10.1371/journal.pcbi.1010847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/09/2023] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease. Despite substantial research efforts, the physiological and pathological role of this multidomain protein remains poorly defined. In this study, we used a systematic approach to construct the general protein-protein interactome around LRRK2, which was then evaluated taking into consideration the differential expression patterns and the co-expression behaviours of the LRRK2 interactors in 15 different healthy tissue types. The LRRK2 interactors exhibited distinct expression features in the brain as compared to the peripheral tissues analysed. Moreover, a high degree of similarity was found for the LRRK2 interactors in putamen, caudate and nucleus accumbens, thus defining a potential LRRK2 functional cluster within the striatum. The general LRRK2 interactome paired with the expression profiles of its members constitutes a powerful tool to generate tissue-specific LRRK2 interactomes. We exemplified the generation of the tissue-specific LRRK2 interactomes and explored the functions highlighted by the "core LRRK2 interactors" in the striatum in comparison with the cerebellum. Finally, we illustrated how the LRRK2 general interactome reported in this manuscript paired with the expression profiles can be used to trace the relationship between LRRK2 and specific interactors of interest, here focusing on the LRRK2 interactors belonging to the Rab protein family.
Collapse
Affiliation(s)
- Yibo Zhao
- University College London, School of Pharmacy, London, United Kingdom
| | | | - Ruth C. Lovering
- University College London, Institute for Cardiovascular Science, London, United Kingdom
| | - Valentina Escott-Price
- University of Cardiff, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Kirsten Harvey
- University College London, School of Pharmacy, London, United Kingdom
| | - Patrick A. Lewis
- University of Reading, School of Pharmacy, Reading, United Kingdom
- Royal Veterinary College, London, United Kingdom
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Claudia Manzoni
- University College London, School of Pharmacy, London, United Kingdom
| |
Collapse
|
18
|
Xenias HS, Chen C, Kang S, Cherian S, Situ X, Shanmugasundaram B, Liu G, Scesa G, Chan CS, Parisiadou L. R1441C and G2019S LRRK2 knockin mice have distinct striatal molecular, physiological, and behavioral alterations. Commun Biol 2022; 5:1211. [PMID: 36357506 PMCID: PMC9649688 DOI: 10.1038/s42003-022-04136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
LRRK2 mutations are closely associated with Parkinson's disease (PD). Convergent evidence suggests that LRRK2 regulates striatal function. Here, by using knock-in mouse lines expressing the two most common LRRK2 pathogenic mutations-G2019S and R1441C-we investigated how LRRK2 mutations altered striatal physiology. While we found that both R1441C and G2019S mice displayed reduced nigrostriatal dopamine release, hypoexcitability in indirect-pathway striatal projection neurons, and alterations associated with an impaired striatal-dependent motor learning were observed only in the R1441C mice. We also showed that increased synaptic PKA activities in the R1441C and not G2019S mice underlie the specific alterations in motor learning deficits in the R1441C mice. In summary, our data argue that LRRK2 mutations' impact on the striatum cannot be simply generalized. Instead, alterations in electrochemical, electrophysiological, molecular, and behavioral levels were distinct between LRRK2 mutations. Our findings offer mechanistic insights for devising and optimizing treatment strategies for PD patients.
Collapse
Affiliation(s)
- Harry S Xenias
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shuo Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Suraj Cherian
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaolei Situ
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Guoxiang Liu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Giuseppe Scesa
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
19
|
Langston RG, Beilina A, Reed X, Kaganovich A, Singleton AB, Blauwendraat C, Gibbs JR, Cookson MR. Association of a common genetic variant with Parkinson's disease is mediated by microglia. Sci Transl Med 2022; 14:eabp8869. [PMID: 35895835 PMCID: PMC9809150 DOI: 10.1126/scitranslmed.abp8869] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Studies of multiple neurodegenerative disorders have identified many genetic variants that are associated with risk of disease throughout a lifetime. For example, Parkinson's disease (PD) risk is attributed in part to both coding mutations in the leucine-rich repeat kinase 2 (LRRK2) gene and to a common noncoding variation in the 5' region of the LRRK2 locus, as identified by genome-wide association studies (GWAS). However, the mechanisms linking GWAS variants to pathogenicity are largely unknown. Here, we found that the influence of PD-associated noncoding variation on LRRK2 expression is specifically propagated through microglia and not by other cell types that express LRRK2 in the human brain. We find microglia-specific regulatory chromatin regions that modulate the LRRK2 expression in human frontal cortex and substantia nigra and confirm these results in a human-induced pluripotent stem cell-derived microglia model. We showed, using a large-scale clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen, that a regulatory DNA element containing the single-nucleotide variant rs6581593 influences the LRRK2 expression in microglia. Our study demonstrates that cell type should be considered when evaluating the role of noncoding variation in disease pathogenesis and sheds light on the mechanism underlying the association of the 5' region of LRRK2 with PD risk.
Collapse
Affiliation(s)
- R. G. Langston
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A. Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - X. Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - C. Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. R. Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - M. R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Fernández B, Chittoor-Vinod VG, Kluss JH, Kelly K, Bryant N, Nguyen APT, Bukhari SA, Smith N, Lara Ordóñez AJ, Fdez E, Chartier-Harlin MC, Montine TJ, Wilson MA, Moore DJ, West AB, Cookson MR, Nichols RJ, Hilfiker S. Evaluation of Current Methods to Detect Cellular Leucine-Rich Repeat Kinase 2 (LRRK2) Kinase Activity. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1423-1447. [PMID: 35599495 PMCID: PMC9398093 DOI: 10.3233/jpd-213128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Coding variation in the Leucine rich repeat kinase 2 gene linked to Parkinson’s disease (PD) promotes enhanced activity of the encoded LRRK2 kinase, particularly with respect to autophosphorylation at S1292 and/or phosphorylation of the heterologous substrate RAB10. Objective: To determine the inter-laboratory reliability of measurements of cellular LRRK2 kinase activity in the context of wildtype or mutant LRRK2 expression using published protocols. Methods: Benchmark western blot assessments of phospho-LRRK2 and phospho-RAB10 were performed in parallel with in situ immunological approaches in HEK293T, mouse embryonic fibroblasts, and lymphoblastoid cell lines. Rat brain tissue, with or without adenovirus-mediated LRRK2 expression, and human brain tissues from subjects with or without PD, were also evaluated for LRRK2 kinase activity markers. Results: Western blots were able to detect extracted LRRK2 activity in cells and tissue with pS1292-LRRK2 or pT73-RAB10 antibodies. However, while LRRK2 kinase signal could be detected at the cellular level with over-expressed mutant LRRK2 in cell lines, we were unable to demonstrate specific detection of endogenous cellular LRRK2 activity in cell culture models or tissues that we evaluated. Conclusion: Further development of reliable methods that can be deployed in multiple laboratories to measure endogenous LRRK2 activities are likely required, especially at cellular resolution.
