1
|
Sasaki K, Sasaki SI, Sato F. Morphological analysis of neck muscle nerves and neurons in cats. Tissue Cell 2023; 82:102077. [PMID: 37018926 DOI: 10.1016/j.tice.2023.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/28/2023]
Abstract
Previous studies have failed to show morphological differences between neck muscle alpha and gamma motor fibers or alpha and gamma motoneurons. The present study aimed to investigate the morphological features of neck muscle motor nerves and motoneurons in cats. To determine the morphological features of peripheral motor fibers, the value of the outer contours of each fiber was converted into a perfect circle after ganglionectomy to remove sensory fibers, and the fiber diameters were calculated based on their circumferences. The sizes of neck motor fibers in the peripheral nerves had an evident bimodal distribution into small and large fiber groups, as depicted in histograms. The sizes of small and large motor fibers ranged from 2 to 12 µm and from 12 to 40 µm, respectively. The small fiber group is likely to correspond to gamma motor fibers and the large fiber group to alpha motor fibers. The morphological features of neck muscle motoneurons sectioned in the horizontal plane were examined using the horseradish peroxidase (HRP) retrograde labeling technique. The diameters of the biventer cervicis and complexus motoneurons had bimodal distributions. The inflection point between the small and large diameter population was 28 µm for the biventer cervicis and 26 µm for the complexus. We also observed that larger neurons displayed more dendrites. In conclusion, we could identify morphological differences likely to correlate with alpha and gamma motoneurons in both neck muscle peripheral nerves and neck motoneurons.
Collapse
Affiliation(s)
- Kazumasa Sasaki
- Department of Anatomy, Toho University, School of Medicine, Tokyo, Japan.
| | - Sei-Ichi Sasaki
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Fumi Sato
- Department of Anatomy, Toho University, School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Thakre PP, Rana S, Benevides ES, Fuller DD. Targeting drug or gene delivery to the phrenic motoneuron pool. J Neurophysiol 2023; 129:144-158. [PMID: 36416447 PMCID: PMC9829468 DOI: 10.1152/jn.00432.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Phrenic motoneurons (PhrMNs) innervate diaphragm myofibers. Located in the ventral gray matter (lamina IX), PhrMNs form a column extending from approximately the third to sixth cervical spinal segment. Phrenic motor output and diaphragm activation are impaired in many neuromuscular diseases, and targeted delivery of drugs and/or genetic material to PhrMNs may have therapeutic application. Studies of phrenic motor control and/or neuroplasticity mechanisms also typically require targeting of PhrMNs with drugs, viral vectors, or tracers. The location of the phrenic motoneuron pool, however, poses a challenge. Selective PhrMN targeting is possible with molecules that move retrogradely upon uptake into phrenic axons subsequent to diaphragm or phrenic nerve delivery. However, nonspecific approaches that use intrathecal or intravenous delivery have considerably advanced the understanding of PhrMN control. New opportunities for targeted PhrMN gene expression may be possible with intersectional genetic methods. This article provides an overview of methods for targeting the phrenic motoneuron pool for studies of PhrMNs in health and disease.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - Ethan S Benevides
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| |
Collapse
|
3
|
Olechowski-Bessaguet A, Grandemange R, Cardoit L, Courty E, Lambert FM, Le Ray D. Functional organization of vestibulospinal inputs on thoracic motoneurons responsible for trunk postural control in Xenopus. J Physiol 2019; 598:817-838. [PMID: 31834949 DOI: 10.1113/jp278599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Vestibulospinal reflexes participate in postural control. How this is achieved has not been investigated fully. We combined electrophysiological, neuroanatomical and imaging techniques to decipher the vestibulospinal network controlling the activation of back and limb muscles responsible for postural adjustments. We describe two distinct pathways activating either thoracic postural motoneurons alone or thoracic and lumbar motoneurons together, with the latter co-ordinating specifically hindlimb extensors and postural back muscles. ABSTRACT In vertebrates, trunk postural stabilization is known to rely mainly on direct vestibulospinal inputs on spinal axial motoneurons. However, a substantial role of central spinal commands ascending from lumbar segments is not excluded during active locomotion. In the adult Xenopus, a lumbar drive dramatically overwhelms the descending inputs onto thoracic postural motoneurons during swimming. Given that vestibulospinal fibres also project onto the lumbar segments that shelter the locomotor generators, we investigated whether such a lumbo-thoracic pathway may relay vestibular information and consequently, also be involved in the control of posture at rest. We show that thoracic postural motoneurons exhibit particular dendritic spatial organization allowing them to gather information from both sides of the cord. In response to passive head motion, these motoneurons display both early and delayed discharges, with the latter occurring in phase with ipsilateral hindlimb extensor bursts. We demonstrate that both vestibulospinal and lumbar ascending fibres converge onto postural motoneurons, and that thoracic motoneurons monosynaptically respond to the electrical stimulation of either pathway. Finally, we show that vestibulospinal fibres project to and activate lumbar interneurons with thoracic projections. Taken together, our results complete the scheme of the vestibulospinal control of posture by illustrating the existence of a novel, indirect pathway, which implicates lumbar interneurons relaying vestibular inputs to thoracic motoneurons, and participating in global body postural stabilization in the absence of active locomotion.
Collapse
Affiliation(s)
- Anne Olechowski-Bessaguet
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Raphaël Grandemange
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Elric Courty
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - François M Lambert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Didier Le Ray
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| |
Collapse
|
4
|
Structural and functional identification of two distinct inspiratory neuronal populations at the level of the phrenic nucleus in the rat cervical spinal cord. Brain Struct Funct 2018; 224:57-72. [PMID: 30251026 PMCID: PMC6373374 DOI: 10.1007/s00429-018-1757-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/18/2018] [Indexed: 11/22/2022]
Abstract
The diaphragm is driven by phrenic motoneurons that are located in the cervical spinal cord. Although the anatomical location of the phrenic nucleus and the function of phrenic motoneurons at a single cellular level have been extensively analyzed, the spatiotemporal dynamics of phrenic motoneuron group activity have not been fully elucidated. In the present study, we analyzed the functional and structural characteristics of respiratory neuron population in the cervical spinal cord at the level of the phrenic nucleus by voltage imaging, together with histological analysis of neuronal and astrocytic distribution in the cervical spinal cord. We found spatially distinct two cellular populations that exhibited synchronized inspiratory activity on the transversely cut plane at C4–C5 levels and on the ventral surface of the mid cervical spinal cord in the isolated brainstem–spinal cord preparation of the neonatal rat. Inspiratory activity of one group emerged in the central portion of the ventral horn that corresponded to the central motor column, and the other appeared in the medial portion of the ventral horn that corresponded to the medial motor column. We identified by retrogradely labeling study that the anatomical distributions of phrenic and scalene motoneurons coincided with optically detected central and medial motor regions, respectively. Furthermore, we anatomically demonstrated closely located features of putative motoneurons, interneurons and astrocytes in these regions. Collectively, we report that phrenic and scalene motoneuron populations show synchronized inspiratory activities with distinct anatomical locations in the mid cervical spinal cord.
Collapse
|
5
|
Driven to decay: Excitability and synaptic abnormalities in amyotrophic lateral sclerosis. Brain Res Bull 2018; 140:318-333. [PMID: 29870780 DOI: 10.1016/j.brainresbull.2018.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease and is clinically characterised by the death of corticospinal motor neurons (CSMNs), spinal and brainstem MNs and the degeneration of the corticospinal tract. Degeneration of CSMNs and MNs leads inexorably to muscle wastage and weakness, progressing to eventual death within 3-5 years of diagnosis. The CSMNs, located within layer V of the primary motor cortex, project axons constituting the corticospinal tract, forming synaptic connections with brainstem and spinal cord interneurons and MNs. Clinical ALS may be divided into familial (∼10% of cases) or sporadic (∼90% of cases), based on apparent random incidence. The emergence of transgenic murine models, expressing different ALS-associated mutations has accelerated our understanding of ALS pathogenesis, although precise mechanisms remain elusive. Multiple avenues of investigation suggest that cortical electrical abnormalities have pre-eminence in the pathophysiology of ALS. In addition, glutamate-mediated functional and structural alterations in both CSMNs and MNs are present in both sporadic and familial forms of ALS. This review aims to promulgate debate in the field with regard to the common aetiology of sporadic and familial ALS. A specific focus on a nexus point in ALS pathogenesis, namely, the synaptic and intrinsic hyperexcitability of CSMNs and MNs and alterations to their structure are comprehensively detailed. The association of extramotor dysfunction with neuronal structural/functional alterations will be discussed. Finally, the implications of the latest research on the dying-forward and dying-back controversy are considered.
