1
|
Brito HO, Reis RC, Bini I, Wilhelms D, Engblom D, Gil da Costa RM, Brito LO, Nascimento MDDSB, de Andrade MS, Zampronio AR, Cavichiollo CC. NK1 receptor mediates cerebral cellular and extracellular morphological changes during the LPS-induced febrile response. Brain Res 2024; 1842:149107. [PMID: 38977236 DOI: 10.1016/j.brainres.2024.149107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Fever elicited by bacterial lypopolyssacharide (LPS) is mediated by pro-inflammatory cytokines, which activate central mediators and regulate the hypothalamic temperature setpoint. This response is often accompanied by morphological changes involving the extracellular matrix, neurons and glial cells, with significant health impacts. The NK1 receptor is involved in the febrile response induced by LPS but its effects over the extracellular matrix in the context of neuroinflammation remain unknown. The present work aims to clarify the extracellular changes associated with NK1 signaling in LPS-induced fever. Male Wistar rats were exposed to LPS intraperitoneally. Experimental groups were pre-treated intracerebroventricularly with the NK1 selective inhibitor SR140333B or saline. Histological changes involving the brain extracellular matrix were evaluated using hematoxylin and eosin, Mason's trichrome, picrosirius, alcian blue, periodic acid Schiff's stains. The expression of matrix metalloproteinase 9 (MMP9) was studied using confocal microscopy. Fever was accompanied by edema, perivascular lymphoplamacytic and neutrophylic infiltration, spongiosis and MMP9 overexpression. SR140333B significantly reduced LPS-induced fever (p < 0.0001), MMP9 overexpression (p < 0.01) and associated histological changes. These results contribute to characterize cerebral extracellular matrix changes associated with LPS-induced fever. Overall, the present work supports a role for NK1 receptor in these neuroinflammatory changes, involving MMP9 overexpression, edema and leukocytic infiltration.
Collapse
Affiliation(s)
- Haissa O Brito
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil; Department of Morphology, Federal University of Maranhão, São Luís, Brazil.
| | - Renata C Reis
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - Israel Bini
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Rui M Gil da Costa
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil; Department of Morphology, Federal University of Maranhão, São Luís, Brazil; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal.
| | - Luciane O Brito
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil
| | | | - Marcelo Souza de Andrade
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil
| | | | | |
Collapse
|
2
|
Gao X, Frakich N, Filippini P, Edwards LJ, Vinkemeier U, Gran B, Tanasescu R, Bayraktutan U, Colombo S, Constantinescu CS. Effects of substance P on human cerebral microvascular endothelial cell line hCMEC/D3 are mediated exclusively through a truncated NK-1 receptor and depend on cell confluence. Neuropeptides 2022; 95:102265. [PMID: 35696961 DOI: 10.1016/j.npep.2022.102265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/01/2022] [Accepted: 06/02/2022] [Indexed: 01/15/2023]
Abstract
The neuropeptide substance P (SP) mediates pain transmission, immune modulation, vasodilation and neurogenic inflammation. Its role in the peripheral nervous system has been well characterised. However, its actions on the blood-brain barrier (BBB) are less clear and warrant further study. The aim of this study was to characterise the effect of SP on the brain microvascular endothelial cells using the immortalized human brain microvascular endothelial cell line hCMEC/D3. As part of our studies, we have evaluated changes in expression, at mRNA and protein levels, of genes involved in the function of the blood-brain barrier such as occludin, induced by exposure to SP. We show that the effect of SP is dependent on cell confluence status. Thus, at low confluence but not at full confluence, SP treatment reduced occludin expression. The expression of the SP receptor, neurokinin-1 receptor (NK-1R) (the truncated form of the receptor expressed exclusively in this cell line) was also modulated in a similar pattern. SP treatment stimulated extracellular signal-regulated kinase (Erk2) phosphorylation which was not associated to changes in Interleukin-6 (IL-6), Interleukin-8 (IL-8), or Intercellular Adhesion Molecule 1 (ICAM-1) protein expression. In addition, SP treatment effectively recovered nitric oxide production on cells exposed to tumour necrosis factor alpha (TNF-α). SP did not trigger intracellular calcium release in hCMEC/D3 cells. We conclude that hCMEC/D3 cells are partially responsive to SP, that the effects are mediated through the truncated form of the receptor and are dependent on the confluence status of these cells.
Collapse
Affiliation(s)
- Xin Gao
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Nanci Frakich
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Perla Filippini
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Laura J Edwards
- Division of Medical Sciences and Graduate Entry Medicine, Medical School, Royal Derby Hospital, Uttoxeter Road, Derby DE22 3DT, University of Nottingham, UK
| | - Uwe Vinkemeier
- School of Life Science, Action Medical Research Professor of Cell Biology, University of Nottingham, Nottingham, UK
| | - Bruno Gran
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Radu Tanasescu
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Sergio Colombo
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Cris S Constantinescu
- Academic Unit of Mental Health and Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Department of Neurology, Cooper University Hospital, Cooper Neurological Institute, Camden, NJ 08103, USA.
| |
Collapse
|
3
|
Ko KR, Lee H, Han SH, Ahn W, Kim DK, Kim IS, Jung BS, Lee S. Substance P, A Promising Therapeutic Target in Musculoskeletal Disorders. Int J Mol Sci 2022; 23:ijms23052583. [PMID: 35269726 PMCID: PMC8910130 DOI: 10.3390/ijms23052583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
A large number of studies have focused on the role of substance P (SP) and the neurokinin-1 receptor (NK1R) in the pathogenesis of a variety of medical conditions. This review provides an overview of the role of the SP-NK1R pathway in the pathogenesis of musculoskeletal disorders and the evidence for its role as a therapeutic target for these disorders, which are major public health problems in most countries. To summarize, the brief involvement of SP may affect tendon healing in an acute injury setting. SP combined with an adequate conjugate can be a regenerative therapeutic option in osteoarthritis. The NK1R antagonist is a promising agent for tendinopathy, rheumatoid arthritis, and osteoarthritis. Research on the SP-NK1R pathway will be helpful for developing novel drugs for osteoporosis.
Collapse
Affiliation(s)
- Kyung Rae Ko
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (K.R.K.); (I.-S.K.)
| | - Hyunil Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, 170 Juhwa-ro, Ilsanseo-gu, Goyang-si 10380, Gyeonggi-do, Korea;
| | - Soo-Hong Han
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Wooyeol Ahn
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Do Kyung Kim
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Il-Su Kim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (K.R.K.); (I.-S.K.)
| | - Bo Sung Jung
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
- Correspondence: (B.S.J.); (S.L.); Tel.: +82-31-780-5289 (B.S.J. & S.L.); Fax: +82-31-881-7114 (B.S.J. & S.L.)
| | - Soonchul Lee
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
- Correspondence: (B.S.J.); (S.L.); Tel.: +82-31-780-5289 (B.S.J. & S.L.); Fax: +82-31-881-7114 (B.S.J. & S.L.)
| |
Collapse
|
4
|
Belekhova MG, Kenigfest NB, Chmykhova NM. Evolutionary Formation and Functional
Significance
of the Core–Belt Pattern of Neural Organization of Rostral Auditory
Centers in Vertebrates. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020040018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Rahdar P, Khazali H. Rfamide-related peptide-3 suppresses the substance P-induced promotion of the reproductive performance in female rats modulating hypothalamic Kisspeptin expression. Exp Brain Res 2020; 238:2457-2467. [PMID: 32783107 DOI: 10.1007/s00221-020-05860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
RFamide-related peptide-3 (RFRP-3) has been postulated as the suppressor of the reproductive axis at hypothalamic, pituitary and gonadal levels. Considering the hypothalamic level, RFRP-3 can suppress the activity of gonadotropin-releasing hormone (GnRH) neurons and their upstream neuronal stimulator, namely; the kisspeptin neurons. The effects of the RFRP-3 on the other regulators of GnRH neurons, however, are not completely investigated. Furthermore, substance P (SP) has been known as one of the coordinators of GnRH/ luteinizing hormone (LH) and the kisspeptin/G protein-coupled receptor 54 (GPR54) systems. The present study was aimed at investigating the impacts of RFRP-3 on the effects of SP on the reproductive performance in ovariectomized female rats. After intracerebroventricular (ICV) cannulation, the rats were subjected to the ICV injection of either SP or RFRP-3 and simultaneous injection of them and their selective antagonists. Blood and hypothalamic samplings and also sexual behavioral test were carried out on two main groups of rats. The analyses of the results of LH radioimmunoassay, gene expression assay for hypothalamic Gnrh1, Kisspeptin and Gpr54 accompanied by sexual behavioral examination revealed that the SP administration promotes reproductive behavior and GnRH/LH system and upregulates Kisspeptin expression. The RFRP-3 administration suppressed reproductive behavior, GnRH / LH system and Kisspeptin expression; however, the simultaneous injection of SP and RFRP-3 was devoid of significant alterations in the assessed parameters. The results showed that RFRP-3 can modulates the impacts of SP on the reproductive performance in ovariectomized female rats in part through adjusting Kisspeptin expression.