Collapse
Affiliation(s)
- Belén Fernández
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | - Jillian H. Kluss
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kaela Kelly
- Duke Center for Neurodegeneration Research, Department of Pharmacology, Duke University, Durham, NC, USA
| | - Nicole Bryant
- Duke Center for Neurodegeneration Research, Department of Pharmacology, Duke University, Durham, NC, USA
| | - An Phu Tran Nguyen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Syed A. Bukhari
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Nathan Smith
- Department of Biochemistry, Redox Biology Center, The University of Nebraska-Lincoln, NE, USA
| | - Antonio Jesús Lara Ordóñez
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Elena Fdez
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | - Mark A. Wilson
- Department of Biochemistry, Redox Biology Center, The University of Nebraska-Lincoln, NE, USA
| | - Darren J. Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Andrew B. West
- Duke Center for Neurodegeneration Research, Department of Pharmacology, Duke University, Durham, NC, USA
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Sabine Hilfiker
- Department of Anesthesiology and Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
21
|
Russo I, Bubacco L, Greggio E. LRRK2 as a target for modulating immune system responses. Neurobiol Dis 2022; 169:105724. [DOI: 10.1016/j.nbd.2022.105724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/08/2023] Open
|
22
|
Skiteva O, Yao N, Sitzia G, Chergui K. LRRK2‐G2019S mice display alterations in glutamatergic synaptic transmission in midbrain dopamine neurons. J Neurochem 2022; 161:158-172. [PMID: 35152441 PMCID: PMC9305867 DOI: 10.1111/jnc.15588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
The progressive degeneration of dopamine (DA) neurons in the substantia nigra compacta (SNc) leads to the emergence of motor symptoms in patients with Parkinson's disease (PD). To propose neuroprotective therapies able to slow or halt the progression of the disease, it is necessary to identify cellular alterations that occur before DA neurons degenerate and before the onset of the motor symptoms that characterize PD. Using electrophysiological, histochemical, and biochemical approaches, we have examined if glutamatergic synaptic transmission in DA neurons in the SNc and in the adjacent ventral tegmental area (VTA) was altered in middle‐aged (10–12 months old) mice with the hG2019S point mutation (G2019S) in the leucine‐rich repeat kinase 2 (LRRK2) gene. G2019S mice showed increased locomotion and exploratory behavior compared with wildtype (WT) littermates, and intact DA neuron integrity. The intrinsic membrane properties and action potential characteristics of DA neurons recorded in brain slices were similar in WT and G2019S mice. Initial glutamate release probability onto SNc‐DA neurons, but not VTA‐DA neurons, was reduced in G2019S mice. We also found reduced protein amounts of the presynaptic marker of glutamatergic terminals, VGLUT1, and of the GluA1 and GluN1 subunits of AMPA and NMDA receptors, respectively, in the ventral midbrain of G2019S mice. These results identify alterations in glutamatergic synaptic transmission in DA neurons of the SNc and VTA before the onset of motor impairments in the LRRK2‐G2019S mouse model of PD.
Collapse
Affiliation(s)
- Olga Skiteva
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| | - Ning Yao
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| | - Giacomo Sitzia
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
- Current address: Laboratory for Integrative Neuroscience National Institute on Alcohol Abuse and Alcoholism US Rockville USA
| | - Karima Chergui
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| |
Collapse
|
23
|
Xu E, Boddu R, Abdelmotilib HA, Sokratian A, Kelly K, Liu Z, Bryant N, Chandra S, Carlisle SM, Lefkowitz EJ, Harms AS, Benveniste EN, Yacoubian TA, Volpicelli-Daley LA, Standaert DG, West AB. Pathological α-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain. Mol Neurodegener 2022; 17:7. [PMID: 35012605 PMCID: PMC8751347 DOI: 10.1186/s13024-021-00509-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Leucine rich repeat kinase 2 (LRRK2) and SNCA are genetically linked to late-onset Parkinson's disease (PD). Aggregated α-synuclein pathologically defines PD. Recent studies identified elevated LRRK2 expression in pro-inflammatory CD16+ monocytes in idiopathic PD, as well as increased phosphorylation of the LRRK2 kinase substrate Rab10 in monocytes in some LRRK2 mutation carriers. Brain-engrafting pro-inflammatory monocytes have been implicated in dopaminergic neurodegeneration in PD models. Here we examine how α-synuclein and LRRK2 interact in monocytes and subsequent neuroinflammatory responses. METHODS Human and mouse monocytes were differentiated to distinct transcriptional states resembling macrophages, dendritic cells, or microglia, and exposed to well-characterized human or mouse α-synuclein fibrils. LRRK2 expression and LRRK2-dependent Rab10 phosphorylation were measured with monoclonal antibodies, and myeloid cell responses to α-synuclein fibrils in R1441C-Lrrk2 knock-in mice or G2019S-Lrrk2 BAC mice were evaluated by flow cytometry. Chemotaxis assays were performed with monocyte-derived macrophages stimulated with α-synuclein fibrils and microglia in Boyden chambers. RESULTS α-synuclein fibrils robustly stimulate LRRK2 and Rab10 phosphorylation in human and mouse macrophages and dendritic-like cells. In these cells, α-synuclein fibrils stimulate LRRK2 through JAK-STAT activation and intrinsic LRRK2 kinase activity in a feed-forward pathway that upregulates phosphorylated Rab10. In contrast, LRRK2 expression and Rab10 phosphorylation are both suppressed in microglia-like cells that are otherwise highly responsive to α-synuclein fibrils. Corroborating these results, LRRK2 expression in the brain parenchyma occurs in pro-inflammatory monocytes infiltrating from the periphery, distinct from brain-resident microglia. Mice expressing pathogenic LRRK2 mutations G2019S or R1441C have increased numbers of infiltrating pro-inflammatory monocytes in acute response to α-synuclein fibrils. In primary cultured macrophages, LRRK2 kinase inhibition dampens α-synuclein fibril and microglia-stimulated chemotaxis. CONCLUSIONS Pathologic α-synuclein activates LRRK2 expression and kinase activity in monocytes and induces their recruitment to the brain. These results predict that LRRK2 kinase inhibition may attenuate damaging pro-inflammatory monocyte responses in the brain.
Collapse
Affiliation(s)
- Enquan Xu
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Ravindra Boddu
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | | | - Arpine Sokratian
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Kaela Kelly
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Zhiyong Liu
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Nicole Bryant
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Sidhanth Chandra
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Samantha M Carlisle
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ashley S Harms
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA.
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA.
| |
Collapse
|
24
|
LRRK2 at Striatal Synapses: Cell-Type Specificity and Mechanistic Insights. Cells 2022; 11:cells11010169. [PMID: 35011731 PMCID: PMC8750662 DOI: 10.3390/cells11010169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson’s disease with a similar clinical presentation and progression to idiopathic Parkinson’s disease, and common variation is linked to disease risk. Recapitulation of the genotype in rodent models causes abnormal dopamine release and increases the susceptibility of dopaminergic neurons to insults, making LRRK2 a valuable model for understanding the pathobiology of Parkinson’s disease. It is also a promising druggable target with targeted therapies currently in development. LRRK2 mRNA and protein expression in the brain is highly variable across regions and cellular identities. A growing body of work has demonstrated that pathogenic LRRK2 mutations disrupt striatal synapses before the onset of overt neurodegeneration. Several substrates and interactors of LRRK2 have been identified to potentially mediate these pre-neurodegenerative changes in a cell-type-specific manner. This review discusses the effects of pathogenic LRRK2 mutations in striatal neurons, including cell-type-specific and pathway-specific alterations. It also highlights several LRRK2 effectors that could mediate the alterations to striatal function, including Rabs and protein kinase A. The lessons learned from improving our understanding of the pathogenic effects of LRRK2 mutations in striatal neurons will be applicable to both dissecting the cell-type specificity of LRRK2 function in the transcriptionally diverse subtypes of dopaminergic neurons and also increasing our understanding of basal ganglia development and biology. Finally, it will inform the development of therapeutics for Parkinson’s disease.
Collapse
|
25
|
Rab GTPases in Parkinson's disease: a primer. Essays Biochem 2021; 65:961-974. [PMID: 34414419 PMCID: PMC8709891 DOI: 10.1042/ebc20210016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
Parkinson's disease is a prominent and debilitating movement disorder characterized by the death of vulnerable neurons which share a set of structural and physiological properties. Over the recent years, increasing evidence indicates that Rab GTPases can directly as well as indirectly contribute to the cellular alterations leading to PD. Rab GTPases are master regulators of intracellular membrane trafficking events, and alterations in certain membrane trafficking steps can be particularly disruptive to vulnerable neurons. Here, we describe current knowledge on the direct links between altered Rab protein function and PD pathomechanisms.