Collapse
|
6
|
Fogarty MJ, Omar TS, Zhan WZ, Mantilla CB, Sieck GC. Phrenic motor neuron loss in aged rats. J Neurophysiol 2018; 119:1852-1862. [PMID: 29412773 DOI: 10.1152/jn.00868.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is the age-related reduction of muscle mass and specific force. In previous studies, we found that sarcopenia of the diaphragm muscle (DIAm) is evident by 24 mo of age in both rats and mice and is associated with selective atrophy of type IIx and IIb muscle fibers and a decrease in maximum specific force. These fiber type-specific effects of sarcopenia resemble those induced by DIAm denervation, leading us to hypothesize that sarcopenia is due to an age-related loss of phrenic motor neurons (PhMNs). To address this hypothesis, we determined the number of PhMNs in young (6 mo old) and old (24 mo old) Fischer 344 rats. Moreover, we determined age-related changes in the size of PhMNs, since larger PhMNs innervate type IIx and IIb DIAm fibers. The PhMN pool was retrogradely labeled and imaged with confocal microscopy to assess the number of PhMNs and the morphometry of PhMN soma and proximal dendrites. In older animals, there were 22% fewer PhMNs, a 19% decrease in somal surface area, and a 21% decrease in dendritic surface area compared with young Fischer 344 rats. The age-associated loss of PhMNs involved predominantly larger PhMNs. These results are consistent with an age-related denervation of larger, more fatigable DIAm motor units, which are required primarily for high-force airway clearance behaviors. NEW & NOTEWORTHY Diaphragm muscle sarcopenia in rodent models is well described in the literature; however, the relationship between sarcopenia and frank phrenic motor neuron (MN) loss is unexplored in these models. We quantify a 22% loss of phrenic MNs in old (24 mo) compared with young (6 mo) Fischer 344 rats. We also report reductions in phrenic MN somal and proximal dendritic morphology that relate to decreased MN heterogeneity in old compared with young Fischer 344 rats.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Tanya S Omar
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
7
|
Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease. Neural Plast 2015; 2016:3423267. [PMID: 26843990 PMCID: PMC4710938 DOI: 10.1155/2016/3423267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023] Open
Abstract
Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions.
Collapse
|
8
|
Song N, Shi H, Li C, Yin S. Differences in developmental changes in GABAergic response between bushy and stellate cells in the rat anteroventral cochlear nucleus. Int J Dev Neurosci 2012; 30:397-403. [DOI: 10.1016/j.ijdevneu.2012.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/08/2011] [Accepted: 02/14/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ning‐ying Song
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Hai‐bo Shi
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Chun‐yan Li
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Shan‐kai Yin
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| |
Collapse
|
9
|
Lee KZ, Fuller DD. Neural control of phrenic motoneuron discharge. Respir Physiol Neurobiol 2011; 179:71-9. [PMID: 21376841 DOI: 10.1016/j.resp.2011.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 01/09/2023]
Abstract
Phrenic motoneurons (PMNs) provide a synaptic relay between bulbospinal respiratory pathways and the diaphragm muscle. PMNs also receive propriospinal inputs, although the functional role of these interneuronal projections has not been established. Here we review the literature regarding PMN discharge patterns during breathing and the potential mechanisms that underlie PMN recruitment. Anatomical and neurophysiological studies indicate that PMNs form a heterogeneous pool, with respiratory-related PMN discharge and recruitment patterns likely determined by a balance between intrinsic MN properties and extrinsic synaptic inputs. We also review the limited literature regarding PMN bursting during respiratory plasticity. Differential recruitment or rate modulation of PMN subtypes may underlie phrenic motor plasticity following neural injury and/or respiratory stimulation; however, this possibility remains relatively unexplored.
Collapse
Affiliation(s)
- Kun-Ze Lee
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Dr, Gainesville, FL 32610, United States
| | | |
Collapse
|
10
|
|
11
|
Bolser DC, Jefferson SC, Rose MJ, Tester NJ, Reier PJ, Fuller DD, Davenport PW, Howland DR. Recovery of airway protective behaviors after spinal cord injury. Respir Physiol Neurobiol 2009; 169:150-6. [PMID: 19635591 PMCID: PMC2789652 DOI: 10.1016/j.resp.2009.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Pulmonary morbidity is high following spinal cord injury and is due, in part, to impairment of airway protective behaviors. These airway protective behaviors include augmented breaths, the cough reflex, and expiration reflexes. Functional recovery of these behaviors has been reported after spinal cord injury. In humans, evidence for functional recovery is restricted to alterations in motor strategy and changes in the frequency of occurrence of these behaviors. In animal models, compensatory alterations in motor strategy have been identified. Crossed descending respiratory motor pathways at the thoracic spinal cord levels exist that are composed of crossed premotor axons, local circuit interneurons, and propriospinal neurons. These pathways can collectively form a substrate that supports maintenance and/or recovery of function, especially after asymmetric spinal cord injury. Local sprouting of premotor axons in the thoracic spinal cord also can occur following chronic spinal cord injury. These mechanisms may contribute to functional resiliency of the cough reflex that has been observed following chronic spinal cord injury in the cat.
Collapse
Affiliation(s)
- Donald C Bolser
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, United States.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mantilla CB, Sieck GC. Neuromuscular adaptations to respiratory muscle inactivity. Respir Physiol Neurobiol 2009; 169:133-40. [PMID: 19744580 DOI: 10.1016/j.resp.2009.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 08/30/2009] [Accepted: 09/01/2009] [Indexed: 01/13/2023]
Abstract
Cervical spinal cord injury results in significant functional impairment. It is important to understand the neuroplasticity in response to inactivity of respiratory muscles in order to prevent any associated effects that limit functional recovery. Recent studies have examined the mechanisms involved in inactivity-induced neuroplasticity of diaphragm motor units. Both spinal hemisection at C2 (C2HS) and tetrodotoxin (TTX)-induced phrenic nerve blockade result in diaphragm paralysis and inactivity of axon terminals. However, phrenic motoneurons are inactive with C2HS but remain active after TTX. Diaphragm muscle fibers ipsilateral to C2HS display minimal changes post-injury. Neuromuscular transmission is enhanced following C2HS but impaired following TTX. Synaptic vesicle pool size at diaphragm neuromuscular junctions increases after C2HS, but decreases after TTX. Thus, inactivity-induced neuromuscular plasticity reflects specific adaptations that depend on inactivity at the motoneuron rather than at axon terminals or muscle fibers. These results indicate that neuromuscular transmission and functional properties of diaphragm fibers can be maintained after spinal cord injury, providing a substrate for functional recovery and/or specific therapeutic approaches such as phrenic pacing.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States.
| | | |
Collapse
|
13
|
Tarras-Wahlberg S, Rekling J. Hypoglossal motoneurons in newborn mice receive respiratory drive from both sides of the medulla. Neuroscience 2009; 161:259-68. [DOI: 10.1016/j.neuroscience.2009.02.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/26/2009] [Accepted: 02/27/2009] [Indexed: 11/27/2022]
|
14
|
Boulenguez P, Gauthier P, Kastner A. Respiratory neuron subpopulations and pathways potentially involved in the reactivation of phrenic motoneurons after C2 hemisection. Brain Res 2007; 1148:96-104. [DOI: 10.1016/j.brainres.2007.02.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 02/14/2007] [Accepted: 02/14/2007] [Indexed: 12/21/2022]
|
15
|
Duffin J, Li YM. Transmission of respiratory rhythm: Midline-crossing connections at the level of the phrenic motor nucleus? Respir Physiol Neurobiol 2006; 153:139-47. [PMID: 16301004 DOI: 10.1016/j.resp.2005.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 09/25/2005] [Accepted: 09/26/2005] [Indexed: 11/16/2022]
Abstract
We used three methods to test for the existence of transmission of respiratory rhythm across the midline at the level of the phrenic motor nucleus in rats using the in situ preparation over a range of ages from neonatal to juvenile. Stimulus-triggered averages of phrenic activity for stimuli applied to one side of the spinal cord at C2 and C3 produced large peaks in the ipsilateral averages but no discernible peaks in the contralateral averages, unless the stimulating microelectrode was placed close to the midline in the ventral funiculus. Following mid-sagittal section of the medulla, respiratory rhythm was maintained for all ages, with bursts occurring on one phrenic nerve that were absent on the other. Cross-correlations of left and right phrenic discharges displayed peaks indicative of short time-scale synchronisation before the medullary transections but not afterwards. We therefore could not find evidence for transmission of respiratory rhythm across the midline at the phrenic motoneurone level; we did find evidence that that transmission via ipsilaterally descending axons of medullary phrenic pre-motor neurones is present at all ages.
Collapse
Affiliation(s)
- James Duffin
- Department of Physiology, University of Toronto, Ont., Canada M5S 1A8.
| | | |
Collapse
|
16
|
Abstract
Recognition that the entire central nervous system (CNS) is highly plastic, and that it changes continually throughout life, is a relatively new development. Until very recently, neuroscience has been dominated by the belief that the nervous system is hardwired and changes at only a few selected sites and by only a few mechanisms. Thus, it is particularly remarkable that Sir John Eccles, almost from the start of his long career nearly 80 years ago, focused repeatedly and productively on plasticity of many different kinds and in many different locations. He began with muscles, exploring their developmental plasticity and the functional effects of the level of motor unit activity and of cross-reinnervation. He moved into the spinal cord to study the effects of axotomy on motoneuron properties and the immediate and persistent functional effects of repetitive afferent stimulation. In work that combined these two areas, Eccles explored the influences of motoneurons and their muscle fibers on one another. He studied extensively simple spinal reflexes, especially stretch reflexes, exploring plasticity in these reflex pathways during development and in response to experimental manipulations of activity and innervation. In subsequent decades, Eccles focused on plasticity at central synapses in hippocampus, cerebellum, and neocortex. His endeavors extended from the plasticity associated with CNS lesions to the mechanisms responsible for the most complex and as yet mysterious products of neuronal plasticity, the substrates underlying learning and memory. At multiple levels, Eccles' work anticipated and helped shape present-day hypotheses and experiments. He provided novel observations that introduced new problems, and he produced insights that continue to be the foundation of ongoing basic and clinical research. This article reviews Eccles' experimental and theoretical contributions and their relationships to current endeavors and concepts. It emphasizes aspects of his contributions that are less well known at present and yet are directly relevant to contemporary issues.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, 12201, USA.