Collapse
Affiliation(s)
- Parastoo Rahdar
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
6
|
Szereda-Przestaszewska M, Kaczyńska K. Serotonin and substance P: Synergy or competition in the control of breathing. Auton Neurosci 2020; 225:102658. [PMID: 32145695 DOI: 10.1016/j.autneu.2020.102658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
Abstract
Numerous neurotransmitters identified in the central nervous system play role in ventilatory control. This mini-review focuses on the respiratory effects of two neurotransmitters: serotonin (5-HT) and substance P (SP). We discuss their co-localization in medullary raphe nuclei, expression of proper receptors within the specific regions of respiratory related structures and contribution to respiratory rhythmogenesis.
Collapse
Affiliation(s)
- Małgorzata Szereda-Przestaszewska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
7
|
The Impact of Morphine on Reproductive Activity in Male Rats Is Regulated by Rf-Amid-Related Peptide-3 and Substance P Adjusting Hypothalamic Kisspeptin Expression. J Mol Neurosci 2019; 69:456-469. [DOI: 10.1007/s12031-019-01375-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023]
|
8
|
Del Fiacco M, Serra MP, Boi M, Poddighe L, Demontis R, Carai A, Quartu M. TRPV1-Like Immunoreactivity in the Human Locus K, a Distinct Subregion of the Cuneate Nucleus. Cells 2018; 7:cells7070072. [PMID: 29986526 PMCID: PMC6071077 DOI: 10.3390/cells7070072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 01/02/2023] Open
Abstract
The presence of transient receptor potential vanilloid type-1 receptor (TRPV1)-like immunoreactivity (LI), in the form of nerve fibres and terminals, is shown in a set of discrete gray matter subregions placed in the territory of the human cuneate nucleus. We showed previously that those subregions share neurochemical and structural features with the protopathic nuclei and, after the ancient name of our town, collectively call them Locus Karalis, and briefly Locus K. TRPV1-LI in the Locus K is codistributed, though not perfectly overlapped, with that of the neuropeptides calcitonin gene-related peptide and substance P, the topography of the elements immunoreactive to the three markers, in relation to each other, reflecting that previously described in the caudal spinal trigeminal nucleus. Myelin stainings show that myelinated fibres, abundant in the cuneate, gracile and trigeminal magnocellular nuclei, are scarce in the Locus K as in the trigeminal substantia gelatinosa. Morphometric analysis shows that cell size and density of Locus K neurons are consistent with those of the trigeminal substantia gelatinosa and significantly different from those of the magnocellular trigeminal, solitary and dorsal column nuclei. We propose that Locus K is a special component of the human dorsal column nuclei. Its functional role remains to be determined, but TRPV1 appears to play a part in it.
Collapse
Affiliation(s)
- Marina Del Fiacco
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Marianna Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Laura Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Roberto Demontis
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Antonio Carai
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| |
Collapse
|
9
|
|
10
|
Johnson MB, Young AD, Marriott I. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders. Front Cell Neurosci 2017; 10:296. [PMID: 28101005 PMCID: PMC5209380 DOI: 10.3389/fncel.2016.00296] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson's disease, Alzheimer's disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ada D Young
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
11
|
Maduka UP, Hamity MV, Walder RY, White SR, Li Y, Hammond DL. Changes in the disposition of substance P in the rostral ventromedial medulla after inflammatory injury in the rat. Neuroscience 2016; 317:1-11. [PMID: 26762802 DOI: 10.1016/j.neuroscience.2015.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022]
Abstract
This study examined whether peripheral inflammatory injury increases the levels or changes the disposition of substance P (SubP) in the rostral ventromedial medulla (RVM), which serves as a central relay in bulbospinal pathways of pain modulation. Enzyme immunoassay and reverse transcriptase quantitative polymerase chain reaction were used to measure SubP protein and transcript, respectively, in tissue homogenates prepared from the RVM and the periaqueductal gray (PAG) and cuneiform nuclei of rats that had received an intraplantar injection of saline or complete Freund's adjuvant (CFA). Matrix-Assisted Laser Desorption/Ionization Time of Flight analysis confirmed that the RVM does not contain hemokinin-1 (HK-1), which can confound measurements of SubP because it is recognized equally well by commercial antibodies for SubP. Levels of SubP protein in the RVM were unchanged four hours, four days and two weeks after injection of CFA. Tac1 transcripts were similarly unchanged in the RVM four days or two weeks after CFA. In contrast, the density of SubP immunoreactive processes in the RVM increased 2-fold within four hours and 2.7-fold four days after CFA injection; it was unchanged at two weeks. SubP-immunoreactive processes in the RVM include axon terminals of neurons located in the PAG and cuneiform nucleus. SubP content in homogenates of the PAG and cuneiform nucleus was significantly increased four days after CFA, but not at four hours or two weeks. Tac1 transcripts in homogenates of these nuclei were unchanged four days and two weeks after CFA. These findings suggest that there is an increased mobilization of SubP within processes in the RVM shortly after injury accompanied by an increased synthesis of SubP in neurons that project to the RVM. These findings are consonant with the hypothesis that an increase in SubP release in the RVM contributes to the hyperalgesia that develops after peripheral inflammatory injury.
Collapse
Affiliation(s)
- U P Maduka
- Departments of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - M V Hamity
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - R Y Walder
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - S R White
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Y Li
- Proteomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - D L Hammond
- Departments of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
12
|
Sosulina L, Strippel C, Romo-Parra H, Walter AL, Kanyshkova T, Sartori SB, Lange MD, Singewald N, Pape HC. Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation. J Neurophysiol 2015; 114:2500-8. [PMID: 26334021 DOI: 10.1152/jn.00883.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 08/19/2015] [Indexed: 11/22/2022] Open
Abstract
Substance P (SP) is implicated in stress regulation and affective and anxiety-related behavior. Particularly high expression has been found in the main output region of the amygdala complex, the central amygdala (CE). Here we investigated the cellular mechanisms of SP in CE in vitro, taking advantage of glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) knockin mice that yield a reliable labeling of GABAergic neurons, which comprise 95% of the neuronal population in the lateral section of CE (CEl). In GFP-positive neurons within CEl, SP caused a membrane depolarization and increase in input resistance, associated with an increase in action potential firing frequency. Under voltage-clamp conditions, the SP-specific membrane current reversed at -101.5 ± 2.8 mV and displayed inwardly rectifying properties indicative of a membrane K(+) conductance. Moreover, SP responses were blocked by the neurokinin type 1 receptor (NK1R) antagonist L-822429 and mimicked by the NK1R agonist [Sar(9),Met(O2)(11)]-SP. Immunofluorescence staining confirmed localization of NK1R in GFP-positive neurons in CEl, predominantly in PKCδ-negative neurons (80%) and in few PKCδ-positive neurons (17%). Differences in SP responses were not observed between the major types of CEl neurons (late firing, regular spiking, low-threshold bursting). In addition, SP increased the frequency and amplitude of GABAergic synaptic events in CEl neurons depending on upstream spike activity. These data indicate a NK1R-mediated increase in excitability and GABAergic activity in CEl neurons, which seems to mostly involve the PKCδ-negative subpopulation. This influence can be assumed to increase reciprocal interactions between CElon and CEloff pathways, thereby boosting the medial CE (CEm) output pathway and contributing to the anxiogenic-like action of SP in the amygdala.