Collapse
|
26
|
LRRK2 signaling in neurodegeneration: two decades of progress. Essays Biochem 2021; 65:859-872. [PMID: 34897411 DOI: 10.1042/ebc20210013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a complex GTPase/kinase orchestrating cytoskeletal dynamics and multiple steps of the endolysosomal pathway through interaction with a host of partners and phosphorylation of a subset of Rab GTPases. Mutations in LRRK2 cause late-onset Parkinson's disease (PD) and common variants in the locus containing LRRK2 have been associated with sporadic PD, progressive supranuclear palsy as well as a number of inflammatory diseases. This review encompasses the major discoveries in the field of LRRK2 pathobiology, from the initial gene cloning to the latest progress in LRRK2 inhibition as a promising therapeutic approach to fight neurodegeneration.
Collapse
|
27
|
Waugh JL, Hassan A, Kuster JK, Levenstein JM, Warfield SK, Makris N, Brüggemann N, Sharma N, Breiter HC, Blood AJ. An MRI method for parcellating the human striatum into matrix and striosome compartments in vivo. Neuroimage 2021; 246:118714. [PMID: 34800665 PMCID: PMC9142299 DOI: 10.1016/j.neuroimage.2021.118714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian striatum is comprised of intermingled tissue compartments, matrix and striosome. Though indistinguishable by routine histological techniques, matrix and striosome have distinct embryologic origins, afferent/efferent connections, surface protein expression, intra-striatal location, susceptibilities to injury, and functional roles in a range of animal behaviors. Distinguishing the compartments previously required post-mortem tissue and/or genetic manipulation; we aimed to identify matrix/striosome non-invasively in living humans. We used diffusion MRI (probabilistic tractography) to identify human striatal voxels with connectivity biased towards matrix-favoring or striosome-favoring regions (determined by prior animal tract-tracing studies). Segmented striatal compartments replicated the topological segregation and somatotopic organization identified in animal matrix/striosome studies. Of brain regions mapped in prior studies, our human brain data confirmed 93% of the compartment-selective structural connectivity demonstrated in animals. Test-retest assessment on repeat scans found a voxel classification error rate of 0.14%. Fractional anisotropy was significantly higher in matrix-like voxels, while mean diffusivity did not differ between the compartments. As mapped by the Talairach human brain atlas, 460 regions were significantly biased towards either matrix or striosome. Our method allows the study of striatal compartments in human health and disease, in vivo, for the first time.
Collapse
Affiliation(s)
- J L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States; Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Mood and Motor Control Laboratory, Boston, MA, United States; Martinos Center for Biomedical Imaging, United States; Massachusetts General Hospital, Charlestown, MA, United States.
| | - Aao Hassan
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - J K Kuster
- Mood and Motor Control Laboratory, Boston, MA, United States; Laboratory of Neuroimaging and Genetics, United States; Martinos Center for Biomedical Imaging, United States; Rheumatology, Allergy and Immunology Section, Massachusetts General Hospital, Boston, MA, United States.
| | - J M Levenstein
- Mood and Motor Control Laboratory, Boston, MA, United States; Martinos Center for Biomedical Imaging, United States; Yale School of Medicine, New Haven, CN, United States; Wellcome Centre for Integrative Neuroimaging, National Institutes of Health, Bethesda, MD, United States.
| | - S K Warfield
- Department of Radiology, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - N Makris
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Center for Morphometric Analysis, United States; Martinos Center for Biomedical Imaging, United States; Departments of Neurology and Psychiatry, Charlestown, MA, United States.
| | - N Brüggemann
- Department of Neurology, University of Oxford, Oxford, United Kingdom; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - N Sharma
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States.
| | - H C Breiter
- Laboratory of Neuroimaging and Genetics, United States; Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - A J Blood
- Mood and Motor Control Laboratory, Boston, MA, United States; Laboratory of Neuroimaging and Genetics, United States; Martinos Center for Biomedical Imaging, United States; Departments of Neurology and Psychiatry, Charlestown, MA, United States.
| |
Collapse
|
28
|
Brzozowski CF, Hijaz BA, Singh V, Gcwensa NZ, Kelly K, Boyden ES, West AB, Sarkar D, Volpicelli-Daley LA. Inhibition of LRRK2 kinase activity promotes anterograde axonal transport and presynaptic targeting of α-synuclein. Acta Neuropathol Commun 2021; 9:180. [PMID: 34749824 PMCID: PMC8576889 DOI: 10.1186/s40478-021-01283-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023] Open
Abstract
Pathologic inclusions composed of α-synuclein called Lewy pathology are hallmarks of Parkinson’s Disease (PD). Dominant inherited mutations in leucine rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. Lewy pathology is found in the majority of individuals with LRRK2-PD, particularly those with the G2019S-LRRK2 mutation. Lewy pathology in LRRK2-PD associates with increased non-motor symptoms such as cognitive deficits, anxiety, and orthostatic hypotension. Thus, understanding the relationship between LRRK2 and α-synuclein could be important for determining the mechanisms of non-motor symptoms. In PD models, expression of mutant LRRK2 reduces membrane localization of α-synuclein, and enhances formation of pathologic α-synuclein, particularly when synaptic activity is increased. α-Synuclein and LRRK2 both localize to the presynaptic terminal. LRRK2 plays a role in membrane traffic, including axonal transport, and therefore may influence α-synuclein synaptic localization. This study shows that LRRK2 kinase activity influences α-synuclein targeting to the presynaptic terminal. We used the selective LRRK2 kinase inhibitors, MLi-2 and PF-06685360 (PF-360) to determine the impact of reduced LRRK2 kinase activity on presynaptic localization of α-synuclein. Expansion microscopy (ExM) in primary hippocampal cultures and the mouse striatum, in vivo, was used to more precisely resolve the presynaptic localization of α-synuclein. Live imaging of axonal transport of α-synuclein-GFP was used to investigate the impact of LRRK2 kinase inhibition on α-synuclein axonal transport towards the presynaptic terminal. Reduced LRRK2 kinase activity increases α-synuclein overlap with presynaptic markers in primary neurons, and increases anterograde axonal transport of α-synuclein-GFP. In vivo, LRRK2 inhibition increases α-synuclein overlap with glutamatergic, cortico-striatal terminals, and dopaminergic nigral-striatal presynaptic terminals. The findings suggest that LRRK2 kinase activity plays a role in axonal transport, and presynaptic targeting of α-synuclein. These data provide potential mechanisms by which LRRK2-mediated perturbations of α-synuclein localization could cause pathology in both LRRK2-PD, and idiopathic PD.
Collapse
|
29
|
Khan SS, Sobu Y, Dhekne HS, Tonelli F, Berndsen K, Alessi DR, Pfeffer SR. Pathogenic LRRK2 control of primary cilia and Hedgehog signaling in neurons and astrocytes of mouse brain. eLife 2021; 10:67900. [PMID: 34658337 PMCID: PMC8550758 DOI: 10.7554/elife.67900] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Activating LRRK2 mutations cause Parkinson’s disease, and pathogenic LRRK2 kinase interferes with ciliogenesis. Previously, we showed that cholinergic interneurons of the dorsal striatum lose their cilia in R1441C LRRK2 mutant mice (Dhekne et al., 2018). Here, we show that cilia loss is seen as early as 10 weeks of age in these mice and also in two other mouse strains carrying the most common human G2019S LRRK2 mutation. Loss of the PPM1H phosphatase that is specific for LRRK2-phosphorylated Rab GTPases yields the same cilia loss phenotype seen in mice expressing pathogenic LRRK2 kinase, strongly supporting a connection between Rab GTPase phosphorylation and cilia loss. Moreover, astrocytes throughout the striatum show a ciliation defect in all LRRK2 and PPM1H mutant models examined. Hedgehog signaling requires cilia, and loss of cilia in LRRK2 mutant rodents correlates with dysregulation of Hedgehog signaling as monitored by in situ hybridization of Gli1 and Gdnf transcripts. Dopaminergic neurons of the substantia nigra secrete a Hedgehog signal that is sensed in the striatum to trigger neuroprotection; our data support a model in which LRRK2 and PPM1H mutant mice show altered responses to critical Hedgehog signals in the nigrostriatal pathway.