| | | |
Collapse
|
17
|
Bui TV, Ter-Mikaelian M, Bedrossian D, Rose PK. Computational Estimation of the Distribution of L-type Ca2+Channels in Motoneurons Based on Variable Threshold of Activation of Persistent Inward Currents. J Neurophysiol 2006; 95:225-41. [PMID: 16267115 DOI: 10.1152/jn.00646.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the presence of neuromodulators such as serotonin and noradrenaline, motoneurons exhibit persistent inward currents (PICs) that serve to amplify synaptic inputs. A major component of these PICs is mediated by L-type Ca(2+) channels. Estimates based on electrophysiological studies indicate that these channels are located on the dendrites, but immunohistochemical studies of their precise distribution have yielded different results. Our goal was to determine the distribution of these channels using computational methods. A theoretical analysis of the activation of PICs by a somatic current injection in the absence or presence of synaptic activity suggests that L-type Ca(2+) channels may be segregated to discrete hot spots 25-200 microm long and centered 100-400 microm from the soma in the dendritic tree. Compartmental models based on detailed anatomical measurements of the structure of feline neck motoneurons with L-type Ca(2+) channels incorporated in these regions produced plateau potentials resulting from PIC activation. Furthermore, we replicated the experimental observation that the somatic threshold at which PICs were activated was depolarized by tonic activation of inhibitory synapses and hyperpolarized by tonic activation of excitatory synapses. Models with L-type Ca(2+) channels distributed uniformly were unable to replicate the change in somatic threshold of PIC activation. Therefore we conclude that the set of L-type Ca(2+) channels mediating plateau potentials is restricted to discrete regions in the dendritic tree. Furthermore, this distribution leads to the compartmentalization of the dendritic tree of motoneurons into subunits whose sequential activation lead to the graded amplification of synaptic inputs.
Collapse
Affiliation(s)
- Tuan V Bui
- Department of Physiology, Botterell Hall, Queen's University, Kingston K7L 3N6, Canada
| | | | | | | |
Collapse
|
18
|
Anker AR, Sadacca BF, Yates BJ. Vestibular inputs to propriospinal interneurons in the feline C1-C2 spinal cord projecting to the C5-C6 ventral horn. Exp Brain Res 2005; 170:39-51. [PMID: 16328293 DOI: 10.1007/s00221-005-0186-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/02/2005] [Indexed: 11/26/2022]
Abstract
The resting length of respiratory muscles must be altered during changes in posture in order to maintain stable ventilation. Prior studies showed that although the vestibular system contributes to these adjustments in respiratory muscle activity, the medullary respiratory groups receive little vestibular input. Additionally, previous transneuronal tracing studies demonstrated that propriospinal interneurons in the C(1)-C(2) spinal cord send projections to the ipsilateral diaphragm motor pool. The present study tested the hypothesis that C(1)-C(2) interneurons mediate vestibular influences on diaphragm activity. Recordings were made from 145 C(1)-C(2) neurons that could be antidromically activated from the ipsilateral C(5)-C(6 )ventral horn, 60 of which had spontaneous activity, during stimulation of vestibular receptors using electric current pulses or whole-body rotations in vertical planes. The firing of 19 of 31 spontaneously active neurons was modulated by vertical vestibular stimulation; the response vector orientations of many of these cells were closer to the pitch plane than the roll plane, and their response gains remained relatively constant across stimulus frequencies. Virtually all spontaneously active neurons responded robustly to electrical vestibular stimulation, and their response latencies were typically shorter than those for diaphragm motoneurons. Nonetheless, respiratory muscle responses to vestibular stimulation were still present after inactivation of the C(1)-C(2) cord using large injections of either muscimol or ibotenic acid. These data suggest that C(1)-C(2) propriospinal interneurons contribute to regulating posturally related responses of the diaphragm, although additional pathways are also involved in generating this activity.
Collapse
Affiliation(s)
- A R Anker
- Department of Otolaryngology, University of Pittsburgh, Room 519, Eye and Ear Institute, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
19
|
Cushing S, Bui T, Rose PK. Effect of nonlinear summation of synaptic currents on the input-output properties of spinal motoneurons. J Neurophysiol 2005; 94:3465-78. [PMID: 16079193 DOI: 10.1152/jn.00439.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A single spinal motoneuron receives tens of thousands of synapses. The neurotransmitters released by many of these synapses act on iontotropic receptors and alter the driving potential of neighboring synapses. This interaction introduces an intrinsic nonlinearity in motoneuron input-output properties where the response to two simultaneous inputs is less than the linear sum of the responses to each input alone. Our goal was to determine the impact of this nonlinearity on the current delivered to the soma during activation of predetermined numbers and distributions of excitatory and inhibitory synapses. To accomplish this goal we constructed compartmental models constrained by detailed measurements of the geometry of the dendritic trees of three feline motoneurons. The current "lost" as a result of local changes in driving potential was substantial and resulted in a highly nonlinear relationship between the number of active synapses and the current reaching the soma. Background synaptic activity consisting of a balanced activation of excitatory and inhibitory synapses further decreased the current delivered to the soma, but reduced the nonlinearity with respect to the total number of active excitatory synapses. Unexpectedly, simulations that mimicked experimental measures of nonlinear summation, activation of two sets of excitatory synapses, resulted in nearly linear summation. This result suggests that nonlinear summation can be difficult to detect, despite the substantial "loss" of current arising from nonlinear summation. The magnitude of this "loss" appears to limit motoneuron activity, based solely on activation of iontotropic receptors, to levels that are inadequate to generate functionally meaningful muscle forces.
Collapse
Affiliation(s)
- S Cushing
- Canadian Institutes of Health Research Group in Sensory-Motor Systems, Department of Physiology, Center for Neuroscience, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
20
|
Abstract
Vertebrate spinal cord and brainstem central pattern generator (CPG) circuits share profound similarities with neocortical circuits. CPGs can produce meaningful functional output in the absence of sensory inputs. Neocortical circuits could be considered analogous to CPGs as they have rich spontaneous dynamics that, similar to CPGs, are powerfully modulated or engaged by sensory inputs, but can also generate output in their absence. We find compelling evidence for this argument at the anatomical, biophysical, developmental, dynamic and pathological levels of analysis. Although it is possible that cortical circuits are particularly plastic types of CPG ('learning CPGs'), we argue that present knowledge about CPGs is likely to foretell the basic principles of the organization and dynamic function of cortical circuits.
Collapse
Affiliation(s)
- Rafael Yuste
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, Box 2435, New York 10027, USA.
| | | | | | | |
Collapse
|
21
|
Rose PK, Cushing S. Relationship between morphoelectrotonic properties of motoneuron dendrites and their trajectory. J Comp Neurol 2004; 473:562-81. [PMID: 15116391 DOI: 10.1002/cne.20137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The distribution and geometry of the dendritic trees of spinal motoneurons obey several well-established rules. Some of these rules are based on systematic relationships between quantitative geometrical features (e.g., total dendritic length) and the three-dimensional trajectory followed by dendrites from their origin to their termination. Because dendritic geometry partially determines the transmission of current and voltage signals generated by synapses on the dendritic tree, our goal was to compare the efficacy of signal transmission by dendritic trajectories that followed different directions. To achieve this goal, we constructed detailed compartmental models of the dendritic trees of three intracellularly stained biventer cervicis/complexus (BCCM) motoneurons and calculated the electronic properties of 361 dendritic paths. Each trajectory was classified according to its orientation, e.g., rostral, rostral-dorsal-lateral. The attenuation of current and voltage signals en route to the soma was strongly related to trajectory orientation. Trajectories with similar attenuation factors formed functional subunits that were arranged in distinct domains within the ventral horn. Changes in R(m) or R(i) had little effect on which trajectories belonged to each functional subunit. However, differences in the efficacy of signal transmission between subunits increased during high network activity (mimicked by decreases in R(m)). The most efficient subunit delivered two times more current and four times more voltage to the soma than the least efficient subunit. These results indicate that the input-output properties of motoneurons depend on the direction of the path taken by dendrites from their origin at the cell body to their terminals.