Collapse
Affiliation(s)
- L Sosulina
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany; Neuronal Networks Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - C Strippel
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - H Romo-Parra
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - A L Walter
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - T Kanyshkova
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - S B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy, and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Insbruck, Austria; and
| | - M D Lange
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Insbruck, Austria; and
| | - H-C Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany;
| |
Collapse
|
13
|
Miyamoto Y, Fukuda T. Immunohistochemical study on the neuronal diversity and three-dimensional organization of the mouse entopeduncular nucleus. Neurosci Res 2015; 94:37-49. [PMID: 25722090 DOI: 10.1016/j.neures.2015.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
Abstract
The entopeduncular nucleus (EPN) is one of the major output nuclei of the basal ganglia in rodents. Previous studies have divided it into rostral and caudal halves, with the former containing somatostatin (SOM)-immunoreactive neurons and the latter dominated by parvalbumin (PV)-containing neurons, respectively. However, it is unclear whether this simple rostrocaudal segmentation is appropriate, and the possibility of the existence of other neuronal populations remains to be investigated. In this study the cytoarchitecture of the mouse EPN was analyzed immunohistochemically. Substance P (SP)-immunoreactivity determined the extent of the EPN, which was 800 μm-long along the rostrocaudal axis. PV-positive neurons were concentrated in the caudal two-thirds of this range. PV-negative neurons were abundant in the rostral half but were further located caudally around the PV neuron-rich core. PV(+)/SOM(-) and PV(-)/SOM(+) neurons constituted 28.6% and 45.7% of EPN neurons, respectively, whereas the remaining population (25.7%) exhibited neither immunoreactivity. Eleven percent of EPN neurons lacked immunoreactivity for glutamic acid decarboxylase, indicating their non-GABAergic nature. Three-dimensional reconstruction revealed that PV-rich/SP-poor core was surrounded by PV-poor/SP-rich shell region. Therefore, presumptive thalamus-targeting PV neurons are outnumbered by other populations, and the regional heterogeneity shown here might be related to functionally distinct pathways through the basal ganglia.
Collapse
Affiliation(s)
- Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
14
|
NK1 receptors antagonism of dorsal hippocampus counteract the anxiogenic-like effects induced by pilocarpine in non-convulsive Wistar rats. Behav Brain Res 2014; 265:53-60. [DOI: 10.1016/j.bbr.2014.01.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 11/21/2022]
|
15
|
Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids 2014; 46:1727-50. [PMID: 24705689 DOI: 10.1007/s00726-014-1736-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
Abstract
The peptide substance P (SP) shows a widespread distribution in both the central and peripheral nervous systems, but it is also present in cells not belonging to the nervous system (immune cells, liver, lung, placenta, etc.). SP is located in all body fluids, such as blood, cerebrospinal fluid, breast milk, etc. i.e. it is ubiquitous in human body. After binding to the neurokinin-1 (NK-1) receptor, SP regulates many pathophysiological functions in the central nervous system, such as emotional behavior, stress, depression, anxiety, emesis, vomiting, migraine, alcohol addiction, seizures and neurodegeneration. SP has been also implicated in pain, inflammation, hepatitis, hepatotoxicity, cholestasis, pruritus, myocarditis, bronchiolitis, abortus, bacteria and viral infection (e.g., HIV infection) and it plays an important role in cancer (e.g., tumor cell proliferation, antiapoptotic effects in tumor cells, angiogenesis, migration of tumor cells for invasion, infiltration and metastasis). This means that the SP/NK-1 receptor system is involved in the molecular bases of many human pathologies. Thus, knowledge of this system is the key for a better understanding and hence a better management of many human diseases. In this review, we update the involvement of the SP/NK-1 receptor system in the physiopathology of the above-mentioned pathologies and we suggest valuable future therapeutic interventions involving the use of NK-1 receptor antagonists, particularly in the treatment of emesis, depression, cancer, neural degeneration, inflammatory bowel disease, viral infection and pruritus, in which that system is upregulated.
Collapse
|
16
|
Enhanced habituation produced by posttrial peripheral injection of substance P. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03334004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Del Fiacco M, Quartu M, Serra MP, Boi M, Demontis R, Poddighe L, Picci C, Melis T. The human cuneate nucleus contains discrete subregions whose neurochemical features match those of the relay nuclei for nociceptive information. Brain Struct Funct 2013; 219:2083-101. [PMID: 23975345 PMCID: PMC4223579 DOI: 10.1007/s00429-013-0625-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 08/04/2013] [Indexed: 12/21/2022]
Abstract
The present paper is aimed at defining distinctive subdivisions of the human cuneate nucleus (Cu), evident from prenatal to old life, whose occurrence has never been clearly formalized in the human brain, or described in other species so far. It extends our early observations on the presence of gray matter areas that host strong substance P (SP) immunoreactivity in the territory of the human Cu and adjacent cuneate fascicle. Here we provide a three-dimensional reconstruction of the Cu fields rich in SP and further identify those areas by means of their immunoreactivity to the neuropeptides SP, calcitonin gene-related peptide, methionine- and leucine-enkephalin, peptide histidine-isoleucine, somatostatin and galanin, to the trophins glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor, and to the neuroplasticity proteins polysialylated neural cell adhesion molecule and growth-associated protein-43. The presence, density and distribution of immunoreactivity for each of these molecules closely resemble those occurring in the superficial layers of the caudal spinal trigeminal nucleus (Sp5C). Myelin and Nissl stainings suggest that those Cu subregions and the Sp5C superficial layers share a similar histological aspect. This work establishes the existence of definite subregions, localized within the Cu territory, that bear the neurochemical and histological features of sensory nuclei committed to the neurotransmission of protopathic stimuli, including pain. These findings appear of particular interest when considering that functional, preclinical and clinical studies show that the dorsal column nuclei, classical relay station of fine somatic tactile and proprioceptive sensory stimuli, are also involved in pain neurotransmission.
Collapse
Affiliation(s)
- Marina Del Fiacco
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Leslie RA. Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus. Neurochem Int 2012; 7:191-211. [PMID: 20492915 DOI: 10.1016/0197-0186(85)90106-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The distributions of classical and putative neurotransmitters within somata and fibres of the dorsal vagal complex are reviewed. The occurrence within the dorsal medulla oblongata of receptors specific for some of these substances is examined, and possible functional correlations of the specific neurochemicals with respect to their distribution within the dorsal vagal complex are discussed. Many of the known transmitters and putative transmitters are represented in the dorsal vagal complex, particularly within various subnuclei of the nucleus of the solitary tract, the main vagal afferent nucleus. In a few cases, some of these have been examined in detail, particularly with respect to their possible mediation of cardiovascular or gastrointestinal functions. For example, the catecholamines, substance P and angiotensin II in the nucleus of the solitary tract have all been strongly implicated as playing a role in the central control of cardiovascular function. Other neurotransmitters or putative transmitters may be involved as well, but probably to a lesser extent. Similarly, the roles in the dorsal vagal complex of dopamine, the endorphins and cholecystokinin in control of the gut have been studied in some detail. Future investigations of the distributions of and electrophysiological parameters of neurotransmitters at the cellular level should provide much needed clues to advance our knowledge of the correlations between anatomical distributions of specific neurochemicals and physiological functions mediated by them.
Collapse
Affiliation(s)
- R A Leslie
- Nuffield Laboratory of Ophthalmology, Oxford University, Walton Street, Oxford OX2 6AW, U.K
| |
Collapse
|
19
|
Germinal sites and migrating routes of cells in the mesencephalic and diencephalic auditory areas in the African clawed frog (Xenopus laevis). Brain Res 2011; 1373:67-78. [PMID: 21167138 DOI: 10.1016/j.brainres.2010.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/07/2010] [Accepted: 12/07/2010] [Indexed: 02/05/2023]
Abstract
There is a clear core-shell organization in the auditory nuclei of amniotes. However, such organization only exists in the mesencephalic, but not in the diencephalic auditory regions of amphibians. To gain insights into how this core-shell organization developed and evolved, we injected a small dose of [(3)H]-thymidine into tadpoles of Xenopus laevis at peak stages of neurogenesis in the mesencephalic and diencephalic auditory areas. Following different survival times, the germinal sites and migrating routes of cells were examined in the shell (laminar nucleus, Tl; magnocellular nucleus, Tmc) and core (principal nucleus, Tp) regions of the mesencephalic auditory nucleus, torus semicircularis (Ts), as well as in the diencephalic auditory areas (posterior thalamic nucleus, P; central thalamic nucleus, C). Double labeling for [(3)H]-thymidine autoradiography and immunohistochemistry for vimentin was also performed to help determine the routes of cell migration. We found three major results. First, the germinal sites of Tp were intercalated between Tl and Tmc, arising from those of the shell regions. Second, although the germinal sites of Tl, Tmc, and Tp were located in the same brain levels (at rostromedial or caudomedial levels of Ts), neurogenesis in Tl or Tmc started earlier than that in Tp. Finally, the P and C were also generated in different ventricle sites. However, unlike Ts their neurogenesis showed no obvious temporal differences. These data demonstrate that a highly differentiated auditory region, such as Tp in Ts, is lacking in the diencephalon of amphibian. Our data are discussed from the view of the constitution and evolutionary origins of auditory nuclei in vertebrates.