Collapse
Affiliation(s)
- Shahzad S Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| | - Yuriko Sobu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| | - Herschel S Dhekne
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Francesca Tonelli
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Kerryn Berndsen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| |
Collapse
|
30
|
Fan Y, Nirujogi RS, Garrido A, Ruiz-Martínez J, Bergareche-Yarza A, Mondragón-Rezola E, Vinagre-Aragón A, Croitoru I, Gorostidi Pagola A, Paternain Markinez L, Alcalay R, Hickman RA, Düring J, Gomes S, Pratuseviciute N, Padmanabhan S, Valldeoriola F, Pérez Sisqués L, Malagelada C, Ximelis T, Molina Porcel L, Martí MJ, Tolosa E, Alessi DR, Sammler EM. R1441G but not G2019S mutation enhances LRRK2 mediated Rab10 phosphorylation in human peripheral blood neutrophils. Acta Neuropathol 2021; 142:475-494. [PMID: 34125248 PMCID: PMC8357670 DOI: 10.1007/s00401-021-02325-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022]
Abstract
Heterozygous gain-of-kinase function variants in LRRK2 (leucine-rich repeat kinase 2) cause 1-2% of all cases of Parkinson's disease (PD) albeit with incomplete and age-dependent penetrance. All pathogenic LRRK2 mutations reside within the two catalytic domains of LRRK2-either in its kinase domain (e.g. G2019S) with modest effect or its ROC-COR GTPase domain (e.g. R1441G/H) with large effect on LRRK2 kinase activity. We have previously reported assays to interrogate LRRK2 kinase pathway activity in human bio-samples measuring phosphorylation of its endogenous substrate Rab10, that mirrors LRRK2 kinase activation status. Here, we isolated neutrophils from fresh peripheral blood from 101 participants including 42 LRRK2 mutation carriers (21 with the G2019S and 21 with the R1441G mutations), 27 patients with idiopathic PD, and 32 controls. Using a dual approach, LRRK2 dependent Rab10 phosphorylation at Threonine 73 (pRab10Thr73) was measured by quantitative multiplexed immunoblotting for pRab10Thr73/total Rab10 as well as targeted mass-spectrometry for absolute pRab10Thr73 occupancy. We found a significant over fourfold increase in pRab10Thr73 phosphorylation in carriers of the LRRK2 R1441G mutation irrespective of clinical disease status. The effect of the LRRK2 G2019S mutation did not reach statistical significance. Furthermore, we show that LRRK2 phosphorylation at Serine 935 is not a marker for LRRK2 kinase activity in human neutrophils. When analysing pRab10Thr73 phosphorylation in post-mortem brain samples, we observed overall high variability irrespective of clinical and LRRK2 mutation status and attributed this mainly to the adverse effect of the peri- and post-mortem period on the stability of posttranslational modifications such as protein phosphorylation. Overall, in vivo LRRK2 dependent pRab10Thr73 phosphorylation in human peripheral blood neutrophils is a specific, robust and promising biomarker for significant LRRK2 kinase hyperactivation, as with the LRRK2 R1441G mutation. Additional readouts and/or assays may be needed to increase sensitivity to detect modest LRRK2 kinase activation, as with the LRRK2 G2019S mutation. Our assays could be useful for patient stratification and target engagement studies for LRRK2 kinase inhibitors.
Collapse
Affiliation(s)
- Ying Fan
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Raja S Nirujogi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Alicia Garrido
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Javier Ruiz-Martínez
- Group of Neurodegenerative Diseases, Biodonostia Research Institute, San Sebastian, Spain
| | | | | | - Ana Vinagre-Aragón
- Group of Neurodegenerative Diseases, Biodonostia Research Institute, San Sebastian, Spain
| | - Ioana Croitoru
- Group of Neurodegenerative Diseases, Biodonostia Research Institute, San Sebastian, Spain
| | - Ana Gorostidi Pagola
- Group of Neurodegenerative Diseases, Biodonostia Research Institute, San Sebastian, Spain
| | | | - Roy Alcalay
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Richard A Hickman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Jonas Düring
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Sara Gomes
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Neringa Pratuseviciute
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | | | - Francesc Valldeoriola
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Leticia Pérez Sisqués
- Departament de Biomedicina, Facultat de Medicina I Ciències de La Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Malagelada
- Departament de Biomedicina, Facultat de Medicina I Ciències de La Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Teresa Ximelis
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Molina Porcel
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Maria José Martí
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Dario R Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Esther M Sammler
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK.
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
31
|
Goveas L, Mutez E, Chartier-Harlin MC, Taymans JM. Mind the Gap: LRRK2 Phenotypes in the Clinic vs. in Patient Cells. Cells 2021; 10:981. [PMID: 33922322 PMCID: PMC8145309 DOI: 10.3390/cells10050981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in the Parkinson's disease (PD) protein Leucine Rich Repeat Kinase 2 (LRRK2) have been under study for more than 15 years and our understanding of the cellular phenotypes for the pathogenic mutant forms of LRRK2 has significantly advanced. In parallel to research on LRRK2 mutations in experimental systems, clinical characterization of patients carrying LRRK2 mutations has advanced, as has the analysis of cells that are derived from these patients, including fibroblasts, blood-derived cells, or cells rendered pluripotent. Under the hypothesis that patient clinical phenotypes are a consequence of a cascade of underlying molecular mechanisms gone astray, we currently have a unique opportunity to compare findings from patients and patient-derived cells to ask the question of whether the clinical phenotype of LRRK2 Parkinson's disease and cellular phenotypes of LRRK2 patient-derived cells may be mutually informative. In this review, we aim to summarize the available information on phenotypes of LRRK2 mutations in the clinic, in patient-derived cells, and in experimental models in order to better understand the relationship between the three at the molecular and cellular levels and identify trends and gaps in correlating the data.
Collapse
Affiliation(s)
- Liesel Goveas
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
| | - Eugénie Mutez
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
- Neurology and Movement Disorders Department, CHU Lille University Hospital, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
| | - Jean-Marc Taymans
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
| |
Collapse
|
32
|
Gcwensa NZ, Russell DL, Cowell RM, Volpicelli-Daley LA. Molecular Mechanisms Underlying Synaptic and Axon Degeneration in Parkinson's Disease. Front Cell Neurosci 2021; 15:626128. [PMID: 33737866 PMCID: PMC7960781 DOI: 10.3389/fncel.2021.626128] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/05/2021] [Indexed: 01/13/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease that impairs movement as well as causing multiple other symptoms such as autonomic dysfunction, rapid eye movement (REM) sleep behavior disorder, hyposmia, and cognitive changes. Loss of dopamine neurons in the substantia nigra pars compacta (SNc) and loss of dopamine terminals in the striatum contribute to characteristic motor features. Although therapies ease the symptoms of PD, there are no treatments to slow its progression. Accumulating evidence suggests that synaptic impairments and axonal degeneration precede neuronal cell body loss. Early synaptic changes may be a target to prevent disease onset and slow progression. Imaging of PD patients with radioligands, post-mortem pathologic studies in sporadic PD patients, and animal models of PD demonstrate abnormalities in presynaptic terminals as well as postsynaptic dendritic spines. Dopaminergic and excitatory synapses are substantially reduced in PD, and whether other neuronal subtypes show synaptic defects remains relatively unexplored. Genetic studies implicate several genes that play a role at the synapse, providing additional support for synaptic dysfunction in PD. In this review article we: (1) provide evidence for synaptic defects occurring in PD before neuron death; (2) describe the main genes implicated in PD that could contribute to synapse dysfunction; and (3) show correlations between the expression of Snca mRNA and mouse homologs of PD GWAS genes demonstrating selective enrichment of Snca and synaptic genes in dopaminergic, excitatory and cholinergic neurons. Altogether, these findings highlight the need for novel therapeutics targeting the synapse and suggest that future studies should explore the roles for PD-implicated genes across multiple neuron types and circuits.