Collapse
Affiliation(s)
- P K Rose
- Canadian Institutes for Health Research Group in Sensory-Motor Systems, Department of Physiology, Center for Neuroscience, Queen's University, Kingston, Ontario K71 3N6, Canada.
| | | |
Collapse
|
22
|
Mantilla CB, Sieck GC. Invited review: Mechanisms underlying motor unit plasticity in the respiratory system. J Appl Physiol (1985) 2003; 94:1230-41. [PMID: 12571144 DOI: 10.1152/japplphysiol.01120.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuromotor control of skeletal muscles, including respiratory muscles, is ultimately dependent on the function of the motor unit (comprising an individual motoneuron and the muscle fibers it innervates). Considerable diversity exists across diaphragm motor units, yet remarkable homogeneity is present (and maintained) within motor units. In recent years, the mechanisms underlying the development and adaptability of respiratory motor units have received great attention, leading to significant advances in our understanding of diaphragm motor unit plasticity. For example, following imposed inactivity of the diaphragm muscle, there are changes at phrenic motoneurons, neuromuscular junctions, and muscle fibers that tend to restore the ability of the diaphragm to sustain ventilation. The role of activity, neurotrophins, and other growth factors in modulating this adaptability is discussed.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Anesthesiology, Mayo Medical School, Rochester Minnesota 55905, USA
| | | |
Collapse
|
23
|
Goshgarian HG. The crossed phrenic phenomenon: a model for plasticity in the respiratory pathways following spinal cord injury. J Appl Physiol (1985) 2003; 94:795-810. [PMID: 12531916 DOI: 10.1152/japplphysiol.00847.2002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemisection of the cervical spinal cord rostral to the level of the phrenic nucleus interrupts descending bulbospinal respiratory pathways, which results in a paralysis of the ipsilateral hemidiaphragm. In several mammalian species, functional recovery of the paretic hemidiaphragm can be achieved by transecting the contralateral phrenic nerve. The recovery of the paralyzed hemidiaphragm has been termed the "crossed phrenic phenomenon." The physiological basis for the crossed phrenic phenomenon is as follows: asphyxia induced by spinal hemisection and contralateral phrenicotomy increases central respiratory drive, which activates a latent crossed respiratory pathway. The uninjured, initially latent pathway mediates the hemidiaphragm recovery by descending into the spinal cord contralateral to the hemisection and then crossing the midline of the spinal cord before terminating on phrenic motoneurons ipsilateral and caudal to the hemisection. The purpose of this study is to review work conducted on the crossed phrenic phenomenon and to review closely related studies focusing particularly on the plasticity associated with the response. Because the review deals with recovery of respiratory muscles paralyzed by spinal cord injury, the clinical relevance of the reviewed studies is highlighted.
Collapse
Affiliation(s)
- Harry G Goshgarian
- Department of Anatomy/Cell Biology, Wayne State University, Detroit, Michigan 48201, USA.
| |
Collapse
|
24
|
McDonagh JC, Hornby TG, Reinking RM, Stuart DG. Associations between the morphology and physiology of ventral-horn neurons in the adult turtle. J Comp Neurol 2002; 454:177-91. [PMID: 12412142 DOI: 10.1002/cne.10437] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study compared some morphologic and physiological properties of adult turtle spinal motoneurons (MNs) vs. interneurons (INs). Reconstructions were made of 20 biocytin-stained cells, which had been previously studied physiologically in 2-mm-thick slices of lumbosacral spinal cord. The intracellularly measured physiological properties included resting potential, input resistance (R(N)), threshold (rheobase, I(Rh)), and slope of the stimulus current (I) -spike frequency (f) relation. The seven morphologic properties that were quantified for each cell included three indices of somal size (diameter, area, volume), and four of dendritic size: the number of first- and last-order branches, rostrocaudal extent, and sigma individual lengths. Significant differences were shown between all seven morphologic parameters for MNs vs. INs. Despite the small sample size, significant differences were also shown for five of seven parameters for high-threshold vs. low-threshold MNs, and three of seven for low-threshold MNs vs. INs. These latter three parameters were the number of terminal dendritic branches, their rostrocaudal extent, and the sigma dendritic lengths. Linear associations for the MN + IN and the MN samples were stronger between the four dendritic parameters than between soma-dendritic ones. Exponential associations between morphologic and physiological properties were mostly significant (28 of 30), and their strength was in the order I(Rh) < R(N) < f/I slope for the MN +IN sample and I(Rh) < R(N) = f/I slope for the MN sample. There is discussion of the relevance of the above findings to the provisional classification of turtle ventral-horn neurons on the basis of electrophysiology alone.
Collapse
Affiliation(s)
- Jennifer C McDonagh
- Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona 85724-5051, USA
| | | | | | | |
Collapse
|
25
|
Morgan CW, Ohara PT. Quantitative analysis of the dendrites of sacral preganglionic neurons in the cat. J Comp Neurol 2001; 437:56-69. [PMID: 11477596 DOI: 10.1002/cne.1269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Quantitative analyses were performed on the dendrites and somata of 25 electrophysiologically identified preganglionic neurons (PGN) obtained from the sacral spinal cord of the cat by intracellular injection of Neurobiotin or horseradish peroxidase. Total dendritic length and surface area were measured for each dendrite. The sizes of the stem dendrites measured at their base were positively correlated with the sizes of the entire tree and numbers of end branches. Total surface area of somata and dendrites averaged 39,138 microm(2); 90.7% of that was from the dendrites. To obtain measurements of the relative contributions of PGN dendrites to specific regions of the spinal cord, the percentage of each dendrite occupying eight spinal cord regions was recorded. Sixty-three percent of the dendrites projected dorsal to their somata, whereas an average of 33.3% of dendrites were located in the white matter, most of them in the lateral and dorsolateral funiculi. The neurons within this sample formed a continuum with some neurons having a large percentage of dendrites in lamina I but little in the white matter, whereas at the other end of the continuum were cells with the reverse configuration. The intermediate neurons had dendrites in both locations. Taken together, these data indicate a heterogeneous population of PGN in the lateral band of the sacral parasympathetic nucleus.
Collapse
Affiliation(s)
- C W Morgan
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| | | |
Collapse
|
26
|
Abstract
Our intent in this review was to consider the relationship between the biophysical properties of motoneurons and the mechanisms by which they transduce the synaptic inputs they receive into changes in their firing rates. Our emphasis has been on experimental results obtained over the past twenty years, which have shown that motoneurons are just as complex and interesting as other central neurons. This work has shown that motoneurons are endowed with a rich complement of active dendritic conductances, and flexible control of both somatic and dendritic channels by endogenous neuromodulators. Although this new information requires some revision of the simple view of motoneuron input-output properties that was prevalent in the early 1980's (see sections 2.3 and 2.10), the basic aspects of synaptic transduction by motoneurons can still be captured by a relatively simple input-output model (see section 2.3, equations 1-3). It remains valid to describe motoneuron recruitment as a product of the total synaptic current delivered to the soma, the effective input resistance of the motoneuron and the somatic voltage threshold for spike initiation (equations 1 and 2). However, because of the presence of active channels activated in the subthreshold range, both the delivery of synaptic current and the effective input resistance depend upon membrane potential. In addition, activation of metabotropic receptors by achetylcholine, glutamate, noradrenaline, serotonin, substance P and thyrotropin releasing factor (TRH) can alter the properties of various voltage- and calcium-sensitive channels and thereby affect synaptic current delivery and input resistance. Once motoneurons are activated, their steady-state rate of repetitive discharge is linearly related to the amount of injected or synaptic current reaching the soma (equation 3). However, the slope of this relation, the minimum discharge rate and the threshold current for repetitive discharge are all subject to neuromodulatory control. There are still a number of unresolved issues concerning the control of motoneuron discharge by synaptic inputs. Under dynamic conditions, when synaptic input is rapidly changing, time- and activity-dependent changes in the state of ionic channels will alter both synaptic current delivery to the spike-generating conductances and the relation between synaptic current and discharge rate. There is at present no general quantitative expression for motoneuron input-output properties under dynamic conditions. Even under steady-state conditions, the biophysical mechanisms underlying the transfer of synaptic current from the dendrites to the soma are not well understood, due to the paucity of direct recordings from motoneuron dendrites. It seems likely that resolving these important issues will keep motoneuron afficiandoes well occupied during the next twenty years.
Collapse
Affiliation(s)
- R K Powers
- Department of Physiology & Biophysics, University of Washington School of Medicine, Box 357290, Seattle, Washington 98195-7290, USA
| | | |
Collapse
|
27
|
Cameron WE, Núñez-Abades PA. Physiological changes accompanying anatomical remodeling of mammalian motoneurons during postnatal development. Brain Res Bull 2000; 53:523-7. [PMID: 11165787 DOI: 10.1016/s0361-9230(00)00385-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The development of respiratory motoneurons provides unique data that may be generalized to other mammalian motoneuron populations. Like other motoneurons, respiratory motoneurons undergo developmental changes in the shape of the action potential and their repetitive firing. The unique observations concern the postnatal change in the recruitment pattern of cat phrenic motoneurons that is correlated with a halving of mean input resistance, a stasis of growth in the cell membrane and a reduction in the complexity of the dendritic tree. A similar pattern of change was observed for hypoglossal motoneurons studied in rat brainstem slices. Without an increase in total membrane surface area, the decreased resistance must result from a reduced specific membrane resistance. Two mechanisms are proposed to explain this decrease in resistance: proliferation and redistribution of either synaptic inputs and/or potassium channels. Although there was a significant contribution of synaptic input in determining input resistance throughout postnatal development, it was the density of cesium- or barium-sensitive potassium conductances that differentiated low resistance from high resistance motoneurons. Low resistance motoneurons had more cesium- and barium-sensitive channels than their high resistance counterparts. Based on the variations in the relative changes observed in input resistance versus membrane time constant with these two potassium channel blockers (cesium and barium), it is proposed that the distribution of these potassium channels change with age. Initially, their distribution is skewed toward the dendrites but as development progresses, the distribution becomes more uniform across the motoneuron membrane. During postnatal development, the rapid decrease in input resistance results from a proliferation of potassium channels in the membrane and of synaptic inputs converging onto developing respiratory motoneurons while the membrane is being spatially redistributed but not expanded.