Collapse
|
20
|
|
21
|
Distinct Roles of Synaptic Transmission in Direct and Indirect Striatal Pathways to Reward and Aversive Behavior. Neuron 2010; 66:896-907. [DOI: 10.1016/j.neuron.2010.05.011] [Citation(s) in RCA: 438] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2010] [Indexed: 11/24/2022]
|
22
|
Zeng SJ, Lin YT, Tian CP, Song KJ, Zhang XW, Zuo MX. Evolutionary significance of delayed neurogenesis in the core versus shell auditory areas of Mus musculus. J Comp Neurol 2009; 515:600-13. [PMID: 19480001 DOI: 10.1002/cne.22076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Early comparative embryogenesis can reflect the organization and evolutionary origins of brain areas. Neurogenesis in the auditory areas of sauropsids displays a clear core-to-shell distinction, but it remains unclear in mammals. To address this issue, [3H]-thymidine was injected into pregnant mice on consecutive embryonic (E) days (E10-E19) to date neuronal birthdays. Immunohistochemistry for substance P, calbindin, and parvalbumin was conducted to distinguish the core and shell auditory regions. The results showed that: 1) cell generation began at E13 in the external or dorsal nucleus of the inferior colliculus (IC), but it did not start in the caudomedial portion of the central nucleus of IC, and significantly fewer cells were produced in the medial and rostromedial portions of the central nucleus of IC; 2) cells were generated at E11 in the dorsal and medial divisions of the medial geniculate complex (MGd and MGm, respectively), whereas cell generation was absent in the medial and rostromedial portions of the ventral medial geniculate complex (MGv), and fewer cells were produced in the caudomedial portion of MGv; 3) in the telencephalic auditory cortex, cells were produced at E11 or E12 in layer I and the subplate, which receive projections from the MGd and MGm. However, cell generation occurred at E13-E18 in layers II-VI, including the area receiving projections from the MGv. The core-to-shell distinction of neurogenesis is thus present in the mesencephalic to telencephalic auditory areas in the mouse. This distinction of neurogenesis is discussed from an evolutionary perspective.
Collapse
Affiliation(s)
- Shao-Ju Zeng
- Beijing Key Lab of Gene Engineering Drugs & Biological Technology, Beijing Normal University, Beijing, P.R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Lacoste B, Riad M, Ratté MO, Boye SM, Lévesque D, Descarries L. Trafficking of neurokinin-1 receptors in serotonin neurons is controlled by substance P within the rat dorsal raphe nucleus. Eur J Neurosci 2009; 29:2303-14. [DOI: 10.1111/j.1460-9568.2009.06775.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Immunohistochemical evidence for the existence of novel mammalian neuropeptides related to the Hydra GLW-amide neuropeptide family. Cell Tissue Res 2009; 337:15-25. [DOI: 10.1007/s00441-009-0808-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 04/08/2009] [Indexed: 01/01/2023]
|
25
|
Cuello AC, Priestley JV, Matthews MR. Localization of substance P in neuronal pathways. CIBA FOUNDATION SYMPOSIUM 2008:55-83. [PMID: 6183080 DOI: 10.1002/9780470720738.ch5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The main neuronal systems containing substance P are summarized on the basis of immunohistochemical evidence. The substance P striatonigral projection is one of the most conspicuous of these. Electron microscopic studies using the peroxidase-antiperoxidase technique reveal some heterogeneity in the substance P-immunostained material in the substantia nigra. Immunoreactivity for the peptide is found in terminals establishing both symmetrical and asymmetrical synapses with substantia nigra dendrites. Substance P immunoreactivity in the substantia gelatinosa of the trigeminal nerve and in the skin of the trigeminal territory was found to be depleted after sensory denervation. Electron microscopy showed that in this area of the rat brain substance P-immunoreactive elements are largely associated with dendrites and establish asymmetrical axo-dendritic synapses. Substance P-immunoreactive terminals synapsing with presynaptic dendrites were also observed (i.e. dendrites that themselves are presynaptic to other dendrites). The origin of substance P-containing fibres in the prevertebral ganglia has been investigated in the guinea-pig by combining surgical procedures and immunohistochemistry. Only procedures which disconnected dorsal root ganglia from prevertebral ganglia depleted substance P immunofluorescence in the latter. This substance P-immunoreactive material disappeared after administration of capsaicin. Electron microscopic studies in prevertebral ganglia show that substance P-immunoreactive varicosities establish axodendritic contacts with the sympathetic neurons. These observations provide strong evidence for direct synaptic sensory-autonomic interactions in the prevertebral ganglia involving substance P-containing collaterals of peripheral sensory nerve fibres.
Collapse
|
26
|
Iversen SD. Behavioural effects of substance P through dopaminergic pathways in the brain. CIBA FOUNDATION SYMPOSIUM 2008:307-24. [PMID: 6183078 DOI: 10.1002/9780470720738.ch18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Some of the highest concentrations of substance P in forebrain are found in areas where dopaminergic neurons arise or terminate. In the rat, native substance P has been injected directly into brain areas where interactions between substance P and dopamine are suspected. In the ventral tegmental area (A10 dopamine neurons), bilateral infusions of substance P induce locomotor activity and exploration. It is concluded that substance P activates A10 dopamine neurons innervating the limbic system because (i) the behavioural effects resemble those seen after systemic treatment with low doses of d-amphetamine, a drug response known to depend on the integrity of the A10 dopamine neurons; (ii) lesions to the A10 dopamine neurons abolish the behavioural response to intracerebrally infused substance P; and (iii) dopamine antagonist drugs abolish the response to substance P. In parallel experiments substance P was injected into the origins of the nigrostriatal (A9 dopamine neurons) system and found to produce stereotyped behaviour. Substance P analogues protected from enzymic degradation have been studied in these model systems. The prolongation of the behavioural effects is correlated with the presence of undegraded substance P in the ventral tegmental area. Unrelated behavioural responses are also observed, which appear not to be mediated by dopamine neurons, and probably reflect the spread of stable substance P from the ventral tegmental area to other brain sites.
Collapse
|
27
|
Abstract
Substance P administered iontophoretically to Renshaw cells in the cat had a dual effect, sometimes causing excitation and at other times inhibiting the excitatory effect of acetylcholine (ACh). The inhibitory effect was selective for the nicotinic receptors on Renshaw cells and the excitatory effect seemed to be due to the release of ACh from cholinergic terminals. It has not been possible to demonstrate a similar inhibitory effect on nicotinic receptors at the neuromuscular junction in frogs or in the chick, although a small agonist effect was occasionally observed. In the atropinized cat, intra-arterial injections of ACh to the superior cervical ganglion cause both a rise in blood pressure and contractions of the nictitating membrane which are abolished by hexamethonium. Intra-arterial injections of substance P partially blocked these nicotinic actions of ACh, but no excitatory effect of substance P was observed. These observations are discussed in relation to other studies and indicate that the polypeptide could function as an inhibitory or facilitatory regulator of cholinergically mediated responses at some but not all cholinergic synapses.
Collapse
|
28
|
Zeng S, Lin Y, Yang L, Zhang X, Zuo M. Comparative analysis of neurogenesis between the core and shell regions of auditory areas in the chick (Gallus gallus domesticus). Brain Res 2008; 1216:24-37. [PMID: 18486109 DOI: 10.1016/j.brainres.2008.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 11/29/2022]
Abstract
Early embryogenesis can reflect constituting organizations and evolutionary origins of brain areas. To determine whether a clear core-versus-shell distinction of neurogenesis that occurs from the auditory midbrain to the telencephalon in the reptile also appears in the bird, a single dose of [(3)H]-thymidine was injected into chick (Gallus gallus domesticus) eggs at some successive embryonic days (E) (from E3 to E10). Towards the end of hatching, [(3)H]-thymidine labeling was examined, and the results were as follows: 1) Neuronal generation in the nucleus intercollicularis (ICo) (shell region) began at E3, whereas neurogenesis began at E4 in the nucleus mesencephalicus lateralis pars dorsalis (MLd) (core region); 2) Neurogenesis initiated at E3 in the nucleus ovoidalis (Ov) shell, but initiated at E4 in the rostral Ov core. In the medial or caudal Ov core, the percentage of heavily-labeled neurons with [(3)H]-thymidine was significantly lower at E3 age group than that in the Ov shell; 3) In field L1 and L3, two flanking regions of the primary telencephalic auditory area (field L2a), neurogenesis started at E5, but started at E6 in field L2a. These data indicate that the onset of embryogenesis began earlier in the auditory shell areas than in the core areas from the midbrain to the telencephalon. These findings provide insight into the organization of auditory nuclei and their evolution in amniotes.