Collapse
Affiliation(s)
- Nolwazi Z Gcwensa
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| | - Drèson L Russell
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| | - Rita M Cowell
- Department of Neuroscience, Southern Research, Birmingham, AL, United States
| | - Laura A Volpicelli-Daley
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| |
Collapse
|
33
|
Kelly K, Chang A, Hastings L, Abdelmotilib H, West AB. Genetic background influences LRRK2-mediated Rab phosphorylation in the rat brain. Brain Res 2021; 1759:147372. [PMID: 33600829 DOI: 10.1016/j.brainres.2021.147372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
Pathogenic missense mutations in the leucine-rich repeat kinase 2 gene, encoding LRRK2, results in the upregulation of Rab10 and Rab12 phosphorylation in different cells and tissues. Here, we evaluate levels of the LRRK2 kinase substrates pT73-Rab10 and pS106-Rab12 proteins in rat brain tissues from different genetic backgrounds. Whereas lines of Sprague Dawley rats have equivalent levels of pT73-Rab10 and pS106-Rab12 similar to Lrrk2 knockout rats, Long-Evans rats have levels of pT73-Rab10 and pS106-Rab12 comparable to G2019S-LRRK2 BAC transgenic rats. Strong LRRK2 kinase inhibitors are ineffective at reducing pT73-Rab10 and pS106-Rab12 levels in the Sprague Dawley rats, but potently reduce pT73-Rab10 and pS106-Rab12 levels in Long-Evans rats. Oral administration of the PFE-360 LRRK2 kinase inhibitor fails to provide neuroprotection from dopaminergic neurodegeneration caused by rAAV2/1-mediated overexpression of A53T-αsynuclein in Sprague Dawley rats. These results highlight substantial differences in LRRK2-mediated Rab10 and Rab12 phosphorylation in commonly utilized rat genetic backgrounds and suggest LRRK2 may not play a central role in Rab phosphorylation or mutant αsynuclein toxicity in Sprague Dawley rats.
Collapse
Affiliation(s)
- Kaela Kelly
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Allison Chang
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lyndsay Hastings
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Hisham Abdelmotilib
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
34
|
Pischedda F, Piccoli G. LRRK2 at the pre-synaptic site: A 16-years perspective. J Neurochem 2021; 157:297-311. [PMID: 33206398 DOI: 10.1111/jnc.15240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder and is clinically characterized by bradykinesia, rigidity, and resting tremor. Missense mutations in the leucine-rich repeat protein kinase-2 gene (LRRK2) are a recognized cause of inherited Parkinson's disease. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence indicates that LRRK2 orchestrates diverse aspects of membrane trafficking, such as membrane fusion and vesicle formation and transport along actin and tubulin tracks. In the present review, we focus on the special relation between LRRK2 and synaptic vesicles. LRRK2 binds and phosphorylates key actors within the synaptic vesicle cycle. Accordingly, alterations in dopamine and glutamate transmission have been described upon LRRK2 manipulations. However, the different modeling strategies and phenotypes observed require a critical approach to decipher the outcome of LRRK2 at the pre-synaptic site.
Collapse
Affiliation(s)
- Francesca Pischedda
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Giovanni Piccoli
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| |
Collapse
|
35
|
Ke M, Chong CM, Zhu Q, Zhang K, Cai CZ, Lu JH, Qin D, Su H. Comprehensive Perspectives on Experimental Models for Parkinson's Disease. Aging Dis 2021; 12:223-246. [PMID: 33532138 PMCID: PMC7801282 DOI: 10.14336/ad.2020.0331] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/31/2020] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) ranks second among the most common neurodegenerative diseases, characterized by progressive and selective loss of dopaminergic neurons. Various cross-species preclinical models, including cellular models and animal models, have been established through the decades to study the etiology and mechanism of the disease from cell lines to nonhuman primates. These models are aimed at developing effective therapeutic strategies for the disease. None of the current models can replicate all major pathological and clinical phenotypes of PD. Selection of the model for PD largely relies on our interest of study. In this review, we systemically summarized experimental PD models, including cellular and animal models used in preclinical studies, to understand the pathogenesis of PD. This review is intended to provide current knowledge about the application of these different PD models, with focus on their strengths and limitations with respect to their contributions to the assessment of the molecular pathobiology of PD and identification of the therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Minjing Ke
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cheong-Meng Chong
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qi Zhu
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ke Zhang
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cui-Zan Cai
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Hong Lu
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dajiang Qin
- 2Guangzhou Regenerative Medicine and Health Guangdong Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,3South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huanxing Su
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
36
|
Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy. Trends Biochem Sci 2020; 46:329-343. [PMID: 33323315 DOI: 10.1016/j.tibs.2020.11.007] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has been associated with neurodegeneration in Parkinson's disease (PD) for over 30 years. Despite this, the role of mitochondrial dysfunction as an initiator, propagator, or bystander remains undetermined. The discovery of the role of the PD familial genes PTEN-induced putative kinase 1 (PINK1) and parkin (PRKN) in mediating mitochondrial degradation (mitophagy) reaffirmed the importance of this process in PD aetiology. Recently, progress has been made in understanding the upstream and downstream regulators of canonical PINK1/parkin-mediated mitophagy, alongside noncanonical PINK1/parkin mitophagy, in response to mitochondrial damage. Progress has also been made in understanding the role of PD-associated genes, such as SNCA, LRRK2, and CHCHD2, in mitochondrial dysfunction and their overlap with sporadic PD (sPD), opening opportunities for therapeutically targeting mitochondria in PD.
Collapse
|
37
|
Malik N, Kornelsen R, McCormick S, Colpo N, Merkens H, Bendre S, Benard F, Sossi V, Schirrmacher R, Schaffer P. Development and biological evaluation of[ 18F]FMN3PA & [ 18F]FMN3PU for leucine-rich repeat kinase 2 (LRRK2) in vivo PET imaging. Eur J Med Chem 2020; 211:113005. [PMID: 33248850 DOI: 10.1016/j.ejmech.2020.113005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/22/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Among all genetic mutations of LRRK2, the G2019S mutation is the most commonly associated with the late-onset of Parkinson's disease (PD). Hence, one potential therapeutic approach is to block the hyperactivity of mutated LRRK2 induced by kinase inhibition. To date, only a few LRRK2 kinase inhibitors have been tested for in vivo quantification of target engagement by positron emission tomography (PET). In this study, we performed biological evaluations of two radiolabeled kinase inhibitors i.e. [18F]FMN3PA (14) and [18F]FMN3PU for LRRK2 (15). PROCEDURES Radiosyntheses of [18F]FMN3PA (14) and [18F]FMN3PU (15) were performed using K[18F]-F-K222 complex in a TRACERlab FXN module and purification was carried out via C18 plus (Sep-Pak) cartridges. In vitro specific binding assays were performed in rat brain striatum and kidney tissues using GNE-0877 as a blocking agent (Ki = 0.7 nM). For in vivo blocking, 3 mg/kg of GNE-0877 was injected 30 min before radiotracer injection via tail vein in wild-type (WT) mice (n = 4). Dynamic scans by PET/CT (Siemens Inveon) were performed in WT mice (n = 3). RESULTS Radiofluorinations resulted in radiochemical yields (RCYs) of 25 ± 1.3% (n = 6) ([18F]FMN3PU, 15) and 37 ± 1.6% (n = 6) ([18F]FMN3PA, 14) with ≥96% radiochemical purity (RCP) and a molar activity (MA) of 3.55 ± 1.6 Ci/μmol (131 ± 56 GBq/μmol) for [18F]FMN3PU (15) and 4.57 ± 1.7 Ci/μmol (169 ± 63 GBq/μmol) for [18F]FMN3PA (14), respectively. Saturation assays showed high specific binding for rat brain striatum with Kd 20 ± 1.3 nM ([18F]FMN3PA, 14) and 23.6 ± 4.0 nM ([18F]FMN3PU, 15). In vivo blocking data for [18F]FMN3PA (14) was significant for brain (p < 0.0001, 77% blocking) and kidney (p = 0.0041, 65% blocking). PET images showed uptake in mouse brain striatum. CONCLUSION In the presence of GNE-0877 as a blocking agent, the specific binding of [18F]FMN3PA (14) and [18F]FMN3PU (15) was significant in vitro. [18F]FMN3PA (14) showed good brain uptake in vivo, though fast clearance from brain was observed (within 10-15 min).