Collapse
Affiliation(s)
- W E Cameron
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, OR 97201, USA.
| | | |
Collapse
|
28
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
29
|
Yates BJ, Smail JA, Stocker SD, Card JP. Transneuronal tracing of neural pathways controlling activity of diaphragm motoneurons in the ferret. Neuroscience 1999; 90:1501-13. [PMID: 10338316 DOI: 10.1016/s0306-4522(98)00554-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that neurons in addition to those in the medullary respiratory groups are involved in activating phrenic motoneurons during a number of behaviors, including vomiting and reaction to vestibular stimulation. However, the location of premotor inspiratory neurons outside of the main medullary respiratory groups is largely unknown, particularly in emetic species. In the present study, the transneuronal tracer pseudorabies virus was injected into the diaphragm of the ferret, and the locations of retrogradely-labeled motoneurons and transneuronally-labeled pre-motoneurons in the brainstem and cervical and thoracic spinal cord were mapped. Injections of a monosynaptic tracer, cholera toxin, were also made in order to verify the location of motoneurons innervating the diaphragm. Phrenic motoneurons identified with pseudorabies virus and cholera toxin were confined largely to the C5-C7 levels of spinal cord, and often gave rise to prominent polarized dendritic arbors that extended across the midline. At post-inoculation survival times > or = three days, transneuronally-labeled interneurons were located in the cervical and thoracic spinal cord and portions of the brainstem, including the midline pontomedullary reticular formation and the lateral medullary reticular formation. Double-labeling studies revealed that although the infected midline neurons were located in the proximity of serotonergic neurons, only a small number of the virus-containing cells were positive for serotonin. These findings suggest that neurons in the midline of the medulla and pons influence the activity of phrenic motoneurons, perhaps during inspiratory behaviors unique to emetic animals (such as vomiting).
Collapse
Affiliation(s)
- B J Yates
- Department of Otolaryngology, University of Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Segmental and laminar distributions of nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-exhibiting neurons were examined in the rabbit spinal cord by using horizontal, sagittal, and transverse sections. A large number of NADPHd-positive neurons in the spinal cord of rabbit appeared to fall into six categories (N1-N6), but others could not be classified. Major cell groups of NADPHd-exhibiting neurons were identified in the superficial dorsal horn and around the central canal at all spinal levels and in the intermediolateral cell column at thoracic and upper lumbar levels. NADPHd-exhibiting neurons of the pericentral region were divided into a thin subependymal cell column containing longitudinally arranged, small bipolar neurons with processes penetrating deeply into the intermediolateral cell column and/or running rostrocaudally in the subependymal layer. The second pericentral cell column located more laterally in lamina X contains large, intensely stained NADPHd-exhibiting neurons with long dendrites radiating in the transverse plane. In the pericentral region (lamina X), close association of NADPHd-exhibiting somata and fibers and mostly longitudinally oriented blood vessels were detected. Neurons of the sacral parasympathetic nucleus, seen in segments S1-S3, exhibited prominent NADPHd cellular staining accompanied by heavily stained fibers extending from Lissauer's tract through lamina I along the lateral edge of the dorsal horn to lamina V. A massive dorsal gray commissure, highly positive in NADPHd staining, was found in segments S1-S3. Scattered positive cells were also found in the deeper dorsal horn, ventral horn, and white matter. Fiberlike NADPHd staining was found in the superficial dorsal horn and pericentral region in all the segments studied. Dense, punctate, nonsomatic NADPHd staining was detected in the superficial dorsal horn, in the pericentral region all along the rostrocaudal axis, and in the nucleus phrenicus (segments C4-C5), nucleus dorsalis (segments Th2-L2), Onuf's nucleus (segments S1-S3), and the dorsal part of the dorsal gray commissure (S1-S3).
Collapse
Affiliation(s)
- J Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Slovak Republic.
| | | | | | | |
Collapse
|
31
|
Kato F. Suppression of inspiratory fast rhythm, but not bilateral short-term synchronization, by morphine in anesthetized rabbit. Neurosci Lett 1998; 258:89-92. [PMID: 9875534 DOI: 10.1016/s0304-3940(98)00861-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To better understand the involvement of opioid receptor systems in the respiratory control, effects of morphine on the high-frequency component of inspiratory nerve discharge were evaluated. The inspiratory fast rhythm in the bilateral phrenic nerve discharge of anesthetized and artificially ventilated rabbits was analyzed with power spectral and coherence functions. Morphine (0.625-10 mg/kg, i.v.) decreased the amplitude and frequency of the inspiratory fast rhythm in a dose-dependent manner via naloxone-sensitive mechanisms. In contrast, the bilateral short-time scale correlation of the phrenic fast rhythm was resistant to morphine even at a strong suppression of the respiratory activities. It is concluded that there is little influence of opioid receptor system to the neural connectivity underlying bilateral phrenic synchronization.
Collapse
Affiliation(s)
- F Kato
- Department of Pharmacology II, Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
32
|
Rose PK, Odlozinski M. Expansion of the dendritic tree of motoneurons innervating neck muscles of the adult cat after permanent axotomy. J Comp Neurol 1998; 390:392-411. [PMID: 9455900 DOI: 10.1002/(sici)1096-9861(19980119)390:3<392::aid-cne7>3.0.co;2-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The morphologic characteristics of neck motoneurons with intact axons were compared with those of neck motoneurons that had been permanently axotomized for 11 to 17 weeks. Motoneurons were identified antidromically, intracellularly stained with horseradish peroxidase (HRP) and examined after reconstructions of their entire dendritic tree. Axotomized motoneurons differed qualitatively and quantitatively from motoneurons with intact axons. The distal branches of axotomized motoneurons exhibited two novel features: some gave rise to tangled appendages that exhibited growth cone-like specializations resembling lamellipodia and filopodia; others followed a meandering path and had unusually large diameters. These branches showed a discontinuous pattern of staining that was similar to the appearance of myelinated axons stained intra-axonally with HRP. A quantitative analysis of the dendritic trees of 13 completely reconstructed dendritic trees (five axotomized motoneurons and eight motoneurons with intact axons) showed that total dendritic surface area, total dendritic length, and total number of branches increased 38, 34, and 215%, respectively, after axotomy. These measurements were confirmed by comparing the sizes of a larger number of motoneurons (16 axotomized and 21 intact), calculated on the basis of correlations between dendritic tree size and proximal dendritic diameter. We conclude, therefore, that neck motoneurons, in contrast to other types of motoneurons, expand their dendritic trees after axotomy. It is suggested that this expansion is a consequence of two mechanisms: one involves dendritic growth, possibly leading to new synaptic connections; the other causes a conversion of some dendrites into axons.
Collapse
Affiliation(s)
- P K Rose
- Department of Physiology, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
33
|
Baraban SC, Bellingham MC, Berger AJ, Schwartzkroin PA. Osmolarity modulates K+ channel function on rat hippocampal interneurons but not CA1 pyramidal neurons. J Physiol 1997; 498 ( Pt 3):679-89. [PMID: 9051579 PMCID: PMC1159184 DOI: 10.1113/jphysiol.1997.sp021892] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Whole-cell and single-channel recording methods were used in conjunction with infrared video microscopy techniques to examine the properties of voltage-activated potassium channels in hippocampal neurons during the application of hyposmolar solutions to hippocampal slices from rats. 2. Hyposmolar external solutions (osmolarity reduced by 10% to 267 mosmol l-1) produced a significant potentiation of voltage-activated K+ current on lacunosum/moleculare (L/M) hippocampal interneurons, but not on CA1 and subiculum pyramidal neurons. Hyperpolarization-activated (IH) and leak currents were not altered during the application of hyposmolar solutions in all cell types. 3. Mean channel open time and the probability of channel opening were dramatically increased under hyposmolar recording conditions for outside-out patches from L/M interneurons; no changes were observed for patches from CA1 pyramidal neurons. Mean current amplitude and the threshold for channel activation were not affected by hyposmotic challenge. 4. Hyposmolar external solutions produced a significant reduction in the firing frequency of L/M interneurons recorded in current-clamp mode. Hyposmolar solutions had no effect on resting membrane potential, action potential amplitude or duration, and spike after-hyperpolarization amplitude. 5. These results indicate that selective modulation of interneuron ion channel activity may be a critical mechanism by which osmolarity can regulate excitability in the central nervous system.
Collapse
Affiliation(s)
- S C Baraban
- Department of Neurological Surgery, University of Washington, Seattle 98195, USA.
| | | | | | | |
Collapse
|
34
|
Yabuta NH, Yasuda K, Nagase Y, Yoshida A, Fukunishi Y, Shigenaga Y. Light microscopic observations of the contacts made between two spindle afferent types and alpha-motoneurons in the cat trigeminal motor nucleus. J Comp Neurol 1996; 374:436-50. [PMID: 8906509 DOI: 10.1002/(sici)1096-9861(19961021)374:3<436::aid-cne8>3.0.co;2-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous studies indicate that cat jaw-muscle spindle afferents can be divided into two types (type I and II) on the basis of their axonal trajectories. The present study examined the relationship between spindle afferent fibers and their target masseter alpha-motoneurons in the cat by using the intracellular horseradish peroxidase (HRP) injection technique, and provided several new findings on the synaptic organization generated between the two. Five type I afferent fiber-motoneuron pairs and nine type II afferent-motoneuron pairs were well stained with HRP. The following conclusions were drawn: 1) A motoneuron received contacts from only one collateral of any given spindle afferent. 2) The number of contacts made between an afferent and a motoneuron ranged from one to three. 3) The contacts made by a spindle afferent were on the same dendrite or dendrites branching from the same primary dendrite. 4) The vast majority of the contacts made by an afferent on a motoneuron were distributed in the dendritic tree within 600 microns from the soma, i.e., in the proximal three fourths of the dendritic tree. The differences observed between the two afferent types were as follows. First, type II afferent terminals made contacts on more distal dendrites of the motoneurons than did type I afferent terminals. Second, the contacts made between a type I afferent and a motoneuron were clustered together, but those made between a type II afferent and a motoneuron were widely dispersed. The present results provided the general rules of synaptic contacts between the spindle afferents and masseter alpha-motoneurons, and demonstrated that the spatial distribution of synaptic contacts on the dendritic tree was different between type I and type II afferents.