Collapse
Affiliation(s)
- ShaoJu Zeng
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, China
| | | | | | | | | |
Collapse
|
29
|
Zeng SJ, Tian C, Zhang X, Zuo MX. Neurogenic development of the auditory areas of the midbrain and diencephalon in the Xenopus laevis and evolutionary implications. Brain Res 2008; 1206:44-60. [PMID: 18346715 DOI: 10.1016/j.brainres.2008.01.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/27/2008] [Accepted: 01/28/2008] [Indexed: 11/30/2022]
Abstract
To study whether the core-versus-shell pattern of neurogenesis occurred in the mesencephalic and diencephalic auditory areas of amniotes also appears in the amphibian, [(3)H]-thymidine was injected into tadpoles at serial developmental stages of Xenopus laevis. Towards the end of metamorphism, [(3)H]-thymidine labeling was examined and led to two main observations: 1) neuron generation in the principal nucleus (Tp) started at stage 50, and peaked at stage 53, whereas it began at stage 48.5, and peaked around stage 49 in the other two mesencephalic auditory areas, the laminar nucleus (Tl) and the magnocellular nucleus (Tmc). 2) Neuron generation appeared at stage 40, and peaked around stage 52 in the posterior thalamic nucleus (P) and the central thalamic nucleus (C). Our study revealed that, like the cores of mesencephalic auditory nuclei in amniotes, Tp showed differences from Tl and Tmc in the onset and the peak of neurogenesis. However, such differences did not occur in the P and C. Our neurogenetic data were consistent with anatomical and physiological reports indicating a clear distinction between the mesencephalic, but not the diencephalic auditory areas of the amphibian. Our data are helpful to get insights into the organization of auditory nuclei and its evolution in vertebrates.
Collapse
Affiliation(s)
- Shao Ju Zeng
- Key Laboratory for Cell Proliferation And Regulation Biology, Ministry of Education, Beijing Normal University, China.
| | | | | | | |
Collapse
|
30
|
Mazarío J, Basbaum AI. Contribution of substance P and neurokinin A to the differential injury-induced thermal and mechanical responsiveness of lamina I and V neurons. J Neurosci 2007; 27:762-70. [PMID: 17251415 PMCID: PMC6672913 DOI: 10.1523/jneurosci.2992-06.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In a previous report, we compared the properties of lamina V neurons of the spinal cord dorsal horn in wild-type mice and in mice with a deletion of the preprotachykinin-A (PPT-A) gene, which encodes substance P (SP) and neurokinin A (NKA). The mutant mice had pronounced deficits in the response to thermal stimulation, both before and after mustard oil induced sensitization. Here, we extended our analysis to the properties of lamina I neurons and also examined responsiveness to mechanical stimulation. Consistent with the properties of lamina V neurons, in the PPT-A mutant mice we found significantly reduced responses of lamina I neurons to noxious thermal stimulation, and mustard oil sensitization of these neurons to heat was lost. In contrast, not only were the responses of lamina I neurons to noxious mechanical stimulation unchanged in the mutant mice, but in neither the wild-type nor the mutant mice could sensitization be induced. However, mustard oil profoundly sensitized lamina V neurons to mechanical stimulation in both wild-type and mutant mice. We conclude that SP and/or NKA are required for the transmission of noxious thermal stimulation by lamina I and V neurons, both before and after tissue injury. The persistence of mechanical sensitization of lamina V neurons in the mutant mice further shows that mustard oil induces mechanical and thermal sensitization through different mechanisms. Finally, we conclude that lamina I sensitization to mechanical stimulation is not required for this form of injury-increased responsiveness of lamina V neurons.
Collapse
Affiliation(s)
- Javier Mazarío
- Laboratorio de Función Sensitivomotora, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain.
| | | |
Collapse
|
31
|
Yihong Z, Tamada Y, Akai K, Suwa F. Morphological interrelationship between astrocytes and nerve endings in the rat spinal trigeminal nucleus caudalis. Okajimas Folia Anat Jpn 2007; 83:91-6. [PMID: 17154053 DOI: 10.2535/ofaj.83.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been reported that the spinal trigeminal nucleus caudalis (Sp5C), which receives nociceptive information from the oro-facial regions, has four laminae. To clarify the role of glial cells in the transmission of the nociceptive information, the present study was conducted to examine the detailed distribution of astrocytes in each lamina and also to investigate a morphological interrelationship between the astrocytes and nerve endings in the rat Sp5C. After the preparation of the serial cryostat sections, immunohistochemistry for glial fibrillary acidic protein (GFAP) was employed to identify the astrocytes, and immunohistochemistry for substance P (SP), calcitonin gene-related peptide (CGRP), was used for the nerve endings. We also employed double-labeling immunofluorescence and electron microscopic immunohistochemistry for the GFAP/SP or GFAP/CGRP. GFAP-positive reactions were observed in all laminae of the Sp5C, and SP- or CGRP-positive nerve endings were observed in the lamina I and II. Additionally, we clarified the presence of GFAP/SP- or GFAP/CGRP-positive reactions by the double-labeling immunofluorescence and demonstrated the morphological interrelationship between the astrocytes and nerve endings by the double-labeling electron microscopic immunohistochemistry. These findings suggest that astrocytes might play some roles in the transmission of nociceptive information from the oro-facial region.
Collapse
Affiliation(s)
- Zhang Yihong
- Department of Anatomy, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata-shi, Osaka 573-1121, Japan
| | | | | | | |
Collapse
|
32
|
Donkin JJ, Turner RJ, Hassan I, Vink R. Substance P in traumatic brain injury. PROGRESS IN BRAIN RESEARCH 2007; 161:97-109. [PMID: 17618972 DOI: 10.1016/s0079-6123(06)61007-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent evidence has suggested that neuropeptides, and in particular substance P (SP), may play a critical role in the development of morphological injury and functional deficits following acute insults to the brain. Few studies, however, have examined the role of SP, and more generally, neurogenic inflammation, in the pathophysiology of traumatic brain injury and stroke. Those studies that have been reported suggest that SP is released following injury to the CNS and facilitates the increased permeability of the blood brain barrier, the development of vasogenic edema and the subsequent cell death and functional deficits that are associated with these events. Inhibition of the SP activity, either through inhibition of the neuropeptide release or the use of SP receptor antagonists, have consistently resulted in profound decreases in edema formation and marked improvements in functional outcome. The current review summarizes the role of SP in acute brain injury, focussing on its properties as a neurotransmitter and the potential for SP to adversely affect outcome.
Collapse
Affiliation(s)
- James J Donkin
- Discipline of Pathology, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
33
|
Samuels RE, Tavernier RJ, Castillo MR, Bult-Ito A, Piggins HD. Substance P and neurokinin-1 immunoreactivities in the neural circadian system of the Alaskan northern red-backed vole, Clethrionomys rutilus. Peptides 2006; 27:2976-92. [PMID: 16930773 DOI: 10.1016/j.peptides.2006.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/09/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus houses the main mammalian circadian clock. This clock is reset by light-dark cues and stimuli that evoke arousal. Photic information is relayed directly to the SCN via the retinohypothalamic tract (RHT) and indirectly via the geniculohypothalamic tract, which originates from retinally innervated cells of the thalamic intergeniculate leaflet (IGL). In addition, pathways from the dorsal and median raphe (DR and MR) convey arousal state information to the IGL and SCN, respectively. The SCN regulates many physiological events in the body via a network of efferent connections to areas of the brain such as the habenula (Hb) in the epithalamus, subparaventricular zone (SPVZ) of the hypothalamus and locus coeruleus of the brainstem-areas of the brain associated with arousal and behavioral activation. Substance P (SP) and the neurokinin-1 (NK-1) receptor are present in the rat SCN and IGL, and SP acting via the NK-1 receptor alters SCN neuronal activity and resets the circadian clock in this species. However, the distribution and role of SP and NK-1 in the circadian system of other rodent species are largely unknown. Here we use immunohistochemical techniques to map the novel distribution of SP and NK-1 in the hypothalamus, thalamus and brainstem of the Alaskan northern red-backed vole, Clethrionomys rutilus, a species of rodent currently being used in circadian biology research. Interestingly, the pattern of immunoreactivity for SP in the red-backed vole SCN was very different from that seen in many other nocturnal and diurnal rodents.