Collapse
Affiliation(s)
| | | | | | - Nadine Colpo
- Molecular Oncology, British Columbia Cancer Research Institute, Canada
| | - Helen Merkens
- Molecular Oncology, British Columbia Cancer Research Institute, Canada
| | - Shreya Bendre
- Molecular Oncology, British Columbia Cancer Research Institute, Canada
| | - Francois Benard
- Molecular Oncology, British Columbia Cancer Research Institute, Canada; Department of Radiology, University of British Columbia, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Canada
| | | | - Paul Schaffer
- Life Sciences Division, TRIUMF, Canada; Department of Radiology, University of British Columbia, Canada; Department of Chemistry, Simon Fraser University, Canada.
| |
Collapse
|
38
|
Divergent Effects of G2019S and R1441C LRRK2 Mutations on LRRK2 and Rab10 Phosphorylations in Mouse Tissues. Cells 2020; 9:cells9112344. [PMID: 33105882 PMCID: PMC7690595 DOI: 10.3390/cells9112344] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in LRRK2 cause familial Parkinson’s disease and common variants increase disease risk. LRRK2 kinase activity and cellular localization are tightly regulated by phosphorylation of key residues, primarily Ser1292 and Ser935, which impacts downstream phosphorylation of its substrates, among which Rab10. A comprehensive characterization of LRRK2 activity and phosphorylation in brain as a function of age and mutations is missing. Here, we monitored Ser935 and Ser1292 phosphorylation in midbrain, striatum, and cortex of 1, 6, and 12 months-old mice carrying G2019S and R1441C mutations or murine bacterial artificial chromosome (BAC)-Lrrk2-G2019S. We observed that G2019S and, at a greater extent, R1441C brains display decreased phospho-Ser935, while Ser1292 autophosphorylation increased in G2019S but not in R1441C brain, lung, and kidney compared to wild-type. Further, Rab10 phosphorylation, is elevated in R1441C carrying mice, indicating that the effect of LRRK2 mutations on substrate phosphorylation is not generalizable. In BAC-Lrrk2-G2019S striatum and midbrain, Rab10 phosphorylation, but not Ser1292 autophosphorylation, decreases at 12-months, pointing to autophosphorylation and substrate phosphorylation as uncoupled events. Taken together, our study provides novel evidence that LRRK2 phosphorylation in mouse brain is differentially impacted by mutations, brain area, and age, with important implications as diagnostic markers of disease progression and stratification.
Collapse
|
39
|
Palese F, Pontis S, Realini N, Piomelli D. NAPE-specific phospholipase D regulates LRRK2 association with neuronal membranes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:217-238. [PMID: 33706934 DOI: 10.1016/bs.apha.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-acylphosphatidylethanolamines (NAPEs) are glycerophospholipid precursors for bioactive lipid amides and potential regulators of membrane function. They are hydrolyzed by NAPE-specific phospholipase D (NAPE-PLD) and have been implicated in neurodegenerative disorders such as Parkinson's disease. Here, we used siRNA-mediated silencing of NAPE-PLD in human SH-SY5Y cells and NAPE-PLD-/- mice to determine whether NAPEs influence the membrane association of LRRK2, a multifunctional protein kinase that is frequently mutated in persons with sporadic Parkinson's disease. NAPE-PLD deletion caused a significant accumulation of non-metabolized NAPEs, which was accompanied by a shift of LRRK2 from membrane to cytosol and a reduction in total LRRK2 content. Conversely, exposure of intact SH-SY5Y cells to bacterial PLD lowered NAPE levels and enhanced LRRK2 association with membranes. The results suggest that NAPE-PLD activity may contribute to the control of LRRK2 localization by regulating membrane NAPE levels.
Collapse
Affiliation(s)
- Francesca Palese
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy; Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, United States
| | - Silvia Pontis
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Natalia Realini
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, United States.
| |
Collapse
|
40
|
Chen C, Soto G, Dumrongprechachan V, Bannon N, Kang S, Kozorovitskiy Y, Parisiadou L. Pathway-specific dysregulation of striatal excitatory synapses by LRRK2 mutations. eLife 2020; 9:58997. [PMID: 33006315 PMCID: PMC7609054 DOI: 10.7554/elife.58997] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
LRRK2 is a kinase expressed in striatal spiny projection neurons (SPNs), cells which lose dopaminergic input in Parkinson’s disease (PD). R1441C and G2019S are the most common pathogenic mutations of LRRK2. How these mutations alter the structure and function of individual synapses on direct and indirect pathway SPNs is unknown and may reveal pre-clinical changes in dopamine-recipient neurons that predispose toward disease. Here, R1441C and G2019S knock-in mice enabled thorough evaluation of dendritic spines and synapses on pathway-identified SPNs. Biochemical synaptic preparations and super-resolution imaging revealed increased levels and altered organization of glutamatergic AMPA receptors in LRRK2 mutants. Relatedly, decreased frequency of miniature excitatory post-synaptic currents accompanied changes in dendritic spine nano-architecture, and single-synapse currents, evaluated using two-photon glutamate uncaging. Overall, LRRK2 mutations reshaped synaptic structure and function, an effect exaggerated in R1441C dSPNs. These data open the possibility of new neuroprotective therapies aimed at SPN synapse function, prior to disease onset. Parkinson’s disease is caused by progressive damage to regions of the brain that regulate movement. This leads to a loss in nerve cells that produce a signaling molecule called dopamine, and causes patients to experience shakiness, slow movement and stiffness. When dopamine is released, it travels to a part of the brain known as the striatum, where it is received by cells called spiny projection neurons (SPNs), which are rich in a protein called LRRK2. Mutations in this protein have been shown to cause the motor impairments associated with Parkinson’s disease. SPNs send signals to other regions of the brain either via a ‘direct’ route, which promotes movement, or an ‘indirect’ route, which suppresses movement. Previous studies suggest that mutations in the gene for LRRK2 influence the activity of these pathways even before dopamine signaling has been lost. Yet, it remained unclear how different mutations independently affected each pathway. To investigate this further, Chen et al. studied two of the mutations most commonly found in the human gene for LRRK2, known as G2019S and R1441C. This involved introducing one of these mutations in to the genetic code of mice, and using fluorescent proteins to mark single SPNs in either the direct or indirect pathway. The experiments showed that both mutations disrupted the connections between SPNs in the direct and indirect pathway, which altered the activity of nerve cells in the striatum. Chen et al. found that individual connections were more strongly affected by the R1441C mutation. Further experiments showed that this was caused by the re-organization of a receptor protein in the nerve cells of the direct pathway, which increased how SPNs responded to inputs from other nerve cells. These findings suggest that LRRK2 mutations disrupt neural activity in the striatum before dopamine levels become depleted. This discovery could help researchers identify new therapies for treating the early stages of Parkinson’s disease before the symptoms of dopamine loss arise.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Giulia Soto
- Department of Neurobiology, Northwestern University, Chicago, United States
| | | | - Nicholas Bannon
- Department of Neurobiology, Northwestern University, Chicago, United States
| | - Shuo Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | | | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
41
|
Kuhlmann N, Milnerwood AJ. A Critical LRRK at the Synapse? The Neurobiological Function and Pathophysiological Dysfunction of LRRK2. Front Mol Neurosci 2020; 13:153. [PMID: 32973447 PMCID: PMC7482583 DOI: 10.3389/fnmol.2020.00153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Since the discovery of LRRK2 mutations causal to Parkinson's disease (PD) in the early 2000s, the LRRK2 protein has been implicated in a plethora of cellular processes in which pathogenesis could occur, yet its physiological function remains elusive. The development of genetic models of LRRK2 PD has helped identify the etiological and pathophysiological underpinnings of the disease, and may identify early points of intervention. An important role for LRRK2 in synaptic function has emerged in recent years, which links LRRK2 to other genetic forms of PD, most notably those caused by mutations in the synaptic protein α-synuclein. This point of convergence may provide useful clues as to what drives dysfunction in the basal ganglia circuitry and eventual death of substantia nigra (SN) neurons. Here, we discuss the evolution and current state of the literature placing LRRK2 at the synapse, through the lens of knock-out, overexpression, and knock-in animal models. We hope that a deeper understanding of LRRK2 neurobiology, at the synapse and beyond, will aid the eventual development of neuroprotective interventions for PD, and the advancement of useful treatments in the interim.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Austen J Milnerwood