Collapse
Affiliation(s)
- N H Yabuta
- Department of Oral Anatomy, Osaka University Faculty of Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The detailed morphology of rat phrenic motoneurons (PMs) was studied in 40 electrophysiologically identified cells with intracellular injection of Neurobiotin. In 15 cells, the dendritic trees were fully analyzed by using path-distance analysis, and total surface area and volume were estimated. Based on their relative onset times (ROT; i.e., the time of firing onset relative to the onset of whole phrenic activity), PMs were classified into three types; early recruited (type E; ROT < 10%), late recruited (type L; ROT > 12.5%), and quiescent (type Q; not recruited under normal conditions). Dendrites constituted 93.3% of the surface area of cells and 38.9% of the cell volumes. The number of primary dendrites (nPD) averaged 10.1, and the mean number of terminations was 38.8. The combined diameters of primary dendrites of PMs correlated well with the total dendritic surface area and the number of dendritic terminations. Comparisons among cell types revealed that type Q cells had greater dendritic surface areas and volumes than type E or type L cells. With path-distance analysis, this difference was found to be due to differences between the cell types in the numbers of their dendrites, their combined dendritic lengths, and the number of their branches. The differences between these data and those available for cat motoneurons are discussed. The input resistance of PMs correlated with their total surface area but did not correlate with their somal surface area, indicating that, in rat, PM input resistance is a function of the entire neuronal membrane rather than of the somal surface alone.
Collapse
Affiliation(s)
- H Torikai
- Department of Orthopedics, School of Medicine, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Although the optic nerve fibers of the cone-dominant ground squirrel retina have been well studied physiologically, the morphological details of the retinal neurons have not. To that end, retinal neurons of the California ground squirrel have been studied in Golgi-impregnated wholemounts. Two types of horizontal cell have been identified: H1 has an axon and axon terminal, whereas H2 is axonless. The dendritic field of H1 cells enlarges in a nonuniform manner with increasing displacement from the central retina. The smallest examples lie centrally in the visual streak, and the largest occur in the superior periphery. Eight types of bipolar cell are distinguished by morphological differences in dendritic branching pattern and field size in the outer plexiform layer, cell body size, and layering within the inner nuclear layer and by the morphology and stratification of axon terminals in the inner plexiform layer. A large bistratified bipolar cell (B8) is introduced here; the other 7 types closely resemble those in the retinas of other sciurid species described by R.W. West (1976, J. Comp. Neurol. 168:355-378; 1978, Vision Res. 18:129-136). The B1 type is proposed as a blue cone bipolar cell. Amacrine cells are classified into 27 cell types. Six of these occur as mirror-image pairs across the inner plexiform layer, the soma of one of each pair being "displaced" to the ganglion cell layer. The best described of these pairs is the very elaborate starburst amacrine cell, A5, which stains regularly in these wholemounted retinas. Changes in dendritic field size of both A5 subtypes with retinal location are quantified. The morphology of three amacrine cell types identified in Spermophilus beecheyi suggests that their possible counterparts in S. mexicanus (West, 1976) were, as displaced amacrine cells, misidentified as ganglion cells. Amacrine cell types that may play roles in the rod pathway, the blue cone pathway, and ganglion cell directional selectivity are discussed. No type of interplexiform cell was observed. Ganglion cells are classified into 19 cell types, 9 of which probably correspond to the ganglion cells described by West (1976) in the Mexican ground squirrel. The bistratified G11 cell is proposed as an ON-OFF directionally selective type.
Collapse
Affiliation(s)
- K A Linberg
- Neuroscience Research Institute, University of California, Santa Barbara 93106-5060, USA
| | | | | |
Collapse
|
37
|
Sasaki S, Uchino H. An electrophysiological demonstration of axonal projections of single ventral inspiratory neurons to the phrenic nucleus of the cat. Brain Res 1995; 701:108-16. [PMID: 8925272 DOI: 10.1016/0006-8993(95)00985-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Axonal branching patterns of single inspiratory (I) neurons of the nucleus retroambigualis (NRA) were studied electrophysiologically in cat phrenic nucleus (C4-C6). Experiments were performed on Nembutal anesthetized, artificially ventilated cats, and extracellular spikes of I neurons were recorded. The cervical spinal gray matter was microstimulated from dorsal to ventral sites at 100 microns intervals with an intensity of 150-250 microA using a glass insulated tungsten microelectrode. The stimulations were made at 1 mm intervals rostrocaudally along the spinal cord, and effective stimulating sites of antidromic activation in axonal collaterals were systematically mapped. I neurons examined (n = 8) descending contralaterally distributed multiple collaterals in the phrenic nucleus. These collaterals were found throughout the rostrocaudal phrenic nucleus. An I neuron (n = 1) descending ipsilaterally also distributed collaterals in the ipsilateral phrenic nucleus. Axonal collaterals in the contralateral phrenic nucleus occupied 44.2% of the total length of the cervical spinal cord examined. To determine the detailed trajectory of collaterals in the cervical gray matter, microstimulation was performed in and around the collateral arborizations at the maximum intensity of 50 microA. The descending stem axons could be localized in the lateral funiculus in four I neurons and in the ventral funiculus in one I neuron. I neurons distributed axonal collaterals within the phrenic nucleus. Some part of the collaterals ran to the medial region of the gray matter, re-crossed the midline under the central canal and reached the phrenic nucleus ipsilateral to the I neuron. Re-crossed collaterals arborized in the phrenic nucleus, but did not extend to the gray matter more lateral than the phrenic nucleus. Rostrocaudal extension of the re-crossed collaterals was found to be narrow.
Collapse
Affiliation(s)
- S Sasaki
- Department of Physiology, Tokyo Medical College, Japan
| | | |
Collapse
|
38
|
Hopkins DA. Ultrastructure and synaptology of the nucleus ambiguus in the rat: the compact formation. J Comp Neurol 1995; 360:705-25. [PMID: 8801261 DOI: 10.1002/cne.903600414] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The fine structure of the esophagomotor compact formation of the nucleus ambiguus was studied. Esophageal motoneurons are atypical in that they have extensive direct somato-somatic and somato-dendritic appositions without intervening glial processes. A unique feature is the presence of finger- and leaf-like somatic protrusions which partially wrap longitudinally oriented dendrites and, occasionally, small groups of dendrites and axons. The neuropil contains many longitudinally oriented, small-diameter dendrites of relatively uniform size (1.1 +/- 0.4 S.D. micrograms in diameter). Motoneuronal somatic profiles have 0-5 synapses per profile which represents a synaptic density of 10.6 synapses per soma. Axodendritic synapses measure 0.5 x 0.7 microgram in the transverse plane and are up to 3.0 micrograms long in the sagittal plane. Many axon terminals contact both a soma and dendrite in close apposition. Most axon terminals (> 90%) contain round vesicles and form asymmetric junctions with somata and dendrites. Axon terminal degeneration after electrolytic lesions and labelling after injection of wheat germ agglutinin-horseradish peroxidase in the nucleus of the tractus solitarius show that afferent connections to the compact formation form axodendritic synapses. The ultrastructure and synaptology of esophageal motoneurons is characterized by the close apposition of somata and dendrites (somatic-dendritic bundling), and the longitudinal orientation of dendrites (dendritic bundling), axons and axon terminals in the neuropil. These features may be important morphological substrates for synchronization and coordination of esophageal motoneuronal activity and esophageal peristalsis.
Collapse
Affiliation(s)
- D A Hopkins
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
39
|
Berkowitz A, Stein PS. Descending propriospinal axons in the hindlimb enlargement of the red-eared turtle: cells of origin and funicular courses. J Comp Neurol 1994; 346:321-36. [PMID: 7527804 DOI: 10.1002/cne.903460302] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Spinal neurons with descending axons are important components of spinal sensorimotor networks. We used an anatomical tracing technique to study the distribution of descending propriospinal axons and cell bodies in red-eared turtles. We injected horseradish peroxidase into a portion of one funiculus in the middle of the hindlimb enlargement and examined six spinal segments rostral to the injection site (dorsal 3 through dorsal 8) for labeled neuronal cell bodies. Injections into each region of the white matter labeled substantial numbers of descending propriospinal neurons. Each injection labeled cell bodies over most of the six spinal segments examined. Each injection also labeled cell bodies in the ipsilateral dorsal horn, intermediate zone, and ventral horn as well as the contralateral intermediate zone and ventral horn. Injections into each of four regions of the white matter, the dorsal funiculus, the medial part of the lateral funiculus, the lateral part of the lateral funiculus, and the ventral funiculus reliably gave rise to a distinct distribution of labeled cell bodies. These experiments establish that descending propriospinal axons in red-eared turtles are found in all regions of the spinal white matter. This finding contrasts with a popular contemporary view of the organization of descending propriospinal axons in mammals. These experiments also demonstrate that neurons in each region of the gray matter give rise to a different distribution of descending, funicular axons, although these distributions are widely overlapping. Different funicular axon distributions could be associated with different sets of synaptic contacts with the white-matter dendrites of spinal neurons.