Collapse
Affiliation(s)
- Rayna E Samuels
- Faculty of Life Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
34
|
Lacoste B, Riad M, Descarries L. Immunocytochemical evidence for the existence of substance P receptor (NK1) in serotonin neurons of rat and mouse dorsal raphe nucleus. Eur J Neurosci 2006; 23:2947-58. [PMID: 16819984 DOI: 10.1111/j.1460-9568.2006.04833.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In addition to its neurotransmitter/modulator role in pain perception, substance P (SP) is involved in a regulation of mood, as antagonists of its neurokinin-1 receptor (NK1r) have been found to have antidepressant-like effects in humans. In rodents, treatment with NK1r antagonists has been shown to increase the firing of dorsal raphe nucleus (DRN) serotonin (5-hydroxytryptamine, 5-HT) neurons and to induce a desensitization of their 5-HT1A autoreceptors, suggesting local interactions between the SP and 5-HT systems. To search for the presence of NK1r on 5-HT neurons of the DRN, we used light and electron microscopic immunocytochemistry, as well as confocal microscopy, after single- and double-labelling of NK1r and of the biosynthetic enzyme of 5-HT, tryptophan hydroxylase (TpOH). A significant number of 5-HT (TpOH-positive) cell bodies and dendrites endowed with NK1r were thus demonstrated in the caudal part of rat and mouse DRN. As visualized by electron microscopy after gold immunolabelling, NK1r was mostly cytoplasmic in 5-HT neurons, while predominating on the plasma membrane in the case of TpOH-negative dendrites. The proportion of NK1r observed on the plasma membrane of 5-HT neurons was, however, slightly higher in mouse than rat. Thus, in both rat and mouse DRN, a subpopulation of 5-HT neurons is endowed with NK1r receptors and may be directly involved in the antidepressant-like effects of NK1r antagonists. These 5-HT neurons represent a new element in the neuronal circuitry currently proposed to account for the role of SP in mood regulation.
Collapse
Affiliation(s)
- Baptiste Lacoste
- Département de pathologie et biologie cellulaire, and Centre de recherche en sciences neurologiques, Faculté de médecine, Université de Montréal, Montreal, Quebec, Canada H3C 3J7
| | | | | |
Collapse
|
35
|
Guglielmotti V, Cristino L. The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry. Brain Res Bull 2006; 69:475-88. [PMID: 16647576 DOI: 10.1016/j.brainresbull.2006.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 02/24/2006] [Accepted: 03/19/2006] [Indexed: 10/24/2022]
Abstract
This paper presents an overview on the epithalamus of vertebrates, with particular reference to the pineal and to the asymmetrical organization of the habenular nuclei in lower vertebrates. The relationship between the pineal and the habenulae in the course of phylogenesis is here emphasized, taking data in the frog as example. Altogether the data support the hypothesis, put forward also in earlier studies, of a correlation of habenular asymmetry in lower vertebrates with phylogenetic modification of the pineal complex. The present re-visitation was also stimulated by recent data on the asymmetrical expression of Nodal genes, which involves the pineal and habenular structures in zebrafish. The comparative analysis of data, from cyclostomes to mammals, suggests that transformation of epithalamic structures may play an important role in brain evolution. In addition, in mammals, including rodents, a remarkable complexity has evolved in the organization of the habenulae and their functional interactions with the pineal gland. The evolution of these two epithalamic structures seems to open also new perspectives of knowledge on their implication in the regulation of biological rhythms.
Collapse
Affiliation(s)
- Vittorio Guglielmotti
- Institute of Cybernetics E. Caianiello, Consiglio Nazionale delle Ricerche, via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| | | |
Collapse
|
36
|
Philippu A. Regulation of blood pressure by central neurotransmitters and neuropeptides. Rev Physiol Biochem Pharmacol 2005; 111:1-115. [PMID: 2906169 DOI: 10.1007/bfb0033872] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Coote JH. The organisation of cardiovascular neurons in the spinal cord. Rev Physiol Biochem Pharmacol 2005; 110:147-285. [PMID: 3285441 DOI: 10.1007/bfb0027531] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Yoo JH, Cho JH, Lee SY, Loh HH, Ho IK, Jang CG. A lack of μ-opioid receptors modulates the expressions of neuropeptide Y and substance P mRNA. Neurosci Lett 2005; 384:29-32. [PMID: 15885902 DOI: 10.1016/j.neulet.2005.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 11/23/2022]
Abstract
The present study was undertaken to investigate changes in the expressions of neuropeptide Y (NPY) and substance P (SP) in mice lacking mu-opioid receptors. In an in situ hybridization study, in which we compared wild type and mu-opioid receptor knockout mice, NPY mRNA levels were found to be lower in the caudate-putamen and nucleus accumbens of mu-opioid receptor knockout mice. In addition, SP mRNA levels were lower in the ventromedial hypothalamic nucleus of mu-opioid receptor knockout mice. Our findings suggest that a lack of mu-opioid receptors modulates basal NPY mRNA levels in striatal regions and SP mRNA levels in the ventromedial hypothalamic nucleus of the mouse, and that these changes are due to compensatory modulation in the brain.
Collapse
Affiliation(s)
- Ji-Hoon Yoo
- Department of Pharmacology, College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Auclair F, Lund JP, Dubuc R. Immunohistochemical distribution of tachykinins in the CNS of the lamprey Petromyzon marinus. J Comp Neurol 2005; 479:328-46. [PMID: 15457504 DOI: 10.1002/cne.20324] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The presence of tachykinins in the CNS of vertebrates has been known for many decades, and numerous studies have described their distribution in mammals. Tachykinins were also reported in the CNS of lampreys using immunohistochemistry, chromatography, and radioimmunoassay methods, but the use of substance P (SP)-specific antibodies to reveal those tachykinins could have led to an underestimation of their number in this genus. Therefore, we carried out a new immunohistochemical study on Petromyzon marinus using a commercial polyclonal antibody that binds not only to mammalian SP, but also to other neurokinins. This antibody labeled all previously described lamprey tachykinin-containing neuronal populations, but more important, labeled new populations in several parts of the brain. These include the dorsal gray of the rostral spinal cord, the dorsal column nuclei, the octavolateral area, the nucleus of the solitary tract, the medial rhombencephalic reticular formation, the lateral tegmentum of the rostral rhombencephalon, the torus semicircularis, the optic tectum, the habenula, the mammillary area, the dorsal thalamic area, the lateral hypothalamus, and the septum area. Preabsorption experiments confirmed the binding of the antibody to neurokinins and allowed us to propose that the CNS of P. marinus contains at least two different tachykinins.
Collapse
Affiliation(s)
- François Auclair
- Département de Physiologie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal H3C 3J7, Canada
| | | | | |
Collapse
|
40
|
Sekizawa SI, Joad JP, Bonham AC. Substance P presynaptically depresses the transmission of sensory input to bronchopulmonary neurons in the guinea pig nucleus tractus solitarii. J Physiol 2004; 552:547-59. [PMID: 14561836 PMCID: PMC2343393 DOI: 10.1113/jphysiol.2003.051326] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Substance P modulates the reflex regulation of respiratory function by its actions both peripherally and in the CNS, particularly in the nucleus tractus solitarii (NTS), the first central site for synaptic contact of the lung and airway afferent fibres. There is considerable evidence that the actions of substance P in the NTS augment respiratory reflex output, but the precise effects on synaptic transmission have not yet been determined. Therefore, we determined the effects of substance P on synaptic transmission at the first central synapses by using whole-cell voltage clamping in an NTS slice preparation. Studies were performed on second-order neurons in the slice anatomically identified as receiving monosynaptic input from sensory nerves in the lungs and airways. This was done by the fluorescent labelling of terminal boutons after 1,1'-dioctadecyl-3,3,3',3'-tetra-methylindocarbo-cyanine perchlorate (DiI) was applied via tracheal instillation. Substance P (1.0, 0.3 and 0.1 microM) significantly decreased the amplitude of excitatory postsynaptic currents (eEPSCs) evoked by stimulation of the tractus solitarius, in a concentration-dependent manner. The decrease was accompanied by an increase in the paired-pulse ratio of two consecutive eEPSCs, and a decrease in the frequency, but not the amplitude, of spontaneous EPSCs and miniature EPSCs, findings consistent with a presynaptic site of action. The effects were consistently and significantly attenuated by a neurokinin-1 (NK1) receptor antagonist (SR140333, 3 muM). The data suggest a new site of action for substance P in the NTS (NK1 receptors on the central terminals of sensory fibres) and a new mechanism (depression of synaptic transmission) for regulating respiratory reflex function.