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
42
|
Shutinoski B, Hakimi M, Harmsen IE, Lunn M, Rocha J, Lengacher N, Zhou YY, Khan J, Nguyen A, Hake-Volling Q, El-Kodsi D, Li J, Alikashani A, Beauchamp C, Majithia J, Coombs K, Shimshek D, Marcogliese PC, Park DS, Rioux JD, Philpott DJ, Woulfe JM, Hayley S, Sad S, Tomlinson JJ, Brown EG, Schlossmacher MG. Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Sci Transl Med 2020; 11:11/511/eaas9292. [PMID: 31554740 DOI: 10.1126/scitranslmed.aas9292] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 12/27/2018] [Accepted: 05/11/2019] [Indexed: 12/20/2022]
Abstract
Variants in the leucine-rich repeat kinase-2 (LRRK2) gene are associated with Parkinson's disease, leprosy, and Crohn's disease, three disorders with inflammation as an important component. Because of its high expression in granulocytes and CD68-positive cells, LRRK2 may have a function in innate immunity. We tested this hypothesis in two ways. First, adult mice were intravenously inoculated with Salmonella typhimurium, resulting in sepsis. Second, newborn mouse pups were intranasally infected with reovirus (serotype 3 Dearing), which induced encephalitis. In both mouse models, wild-type Lrrk2 expression was protective and showed a sex effect, with female Lrrk2-deficient animals not controlling infection as well as males. Mice expressing Lrrk2 carrying the Parkinson's disease-linked p.G2019S mutation controlled infection better, with reduced bacterial growth and longer animal survival during sepsis. This gain-of-function effect conferred by the p.G2019S mutation was mediated by myeloid cells and was abolished in animals expressing a kinase-dead Lrrk2 variant, p.D1994S. Mouse pups with reovirus-induced encephalitis that expressed the p.G2019S Lrrk2 mutation showed increased mortality despite lower viral titers. The p.G2019S mutant Lrrk2 augmented immune cell chemotaxis and generated more reactive oxygen species during virulent infection. Reovirus-infected brains from mice expressing the p.G2019S mutant Lrrk2 contained higher concentrations of α-synuclein. Animals expressing one or two p.D1994S Lrrk2 alleles showed lower mortality from reovirus-induced encephalitis. Thus, Lrrk2 alleles may alter the course of microbial infections by modulating inflammation, and this may be dependent on the sex and genotype of the host as well as the type of pathogen.
Collapse
Affiliation(s)
- Bojan Shutinoski
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mansoureh Hakimi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Irene E Harmsen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Michaela Lunn
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Juliana Rocha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nathalie Lengacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Yi Yuan Zhou
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jasmine Khan
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Angela Nguyen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Quinton Hake-Volling
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Daniel El-Kodsi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Juan Li
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Azadeh Alikashani
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudine Beauchamp
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jay Majithia
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Derya Shimshek
- Novartis Institutes of BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Paul C Marcogliese
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - John D Rioux
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - John M Woulfe
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Earl G Brown
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
43
|
Mancini A, Mazzocchetti P, Sciaccaluga M, Megaro A, Bellingacci L, Beccano-Kelly DA, Di Filippo M, Tozzi A, Calabresi P. From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2. Front Cell Neurosci 2020; 14:158. [PMID: 32848606 PMCID: PMC7399363 DOI: 10.3389/fncel.2020.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) is thought to rely on a complex interaction between the patient’s genetic background and a variety of largely unknown environmental factors. In this scenario, the investigation of the genetic bases underlying familial PD could unveil key molecular pathways to be targeted by new disease-modifying therapies, still currently unavailable. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are responsible for the majority of inherited familial PD cases and can also be found in sporadic PD, but the pathophysiological functions of LRRK2 have not yet been fully elucidated. Here, we will review the evidence obtained in transgenic LRRK2 experimental models, characterized by altered striatal synaptic transmission, mitochondrial dysfunction, and α-synuclein aggregation. Interestingly, the processes triggered by mutant LRRK2 might represent early pathological phenomena in the pathogenesis of PD, anticipating the typical neurodegenerative features characterizing the late phases of the disease. A comprehensive view of LRRK2 neuronal pathophysiology will support the possible clinical application of pharmacological compounds targeting this protein, with potential therapeutic implications for patients suffering from both familial and sporadic PD.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Petra Mazzocchetti
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alfredo Megaro
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Dayne A Beccano-Kelly
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Neuroscience Department, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
44
|
Seegobin SP, Heaton GR, Liang D, Choi I, Blanca Ramirez M, Tang B, Yue Z. Progress in LRRK2-Associated Parkinson's Disease Animal Models. Front Neurosci 2020; 14:674. [PMID: 32765209 PMCID: PMC7381130 DOI: 10.3389/fnins.2020.00674] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of familial Parkinson's disease (PD). Several genetic manipulations of the LRRK2 gene have been developed in animal models such as rodents, Drosophila, Caenorhabditis elegans, and zebrafish. These models can help us further understand the biological function and derive potential pathological mechanisms for LRRK2. Here we discuss common phenotypic themes found in LRRK2-associated PD animal models, highlight several issues that should be addressed in future models, and discuss emerging areas to guide their future development.
Collapse
Affiliation(s)
- Steven P. Seegobin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George R. Heaton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dongxiao Liang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, China
| | - Insup Choi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marian Blanca Ramirez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Zhenyu Yue
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
45
|
Dues DJ, Moore DJ. LRRK2 and Protein Aggregation in Parkinson's Disease: Insights From Animal Models. Front Neurosci 2020; 14:719. [PMID: 32733200 PMCID: PMC7360724 DOI: 10.3389/fnins.2020.00719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) instigate an autosomal dominant form of Parkinson’s disease (PD). Despite the neuropathological heterogeneity observed in LRRK2-PD, accumulating evidence suggests that alpha-synuclein and tau pathology are observed in a vast majority of cases. Intriguingly, the presence of protein aggregates spans both LRRK2-PD and idiopathic disease, supportive of a common pathologic mechanism. Thus, it is important to consider how LRRK2 mutations give rise to such pathology, and whether targeting LRRK2 might modify the accumulation, transmission, or toxicity of protein aggregates. Likewise, it is not clear how LRRK2 mutations drive PD pathogenesis, and whether protein aggregates are implicated in LRRK2-dependent neurodegeneration. While animal models have been instrumental in furthering our understanding of a potential interaction between LRRK2 and protein aggregation, the biology is far from clear. We aim to provide a thoughtful overview of the evidence linking LRRK2 to protein aggregation in animal models.