Collapse
Affiliation(s)
- A Berkowitz
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
40
|
Lipski J, Zhang X, Kruszewska B, Kanjhan R. Morphological study of long axonal projections of ventral medullary inspiratory neurons in the rat. Brain Res 1994; 640:171-84. [PMID: 8004446 DOI: 10.1016/0006-8993(94)91871-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aim of this study was to examine medullary and spinal axonal projections of inspiratory bulbospinal neurons of the rostral ventral respiratory group (VRG) in the rat. A direct visualization of long (9.8-33 mm) axonal branches, including those projecting to the contralateral side of the medulla oblongata and the spinal cord, was possible due to intracellular labeling with neurobiotin and long survival times (up to 22 h) after injections. Seven of the nine labeled neurons had bilateral descending axons, which were located in discrete regions of the spinal white matter; ipsilateral axons in the lateral and dorsolateral funiculus, contralateral in the ventral and ventromedial funiculus. The collaterals issued by these axons at the mid-cervical level formed close appositions with dendrites of phrenic motoneurons, which had also been labeled with neurobiotin. None of these collaterals crossed the midline. The significance of this finding is discussed in relation to the crossed-phrenic phenomenon. Additional spinal collaterals were identified in the C1 and T1 segments. Within the medulla, collaterals with multiple varicosities were identified in the lateral tegmental field and in the dorsomedial medulla (in the hypoglossal nucleus and in the nucleus of the solitary tract). These results demonstrate that inspiratory VRG neurons in the rat have some features which have not been previously described in the cat, including frequent bilateral spinal projection and projection to the nucleus of the solitary tract. In addition, this study shows that intracellular labeling with neurobiotin offers an effective way of tracing long axonal projections, supplementing results previously obtainable only with antidromic mapping, and providing morphological details which could not be observed in previous studies using labeling with horseradish peroxidase.
Collapse
Affiliation(s)
- J Lipski
- Department of Physiology, School of Medicine, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
41
|
Douse MA, Duffin J. Axonal projections and synaptic connections of C5 segment expiratory interneurones in the cat. J Physiol 1993; 470:431-44. [PMID: 8308735 PMCID: PMC1143926 DOI: 10.1113/jphysiol.1993.sp019867] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Respiratory interneurones in the C4-C6 segments of the spinal cord have only recently been described; until now their projections and connections were not known. We investigated expiratory interneurones in the C5 spinal segment, using antidromic mapping to trace their projections and spike-triggered averaging to test their synaptic connections with phrenic motoneurones. 2. A total of seventy expiratory interneurones were recorded in nineteen cats anaesthetized with pentobarbitone, paralysed and ventilated. The interneurones were found scattered dorsomedial to the phrenic motor nucleus, with discharge patterns of a constant (66%), augmenting (24%) or decrementing (10%) type. 3. Interneurone axons were found in the ipsilateral ventrolateral funiculus using antidromic activation at thresholds < 20 microA. The axons of eighteen of thirty-three interneurones tested (55%) were found to extend to the rostral part of the C6 segment, seventeen of thirty-three (52%) to the caudal part of the C6 segment and ten of nineteen (53%) to the rostral part of the C7 segment. 4. Axon collaterals for thirteen of thirty-three interneurones (39%) were found in the ipsilateral half of the C6 segment, with their endings near the phrenic motor nucleus. In three cases two collaterals were found. None of the interneurones had projections in the contralateral halves of the C5 or C6 segments. 5. In a separate group of thirty-four expiratory interneurones, antidromic mapping was used to find an axon collateral in the C6 segment prior to spike-triggered averaging. Eleven of these interneurones had collaterals (32%) and were subsequently tested for synaptic connections to thirty-two phrenic motoneurones. In three separate instances (9%), inhibitory postsynaptic potentials were observed. Amplitudes, fall times and half-amplitude widths of the inhibitory postsynaptic potentials were 6.7, 10.4 and 10.6 microV; 0.3, 0.5 and 0.7 ms and 0.6, 1.6 and 3.3 ms respectively. 6. We conclude: (i) there is a population of expiratory interneurones in the C5 segment, located predominantly dorsomedial to the phrenic motor nucleus; (ii) at least one-half of these interneurones have ipsilateral intersegmental projections to the C6 segment and (iii) although synaptic connections from expiratory interneurones in the C5 segment to phrenic motoneurones in the C6 segment may be rare, the observed inhibitory postsynaptic potentials had fall times and latencies commensurate with monosynaptic connections.
Collapse
Affiliation(s)
- M A Douse
- Department of Physiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
42
|
Kim J, Hetherington TE. Distribution and morphology of motoneurons innervating different muscle fiber types in an amphibian muscle complex. J Morphol 1993; 216:327-38. [PMID: 8315651 DOI: 10.1002/jmor.1052160308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distribution and morphology of motoneurons innervating specific types of muscle fibers in the levator scapulae superior (LSS) muscle complex of the bullfrog (Rana catesbeiana) and tiger salamander (Ambystoma tigrinum) were studied by retrograde labelling with cholera toxin-conjugated horseradish peroxidase (CT-HRP). The LSS muscle complex in both of these amphibians has a segregated pattern of muscle-fiber types (tonic; fast oxidative-glycolytic twitch [FOG]; fast glycolytic twitch [FG]) along an anteroposterior axis. The entire motor pool was labelled by injection of CT-HRP into the whole LSS muscle complex. The motoneurons innervating specific fiber types were labelled by injection of CT-HRP into certain muscle regions. The organization of the motoneuron pool of the LSS complex of both species was arranged in two columns--one ventrolateral and one medial. In bullfrogs, the ventrolateral column contains motoneurons innervating FG and tonic fiber types and the medial column contains motoneurons innervating FOG fiber types. In tiger salamanders, the ventrolateral column contains motoneurons innervating FG fiber types and the medial column contains motoneurons innervating FOG and tonic fiber types. The different motoneuron types also have different soma sizes and patterns of dendritic arborization. In both species, FG motoneurons are the largest, whereas FOG motoneurons are intermediate in size and tonic motoneurons are the smallest. In bullfrogs, the main dendrites of FG motoneurons extend into the dorsolateral and the ventrolateral gray matter of the spinal cord, whereas the dendrites of FOG motoneurons extend into the ventral and medial cord. In the tiger salamander, dendrites of FG motoneurons extend into the ventrolateral spinal cord and dendrites of the FOG motoneurons extend more generally into the ventral cord. Dendrites of tonic motoneurons in both amphibians were small and short, and difficult to observe. These results establish that motoneurons innervating different types of muscle fibers in the LSS muscle complex are segregated spatially and display consistent morphological differences.
Collapse
Affiliation(s)
- J Kim
- Department of Zoology, Ohio State University, Columbus 43210
| | | |
Collapse
|
43
|
Larkman AU, Major G, Stratford KJ, Jack JJ. Dendritic morphology of pyramidal neurones of the visual cortex of the rat. IV: Electrical geometry. J Comp Neurol 1992; 323:137-52. [PMID: 1401253 DOI: 10.1002/cne.903230202] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Features of the dendritic morphology of pyramidal neurones of the visual cortex of the rat that are relevant to the development of models of their passive electrical geometry were investigated. The sample of 39 neurones that was used came from layers 2/3 and 5. They had been recorded from and injected intracellularly with horseradish peroxidase (HRP) in vitro as part of a previous study (Larkman and Mason, J. Neurosci 10:1407, 1990). These cells had been reconstructed and measured previously by light microscopy. The relationship between the diameters of parent and daughter dendrites during branching was examined. It was found that most dendrites did not closely obey the "3/2 branch power relationship" required for representation of the dendrites as single equivalent cylinders. Estimates of total neuronal membrane area ranged from 27,100 +/- 7,900 microns2 for layer 2/3 cells to 52,200 +/- 11,800 microns2 for thick layer 5 cells. Dendritic spines contributed approximately half the total membrane area. Both neuronal input resistance and the ratio of membrane time constant to input resistance were correlated with neuronal membrane area as measured anatomically. The relative electrical lengths of the different dendrites of individual neurones were investigated, by using simple transformations to take account of the differences in diameter and spine density between dendritic segments. A novel "morphotonic" transformation is described that represents the purely morphological component of electrotonic length. Morphotonic lengths can be converted into electrotonic lengths by division by a "morphoelectric factor" ([Rm/Ri]1/2). This procedure has the advantage of separating the steps involving anatomical and electrical parameters. These transformations indicated that the dendrites of the apical terminal arbor were much longer electrically than the basal or apical oblique dendrites. In relative electrical terms, most apical oblique trees arose extremely close to the soma, and terminated at similar distances to the basals. These results indicate that the dendrites of these pyramidal cells cannot be represented as single equivalent cylinders. The electrotonic lengths of the dendrites were calculated by using the electrical parameters specific membrane capacitance (Cm), intracellular resistivity (Ri), and specific membrane resistivity (Rm). Conventional values were assumed for Cm (1.0 muFcm-2) and Ri (100 omega cm), but three different Rm values were used for each cell. Two of these were within the conventionally accepted range (10,000-20,000 omega cm2), while the third value was an order of magnitude higher, in line with some recent evidence from modeling and whole-cell recording studies.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A U Larkman
- University Laboratory of Physiology, Oxford University, United Kingdom
| | | | | | | |
Collapse
|
44
|
Portillo F, Núñez-Abades PA. Distribution of bulbospinal neurons supplying bilateral innervation to the phrenic nucleus in the rat. Brain Res 1992; 583:349-55. [PMID: 1380401 DOI: 10.1016/s0006-8993(10)80049-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The location of bulbospinal neurons with axon collaterals in both phrenic nuclei were determined by injecting two different fluorescent tracers into the right and left C4 cervical spinal cord. In contrast to single-labeled neurons that were found throughout the rostrocaudal extent of the medulla, the majority of double-labeled neurons were located in the rostral ventral respiratory group. Only a few double-labeled neurons were found in the ventrolateral nucleus of the solitary tract. The role of this bilateral pathway in synchronizing the activity of the phrenic nucleus is discussed.