Collapse
Affiliation(s)
- Shin-ichi Sekizawa
- Department of Pharmacology and Toxicology and Department of Pediatrics, University of California Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
41
|
Abstract
Twenty-five years ago, very little was known about chemical communication in the afferent limb of the baroreceptor reflex arc. Subsequently, considerable anatomic and functional data exist to support a role for the tachykinin, substance P (SP), as a neuromodulator or neurotransmitter in baroreceptor afferent neurons. Substance P is synthesized and released from baroreceptor afferent neurons, and excitatory SP (NK1) receptors are activated by baroreceptive input to second-order neurons. SP appears to play a role in modulating the gain of the baroreceptor reflex. However, questions remain about the specific role and significance of SP in mediating baroreceptor information to the central nervous system (CNS), the nature of its interaction with glutaminergic transmission, the relevance of colocalized agents, and complex effects that may result from mediation of non-baroreceptive signals to the CNS.
Collapse
Affiliation(s)
- Cinda J Helke
- Neuroscience Program, and Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | |
Collapse
|
42
|
Harrison TA, Hoover DB, King MS. Distinct regional distributions of NK1 and NK3 neurokinin receptor immunoreactivity in rat brainstem gustatory centers. Brain Res Bull 2004; 63:7-17. [PMID: 15121234 DOI: 10.1016/j.brainresbull.2003.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 10/01/2003] [Accepted: 11/03/2003] [Indexed: 02/05/2023]
Abstract
Tachykinins and their receptors are present in gustatory centers, but little is known about tachykinin function in gustation. In this study, immunohistochemical localization of substance P and two centrally prevalent neurokinin receptors, NK1 and NK3, was carried out in the rostral nucleus of the solitary tract and the caudal parabrachial nucleus to evaluate regional receptor/ligand correspondences. All three proteins showed regional variations in labeling density that correlated with distinct sites in gustatory centers. In the rostral nucleus of the solitary tract, the relative densities of substance P and NK1 receptors varied in parallel across subnuclei, with both being moderate to dense in the dorsocentral, chemoresponsive zone. NK3 receptors had a distinct distribution in the caudal half of this zone, suggesting a unique role in processing taste input from the posterior tongue. In the caudal parabrachial nucleus, substance P and NK1 receptor immunoreactivities were dense in the pontine taste area, while NK3 receptor labeling was sparse. The external medial subnucleus had substantial NK3 receptor and substance P labeling, but little NK1 receptor immunoreactivity. These findings suggest that distinct tachykinin ligand/neurokinin receptor combinations may be important in local processing of information within brainstem gustatory centers.
Collapse
Affiliation(s)
- Theresa A Harrison
- Department of Anatomy and Cell Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | |
Collapse
|
43
|
Seagard JL, Dean C, Patel S, Rademacher DJ, Hopp FA, Schmeling WT, Hillard CJ. Anandamide content and interaction of endocannabinoid/GABA modulatory effects in the NTS on baroreflex-evoked sympathoinhibition. Am J Physiol Heart Circ Physiol 2003; 286:H992-1000. [PMID: 14615281 DOI: 10.1152/ajpheart.00870.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure (BP). The presence of cannabinoid CB(1) receptors on fibers in the nucleus tractus solitarius (NTS) suggests that some presynaptic modulation of transmitter release could occur in this region, which receives direct afferent projections from arterial baroreceptors and cardiac mechanoreceptors. This study, therefore, was performed to determine the mechanism(s) of effects of microinjection of an endocannabinoid, arachidonylethanolamide (anandamide, AEA), into the NTS on baroreflex sympathetic nerve responses produced by phenylephrine-induced pressure changes in anesthetized rats. AEA prolonged reflex inhibition of renal sympathetic nerve activity (RSNA), suggesting an increase in baroreflex sensitivity. This effect of AEA was blocked by prior microinjection of SR-141716 to block cannabinoid CB(1) receptors. To determine whether this baroreflex enhancement by AEA involved a GABA(A) mechanism, the baroreflex response to AEA was tested after prior blockade of postsynaptic GABA(A) receptors by bicuculline, which would eliminate any effects due to modulation of GABA activity. After bicuculline, which alone prolonged the baroreflex inhibition of RSNA, AEA shortened the duration of RSNA inhibition, suggesting a possible presynaptic inhibition of glutamate release previously obscured by a more dominant GABA(A) effect. To support a possible physiological role for AEA, AEA concentration in the NTS was measured after a phenylephrine-induced increase in BP. AEA content in the NTS was increased significantly over that in normotensive animals. These results support the hypothesis that AEA content is increased by brief periods of hypertension and suggest that AEA can modulate the baroreflex through activation of CB(1) receptors within the NTS, possibly modulating effectiveness of GABA and/or glutamate neurotransmission.
Collapse
Affiliation(s)
- Jeanne L Seagard
- Zablocki Dept. of Veterans Affairs Medical Center, Research Service 151, 5000 W. National Ave., Milwaukee, WI 53295, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Cvetkovic V, Poncet F, Fellmann D, Griffond B, Risold PY. Diencephalic neurons producing melanin-concentrating hormone are influenced by local and multiple extra-hypothalamic tachykininergic projections through the neurokinin 3 receptor. Neuroscience 2003; 119:1113-45. [PMID: 12831868 DOI: 10.1016/s0306-4522(03)00146-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As melanin-concentrating hormone (MCH) neurons express the neurokinin 3 receptor (NK3) in the rat diencephalon, their innervation by tachykininergic fibers, the origin of this innervation and the effect of a NK3 agonist on MCH mRNA expression were researched. The obtained results show that the tachykininergic system develops complex relationships with MCH neurons. Overall, MCH cell bodies appeared targeted by both NKB- and SP-inputs. These afferents have multiple hypothalamic and extra-hypothalamic origins, but a local (intra-lateral hypothalamic area) origin from small interneurons was suspected as well. MCH cell bodies do not express NK1, but around 2.7% of the MCH neurons contained SP after colchicine injection. Senktide, a NK3 agonist, produced an increase of the MCH mRNA expression in cultured hypothalamic slices. This effect was reversed by two NK3 antagonists. Tachykinins enhance MCH mRNA expression, and, thus, may modulate the effect of MCH in functions such as feeding and reproductive behaviors in which this peptide has been experimentally involved.
Collapse
Affiliation(s)
- V Cvetkovic
- Laboratoire d'Histologie, Faculté de Médecine et de Pharmacie, Université de Franche-Comté, Place St Jacques, 25030, Besançon, France
| | | | | | | | | |
Collapse
|
45
|
Sun QJ, Berkowitz RG, Goodchild AK, Pilowsky PM. Substance P inputs to laryngeal motoneurons in the rat. Respir Physiol Neurobiol 2003; 137:11-8. [PMID: 12871673 DOI: 10.1016/s1569-9048(03)00136-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Substance P terminals have previously been demonstrated around retrogradely labelled posterior cricoarytenoid (PCA) motoneurons, but little is known regarding substance P inputs to other functionally identified laryngeal motoneurons. In the present study, we determined the number and distribution of close appositions between substance P immunoreactive boutons and three types of laryngeal motoneuron by using a combination of intracellular recording, dye-filling and immunocytochemistry in the rat. Cricothyroid (CT) motoneurons received 15+/-5 substance P appositions/neuron (mean+/-S.D., n = 6), PCA motoneurons received 13+/-5 (n = 6), and laryngeal constrictor (LCS) motoneurons received 11+/-4 (n = 5). In contrast to our previous finding of a preferential serotonin innervation of CT motoneurons, we found no significant difference between the substance P inputs to CT, PCA and LCS motoneurons. Our results indicate a modest role for substance P in control of laryngeal motoneuronal function.