Collapse
Affiliation(s)
- Dylan J Dues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| |
Collapse
|
46
|
Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity. Proc Natl Acad Sci U S A 2020; 117:17296-17307. [PMID: 32631998 PMCID: PMC7382283 DOI: 10.1073/pnas.1922184117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of late-onset, autosomal-dominant familial Parkinson's disease (PD). LRRK2 functions as both a kinase and GTPase, and PD-linked mutations are known to influence both enzymatic activities. While PD-linked LRRK2 mutations can commonly induce neuronal damage in culture models, the mechanisms underlying these pathogenic effects remain uncertain. Rodent models containing familial LRRK2 mutations often lack robust PD-like neurodegenerative phenotypes. Here, we develop a robust preclinical model of PD in adult rats induced by the brain delivery of recombinant adenoviral vectors with neuronal-specific expression of human LRRK2 harboring the most common G2019S mutation. In this model, G2019S LRRK2 induces the robust degeneration of substantia nigra dopaminergic neurons, a pathological hallmark of PD. Introduction of a stable kinase-inactive mutation or administration of the selective kinase inhibitor, PF-360, attenuates neurodegeneration induced by G2019S LRRK2. Neuroprotection provided by pharmacological kinase inhibition is mediated by an unusual mechanism involving the robust destabilization of human LRRK2 protein in the brain relative to endogenous LRRK2. Our study further demonstrates that G2019S LRRK2-induced dopaminergic neurodegeneration critically requires normal GTPase activity, as hypothesis-testing mutations that increase GTP hydrolysis or impair GTP-binding activity provide neuroprotection although via distinct mechanisms. Taken together, our data demonstrate that G2019S LRRK2 induces neurodegeneration in vivo via a mechanism that is dependent on kinase and GTPase activity. Our study provides a robust rodent preclinical model of LRRK2-linked PD and nominates kinase inhibition and modulation of GTPase activity as promising disease-modifying therapeutic targets.
Collapse
|
47
|
Korecka JA, Thomas R, Hinrich AJ, Moskites AM, Macbain ZK, Hallett PJ, Isacson O, Hastings ML. Splice-Switching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:623-635. [PMID: 32736291 PMCID: PMC7393423 DOI: 10.1016/j.omtn.2020.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/15/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder estimated to affect 7–10 million people worldwide. There is no treatment available that cures or slows the progression of PD. Elevated leucine-rich repeat kinase 2 (LRRK2) activity has been associated with genetic and sporadic forms of PD and, thus, reducing LRRK2 function is a promising therapeutic strategy. We have previously reported that an antisense oligonucleotide (ASO) that blocks splicing of LRRK2 exon 41, which encodes part of the kinase domain, reverses aberrant endoplasmic reticulum (ER) calcium levels and mitophagy defects in PD patient-derived cell lines harboring the LRRK2 G2019S mutation. In this study, we show that treating transgenic mice expressing human wild-type or G2019S LRRK2 with a single intracerebroventricular injection of ASO induces exon 41 skipping and results in a decrease in phosphorylation of the LRRK2 kinase substrate RAB10. Exon 41 skipping also reverses LRRK2 kinase-dependent changes in LC3B II/I ratios, a marker for the autophagic process. These results demonstrate the potential of LRRK2 exon 41 skipping as a possible therapeutic strategy to modulate pathogenic LRRK2 kinase activity associated with PD development.
Collapse
Affiliation(s)
- Joanna A Korecka
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | - Ria Thomas
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Anthony J Hinrich
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Alyssa M Moskites
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Zach K Macbain
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
48
|
Marchand A, Drouyer M, Sarchione A, Chartier-Harlin MC, Taymans JM. LRRK2 Phosphorylation, More Than an Epiphenomenon. Front Neurosci 2020; 14:527. [PMID: 32612495 PMCID: PMC7308437 DOI: 10.3389/fnins.2020.00527] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene are linked to autosomal dominant Parkinson's disease (PD), and genetic variations at the LRRK2 locus are associated with an increased risk for sporadic PD. This gene encodes a kinase that is physiologically multiphosphorylated, including clusters of both heterologous phosphorylation and autophosphorylation sites. Several pieces of evidence indicate that LRRK2's phosphorylation is important for its pathological and physiological functioning. These include a reduced LRRK2 heterologous phosphorylation in PD brains or after pharmacological inhibition of LRRK2 kinase activity as well as the appearance of subcellular LRRK2 accumulations when this protein is dephosphorylated at heterologous phosphosites. Nevertheless, the regulatory mechanisms governing LRRK2 phosphorylation levels and the cellular consequences of changes in LRRK2 phosphorylation remain incompletely understood. In this review, we present current knowledge on LRRK2 phosphorylation, LRRK2 phosphoregulation, and how LRRK2 phosphorylation changes affect cellular processes that may ultimately be linked to PD mechanisms.
Collapse
Affiliation(s)
- Antoine Marchand
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Matthieu Drouyer
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Alessia Sarchione
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
49
|
Brunelli F, Valente EM, Arena G. Mechanisms of neurodegeneration in Parkinson's disease: keep neurons in the PINK1. Mech Ageing Dev 2020; 189:111277. [PMID: 32504621 DOI: 10.1016/j.mad.2020.111277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
Extensive studies on PINK1, whose mutations are a confirmed cause of Parkinson's disease (PD), have been conducted in animal models or immortalized cell lines. These include initial ground-breaking discoveries on mitophagy, which demonstrated that PINK1 recruits Parkin on depolarized mitochondria, initiating a signalling cascade eventually resulting in their autophagic degradation. Not all features of this complex molecular pathway have been reproduced in mammalian or human neurons, undermining the hypothesis proposing mitophagy as the most relevant biochemical link between PINK1 deficiency and PD pathogenesis. Experiments in murine primary neurons examined another possible neuroprotective function of PINK1, namely its involvement in mitochondrial motility along axons and dendrites. PINK1 interacts with Miro, a component of the motor/adaptor complex binding mitochondria to microtubules and allowing their movement to and from cellular processes. Distinct subcellular pools of PINK1, cytosolic and mitochondrial, appear to regulate anterograde and retrograde transport, respectively. Technological advancements today allow researchers to de-differentiate fibroblasts into induced pluripotent stem cells and re-differentiate them into dopaminergic neurons. Few studies based on this technique address possible neuroprotective effects of PINK1, including mitophagy and mitochondrial homeostasis, but underline the need for a broader characterization of its function in neurons.
Collapse
Affiliation(s)
- Francesco Brunelli
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
50
|
Alpha-Synuclein and LRRK2 in Synaptic Autophagy: Linking Early Dysfunction to Late-Stage Pathology in Parkinson's Disease. Cells 2020; 9:cells9051115. [PMID: 32365906 PMCID: PMC7290471 DOI: 10.3390/cells9051115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
The lack of effective disease-modifying strategies is the major unmet clinical need in Parkinson’s disease. Several experimental approaches have attempted to validate cellular targets and processes. Of these, autophagy has received considerable attention in the last 20 years due to its involvement in the clearance of pathologic protein aggregates and maintenance of neuronal homeostasis. However, this strategy mainly addresses a very late stage of the disease, when neuropathology and neurodegeneration have likely “tipped over the edge” and disease modification is extremely difficult. Very recently, autophagy has been demonstrated to modulate synaptic activity, a process distinct from its catabolic function. Abnormalities in synaptic transmission are an early event in neurodegeneration with Leucine-Rich Repeat Kinase 2 (LRRK2) and alpha-synuclein strongly implicated. In this review, we analyzed these processes separately and then discussed the unification of these biomolecular fields with the aim of reconstructing a potential “molecular timeline” of disease onset and progression. We postulate that the elucidation of these pathogenic mechanisms will form a critical basis for the design of novel, effective disease-modifying therapies that could be applied early in the disease process.
Collapse
|