Collapse
Affiliation(s)
- F Portillo
- Département de Physiologie et Neurophysiologie, URA CNRS 205, Faculté des Sciences et Techniques Saint Jerome, Marseille, France
| | | |
Collapse
|
45
|
Ritz LA, Bailey SM, Murray CR, Sparkes ML. Organizational and morphological features of cat sacrocaudal motoneurons. J Comp Neurol 1992; 318:209-21. [PMID: 1583160 DOI: 10.1002/cne.903180206] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have investigated the organizational and morphological features of motoneurons from cat sacrocaudal spinal cord, the portion of the neuraxis that innervates the tail. This information is pertinent for development of a new model of spinal cord injury. An understanding of sacrocaudal circuitry is essential for physiological and behavioral assessment of the effects of sacrocaudal lesions. Observations from Nissl-stained sections corroborated Rexed's cytoarchitectural scheme. Putative motoneurons were located within two regions of the ventral horn: the ventromedial nucleus (lamina IX) and the nucleus commissuralis. To map motoneuron pools, cholera toxin-horseradish peroxidase conjugate was injected into each dorsal tail muscle. The dorsomedial muscle was innervated by ipsilateral nucleus commissuralis motoneurons. The dorsolateral and intertransversarius muscles were innervated by ipsilateral lamina IX and nucleus commissuralis motoneurons. Cell bodies of retrogradely labeled sacrocaudal motoneurons ranged from 22 to 82 microns in diameter; the unimodal distributions peaked between 45 and 50 microns. Dendritic trees of motoneurons, revealed by retrograde labeling or by intracellular injection with horseradish peroxidase, were extensive. Five to eight primary dendrites originated from the cell body. Dendritic branches extended throughout the ipsilateral ventral gray matter, with processes spreading into the surrounding white matter and the base of the dorsal horn. Dendrites from motoneurons with their soma in the lateral portion of lamina IX formed a longitudinal plexus at the gray/white border. Medial dendrites from motoneurons in the nucleus commissuralis formed bundles in the ventral gray commissure and spread throughout the contralateral ventral horn. It is speculated that contralateral dendrites subserve synchronized co-contraction of medial muscles from both sides of the tail.
Collapse
Affiliation(s)
- L A Ritz
- Department of Neuroscience, University of Florida College of Medicine, Gainesville 32610
| | | | | | | |
Collapse
|
46
|
Cameron WE, He F, Kalipatnapu P, Jodkowski JS, Guthrie RD. Morphometric analysis of phrenic motoneurons in the cat during postnatal development. J Comp Neurol 1991; 314:763-76. [PMID: 1816274 DOI: 10.1002/cne.903140409] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dendritic geometry of 20 phrenic motoneurons from four postnatal ages (2 weeks, 1 and 2 months, and adult) was examined by using intracellular injection of horseradish peroxidase. The number of primary dendrites (approximately 11-12) remained constant throughout postnatal development. In general, postnatal growth of the dendrites resulted from an increase in the branching and in the length and diameter of segments at all orders of the dendritic tree. There was one exception. Between 2 weeks and 1 month, the maximum extent of the dendrites increased in parallel with the growth of the spinal cord; however, there was no increase in either combined dendritic length or total membrane surface area. In addition, there was a significant decrease in the number of dendritic terminals per cell (59.8 +/- 9.3 vs. 46.4 +/- 7.4 for 2 weeks and 1 month, respectively). The distance from the soma, where the peak number of dendritic terminals per cell occurred, ranged from 700-900 microns at 2 weeks and 2 months to 1,300-1,700 microns in the adult. The diameter of dendrites as a function of distance from the soma along the dendritic path increased with age. The process of maturation tended to increase the distance from the soma over which the surface area and dendritic trunk parameter (sigma d1.5/D1.5) remained constant. The three-dimensional distribution of dendrites was analyzed by dividing space into six equal volumes or hexants. This analysis revealed that the postnatal growth in surface area in the rostral and caudal hexants was proportionately larger than that in either the medial, lateral, dorsal, or ventral hexants. Strong linear correlations were found between the diameter of the primary dendrite and the combined length, surface area, volume, and number of terminals of the dendrite at all ages studied.
Collapse
Affiliation(s)
- W E Cameron
- Department of Pediatrics, Magee-Womens Hospital, Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
47
|
Abstract
The morphology of neonatal rat phrenic motoneurons was studied following retrograde labeling with horseradish peroxidase, which resulted in Golgi-like fills of phrenic motoneuron somata and dendrites. At birth, these neurons have well-developed dendritic trees with many characteristics described for phrenic motoneurons in the adult rat. The dendrites form tightly fasciculated bundles that emerge from the phrenic nucleus primarily along four axes: ventromedial, ventrolateral, dorsolateral, and rostral/caudal, with smaller and more variable projections directly lateral and ventral. Although sparse, some dendritic appendages were also present, and in a few animals, somata clustering was apparent. The most significant difference between adult and neonatal rat phrenic motoneurons is in the extent to which medially and laterally projecting dendrites extend beyond the borders of the ipsilateral gray matter. In the neonate, unlike the adult, these dendrites project extensively past the gray/white border to the edge of the hemicord. Ventromedial dendrites occasionally cross to the contralateral ventral horn in the ventral white commissure and laterally projecting dendrites could be seen reaching the edge of the cord, turning and traveling rostrally or caudally for up to 100 microns. Phrenic motoneurons are not unique in having long dendrites at birth. A brief comparative study showed that neonatal cervical, thoracic, and lumbar motoneurons also have long dendrites that project to the medial and lateral borders of the hemicord.
Collapse
Affiliation(s)
- A D Lindsay
- Department of Kinesiology, University of California, Los Angeles 90024-1527
| | | | | |
Collapse
|
48
|
Larkman AU. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: II. Parameter correlations. J Comp Neurol 1991; 306:320-31. [PMID: 1711058 DOI: 10.1002/cne.903060208] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study concerns the correlations between the various morphometric parameters obtained for the dendrites of neocortical pyramidal cells. The primary aims were to uncover underlying design principles in dendritic morphology, to see if these differed between different types of dendrite, and to see if estimates of parameters such as total dendritic shaft membrane area could be obtained from a limited number of measurements, avoiding the need to measure every dendritic segment. The data were from a sample of 39 pyramidal neurones, from layers 2/3 and 5 of the visual cortex of the rat, that had been injected with horseradish peroxidase, reconstructed, and measured with the light microscope as part of an earlier study (Larkman and Mason, '90: J. Neurosci. 10:1407-1414). Correlations between the somal area or the combined diameters of the stem segments and measures of the overall size of the dendrites were generally weak. For basal dendrites, the size of a tree was correlated with both its number of tips and the diameter of its stem segment, but these correlations were weaker for apical dendrites. Within individual cells, the diameter of any basal segment was closely related to the size of the tree arising from it, and quantitatively similar relations applied to apical oblique trees from the same cell. Terminal arbor trees showed relations that were similar in pattern but differed quantitatively, whereas apical trunk segment diameter correlations were often weak. In all cases, the number of tips in a tree was closely related to its size. Segment lengths, however, were not closely related to the size of the trees arising from them. It appears that at least some aspects of pyramidal dendritic morphology obey simple design rules. There was heterogeneity between trees of different types, although basal and oblique trees were very similar in most respects. It should prove possible to make use of correlations to estimate the sizes of basal, oblique, and terminal arbor trees from a limited number of measurements, but this does not seem to be possible for apical trunks.
Collapse
Affiliation(s)
- A U Larkman
- University Laboratory of Physiology, Oxford University, United Kingdom
| |
Collapse
|
49
|
Affiliation(s)
- R Monteau
- Biologie des Rythmes et du Développement', Département de Physiologie et Neurophysiologie, Faculté des Sciences et Techniques St. Jérôme, Marseille, France
| | | |
Collapse
|
50
|
Goshgarian HG, Ellenberger HH, Feldman JL. Decussation of bulbospinal respiratory axons at the level of the phrenic nuclei in adult rats: a possible substrate for the crossed phrenic phenomenon. Exp Neurol 1991; 111:135-9. [PMID: 1984430 DOI: 10.1016/0014-4886(91)90061-g] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The axonal trajectories of inspiratory bulbospinal neurons were examined after deposition of the anterograde neuronal tracer phaseolus vulgaris leucoagglutinin (PHA-L) into the rostral ventral respiratory group in rats. At the level of the phrenic nucleus, PHA-L-labeled bulbospinal axons crossed the midline of the spinal cord in both the anterior gray and the anterior white commissure. These spinally decussating neurons provide a possible anatomical substrate for the respiratory reflex known as the crossed phrenic phenomenon.
Collapse
Affiliation(s)
- H G Goshgarian
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|