Collapse
Affiliation(s)
- Qi-Jian Sun
- Hypertension and Stroke Research Laboratories, Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
46
|
Li JL, Fujiyama F, Kaneko T, Mizuno N. Expression of vesicular glutamate transporters, VGluT1 and VGluT2, in axon terminals of nociceptive primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns of the rat. J Comp Neurol 2003; 457:236-49. [PMID: 12541308 DOI: 10.1002/cne.10556] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined immunohistochemically whether the vesicular glutamate transporters (VGluTs), VGluT1 and VGluT2, might be expressed in synaptic terminals of nociceptive primary afferent fibers within laminae I and II of the medullary and spinal dorsal horns of the rat. VGluT1 immunoreactivity (IR) was intense in the inner part of lamina II but weak in lamina I and the outer part of lamina II. VGluT2-IR was most intense in lamina I and the outer part of lamina II. Expression of VGluTs in synaptic terminals was confirmed by dual immunofluorescence histochemistry for VGluTs and synaptophysin. Expression of VGluTs in axon terminals of primary afferent fibers terminating in laminae I and II was also confirmed immunohistochemically after unilateral dorsal rhizotomy. The dual immunofluorescence histochemistry indicated expression of VGluTs in substance P (SP)-containing axon terminals in lamina I and the outer part of lamina II. Electron microscopy confirmed the coexpression of VGluTs and SP in axon terminals within laminae I and II; VGluTs was associated with round synaptic vesicles at the asymmetric synapses. It was further observed that isolectin IB4, a marker for unmyelinated axons, often bound with VGluT2-immunopositive structures but rarely with VGluT1-immunopositive structures in lamina II. Thus, the results indicated in laminae I and II of the medullary and spinal dorsal horns that both VGluT1 and VGluT2 were expressed in axon terminals of primary afferent fibers, including SP-containing nociceptive fibers and that VGluT in unmyelinated primary afferent fibers terminating in lamina II was primarily VGluT2.
Collapse
Affiliation(s)
- Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Chen CY, Bonham AC, Plopper CG, Joad JP. Neuroplasticity in nucleus tractus solitarius neurons after episodic ozone exposure in infant primates. J Appl Physiol (1985) 2003; 94:819-27. [PMID: 12433861 DOI: 10.1152/japplphysiol.00552.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute ozone exposure evokes adverse respiratory responses, particularly in children. With repeated ozone exposures, however, despite the persistent lung inflammation and increased sensory nerve excitability, the central nervous system reflex responses, i.e., rapid shallow breathing and decreased lung function, adapt, suggesting changes in central nervous system signaling. We determined whether repeated ozone exposures altered the behavior of nucleus tractus solitarius (NTS) neurons where reflex respiratory motor outputs are first coordinated. Whole cell recordings were performed on NTS neurons in brain stem slices from infant monkeys exposed to filtered air or ozone (0.5 ppm, 8 h/day for 5 days every 14 days for 11 episodes). Although episodic ozone exposure depolarized the membrane potential, increased the membrane resistance, and increased neuronal spiking responses to depolarizing current injections (P < 0.05), it decreased the excitability to vagal sensory fiber activation (P < 0.05), suggesting a diminished responsiveness to sensory transmission, despite overall increases in excitability. Substance P, implicated in lung and NTS signaling, contributed to the increased responsiveness to current injections but not to the diminished sensory transmission. The finding that NTS neurons undergo plasticity with repeated ozone exposures may help to explain the adaptation of the respiratory motor responses.
Collapse
Affiliation(s)
- Chao-Yin Chen
- Department of Internal Medicine, School of Medicine, University of California at Davis, 95616, USA
| | | | | | | |
Collapse
|
48
|
Gavioli EC, Canteras NS, De Lima TCM. The role of lateral septal NK1 receptors in mediating anxiogenic effects induced by intracerebroventricular injection of substance P. Behav Brain Res 2002; 134:411-5. [PMID: 12191828 DOI: 10.1016/s0166-4328(02)00054-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The lateral septal nucleus (LS) presents a dense plexus of fibers containing substance P (SP), which is known to induce pronounced anxiogenic-like effects when applied into this brain site. In the present report, we investigated the role of lateral septal NK(1) receptors in mediating the pro-aversive effects resulting from intracerebroventricular (i.c.v.) injection of SP in rats observed in the elevated plus-maze (EPM) test. Our results show that FK888, a selective NK(1) receptor antagonist, injected into the LS inhibited the anxiogenic-like responses induced by SP i.c.v. injections, whereas the treatment with FK888 into the LS did not alter 'per se' the parameters recorded in the EPM test when compared to the control group that received physiological buffer solution into the LS and lateral ventricle. Thus, our data suggest that the anxiogenic-like responses induced by SP centrally injected are, to a large extent, mediated by NK(1) receptors in the LS.
Collapse
Affiliation(s)
- E C Gavioli
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, Rua Ferreira Lima, 82 Centro, 88015-420 Florianópolis, SC, Brazil
| | | | | |
Collapse
|
49
|
Williams CA, Reifsteck A, Hampton TA, Fry B. Substance P release in the feline nucleus tractus solitarius during ergoreceptor but not baroreceptor afferent signaling. Brain Res 2002; 944:19-31. [PMID: 12106662 DOI: 10.1016/s0006-8993(02)02642-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Substance P (SP) is associated with metabo- and mechanoreceptor afferent fibers ('ergoreceptors') in skeletal muscle as well as the afferent fibers from carotid sinus baroreceptors. Afferent activity from each of these are at least partially integrated in the nucleus tractus solitarius (NTS). The purpose of this study was to determine whether SP was released from the NTS during acute reflex-induced changes in blood pressure caused by stimulating these receptors. Both the muscle pressor response and the baroreflex were studied in adult cats anaesthetized with alpha-chloralose. SP antibody-coated microprobes were used to measure the possible release of SP from the NTS. The muscle pressor response caused a release of immunoreactive SP-like substances (irSP) from the rostral medial NTS, as well as the dorsal motor nucleus (DMV) and lateral tegmental field (FTL). This release was not dependent on intact afferent input from the carotid sinus nerve, but was a function of activation of muscle ergoreceptors, since no irSP was released in response to stimulation of the motor nerves after the muscle was paralyzed. There was no detectable release of irSP from the mNTS during carotid artery occlusions (baroreceptor unloading). Baroreceptor activation, induced by the i.v. injection of the vasoconstrictor, phenylephrine, did not cause the release of irSP from the mNTS above resting baseline levels. These data suggest that SP is involved with the mediation of the afferent signal from muscle ergoreceptor fibers in the medial NTS. SP is not involved with the mediation of baroreceptor afferent signaling in the medial NTS. The release of SP in response to ergoreceptors activation may function to excite an inhibitory pathway which inhibits baroreflex signals that would tend to reduce the blood pressure and heart rate during the muscle pressor response.
Collapse
Affiliation(s)
- Carole A Williams
- Department of Physiology, College of Medicine, East Tennessee State University, Johnson City, TN 37614-0576, USA.
| | | | | | | |
Collapse
|
50
|
Ohtori S, Yamamoto T, Ino H, Hanaoka E, Shinbo J, Ozaki T, Takada N, Nakamura Y, Chiba T, Nakagawara A, Sakiyama S, Sakashita Y, Takahashi K, Tanaka K, Yamagata M, Yamazaki M, Shimizu S, Moriya H. Differential screening-selected gene aberrative in neuroblastoma protein modulates inflammatory pain in the spinal dorsal horn. Neuroscience 2002; 110:579-86. [PMID: 11906795 DOI: 10.1016/s0306-4522(01)00590-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differential screening-selected gene aberrative in neuroblastoma (DAN) belongs to a novel gene family that includes the Xenopus head-inducing factor, Cerberus and the dorsalizing factor, Gremlin. It has been suggested that members of this family control diverse processes in growth, development and the cell cycle.Here, we demonstrate that the DAN protein is produced in the small neurons of the dorsal root ganglion and is transported to the nerve terminals in the spinal dorsal horn in adult rats. Furthermore, intrathecal injection of an antibody to the DAN protein suppressed inflammatory pain caused by the introduction of complete Freund's adjuvant or carrageenan into the rat hindpaw. The amount of mRNA for DAN in dorsal root ganglion neurons and of its expressed protein in the spinal dorsal horn were both increased in inflammatory models.Together, these data suggest that the DAN protein may be a novel neuromodulator in primary nociceptive nerve fibers.
Collapse
Affiliation(s)
- S Ohtori
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|